
163

Improving IRT Item Bias Detection With
Iterative Linking and Ability Scale Purification
Dong-Gun Park and Gary J. Lautenschlager

University of Georgia

The effectiveness of several iterative methods of
item response theory (IRT) item bias detection was
examined in a simulation study. The situations em-
ployed were based on biased items created using a
two-dimensional IRT model. Previous research
demonstrated that the non-iterative application of
some IRT parameter linking procedures produced
unsatisfactory results in a simulation study involv-
ing unidirectional item bias. A modified form of
Drasgow’s iterative item parameter linking method
and an adaptation of Lord’s test purification
procedure were examined in conditions that simu-
lated unidirectional and mixed-directional forms of
item bias. The results illustrate that iterative link-

ing holds promise for differentiating biased from
unbiased items under several item bias conditions.
In addition, a combination of methods, involving
cycles of iterative linking followed by ability scale
purification, was found to be even more effective
than iterative linking alone. This combination of
procedures totally eliminated false positive misiden-
tifications for the most pervasive item bias condi-
tion, and false negative misidentifications were also
reduced. Combining iterative linking with ability
scale purification appears to be a viable method
for analyzing multidimensional IRT data with
unidimensional IRT item-bias methods. Index
terms: ability scale purification, item bias, item
response theory, iterative linking, iterative methods,
metric linking, multidimensional IRT model.

Research related to the detection of item bias
has proliferated in the psychometric and applied
psychological literature (Rudner, Getson, &

Knight, 1980; Shepard, Camilli, & Williams,
1985). Among item bias methods, the theoreti-
cally-preferred method is based on item response
theory (IRT). It is preferred because of its sam-
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ple invariant properties, which make it less like-
ly that true subpopulation differences will be mis-
taken for bias. Among others, Berk (1982, p. 3)
and Drasgow (1982, 1984) have provided a sound
justification for more direct concern with item
bias detection, rather than with overall predictive
bias as determined from total test scores.

Two notions are central to the concept of item
bias. The first notion is that examinee perfor-
mance on an item may be influenced by sources
of variation other than differences on the dimen-
sion of interest. The second is that these extrane-
ous sources of variation affect performance in a
way that differs systematically for some sub-
populations, which gives an unfair advantage to
one subpopulation over another. Based on these
two notions, a definition of an unbiased item can
be formulated: An item is unbiased with respect
to two subpopulations if the item is influenced
by the same sources of variance in both subpopu-
lations ; in addition, among examinees who are
at the same level on the dimension purportedly
measured by the test, the distributions of irrele-
vant sources of variation are the same for both

subpopulations (Crocker & Algina, 1986).
The IRT method for detecting item bias is

based on the comparison of item response func-
tions (IRFS) estimated separately for two groups.
If an item is unbiased, then the IRFS for differ-
ent groups should be the same. If IRFs for two

groups differ by more than sampling error, then
the item is suspected of being biased.

Metric Linking and IRT Item Bias Analysis

Lautenschlager and Park (1988) recently
demonstrated that the linking of item parameter
and person metrics in IRT item bias analysis is
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not without its own potential pitfalls. This is be-
cause all the IRT item bias detection methods

compare the IRFs obtained for the separate
groups. The linking of person ability metrics oc-
curs through a standardization process involving
item parameter estimates, and a number of
methods have been developed that could osten-
sibly serve this purpose (Divgi, 1985; Linn,
Levine, Hastings, & Wardrop, 1981; Lord, 1980;
Stocking & Lord, 1983; Warm, 1978). However,
there is a paradox involved in IRT item bias analy-
sis : The common items that should be involved
in linking ability (0) metrics are the truly unbi-
ased items, the very items that can be identified
through the item bias analysis itself.

The more sophisticated metric linking
methods, such as those offered by Stocking and
Lord (1983) and Divgi (1985), might be even less
appropriate for item bias analyses because they
use more of the information available from bi-
ased items, as well as unbiased items, in order to
achieve the goal of symmetric treatment of the
two sets of item parameter estimates. For exam-

ple, Stocking and Lord (1983) found their charac-
teristic curve method better achieved this goal by
providing a better fit. This fit was defined as bi-
section of the plots of a given set of item

parameter estimates from two calibration sam-

ples in a different type of linking situation in
which the samples may safely be presumed to
come from the same parent population (Stock-
ing & Lord, p. 205-207). However, this might not
necessarily be appropriate for item bias research
in which the plotted points likely represent un-
common (i.e., biased), as well as common (i.e.,
unbiased), items. In theory, if a test has biased
items-in particular, many biased items that are
biased against one group-the linking line should
not be expected to bisect the item parameter es-
timate point cloud from two independent calibra-
tion samples.

Improving IRT Item Bias Detection Methods

Lord (1980) described a procedure (that is
attributed to Marco, 1977) called &dquo;purification,&dquo;

as having some potential for alleviating this link-
ing dilemma.

Lord (1980, p. 220) described the procedure as
follows:

1. Analyze the total test, as described in
the preceding sections. [These &dquo;preceding
sections&dquo; refer to estimating item parame-
ters for all groups combined and stan-

dardizing on the b, parameters; fixing c,

parameters to those obtained in that anal-

ysis ; and then re-estimating a, and b, within
each group, again standardizing on b, ; fi-

nally, IRFs are compared for evidence of
bias. See Lord, 1980, pp. 213-220.]
2. Remove all items that have significantly
different response functions in the groups
under study. The remaining items may now
be considered to be a unidimensional pool,
even when the groups are combined.
3. Combine all groups and estimate 0 for
each individual. These 8s should all be

comparable.
4. For each group separately, while hold-
ing 0 fixed for all individuals at the values
obtained in step 3, estimate the a, and the
b, for each item. Do this for all items, in-
cluding those previously removed.
5. Compare estimated item response func-
tions or parameters by the methods of sec-
tion 14.4 [computation of a x2 test of
differences in IRFS]. (p. 220)

The rationale is that if many items are found
to be seriously biased, then it appears that the
items are not strictly unidimensional. The 0 esti-
mates obtained for one group are not strictly
comparable to the 0 estimates obtained for
another. This casts some doubt on the results ob-
tained when all items are analyzed together.

This purification procedure does not directly
address the linking issue, but rather considers the
dimensionality of the data. Because multidimen-
sionality and the linking issue are in some sense
related to each other, however, this procedure
could suggest a possible way of overcoming the
linking dilemma. By removing potentially biased
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items, the procedure attempts to obtain a uni-
dimensional latent space; thus it could aid in

resolving the scale-linking dilemma noted earlier.
Although it has some potential, there is little
indication that this procedure has been employed
in published articles, except in Lord’s (1977) item
bias study.

More recently, Drasgow (1987) used a proce-
dure that has potential utility for overcoming the
linking problem. The procedure involved the ap-
plication of the Stocking and Lord (1983) metric
linking method to initially place item parameter
estimates on approximately equal scales. Next,
item bias statistics were computed. Subsequent-
ly, item parameter estimates were relinked, using
only those items found to be unbiased in the
previous step; again, item bias statistics were com-
puted for all the items. This process continued
until the same set of items was found to be bi-
ased on two successive iterations. The rationale
for using the iterative procedure was that if bi-
ased items were not discarded, linking methods
might compensate for truly biased items by caus-
ing unbiased items to appear biased.

This procedure could have more potential than
Lord’s purification, but it is not without prob-
lems. For example, if there were many biased
items in a test, or the magnitude of item bias were
large, initial estimates of person and item

parameters might not be accurate. In this case,
the iterative linking used by Drasgow would not
be effective because the procedure would con-
tinue to use the potentially inaccurate estimates
obtained in the initial estimation. Thus after

eliminating the biased items identified on initial
linking, it might be necessary to re-estimate per-
son and item parameters, using only the items
detected as being &dquo;unbiased.&dquo;

Another alternative method for identifying
biased items was adapted by Park (1988) from the
test purification procedure described by Lord
(1980), and is referred to as the modified-Lord
test purification (M-LTP) method. This procedure
functions as follows:
1. Combine all groups, and estimate 0 for each

individual.

2. For each group separately, while holding 0
estimates fixed for all examinees at the values
obtained in step 1, estimate the item

parameters and compute the item bias statis-
tic for each item.

3. Remove all items that have significantly
different response functions in the groups.

4. Using the remaining items from step 3, esti-
mate 0 for each individual.

5. Estimate the item parameters for all the items
in the test for each group separately, while
holding 0 estimates fixed for all individuals
at the values obtained in step 4.

6. Compute item bias statistics for each item in
the test.

7. Repeat this process (steps 3 through 6) until
the same set of items is found to be biased
on two successive iterations.
A potential virtue of this procedure is that no

metric linking method is explicitly involved in the
item bias detection procedure. This should
eliminate concern about the statistical artifacts
that may result from use of a metric linking
method, thus possibly overcoming the linking
dilemma to some degree. The present study was
designed to compare the two iterative item bias
detection procedures described above, and to ex-
amine their potential to resolve the linking dilem-
ma (Lautenschlager & Park, 1988).

Method

Simulation of Item Responses

The simulation of item response data for ex-
aminees was based on variations of the three-

parameter logistic model. This model was chos-
en because it has been found to produce a realis-
tic reflection of data from standardized
achievement tests (Ansley & Forsyth, 1985).

Previous monte carlo simulation studies of
item bias that have employed unidimensional IRT
item bias detection methods (e.g., Drasgow, 1987;
Rudner et al., 1980; Shepard et al., 1985) have
increased or decreased the values of item

parameters for one of the groups being com-
pared, typically by shifting item difficulty
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parameters for a subset of items. McCauley and
Mendoza (1985), however, used a factor analytic
model for developing biased item responses.
An alternative method of creating biased

items, which allows for additional sources of var-
iance (0 dimensions) to systematically influence
item performance, is more consonant with the
IRT definition of biased items. The model adopt-
ed here for simulating biased item responses was
that used by Park (1988; Lautenschlager & Park,
1988), in which biased items were items that were
unidimensional for one group, while some of
these same items were multidimensional in the
other group (Hambleton & Swaminathan, 1985).
This model involved the use of an incidental 0
dimension to influence performance on biased
items. Such an operational definition of item bias
involved a focal dimension (8,) and a second in-
cidental dimension (0,) that could influence per-
formance on some items.
A two-dimensional version of the multidimen-

sional IRT model proposed by Sympson (1978)
was used to generate biased item responses. The

Sympson non-compensatory model is

where:

0,, is the ability parameter for person i on dimen-
sion h,

a,h is the discrimination parameter for item j on
dimension h,

b1h is the difficulty parameter for item j on di-
mension h, and

c1 is the pseudo-guessing parameter for item j.
Ansley and Forsyth (1985) justified the use of
Sympson’s non-compensatory model in prefer-
ence to other models by indicating that the non-
compensatory view of dimensionality is more
reasonable for most well-constructed achievement
tests. In addition, the model produced data that
had properties similar to actual achievement test
data.

The unidimensional three-parameter logistic

model was used here to generate data for all un-
biased items. The 0 dimensions employed are
referred to as 0, (the focal dimension common
to all items and groups) and an incidental dimen-
sion, which is referred to as 0,; the latter dimen-
sion produced item bias as described below.

The rationale and guidelines for selecting item
parameters and generating item response data to
reflect actual test data are described in detail else-
where (Lautenschlager & Park, 1988). Essential-
ly, item difficulty parameters associated with the
0, dimension were sampled from a uniform dis-
tribution in the interval from -2.0 to + 2.0, and
item discrimination parameters were sampled
from a uniform distribution of .6 to 2.0

(Swaminathan & Gifford, 1980). For the inciden-
tal dimension 0~, item difficulty parameters were
scaled to have a mean of -1.0 and a standard devi-
ation of .70. Item discrimination values for 0,
were centered at .50, with a standard deviation
of about .10. The c, parameters were held con-
stant at .20.

Dataset Characteristics

Datasets were generated to simulate item

responses to multiple-choice items with four
response options. Data were simulated for two
groups, Group A and Group B. All simulated
datasets had 1,000 examinees in each group. The
number of biased items in a given simulated test
was varied, resulting in either 18, 28, or 36 bi-
ased items out of a total of 54 items in the test.
The inclusion of pervasive amounts of biased
items permitted an examination of the robustness
of IRT parameter estimates and item bias detec-
tion procedures.

Six pairs of datasets were created based on
combinations of the number of biased items, 6
distributions on the first and second dimensions,
correlation of the latent dimensions, and direc-
tion of bias. Four of these pairs were involved in
the simulation of unidirectional bias conditions,
in which bias was against Group B, and the other
two pairs simulated mixed directional bias con-
ditions. These datasets are described in detail be-
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Table 1
Number of Unbiased and Biased Items, Mean (M) and Standard Deviation
(SD) of the Incidental Trait (0,), and the Population Correlation Between

the Focal and Incidental Trait [r(6,ej] in Unidirectional and Mixed
Directional Item Bias Conditions (N = 1,000)

low. Table 1 summarizes the characteristics of the
datasets generated to represent both the four uni-
directional bias conditions, and the two mixed
item bias conditions.

Unidirectional Bias Conditions. For the uni-
directional bias conditions, it was assumed that
only 0, influenced performance on all unbiased
items. Thus the three-parameter logistic IRT

model was used to generate item response data
for all items for Group A examinees, and for all
unbiased items for Group B examinees. The
generation of item responses for the biased items
involved the use of the two-dimensional version
of Sympson’s model. Two types of normal 8 dis-
tributions on 0, were generated for the B group
examinees using a mean of either -.5 or 0, and
a standard deviation of 1.0. The correlation be-
tween the focal (0,) and incidental (0,) dimen-
sions was either .60 or .90 in the population.

Mixed Directional Bias Conditions. For the
mixed directional bias conditions, it was assumed
that a separate, unrelated (across groups) inciden-
tal 0 influenced performance on biased items
within each of the two groups. Consequently, two
additional sets of item parameters and two

distinct incidental 8 dimensions for biased items
were generated in a given mixed bias condition.
Items biased against one group were unbiased in
the other group. The generation of biased items
proceeded as it had in the unidirectional bias con-
ditions, except that biased items were created for
both groups. Two types of normal 0, distribu-
tions were generated again using a mean of either
0 or -.5, and all such distributions had a stan-
dard deviation of 1.0 in common. The correla-
tion of 0, with 0, in the population was set at
either .60 or .90, and was the same for both
groups within a given bias condition.

Analysis
The LOGIST computer program (Wingersky,

Barton, & Lord, 1982) was used to estimate item
and 0 parameters, and was used in successive iter-
ations for estimation with fixed estimated 0
values for the M-LTP procedure described earli-
er. Lord’s (1980) Xz item bias statistic was used
to indicate the potential for item bias, and a sig-
nificance level of .005 was used for indicating
&dquo;detected&dquo; item bias. Due to the costs involved
with using the M-LTP item bias detection proce-
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dures, only bias conditions 1, 3, 4, and 6 were
examined for this method.

Divgi’s (1985) minimum X2 method was sub-
stituted in place of the more complex Stocking
and Lord (1983) method in the linking of esti-
mates of IRT parameters, producing a modifica-
tion of Drasgow’s (1987) iterative linking
procedure (M-DIL). This method was chosen be-
cause it was simpler and less expensive than other
methods, and it had desirable features found in
more complex methods, such as that of Stock-
ing and Lord (1983). Thus the M-DIL procedure
employed a different metric linking method than
that used by Drasgow (1987). Relinking of

parameters for the M-DIL procedure was accom-
plished by applying Divgi’s method to subsets of
items that had been flagged as unbiased in the
immediately preceding iteration in order to de-
termine linking constants.

Results

Table 2 presents the number of false positives
(FPS) and false negatives (FNS) on each iteration
for all test bias conditions investigated.

Unidirectional Test Bias Conditions

For bias conditions 1 and 2, each with eighteen
truly biased items, the difference in the mean of
the 82 distributions between these two conditions
did not greatly affect the outcome when M-DIL
was used. Both conditions converged in just three
iterations, with the same set of items being iden-
tified as biased in the second and third iterations.
There were no FPs identified in either condition,
because all truly unbiased items were identified
as being unbiased on the final iteration. Indeed,
FPS were rare regardless of iteration. Eight FNs
were identified in condition 1 for both methods
and seven FNS occurred in condition 2. The use
of the M-LTP method for bias condition 1

produced the same outcome as the M-DIL

method, except that more iterations were needed
to reach convergence with the former method.
False negatives tended to occur among the more
weakly biased items, as might be expected.

In bias condition 3 [8z - N(-.5, 1.0) and
r(6&dquo;62) _ .6], 28 items were created to be bi-
ased. Here the number of iterations required by
the M-DIL method to reach convergence increased
to six. Only 4 out of 11 FNS were later correctly
detected as biased items on the final iteration. All
9 FPS on the first iteration were correctly identi-
fied as unbiased by the final iteration. For the
M-LTP method, the number of FP identifications
in the initial stage was 19 out of 26 possible. One-
half of the truly biased items resulted in FN mis-
classifications. This was substantially more de-
generate than the results for the M-DIL method,
and suggested that the M-LTP method likely
would not lead to better results in further itera-

tions ; therefore, no further iterations were done
with the M-LTP method (partly due to cost con-
siderations, as well).

In bias condition 4, with the most pervasive
unidirectional item bias, both the M-DIL and
M-LTP methods led to less than desirable solu-
tions. Although convergence was reached in four
iterations for the M-DIL method, one-half of the
truly unbiased items were incorrectly identified
as biased, and nearly half of the truly biased
items were identified as unbiased. As had hap-
pened for bias condition 3, the use of the M-LTP
method produced poor results on the first itera-
tion ; thus no further iterations of the M-LTP
method were attempted for this condition.

It could be argued that the test simulated in
bias condition 4, which was intended to contain
36 biased items, was actually more accurately a
test with only 20 biased items. Because the tests
with 28 biased items (in bias condition 3) con-
tained seven false negatives that also could have
been weakly biased, that test could be taken for
a test with 21 biased items. It is tempting then
to conclude that the two tests represented by con-
ditions 3 and 4 were similar in terms of degree
of bias. However, if the two tests were biased to
approximately the same degree, why should us-
ing the M-DIL method alone have resulted in no
FPs at convergence in condition 3, while detect-
ing nine FPs in condition 4 after convergence?
This result was probably not solely due to sam-
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Table 2
False Positives (FP) and False Negatives (FN) Observed on Each Iteration for the
Unidirectional and Mixed Test Bias Conditions, for Modified Drasgow Iterative
Linking Method (MD) and the Modified Lord Test Purification Method (ML)

pling error. One possible explanation is that

although each of the 16 FNs (prior to the purifi-
cations) were weakly biased, the cumulative ef-
fect for those 16 FNS was large enough to distort
the 0 scale and therefore produce many false
positives.

At this point a post hoc procedure was im-
plemented to determine if a variation involving
features of both iterative parameter linking and
test purification procedures could improve the
correct determination of biased and unbiased
items for bias condition 4. Rather than use sub-

sequent purification of the 0 scales immediately
after each iteration, such as in the M-LTP method,
scale purification was done after initial conver-
gence had been achieved using the M-DIL proce-
dure. This amounted to using both iterative

parameter linking and 0 scale purification (ILAP).
Application of the ILAP procedure involved

starting with the results at convergence of the
M-DIL method, as described in the last iteration
of condition 4 from Table 2. From these results,

8s were re-estimated separately within each group,
using only those items which had been flagged
as &dquo;unbiased&dquo; from that last M-DIL iteration.

Holding these newly estimated Os as fixed, item
parameters were re-estimated for all items in the
test, and again this was done separately within
each group. Using Divgi’s method, linking con-
stants were estimated, based on only those items
that were flagged as &dquo;unbiased&dquo; preceding the
purification step, and then new item bias statis-
tics were calculated. This analysis produced 2 FPS
and 15 FNS. The M-DIL method was applied once
more, and produced no changes in item classifi-
cations on convergence at the second iteration.

Because the purification had resulted in

changes in item classifications, a second pass of
this entire procedure was conducted using data
from the last M-DIL step noted above as a start-

ing point. The second 0 scale purification step
resulted in 1 FP and 14 FNS, once item bias statis-
tics were calculated. After convergence on the
third iteration, application of the M-DIL method

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



170

produced 0 FPs and 12 FNS. The fact that item
classifications had changed again would suggest
that the ILAP procedure could have been carried
further. However, cost considerations and the fact
that there were no FPs, although a number of FNs
remained, made it seem unlikely that additional
passes through this procedure would lead to fur-
ther improvement in the identification of biased
items.

The results for bias condition 4 showed that
the ILAP procedure completely eliminated false
positives, but it did not have as much of an im-
pact on reducing false negatives. This could have
resulted from items that were originally created
to be only very weakly biased. To examine this
possibility, average probabilities for Group B that
responded correctly to each item from the unbi-
ased test were compared to those for the biased
test that contained the 36 biased items. It was

found that all of the FNs were among the 16 most

weakly biased items (i.e., those biased items with
the smallest differences in average probabilities).

Mixed Test Bias Condition

There were 18 items biased against each group
for bias condition 5 [8z - N(-.5, 1.0) and

r(6&dquo;AZ) _ .6 for both groups]. When the M-DIL
method was applied to this condition, two biased
items were found to be unbiased for the initial

linking. After the second iteration, however, the
x2 value for one more biased item was statisti-
cally significant, and remained significant after
convergence on the third iteration.

Bias condition 6 also had 18 items biased

against each group, but it had different mean
values of the 62 distribution for each group. In
addition, the correlation between the focal and
incidental dimensions was greater. Both the
M-DIL and M-LTP procedures yielded the same re-
sults, except that two iterations were required for
the M-DIL method to reach convergence, whereas
four iterations were needed for the M-LTP

method. In fact, after the third iteration for the
M-LTP method, the same set of items was iden-
tified as biased, which also had been the case with

the M-DIL method, but the fourth M-LTP iteration
added one additional false negative.

Discussion

Non-iterative use of Divgi’s linking method
had essentially the same problems as the linking
methods of both Warm (1978) and Linn, Levine,
Hastings, and Wardrop (1981) in an earlier study
(Lautenschlager & Park, 1988). Because Divgi’s
method is perhaps one of the best metric linking
methods, considering sophistication, simplicity,
accuracy, and cost, it is useful to know that iter-
ative use of this method could effectively reduce
the number of FP and FN identifications.

For bias condition 1, both the M-DIL and
M-LTP linking methods were accurate in correct-
ly classifying truly unbiased items. This was also
true of the M-DIL method for bias condition 2.

Subsequent iterations had little effect on the out-
come. However, for unidirectional bias condition
3 (with 28 biased items), the M-LTP method

proved clearly inferior, resulting in a very large
number of false positives. The M-DIL method did
overcome the FP problem after convergence, but
a substantial number of FNs remained. In the

presence of the most pervasive unidirectional bias
(condition 4), both FPs and FNs remained numer-
ous, even after convergence of the M-DIL method,
and the initial M-LTP results again looked poor.
These results imply that even very sophisticated
metric linking methods have difficulty correctly
classifying items as biased or unbiased as the
number of biased items grows larger.

The mixed bias conditions (5 and 6) were
generally less problematic for the correct iden-
tification of biased and unbiased items. Although
the total number of biased items was great, the
fact that bias was attributable to different in-
cidental dimensions (8z) could have led to a can-
celing of effects attributable to item bias

(Lautenschlager & Park, 1988). Furthermore, it
is notable that the number of biased items was

only a third of the total number of items within
each group, and thus 0 would be estimated from
a preponderance of truly unbiased items.
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The practical import of the findings in these
mixed bias conditions must be tempered by at
least two considerations. First, it is reasonable to
question the likelihood that two completely
different incidental dimensions would affect the
test performance of two separate groups on a
given test. Such conditions could be difficult to
find in actual test situations. Second, it rarely will
be known a priori whether a real test contains
unidirectional or mixed directional forms of item
bias.

The number of FNS in the unidirectional bias
conditions appears to pose a potential problem.
Drasgow (1987) asserted that it is meaningful to
make the distinction between significant differ-
ences and practically important differences in IRT
item bias analysis. He addressed this issue at the
total test level, but it may also be examined at
the item level. If weakly biased items were flagged
as statistically significant, they would be labeled
as biased in a statistical sense, but not necessari-

ly in a practical sense. In the present study the
most weakly biased items tended to have non-
significant x2 values. It could be that these items
were like unbiased items; however, one question
remains unresolved.
When examining the results for bias condition

4, the XZ values for the unbiased items changed
throughout the iterations. The weakly biased
items tended to remain statistically unbiased
throughout the iterations, though, and the x2
values remained largely unchanged. Also, 9 FPS
remained at the convergence of the M-DIL meth-
od in bias condition 4, but the status of the FN
items was virtually constant across the iterations.
In addition, only the status of 5 out of the 16
FNS was changed, although the XZ values for all
9 FPs were changed to smaller nonsignificant
values after the scale purifications described for
the application of the ILAP procedure.

The issue of dealing with the FN problem is
closely related to setting the a level for the x2 test.
In examining the data for truly biased items in
terms of probability difference between the items
that were detected as unbiased and those items

detected as biased, the items that had smaller
than a .1 probability difference tended to have
Lord asymptotic X2 values smaller than 13. Be-
cause this much probability difference looks trivi-
al, the critical value for the XZ test could be set
at slightly above 13-that is, at the .001 or .0005
a level to keep these items in the final version of
the test. It is important to consider, however, the
cumulative measurement bias for these weakly
biased items. As stated above, these items tend-
ed to have smaller X2 values, regardless of the
number of biased items in a test. Therefore,
selecting a critical a level is an important issue
(McLaughlin & Drasgow, 1987).

Another finding related to setting the a level
is that moderately or strongly biased items almost
always had large x2 values. This was true even
when Warm’s metric linking method had been
used in a previous study non-iteratively for a sim-
ulation involving 46 biased items out of a 54-item
test (Lautenschlager & Park, 1988). This could
indicate that any biased items greatly influenc-
ing the total test score would be easily detectable
using most metric linking methods. Judging from
the results obtained in the present simulations,
it was difficult to miss those items in IRT item

bias analysis. Thus, if the possibility of strongly
or moderately biased items after an item bias
analysis is excluded, any remaining &dquo;weakly&dquo;
biased items may not have much influence on the
total test score.

Drasgow (1987; McLaughlin & Drasgow, 1987)
reported that when estimated 0 parameters were
used in place of true 0 values in simulation

studies, Lord’s xz values tended to be inflated.
Because estimation of person parameters was in-
fluenced by the presence of biased items in the
item bias analyses, it was desirable here to ex-
amine whether Drasgow’s results would be repli-
cated, even though a different method was being
used to simulate item bias. The XZ values for
almost all items in the present study, too, tended
to be larger when estimated 8s were used than
when true 0 values were used in calculating the
statistics. Therefore, using larger critical XZ values
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would seem to be more appropriate.
The findings in the unidirectional bias condi-

tions appear to be somewhat consistent with the

recently reported results of Candell and Drasgow
(1988), who used a different method for simulat-
ing item bias and a slightly different method for
iterative linking. Both studies provided evidence
that it is rare for truly unbiased items to be iden-
tified as biased when iterative linking is used, but
false negative rates were generally higher in the
present study. This could be attributed to the
higher proportion of biased items involved, to the
metric linking method employed, or to the differ-
ences in the amount and way in which item bias
was simulated. Both studies also presented con-
sistent evidence that non-iterative linking should
be avoided in IRT bias analysis. Based on the
results obtained here, the M-DIL method is prefer-
able to the M-LTP method, because it generally
converged in fewer steps with equivalent or bet-
ter results.

Rather than using the M-DIL method alone,
however, using a combination of iterative link-
ing with 0 scale purification led to more accurate
classification of biased and unbiased items. The
ILAP method was developed in an attempt to deal
with the most pervasive unidirectional item bias
condition simulated (condition 4). The results of
this limited application of the ILAP procedure
suggest that purification of 0 scales, even after
iterative parameter linking, could be a useful step
in improving IRT item bias analysis.

Even a sophisticated way of linking parameter
metrics cannot, however, exert its full potential
if there are poor item parameter estimates. This
fact further adds to the admonition of Lau-

tenschlager and Park (1988), that the &dquo;common&dquo;
items for linking 0 metrics are those that are un-
biased to begin with. The hope raised here is that
the use of the ILAP method may well make it

possible to better isolate these &dquo;common&dquo; items.
Even though such complex procedures require
more time, effort, and expense, they do appear
to hold promise for resolving a significant
problem in IRT item bias detection. Hopefully,
feasible and efficient methods for disentangling

biased from unbiased items can be further devel-

oped and refined so that they can be confidently
implemented with actual test data.
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