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Abstract 

 

Commercial swine production has steadily evolved the into interconnected multi-site production 

systems of today.  As a result, large numbers of growing pigs and breeding animals move from 

one location to another on a daily basis.  The health of the national swine herd has improved 

dramatically, due in large part to this new production structure; but the increased network size 

and the long distances travelled pose obvious threats to swine health. As animal agriculture has 

become more sophisticated, our government resources have not kept up.  Available datasets are 

inaccurate, fragmented, and offer limited definition of the population at risk and its nature.  

National efforts to improve livestock population data have met considerable public resistance, 

and as a result, progress has been limited.  Knowledge of the populations at risk is of primary 

importance when trying to define the potential for disease to spread within and between these 

populations.  Disease spreads by non-mechanical means (as in aerosol transmission of PRRS 

virus) potentiates the need for knowledge of the neighborhood.  Given the dynamic and transient 

nature of our swine populations, the neighborhood’s health status is constantly challenged by the 

most recent delivery of pigs into the neighborhood. 

 

The following dissertation seeks to expand the knowledge of swine populations.  Current 

geographic datasets were assessed for accuracy and reliability.  In the event of a foreign animal 

disease outbreak the usefulness of these datasets would be of prime importance, as they will 

dictate the distribution of resources.  Additionally, the use of satellite-derived thermal imagery to 

verify the presence of commercial swine is described, along with its estimated sensitivity and 

specificity.  Any regional disease elimination program must consider all swine populations, 

therefore non-commercial populations (specifically, 4H exhibition pigs) are analyzed.  Population 

size, seasonality, caretaker knowledge, presumed and measured health status, and relationship 

with commercial swine are defined. The physical movement of infected animals across the 

landscape allows rapid spread of a pathogen to occur. Volume, frequency, and geographic scale 

of movements will dictate how quickly and thoroughly an epidemic will proceed. For this reason, 

these are defined and displayed for pig producing areas at different scales. 
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Introduction: Evolving challenges in swine disease management 

 

Facilities and management methods for swine production have changed dramatically in the USA 

and other developed countries over the last 50 years.  Many changes were specifically instituted 

with the goal of improving animal health [e.g., all-in/all-out (AIAO) management; multiple site 

production].  Several factors have changed in US swine production and are likely to influence 

disease rates. Included would be herd size, population structure, and dynamics;  sources and 

health status of incoming stock; area density of pigs and other species; biosecurity practices; 

group sizes and animal density; replacement practices in breeding herds; pig flow (e.g., AIAO vs. 

continuous flow); housing systems; ventilation systems and air quality; sources, quality, and 

delivery systems of feed and water; hygiene and effluent  management;  nutritional programs; 

weaning age; and specific health interventions (e.g., vaccines)1.  

  

The fundamental principles of epidemiology dictate that these substantial changes in production 

systems should alter the patterns of disease occurring in swine populations. Indeed, previously 

prevalent pathogens including Sarcoptes scabiei var. suis, Brachyspira hyodysenteriae, 

Trichinella spiralis, Toxoplasma gondii and Taenia solium have been either eliminated or 

substantially reduced in modern systems2-6. On the other hand, the swine industries of developed 

countries have experienced two substantial pandemics over the last 20 years: PRRS virus7 and 

Porcine Circovirus type-2 associated diseases8. The viruses involved appear to be highly host 

specific for swine and caused major economic losses to affected swine industries worldwide. 

Other agents that have become more prominent as swine production has intensified include M. 

hyopneumoniae, H. parasuis, S. suis, and Lawsonia intracellularis9.  In the USA, for over 20 

years PRRS has been unquestionably the most problematic disease confronting the modern swine 

industry. The capacity of the virus to spread locally among farms despite intensive biosecurity 

measures is arguably the most challenging feature of the disease, and has led to calls for 

cooperative efforts to control the disease at a regional level. The goal of the work conducted in 

this thesis is to enhance efforts for regional control of PRRS virus, focusing on the application of 

geographic information systems, spatial analysis, and the role of animal movements. 
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Use of Geographic Information Systems in livestock disease control and eradication 

Understanding disease in a spatial context 

 

There are many benefits to incorporating a spatial component in analysis of health information. 

Geographic knowledge of the locations of animal populations is vital to containing epidemics 

through identification and quarantine of high-risk populations and movement restrictions. 

Advances in information technology and software based geographical information systems have 

greatly increased the potential for capturing and utilizing spatial data in livestock disease 

management. This in turn has lead to advanced methods of spatial analysis, including recognized 

approaches for analyzing health data such as cluster detection, diffusion studies, interpolation, 

risk factor identification, and various types of regression analysis10. Cluster detection 

encompasses nearest neighbor analysis and cell count methods to assess the area density of 

disease events compared those expected if the disease were randomly distributed in space; this is 

performed using either unique points or contiguous areas on a landscape. Diffusion studies 

include line analysis (approximation of a disease ‘front’), trend surface analysis (method of 

interpolation), and most notably network analysis which focuses heavily on the relationships 

between entities. The methods listed above do not require the use of a GIS, but rather make good 

use of data captured and maintained within a GIS.   

 

Advances in techniques in sophisticated analysis still give present imperfect methods for 

understanding a disease process occurring on a geographic landscape.  In a critical review of 

spatial analysis in disease research, Mayer11 cites three areas of weakness in spatial analysis of 

disease- not enough is known about the nature of disease to assign causality, there are so many 

candidate risk factors that logic cannot point clearly to causality, and the methods used often do 

not properly address issues of scale.  As more data is available for analysis, these three failings 

become increasingly important, as they will only be corrected by the researcher’s analytic 

approach. 

 

When a new or poorly understood disease occurs in a region, the spatial, temporal, and disease 

event data are presented using a GIS to both describe and analyze the situation. Bovine 

Spongiform Encephalopathy (BSE or ‘Mad Cow Disease’) is a non-contagious disease, with a 

long incubation period, that destroys the brains of cattle and is spread predominantly through 
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prion-contaminated feed. Large numbers of cattle were affected in several European countries 

during the 1980’s and 1990’s and the epidemic continued even after bans on high-risk feed 

ingredients (particularly meat and bone meal) in ruminant diets. Because pigs and poultry are not 

affected by BSE, these ingredients continued to be fed to monogastrics. In Great Britain, 

Stevenson found that before the feed ban, the unexplained geographic risk was uniformly 

distributed across the county (there was significant clustering along a North-South gradient). 

However, after the ban, the same analysis showed that the unexplained risk was now clustered in 

part of the country - potentially due to some specific cause12.  The author used a “pig/cattle” ratio, 

derived from government registers, as a proxy for the degree to which pig feed was manufactured 

and fed in various regions. Subsequently, a similar analysis in France found that after the feed 

ban, cattle were at significantly increased risk of BSE if they were in a pig dense area of the 

county13. In both cases the authors postulated that cattle feed was likely contaminated by hog feed 

containing ruminant tissues that was being manufactured at the same feed mills.  Since that time, 

all feeding of meat and bone meal to any species (including swine and poultry) has been banned 

throughout Europe. 

 

Postweaning Multisystemic Wasting Syndrome (PMWS) is a recently emerged disease (now 

known to be caused by Porcine Circovirus type-2) that gained recognition in major pork 

producing countries for its severe effects and its mysterious etiology8. In Denmark, the disease 

appeared first in late 2001. Researchers carefully identified and confirmed the diagnosis at case 

farms as they occurred14, and performed a descriptive study to identify temporal and spatial 

clusters of disease. The results did, in fact, indicate two distinct spatial clusters and one spatio-

temporal cluster. Since the study was performed as a retrospective case-control study, the clusters 

and additional descriptive information lead the authors to the conclusion that a new disease agent 

was emerging in Denmark, versus a systemic, national change in husbandry method. Although no 

etiologic agent was identified in this study, the clinical signs described are now largely attributed 

to some Porcine Circovirus type-2 (PCV2) associated disease and are generally preventable by 

vaccination for PCV2. These examples demonstrate how using GIS to visualize spatial patterns of 

disease and basic descriptive statistical methods lead researchers to a more refined understanding 

of the epidemiology of poorly understood livestock diseases. 
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Use of GIS in control and eradication of swine diseases 

 

Mapping of affected farms has always been an essential component of disease control programs. 

Over the past few decades, computerized mapping tools have become more widely available to 

academic researchers, government agencies, and the general public. These geographic 

information systems (GIS) have allowed large amounts of data to be compiled, analyzed, and 

related across representations of the physical landscape. There are numerous examples of how a 

GIS has been incorporated into practical, functional tools to manage and/or eradicate swine 

disease. In Norway, zone level risk of swine Mycoplasma hyopneumoniae infection was 

evaluated simply by extracting basic information from a GIS (ArcView 3.1). The data were then 

used to run simulations with stochastic modeling software (@RISK), using basic assumptions 

about transmission potential over space15.  

 

In Hungary, a country with endemic Pseudorabies Virus (PRV), Solymosi, et al. developed a 

system called VetEpiGIS, to integrate epidemiologic methods and spatial data16. In this example 

only vector type data was employed. Closer to home, the state of Minnesota began using a GIS in 

the early 1990’s to manage data and visualize disease status of farms and zones in their PRV 

eradication program17.  

 

In New Zealand, epidemiologists at Massey University have developed a suite of software 

products useful to increasing the understanding of livestock epidemics. Most notable is the 

EpiMAN program. This software incorporates components from multiple disciplines into a single 

decision support system. The software compiles descriptive geographic data (on an ESRI ArcInfo 

substrate), visually presents the mapped progression of epidemic progress, and creates pertinent 

reports for the various parties involved in disease control18. Furthermore, this software includes a 

database management system, incorporates expert systems input, and has a built in statistical 

analysis package. Besides the ability to manage a real-time animal disease scenario, EpiMAN 

also allows the user to simulate and forecast near and long-term conditions based on the available 

disease information19. The EpiMAN software met real-life field conditions during the 2001 Foot 

and Mouth Disease (FMD) epidemic in Great Britain. Stevenson sought to quantify the predictive 

performance of the software. It was found that EpiMAN was able to accurately forecast events 

during the first two weeks after initial cases were found. After that, too many confounding 
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variables reduced the precision. This experience, however, does indicate the usefulness of a GIS 

based decision support system in controlling a costly disease epidemic12. Using the same software 

package with an additional module called Interspread, Morris20 created a model using the 2001 

UK FMD epidemic data. His model demonstrated the necessary impact of timely pre-emptive 

slaughter and the potential benefit of pre-emptive vaccination. An important feature of this article 

was that it was written and published during the 2001 epidemic, when the model was being used 

actively by government officials to help manage the disease crisis on a daily basis. 

 

Disease dispersal via animal movement 

 

The self evident risk of spreading livestock disease via livestock movements has been frequently 

documented. Rinderpest virus of cattle was repeatedly introduced, eliminated, and reintroduced in 

Europe, India, Asia, and Africa. The scale of these rinderpest epidemics was largely responsible 

for the establishment of the first veterinary school in Lyon21. The first detailed discussion of the 

specific risk that modern transportation plays in disease risk was published in 197022. The author 

identified four key components that contribute to risks inherent in animal movements: 1) vehicles, 

2) carrier animals, 3) route or travel corridor, and 4) time for exposure and stress. Since that time, 

livestock industries in developed countries, and particularly swine industries, have only increased 

their reliance on multi-site production, often over broad geographic areas. A set of papers 

published by Karsten, et al. describe the creation and validation of a model to simulate Classical 

Swine Fever (CSF) infection23, 24. The model did not track the specific risk a source farm presents 

to the receiving farm, but it did consider vehicle contact frequency along with several other 

modifiable stochastic parameters such as pig-pig contact frequency. While it included 

transportation risk, the sensitivity analysis of the model was more geared towards understanding 

the effects of incubation period, basic movement control, and different pre-emptive slaughter 

strategies. 

 

Understanding how disease could propagate, spread, and be sustained in an environment made up 

of farms and villages was the purpose of a study in 200325 in which cats infected with Feline 

Leukemia Virus (FLV) were the subject. The author used a matrix to quantify relationships 

amongst cats, and their local community and this example considered the animals to be moving 

only locally and on their own volition. 
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Boots and Sasaki created a model to demonstrate the effect that spread over long distances had on 

increasing a pathogen’s virulence26. Their work mostly focused on vector and water-borne 

diseases, but if the same principles held true for livestock diseases, one could infer that long 

distance movements of livestock between locations could broaden the mix of pathogens and give 

rise to the emergence of more virulent pathogens. This is a troubling prospect, considering that in 

North America large numbers of pigs and cattle are moving across both state and international 

borders every day of the year. 

 

Shortly after the peak of the 2001 UK FMD epidemic, animal movement data was analyzed in a 

thorough descriptive epidemiologic summary27. Investigation into the early spread strongly 

implicated livestock markets and dealers in facilitating the spread of FMD through animal 

movement. The rapid geographic spread of the virus over most of the Great Britain was 

aggravated by a seasonal increase in sheep movement between farms, dealers, and markets. In 

another paper using data from the 2001 FMD outbreak, a point level disease spread model was 

used to assess the importance of animal movement28. While movement data was incorporated into 

the model, it was acknowledged that movement patterns in the UK were not well characterized in 

their livestock movement database. 

 

Aerosol transmission in area spread of disease  

 

Like transportation, aerosol transmission of livestock pathogens has great potential for spreading 

disease. In a very clear and informative summary, Stärk presents the aerosol spread potential for 

several different swine disease pathogens as well as their sensitivity to relative humidity. She 

suggested that producers focus on disease control methods (i.e. filtered air) that extend beyond 

basic biosecurity measures which do not mitigate risk of aerosol transmission29. Danish 

researchers wanted to study the risk factors for pig farms becoming infected with Mycoplasma 

hyopneumoniae
30. The Cox regression model supported the hypothesis of airborne transmission 

of M. hyopneumoniae between pig herds as well as spread through movement of subclinically 

infected animals. Subsequent studies to assess the likelihood of aerosol transmission of Porcine 

Reproductive and Respiratory Syndrome Virus (PRRSV)31 also supported the aerosol 

transmission hypothesis. In a review of PRRS area spread research, Lager, et al.32 indicated that 
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the probability of local area spread via aerosols likely depended upon the characteristics of an 

infected animals’ viremia (virulence and viral output) as well as the number of susceptible 

animals in an area.   

 

More recently, researchers at the University of Minnesota33, 34 have established a facility and 

protocols to study the potential for airborne spread of PRRS virus.  This research setting, located 

in an agricultural area with few other pig farms, relies on a perpetually viremic (PRRS positive) 

population juxtaposed approximately 100 meters from  barns employing different biosecurity 

protocols and containing naïve pig populations.  The naïve populations are monitored intensively 

to detect new infections and the biosecurity protocols (air filters, coverall, gloves, etc...) are 

compared for effectiveness at preventing transmission of PRRS.  Furthermore, this viremic 

population has been evaluated as a source for long-distance spread of both PRRS and 

Mycoplasma hyopneumoniae
33. By collecting air samples at varying distances downwind from 

the infected populations, and by recording the relevant weather conditions, new knowledge of the 

long distance spread potential is coming to light. The published study revealed infectious aerosols 

collected at 4.7 kilometers away. Subsequent to this publication, Otake was able to collect 

infectious PRRS and Mycoplasma hyopneumoniae in air samples collected at 9.1 kilometers and 

9.2 kilometers, respectively35. 

 

Shortly after the 1967-68 British FMD epidemic, a spatial analysis was presented to refute 

previous hypotheses about the spread of FMD after the initial case36, and proposed the pattern of 

spread was consistent with unusual climatic events supporting the creation of ‘lee’ waves. This 

refers to the wind’s ability to carry viral particles over the landscape, depositing them at regular 

intervals. The climatologic variables lined up in accord during the infective period to support his 

hypothesis. This and the other examples above demonstrate the potential issue that aerosol 

transmission presents to swine disease control efforts.  Research on the 2001 British FMD 

epidemic showed that geographic (Euclidian) distance was more predictive of infection than the 

shortest or quickest driven route37. This would support the contention that aerosol transmission 

was a frequent mode of transmission, although the study also revealed a protective effect of 

natural boundaries (water bodies). Even though premises were geographically close, a narrow 

body of water seemed to offer protection from infection. This suggests some impact of common 

land borders but the specific components of this could not be defined.  
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Area spread of PRRS virus  

 

PRRS virus is the most important endemic disease affecting pig farms in the US, with an 

estimated cost of over $560 million per year38. In a 2002 paper32, indirect area spread was defined 

as disease transmission that results from vectors, fomites, or aerosols as opposed to direct 

horizontal or vertical transmission.  The same author39 put forth observational evidence of area 

spread of PRRS taken from recent field investigations. In that report, common viral genetics 

(ORF-5) among farms located close to each other suggested some mode of area spread.  Indirect 

area spread has been increasingly identified in importance in the transmission of PRRS virus as 

herd biosecurity standards have improved.  Several routes of indirect area spread have been 

investigated.  They include insects, boots and coveralls, personnel vehicles, contaminated 

equipment and transportation trailers, and infectious aerosols.   

 

Insects are prevalent in all swine facilities, but are also known to travel between different 

livestock facilities.  Otake, et al.40 in 2003, examined the potential for mosquitoes to harbor and 

transmit PRRS and showed that mosquitoes remained potentially infectious for up to 6 hours after 

feeding on an infected pig.  Houseflies have also been identified as potential vectors of PRRS 

virus.  Otake, et al.41 determined that PRRS virus could remain viable and infectious in the 

digestive tract of houseflies for up to 12 hours.  In 2009, a study42 evaluating the potential for 

houseflies to transmit PRRS virus from an infected pig population to a neighboring naïve 

population reported PRRS transmission in two out of seven replicates, demonstrating the 

potential for housefly transmission events in commercial pig production settings. In this same 

Minnesota research setting, another author43 was able to recover virus positive (therefore 

potentially infective) houseflies at distances up to 2.3km away from an infected pig population.  

These flies were verified to have originated from the experimental source facility, by both insect 

and viral genetic markers. 

 

Use of genetic tools (restriction enzyme patterns and gene sequencing) to determine relatedness 

of viruses has also been employed to investigate area spread, with the hypothesis being that 

geographically proximate farms would have genetically similar strains of PRRS virus.  Mondaca, 

et al.44 found a significant negative correlation between geographic distance between farms and 

genetic similarity of PRRS viruses using data from one Minnesota county.  While the route of 
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spread of infection was never established, this study suggested that viruses were spread and 

maintained locally in that study setting.  Given the high prevalence of multisite production 

(separate sow herd, nursery, and finishing) in current industry, local clustering of animal 

movement, offers a potential explanation for this local effect. This same effect of was not 

demonstrated in a second, similar study45 of a large production area in Illinois. The author 

attributed the lack of local genetic homology to the impact of long-distance pig transportation 

events (i.e. new viruses were coming into a site and area via the movement of infected piglets, not 

aerosols or local fomite effects).  However, in comparing these two studies, the contrasting 

observations likely arise from the different geographic scale of the study areas.  The Minnesota 

study area was much smaller (farms located in a single county).  The Illinois study area, by 

contrast, was much larger- most of the state of Illinois.  A more recent and more thorough study 

by Shi et. al46 pealed apart the lineages of PRRS virus isolated found over time from different 

areas of the county (states).  Using standard viral alignment techniques and Bayesian coalescence 

analyses, the author was able to define the lineage of certain strains.  After viral lineages were 

determined, estimates of viral exchange (transmission frequencies) were calculated between 

states.  This analysis represents and important step towards understanding patterns of viral 

emergence over time and space. 

 

In 2000, Amass, et al.47 sought to determine the impact of people as potential vectors for PRRS.  

In her study, human nasal secretions, fingernail washings, and saliva were evaluated for the 

presence of PRRS as well the potential for contaminated clothing to transmit the virus.  The study 

was not able to demonstrate infection in negative sentinel pigs, but did identify viral RNA (not 

necessarily infectious) in both fingernail washings and saliva in the hours and days following 

exposure to infected pigs.  A later study48 was able to demonstrate the truly infections nature of 

contaminated clothing and boots.  Contact with PRRS infected pigs followed directly by contact 

with PRRS uninfected pigs results reliably resulted in transmission.  This latter study also 

demonstrated the effectiveness of simple biosecurity steps (changing clothes and shoes and 

washing hands) to reduce the risk of infection.  More recently, Pitkin, et al.49 reevaluated the risks 

of boots, coveralls, and hands.  As before, simple mechanical vectoring of PRRS occurred via 

boots, coveralls, and equipment. The multiple mechanisms for PRRS transmission support the 

need for comprehensive biosecurity measures to prevent introduction of the virus into herds.   
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In the US swine industry, it is not unusual for a single trailer to be used for livestock 

transportation to multiple locations.  Additionally, a single truckwash facility may be used to 

clean multiple trailers after their use. Contaminated vehicles were investigated as a potential 

source of new PRRS infections by Dee, et al.50.  In this 2004 study a scale model trailer was used 

to simulate field conditions in which PRRS could contaminate a trailer.  Contaminating trailers 

with known quantities of PRRS virus successfully produced infection events in most replicates.  

Additionally, this study looked at the impact of commercial disinfection processes to kill PRRS 

virus.  Results showed that only trailers that were washed, disinfected, and dried were safe to use, 

demonstrating the importance of proper trailer sanitation and drying for the prevention of PRRS 

infection. 

 

In a series of studies, Dee, et al.51, 52 evaluated the potential for PRRS to be conveyed on personal 

transportation vehicles and ultimately infect pigs.  PRRS contaminated snow and mud were the 

initial source of PRRS infection that was then subsequently tracked through several locations, 

ultimately ending up in a simulated barn environment.  Swine bioassay was used to evaluate the 

contamination status at multiple locations and to confirm the viability of the virus.  These studies 

clearly demonstrated the high potential for fomite transmission, particularly in winter. 

  

The capacity of PRRS virus to spread locally among farms despite good biosecurity measures has 

led to the opinion that collaborative efforts are necessary to control the disease. Regional 

programs for the control of PRRS have been attempted for some time.  A regional disease 

program for PRRS in one French pork producing region demonstrated some success in control 

(limiting further spread) but not elimination of the virus shortly after its initial introduction53. This 

program relied heavily on producer participation (albeit incomplete). Besides identification of 

infected sites, highly influential sites were identified and given priority for diagnostic resources.  

Information was presented in 200454 about a regional PRRS control program in one South-central 

Minnesota county.  A similar program was also initiated in a West-central Minnesota county and 

has since progressed to involve a large part of Northern Minnesota55-57, currently known as the 

“North of 212” project. 
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The importance of data validity in understanding area spread of disease 

 

Data Accuracy 

 

In “Data Quality: The Field Guide”, Redman points out the hazards of dealing with inaccurate 

data58 and lists 4 ways to deal with ‘polluted databases’: 1) deal with the downstream impact, 2) 

conduct periodic mass cleanups, 3) conduct routine point in time error catches before they are 

entered, or 4) find and correct the source of the error. The last option presents the greatest savings 

of time and money, and would be the choice for anyone striving for data accuracy. Rytkönen 

warns of misapplication of GIS in spatial epidemiology if data are not valid, accurate, and 

complete, and at the same time advocates the need to develop solid quantitative applications with 

the data to more fully understand influential covariates in epidemics59. It is important to note that 

most point-level disease models assume perfect positional accuracy for farms, while there may be 

considerable error present. Modeling efforts using 2001 FMD epidemic records28 and a poultry 

disease control project on the Delmarva Peninsula60 revealed significant point-level inaccuracy of 

farm locations. In poultry disease project, 88% (212 of a sampled 240) of database-known farms 

were in fact functioning poultry farms. Furthermore, the mean point-to-point error distance was 

990 meters. 

 

A question that arises invariably is where to establish the farm locations, a topic addressed by 

Peter Durr 61. He posits the question out as a choice between various polygons (the area of the 

farm), the polygon(s) centroid, or the specific location of buildings (barn or residence). In another 

article on this topic62, 500 different farms were studied to determine what method best 

represented ‘the farm’. The metric for judgment was distance of various points to the farm 

centroid and percentage of farm areas captured by selecting specific points. He determined that 

the ‘main building’ on the farm was the best point for geo-referencing the farm. The study also 

illuminated the potential weakness of using any of several methods or data sources to 

approximate the locations of the farms, and call for a consistent classification algorithm to define 

the various geographical entities of a farm. The differing situations of grazing animals and 

animals raised in confinement would also need to be taken into account in developing a standard 

approach. 
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Data availability 

 

Acquiring geographic data is becoming increasingly easier. Various government agencies 

maintain data on farm specific locations or at least present aggregated zone-level data. Whether it 

is the use of agriculture census data related to population census data in Canada63, farm locations 

found in the Agriculture Property Registry in Norway15, the Danish Central Husbandry Register64, 

the Belgian Identification and Registration (I&R) database65, the German HI-Tier66, or the 

USDA67, large standardized datasets exist throughout the developed world.  In addition to farm 

location information, in some countries there are ancillary datasets collecting animal movement 

information, which can be used in constructing farm-farm networks. 

 

Recently, the US began the process of creating and implementing a system that will identify 

every livestock premises w/ coordinates as well as identifying every animal or animal group that 

moves between these locations during its lifetime68. The system is call the National Animal 

Identification System (NAIS) and was planned to be fully implemented by early 2009, with the 

ultimate goal of identifying all animals and sites that have had disease contact within 48 hours of 

discovering foreign animal disease infection.  Most recently, due to poor support at the state and 

farm level, this program has been modified to be more flexible and more ambiguous, allowing 

more state-level enforcement and implementation and initially only requiring records for 

interstate animal movement69. Whether, strictly enforced as initially intended or modified to 

appease detractors, this is an important development, because it presents the first time that farm 

location and animal movement data will be collected for use in future disease control or 

elimination efforts. Disease control projects such as the Minnesota Cooperative Mapping Project 

for swine disease can utilize such a refined location dataset for the purposes of farmer driven 

disease elimination70. 

 

Resolution 

 

As important as availability, the spatial resolution of the data determines its suitability for 

different analyses. A review by Graham, et al. describes some of the issues concerning data 

resolution in epidemiology71, and called for modeling and analysis to be performed at the scale 

true to the function of the data. For example, early in the Minnesota pseudorabies (PRV) 
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eradication program the farm level resolution was set at a 40 acre area17, an artifact that still 

persists in the system today. During the PRV eradication program in Illinois, county level 

measurements were used to understand the PRV epidemic in the larger scope of the state72. In 

Sweden, a study of foot-pad dermatitis in broilers (poultry) was performed using data aggregated 

to a very large level, the Swedish two-digit zip code. Results showed that when the individual 

farm effect was removed, this coarse resolution failed to provide significant results73. In a 

California study on deep muscle abscesses in horses, it was noted that using the centroid of zip 

codes to identify and characterize horse locations was not accurate enough to understand the 

animal-animal disease spread dynamics that drive an epidemic event74. 

 

Characterizing swine populations 

 

Effective regional control of animal disease requires an understanding of all reservoirs of 

infection and of mechanisms and risks of pathogen transmission. For highly host specific agents 

such as PRRS virus, the at risk populations are limited to the family Suidae. In addition to 

commercial swine herds (meaning herds kept with the primary objective of income generation 

from pork production) many other swine populations exist. These include feral or wild pigs, pet 

pigs, hobby farm pigs, and pigs reared in youth education programs (e.g., Future Farmers of 

America and 4-H).  

 

Feral Swine 

 

Feral swine, or “wild pigs”, are not native to the US.  They exist as a mixture of escaped domestic 

swine and true wild Eurasian swine released intentionally for sport hunting. A report75 

summarizing US feral swine populations and the potential risks they pose to US commercial 

swine populations puts forth recent population estimates of three million animals in Texas alone 

and four million for the entire US.  If accurate, this is approximately 6.2% of the size of the US 

commercial swine population76 (September 2010 estimate of 65 million head).  The same report 

indicated that feral swine populations were known to exist in 39 states in 2004, mostly spread 

throughout California, the Deep South, and the Southeast US.  Ongoing expansion of feral pig 

populations in the USA is depicted in maps generated by SCWDS (Southeastern Cooperative 

Wildlife Disease Study)77, which show feral swine ranges steadily progressing from 1982 to 2004 
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(Figure-1).  The authors give four reasons for this marked increase in range- 1) intentional release 

of animals into habitat, 2) effects of population growth, 3) escape from domestic production, and 

4) habitat alteration by humans and global warming.   

 

The critical importance of feral swine populations lies in their potential for disease transmission 

to commercial swine populations.  Thirty important bacterial and viral pathogens and 37 parasites 

are known to be carried by feral swine. Much attention has been paid to the importance of feral 

swine in Europe, where classical swine fever (CSF) has been a constant threat to commercial 

production.  In 2000, in Germany, 59% of index cases from the previous decade were due to 

primary contact with infected wild-boars78.  Fortunately the US has remained free of both CSF 

and FMD.  However, the US wild pig population has long been known to be endemically infected 

with brucellosis and PRV which have been eliminated from the US commercial swine herd.  

 

In 1993 and 1994, Gipson, et al.79 examined and tested twenty feral hogs in Kansas and found no 

strong evidence of PRV, Brucellosis, or PRRS infection.  This wild pig population was relatively 

isolated from other wild pig populations and likely did not have the same disease pressures as 

would be found in other geographies. In 199680, a sampling of 120 Oklahoma feral swine tested 

for evidence of leptospirosis, brucellosis, PRRS, PRV, SIV, TGE, and vesicular stomatitis virus 

(VSV).  These samples revealed previous exposure to Leptospirosis, PRV, and SIV, with all other 

test results (brucellosis, PRRS, TGE, and VSV) being negative. Gresham, et al.81 tested 227 

trapped feral swine in South Carolina in 1999 with similar findings.  In this study, 61% of 

animals tested were seropositive for PRV and 44% were seropositive for brucellosis. In 2001 and 

2002, Corn, et al.82 sampled feral swine at 10 sites in the Southeaster US.  The authors found pigs 

seropositive to PRV at all 10 sites with an overall seropositive percentage of 38%. In previous 

samplings at these sites going back as far as 1979, feral swine have consistently been shown to be 

seropositive to PRV. A unique study in Texas83 (from 2004 to 2006) demonstrated the real 

interaction patterns between feral and domestic swine.  By placing GPS collars on 37 feral swine, 

the authors demonstrated overwhelmingly that feral swine will regularly approach commercial 

swine facilities to within 100 meters.  The associated serologic testing demonstrated 

seropositivity for PRV and brucellosis, but not for PRRS or CSF.  More recently, in 2006 and 

2007, Corn, et al.84 tested serum from feral swine in North Carolina and South Carolina for 

PRRS, PRV, Brucellosis, PCV2, and multiple types of SIV.  These feral swine populations were 

shown to exist in close proximity to concentrated commercial hog production areas.  The results 
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demonstrated consistent exposure to SIV and PCV2, and a lack of exposure to PRRS in both 

states.  Interestingly, the feral swine tested in NC did not possess antibodies to PRV or 

brucellosis. A 2008 study85 of SIV exposure in 875 feral swine located in six states demonstrated 

low but detectable seroprevalence (1% to 14.4%) for the H3N2 type of SIV in three states and 

only one county with antibodies against the H1N1 type of SIV. In 2010, Baker86 tested 50 feral 

swine trapped in Oklahoma and found the population to be significantly seropositive for M. 

hyopneumoniae (32%), PCV2 (42%), and H3-SIV (40%).  Only one animal tested positive for 

PRRS or H1-SIV, consistent with the expected rate of false-positive results with the tests 

performed. 

 

The body of evidence concerning feral swine in the US allows for some reliable assumptions 

about the population.  Both Brucellosis and PRV are established, albeit inconsistently, throughout 

the national population.  When investigated, H3-SIV appears to be the dominant circulating strain 

of SIV.  Finally, the almost total absence of antibodies to PRRS, in multiple samplings, would 

suggest very little circulation in feral swine populations.  The biggest risks that feral pigs likely 

pose to commercial production are PRV or brucellosis. 

 

Exhibition Swine 

 

Livestock exhibition is a colorfast component of the cultural fabric throughout the US, but very 

little has been formally published about the disease risks linked to exhibition swine populations in 

the US.  Many of these animals are purchased in the spring to be shown during summer at 

“county-fair” type livestock shows through 4-H programs or the like. The annual tallies for 4-H 

swine program participants have ranged from 140,000 to 212,000 (1996-2003)87 and since 

participants usually obtain multiple swine for use in these programs, the expected number of 4-H 

swine would not be less than 200,000.  In addition to 4-H, swine are exhibited as part of other 

programs such as FFA or they may simply be exhibited as “open-class” entries, not affiliated with 

a youth program. Swine used for exhibition may have very little in common with swine for 

commercial production, since traits desirable for show are often not desirable in commercial 

production.  As a result, exhibition swine often exist parallel to commercial swine and constitute 

a substantially different industry. 
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A study to demonstrate the risk presented by large livestock shows88 reported information from 

556 of 753 households that showed pigs at the 2002 Indiana State Fair. The authors were able to 

determine the approximate destination of only around 61% of the animals. There was no 

comprehensive system in place to track movement of the show pigs and the author concluded that 

such livestock shows are an effective means to rapidly disseminate a livestock disease epidemic. 

 

One-hundred and thirty-seven exhibitors at the 2005 California State Fair responded to a 

biosecurity and animal movement survey89. The average number of exhibitions that had been 

attended during past 12 months was three (ranging from one to seven).  Ninety-seven percent of 

the animals being shown would return home after the fair, and of the 73 swine shown, 66 (90%) 

would be returning home.  Only 26% of the returning animals would be kept in some type of 

quarantine away from other animals. This survey presented further evidence of inherent risk 

associated with exhibition animals. 

 

An observational study90 of Australian livestock shows in 2006 showed that over 30% of at-show 

feeding events were “swill” feeding. It was also discovered that many shows relied on only the 

owners to monitor the health of their animals; of the staff charged with this task, only three 

percent had training on disease recognition.  This study demonstrated potential for infection and 

dissemination of swine diseases due to laxity of biosecurity at exhibition events. 

 

These studies collectively demonstrate the current dearth of animal health education and logistic 

documentation involved in exhibition swine both in the US and abroad.  Development and 

refinement of disease control programs must include this sub-population of mobile, disease-

susceptible animals to be comprehensive.  

 

Pet Pigs 

 

A further segment of non-commercial swine populations is pet pigs which are kept as domestic 

pets and not raised for food.  Typically they are categorized as either “miniature pigs”, 

“potbellied pigs”, or “tea-cup pigs”91, 92. In California, 400 pet pig owners were surveyed93 with 

questions about their demographics, husbandry, animal movements, and contact with humans, 

other pet pigs, or livestock.  Respondents (106/400) indicated that usually only one or two pigs 
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were kept in a household, that one third of respondents owned other livestock, and that three 

percent of owners kept commercial pigs. Veterinary care was almost exclusively provided by 

small animal veterinarians and post-mortem examinations were unlikely to be performed. 

Additionally, forty percent of owners reported feeding food waste to their pigs. 

 

Caretaker Knowledge and Behavior 

 

Disease prevention, by definition, is driven by a caretaker’s preventive actions.  These actions 

likely reflect both the attitudes and education of the caretaker.  These in turn affect caretakers’ 

implementation of biosecurity steps and interactions with veterinary service providers and 

government officials.  

 

The attitudes of farmers are a likely influence on the success or failure of biosecurity programs.   

A 2008 study94 in the United Kingdom sought to characterize attitudes and opinions of farmers, 

veterinarians, and industry professionals.  The results showcased obvious differences in opinion.  

Farmers felt that government would need to do more to ensure successful disease control.  

Veterinarians thought farmers’ willingness to invest in biosecurity methods was the most 

important.   

 

Ellis-Iversen, et al. 95 surveyed 43 cattle farmers surveyed in the United Kingdom from 2005 to 

2006, using human behavior theory to understand attitudes towards biosecurity. She found that 

more proactive farmers identified the economic constraints that hindered implementation of 

practices; and also that less active/proactive farmers said they would rely on their own 

veterinarians for advice on uptake of these practices. These results demonstrate the potential 

importance of veterinary input in motivating less proactive farmers. 

 

Among 421 of 609 pig farms surveyed in 2005, responses were used to describe biosecurity 

practices in Belgium65.  It was found that few producers used biosecurity measures such as 

showering (2.1%) or downtime for people entering their farms (7.1%).  The survey also described 

the Belgian swine farm demography, of which over 8% were hobby farms; these were much more 

likely to feed kitchen waste. These smaller farms also employed less standard biosecurity 
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practices than larger farms. Exposure to other livestock species was indicated in well over half of 

respondents, who also kept cattle, sheep, or other livestock on their premises.   

 

A survey of 172 Spanish pig farmers in 2000 and 200196 studied the relationship between farmer 

perceptions and implemented biosecurity practices.  The authors found a general correlation 

between farmers’ perceived importance of a biosecurity measure and its implementation at his 

farm.  It could not be determined if the attitude preceded the action or if the action inspired the 

attitude, but the author concluded that future efforts should be made to educate producers on the 

true importance of various biosecurity measures, in hopes that changed attitudes would mean 

improved biosecurity. 

 

A survey of 153 Swedish pig farmers97 following a 2007 PRRS break sought to better understand 

how information is disseminated and biosecurity practices are adopted in response to disease 

outbreaks. Among the author’s findings were that proximity to the outbreak was associated with 

greater awareness; that larger farms were more likely to be aware; and that in general the 

information communicated by the government to farmers was insufficient.  Forty-eight percent of 

farmers were not aware of how PRRS could spread and only 56% were aware of the clinical signs 

caused by PRRS.  This study clearly indicated the need for more producer education on PRRS 

clinical presentations and epidemiology to better control any future outbreaks of the disease. 

 

Overview on Methods of Spatial Analysis of Animal Disease 

 

An early instance of using GIS and health data to analyze and understand disease occurred in 

1960’s. Reif and Cohen approximated the home locations of 1,007 dog owners and determined 

that a significantly greater proportion older dogs living in an urban environment developed severe 

lung changes98. In addition, they overlaid data from the Philadelphia Department of Health of 

dust concentrations in various parts of the PA landscape that supported the association between 

disease and this environmental risk factor. 

 

Hungerford lists three basic issues regarding the use of spatial statistics in animal disease: 1) is 

disease clustered?, 2) do diseases and risk factors have the same geographic distribution?, and 3) 

do relationships exist between the variables at different geographies?99 In a comprehensive 
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review of spatial and temporal cluster detection techniques, Carpenter reviews and cites several 

examples of analyses that have been used in human and veterinary medicine100. These include 

methods for detection of spatial clusters (linear, aerial, and point clusters), temporal clusters, and 

simultaneous time-space clustering. Some examples of these are given below. 

 

Time-Space interaction 

 

Methods that consider the effects of time and space in disease spread are extremely useful and are 

commonly engaged to determine if there is space-time interaction, which is a hallmark of 

infectious disease. These include use of the spatial scan statistic for cluster detection and the 

space time K-function. Region-specific survival analysis is yet another method by which different 

geographies could be compared. 

 

The Barton & Knox method was used to analyze the space-time interaction in Swedish poultry 

flocks73 and Corynebacterium infection in California horses74. The Barton method relies on point-

level data (or data that has been aggregated to a centroid point). In analysis similar to ANOVA, 

time interval data are treated as covariates in evaluating the physical distances between cases.  

One weakness of this method is that smaller distances (important for contagious disease spread) 

bring less weight to bear on the test statistic (Q). The Knox method requires the user to set cut-off 

values for time and distance prior to running analysis, and so is somewhat subject to user bias100, 

101.  Barton’s method was used by Singer et. al102, but failed to detect spatial-temporal clustering 

of antimicrobial-resistant bacterial isolates in California. 

 

Ederer-Myers-Mantel (EMM) method of time-space cluster analysis can be used to confirm the 

temporal clustering at a specific location and is often preceded by a spatial test method such as 

Moran’s I.  Fosgate et al.103 studied cases of human brucellosis in California using this method.  

This analysis demonstrated significant time-space clustering, which the author suggested was 

attributable to ethnic population effects. In order to better understand how Bovine Spongiform 

Encephalopathy (BSE, ‘Mad Cow Disease’) spread, the Ederer-Myers-Mantel time space cluster 

test was used to confirm clustering of disease events over time104. This information was used to 

understand the origin of infection (potentially contaminated feed). 
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Space-time K-function was used to compare actual case occurrences with the number expected 

during the recent British FMD epidemic12, 105. This adequately differentiated unusually high 

disease occurrence over a region and showed differences between regions. The space-time K-

function has also been used by French, et al. to understand the occurrence of Equine Grass 

Sickness106 and Sheep Scab107 in the UK. In both cases they were able to identify strong evidence 

of space-time clustering. These were important findings, because the epidemiologies of these two 

diseases are poorly understood. In the case of Equine Grass Sickness, the analysis supported the 

notion that the disease was spread via some contagious contact between infectious horses or some 

localized risk factors, rather than some general environmental condition. For Sheep Scab, the 

disease agent is a mite, but impact of government control programs and season in general was not 

well understood. This work demonstrated multiple cyclical time-patterns (time clustering signals) 

and definite neighbor effects (spatial clustering signals).  Additionally, the effect of space-time 

interaction could be shown for the disease events.  

 

The scan-statistic is repeatedly seen in epidemiologic studies and can be thought of as a “moving 

window” that travels looking for statistically unusual numbers of events within its border. Using 

the scan-statistic in regions of low pig density, Italian researchers were able to identify a single 

significant cluster of PRV infected herds. This cluster helped to characterize the infection as 

being driven by persistence in the region vs. individual farm effect108. In a case where livestock 

was the suspected source of human giardiasis in Ontario, the spatial scan-statistic revealed 

clustering in several regions63. Two of the regions had clusters that could be associated with 

livestock, while others had no explanation (low livestock density). In this case the scan-statistic 

was useful in identifying unusual occurrences and relating them to known and unknown causes. 

The author suggested the use of the spatial scan-statistic in a regular program for monitoring of 

several endemic disease conditions. 

 

Regression methods 

 

In an effort to more completely understand the impact of multiple factors (including location or 

proximity) on disease risk, regression methods are often employed. To understand the factors 

involved in PRV infection in Hungarian swine operations, simple regression methods were used 

to examine associations between spatial attributes and the presence of antibodies to PRV. In this 
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case, proximity to lakes and highways was significant, but nearby uninfected hog farms were not 

a significant risk factor16.  

 

Another common approach is survival analysis (time to event data) using Cox proportional 

hazard regression analysis. This method was used on a dataset of PRV infected hogs farms in 

Minnesota109 and significantly elevated risk was found for locations close to lakes or rivers and 

the density of herds within a 5km radius. In another study of PRV in Illinois, Cox proportional 

hazards regression analysis examined factors associated with time under quarantine110. Again, 

regional farm density was a significant factor, but only when considering vaccinated herds. Cox 

regression was used after the 1997-98 hog cholera epidemic in The Netherlands where neighbor’s 

herd size and distance to neighbor were found to significantly influence disease risk of farms111. 

 

In Denmark, Cox regression has been used to evaluate a farm’s risk of becoming infected with 

Mycoplasma hyopneumoniae
30. The results supported arguments for airborne transmission of this 

pathogen, since proximity to infected farms was significant in a model including another non-

spatial risk factor (purchasing pigs from multiple sources). A different Danish study focusing on 

infection with PRRS virus used Cox regression to analyze several potential risk factors112. In that 

model, infected neighbors presented a clear increase in risk. When their model was expanded to 

include approximate distance, size of neighboring farms, and exposure time, the risk of proximity 

was even more apparent. 

 

Kernel Estimation 

 

The kernel function in mapping is the process of compiling the density functions (kernel 

estimates) of individual points on a raster landscape, to create a smoothed, continuous landscape. 

Kernel estimation was used by Mintiens, et al. in a Classical Swine Fever risk analysis in 

Belgium113. A kernel estimate was derived for each farm to determine the density of the local 

neighborhood. This, in turn was referenced against the actual disease events from historical 

record, revealing that the higher the kernel estimation for neighborhoods on a raster surface, the 

higher the risk of infection. Similarly, in Argentina, kernel function was used to gauge FMD 

outbreaks per square kilometer114. Here, 127 counties were divided into 3085 individual cells to 

allow user to establish differential risk across a surface. The raster surface of this density was 
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used to find significant correlation between herd size and FMD transmission activity during three 

different stages of the 2001 FMD epidemic. Later, FMD transmission potential was determined 

using data from the 2001 UK FMD epidemic37. The authors calculated a transmission kernel for 

shortest route, quickest route, and simple Euclidean distance. These were compared for their 

predictive validity, revealing that a simple Euclidean distance-based kernel was the most 

appropriate risk parameter to use.  One exception to this was the observation that some natural 

boundaries (water bodies) were protective.  

 

Social Network Analysis 

 

Social network analysis (SNA) examines social structures- connections among related parties and 

their association with, or impact, on the characteristics of those parties.  Hawe115 lays out several 

basic terms used in understanding the components and analysis of social networks. There are two 

elements- the “actors” (individuals) and their “relational ties” (the relationships between 

individuals).  Networks can be defined by a relationship type within a fixed set of similar actors, 

or they may range outward by including multiple relationship types among different groups of 

actors.  The ties between actors are used to generate descriptive statistics for the individual actors.  

There are several types of measurement each with its own computational rules.  “Centrality” 

measures are commonly used, referring to an actor’s connectivity to other actors; and these range 

in their specific focus (closeness, betweenness, etc…).  The size and complexity of networks 

(components, isolates, cliques, etc…) is also a common nomenclature in the study of social 

networks. The directionality of networks is reflected more specifically in terms like outdegree 

(number of nodes that are receiving from the node in question), indegree (number of nodes that 

are sources for the node in question), betweenness (how often a node lies on the shortest path 

between other nodes), strong component (directed network in which all nodes are accessible), and 

weak component (undirected network in which all nodes are linked). 

 

SNA has even been used in the investigation of terrorist networks.  Krebs116 described the social 

network of the 9/11 terrorists.  He also differentiated prospective/predictive use from 

retrospective analysis, describing the difficulty of predictive use due to the difficulty of obtaining 

detailed network data in a timely manner.  This concern may also hold true for predictive animal 

disease modeling. Another interesting observation from this paper was the intentional 
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fragmenting and isolation of smaller individual networks, to isolate them from the “contagious” 

risk of being discovered by authorities.  This risk isolation concept could also be directly applied 

to the control of animal disease. 

 

Recently there has been an increased interest in using tools from the social sciences to understand 

and predict animal disease risk.  Social network analysis (SNA) has been used in understanding 

human disease issues.  In a paper describing this application, Friedman and Aral define three 

types of potential networks in health-focused scenarios117.  Risk-potential networks show a 

pattern of risk linkages between individuals.  Ego-centric networks consider the linkage relating 

to only one individual at a time.  Sociometric networks consider a large number of individuals 

and all of their linkages.  Wasserman lists two mainstays of SNA- visual display and creating a 

probabilistic model of outcomes118.  Furthermore, he describes the usefulness of SNA as 

providing a vocabulary for thinking of interconnected networks, allowing the mathematical 

analysis of relationships, and the ability to prove theorems about social structures119.  Social 

network analysis has found heavy usage in epidemiology purely as a visualization tool. 

 

Social network analysis for studying human disease  

 

Network analysis methods have been applied to HIV transmission research.  David Bell, et al. 

worked extensively to model the transmission of HIV amongst defined populations120.  As part of 

this research, the social characteristics of different subpopulations were studied to understand 

their impact on disease transmission using classical statistical methods121.  A study was designed 

to evaluate SNA as a tool to understand and identify transmission risk122.  The results of model 

simulated disease spread were compared to measures of centrality from SNA.  The network 

analysis applied to the same set of actors but with addition of relationship matrices.  Since there is 

a fairly accurate estimation of several behavior-associated risks (i.e., risk of infection during 

unprotected sex), a model simulation could be created to estimate the risk of infection given a set 

of behavior patterns.  This same set of behavior patterns was analyzed with UCINET123 software 

for SNA.  The results of the two were compared and it was found that the output from UCINET 

was a very good approximation for the risk estimated by the complex disease simulation.  To 

evaluate HIV risk, model simulations were performed with different risk assumptions124, and then 

evaluated the social network analysis output to compare methods.  This modeling exercise 
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suggested that the simple use of “degree centrality” to identify high risk individuals was as valid 

as other methods. These reports suggest that when considering risk of infection for an individual 

actor/agent (and by analogy- animal or farm), SNA may be a valid method. 

 

Network structure appears to be important in disease spread. In 1999, one paper125 evaluated 

structural elements in two social networks and their impact on sexually transmitted disease 

prevalence.  While no statistical measures were presented in the paper, the author indicated that 

as the groups were measured over time (during the 80’s and 90’s), as networks intensified and 

grew disease transmission went up (for syphilis), but as they fragmented disease transmission 

went down (for HIV). Following a network study in Colorado and Manitoba, Jolly, et al.126 

suggested that smaller, peripheral network structures outside of core networks could be the cause 

of “endemic” disease patterns, compared with rapid rises in prevalence seen in more intense, 

larger networks.  These observations indicate the likely importance of overall network structure in 

contrast to an individual actor’s network characteristics. 

 

Work with SNA and human disease has also incorporated geographic distance between agents.  

In a study of 595 HIV at-risk people living in Colorado Springs, CO 127, geographic distance 

between actors was positively associated with social distance and it was concluded that 

individuals had a greater chance of becoming infected because of the increased probability of an 

infective contact living in their proximity.  SNA was applied to the study of Chlamydia infections 

in a sexual network128.  The authors defined the social distances in standard SNA terminology, 

but also applied geoanalytical techniques to the data.  The results showed areas of case clustering 

that correlated with the measured sexual network.  SNA provides a formal structure for 

describing and analyzing relationships amongst actors in the context of disease transmission, and 

can be analyzed in tandem with geographic distance in disease modeling. 

 

Going beyond infectious diseases, obesity has also been studied using social network analysis 

methods. In 2007, obesity was evaluated129 as a “contagious” condition and followed the spread 

of obesity between individuals in a social network.  Using individuals enrolled in the 

Framingham Heart Study, BMI (Body Mass Index) was recorded for individuals.  The study 

showed clustering of obesity within the larger network.  Using successive time intervals as a 

proxy for causation, the author was able to conclude that a person had a (statistically significant) 

57% percent chance of becoming obese if their friend had previously become obese.  Similar 
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observations were also reported for siblings and spouses.  Because of the intense data collection 

efforts of the Framingham study over successive years, this study was able to perform good 

causative speculation on a non-infectious disease condition.  It is likely important that the very 

large datasets of the Framingham study enabled significant relationships to be detected. Difficulty 

in obtaining comprehensive data sets on network relationships may limit the application of these 

approaches in veterinary medicine. 

 

Use in animal disease study 

 

Dube130 reviewed the use of social network analysis in livestock disease modeling and analysis.  

In this work, the author translated much of the standard nomenclature of SNA for application in 

understanding livestock disease transmission.  For example “Nodes” are farms, and “arcs” can 

represent livestock movements between farms.  Indegree measures the number of shipments, 

animals, or farm relationships that send animals to a given farm.  Outdgree is the opposite.  

Within the study population, weak components are undirected networks consisting of nodes that 

may not have reciprocal ties.  Strong components, on the other hand are networks in which all 

nodes are mutually accessible, having no isolated elements. 

 

The movement of animals is arguably the most relevant component farm-to-farm relationships. A 

study commissioned by the International EpiLab in Denmark attempted to apply the concepts of 

SNA to swine and cattle disease risk64.  In this project, farms were considered as nodes and 

animal movements were considered as links in the network.  The paper stopped short of 

performing any formal network analysis functions and the resultant output was mostly descriptive 

and not analytically interpretable.  Network analysis is by its nature is a visual method, so there 

was good visualization of farm networks, but no quantification.  Further discussion in the paper 

demonstrated the variable farm density across Denmark, but there were no connections drawn 

between geography and the network analysis.  There was, however, a detailed description of 

animal travel distances, based on a census of livestock movements maintained by the state.  This 

dataset was a complete census of all livestock animal movements (origin, destination, and date) in 

Denmark. 
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A further attempt at applying SNA in animal disease modeling focused on the potential for hog 

cholera transmission in Sweden131.  Graph theory is the mathematical study of directional graphs 

and is the mathematical foundation for social network analysis. The authors used the term “graph 

theory” to describe the system of matrices which described the relationships between actors 

(farms) in the model.  In addition, a model simulation for hog cholera spread was created.  Again, 

in that paper there was no true use of network analysis methods to describe the risk other than for 

visualization.  As in Denmark, Sweden maintains a complete tally of animal movements between 

their farms. 

 

An advanced application of SNA in epidemic modeling addresses the initial outbreak data from 

the 2001 UK Foot and Mouth Disease (FMD) epidemic132.  In this example, actual farm-level 

outbreak data were obtained.  Retrospectively, SNA was applied to animal movement events 

from the beginning of the disease epidemic.  These data were then analyzed by several SNA 

methods, including ‘relative betweenness’, k-neighbors, and structural equivalence.  Attributes 

were applied to nodes which were then grouped by dissimilarity with a hierarchical clustering 

method.  The author found that several SNA attributes were able to identify nodes that were 

determined to be epidemiologically important early in the outbreak. 

 

Consider the impact of farm location and routine contact (direct or indirect) between animals 

through livestock shows or human disease vectors.  Webb studied sheep populations in Great 

Britain using matrices and graph theory to demonstrate the risks to individual sheep farms from 

being a member of a network133.  In this study two networks were created.  One network was of 

farmers who attended the same show, and the second was comprised of farmers that were close to 

each other - clusters of geographic proximity.  Risk could be assigned to membership in either 

network.  This study also linked the two networks to create a third, comprehensive, network by 

way of secondary calculated matrices.  This study did not evaluate the data based on measures of 

centrality, but rather focused on selected descriptive statistics for the basic network.  These 

included geodesic distances, number of disconnected components, diameters, and fragmentation 

indices.  This work also offered good visualization of networks overlain on geography.  Another 

use of sheep population and movement data134 defined various network structures (giant strongly 

connected component; giant weekly connected component; giant out component; and giant in 

component) using a complete network matrix.  While not explicitly using these components as 

part of the analytic method, the author used them to define the size and dimensions of the Scottish 
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sheep population to validate her study population, which in turn was being used to define and 

understand disease reproductive rate (R0) for epidemic modeling. 

 

In California, a three-county region was analyzed to determine FMD disease risk amongst several 

species of livestock with varying direct and indirect contact rates67.  This work was unique in that 

it included several species and incorporated human activity (visits by managers, veterinarians, 

and others).  The authors obtained data from a mailed questionnaire.  They then calculated 

approximate travel distances based on some assumptions and together with the specific farm 

information, created descriptive summaries.  The strength of this paper, again, was mostly in its 

descriptive visualization of farm locations and transportation routes.  It did offer insight into the 

potential importance of non-animal network factors that might be captured for analysis.  In a 

paper showing results from a similar type of survey in New Zealand, Sanson135 investigated 

movement patterns on sheep and cattle farms during busy and quiet times of the year.  The 

movements included animals, people, and other items.  This data did not lend itself to SNA, but it 

did (as in the previous example) describe the interconnectedness of modern farming operations in 

that country. 

 

Social network analysis can be used in predictive modeling. Natale, et al. 136, 136, 136, 136, 137 

examined the movement patterns of cattle in Italy to calculate values for social network analysis 

parameters.  The author then performed several disease spread simulations, by successively 

removing certain farms from the population, based on various network characteristics.  These 

simulations revealed that significant reductions in disease spread resulted by targeting farms with 

higher network values. Specifically, removing the nodes (farms) with the highest 1% of degree 

centrality values resulted in an 88% reduction in infected farms. Compare this with the random 

elimination of 20% of farms, which only offered a 47% reduction in infected premises.  This 

analysis suggests that use of knowledge of network relationships and the characteristics of 

individual farms to direct strategic responses targeting specific farms of epidemiological 

significance could be a powerful approach for containing epidemics of animal disease. 

 

Values for network attributes generated by social network analysis give insight the nature of 

farms being studied. In 2010137, social network analysis methods were used to evaluate the 

movements of cattle in Italy.  In this publication, the author proposed a new centrality measure 

called Disease Flow Centrality as a more useful tool. However, in simulations using traditional 
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centrality measures compared with Disease Flow Centrality, no advantage was seen and the 

author concluded that this measure was generally not advantageous to use. Regardless of the lack 

of findings, however, the new measurement was a logical integration of disease transmission 

characteristics found in farm-to-farm relationships (animal movements). Geographic proximity 

was incorporated into the model, but only at the beginning of the simulation during the “seeding” 

process. Another descriptive and analytic study138 of cattle movement networks demonstrated the 

use of network measures (outdegree centrality, weak component, and strong component) 

alongside an infection chain model for three consecutive years of cattle movements. In this study 

the author found relatively small median travel distances (ranging from 33km to 55km) with 

some movements of more than 1,000km.  This study determined that outdegree centrality values 

would be useful in determining the size of an unrestricted epidemic when compared with the 

infection chain results as a standard.  The strong and weak components both overestimated the 

potential size of an epidemic, using infected sites as the result.  

 

Network data can also be used to evaluate the farm landscape and understand natural patterns that 

should be incorporated into future control efforts. Livestock often travel long distances between 

locations. Without specific knowledge of these transportation events, disease management 

becomes more difficult.  Bigras-Poulin, et al.139 concluded, in a paper on the Danish cattle 

industry’s movement patterns, that the heterogeneous nature of cattle livestock transportation 

would make non-network driven models ineffective.  The authors also emphasized the 

importance of timely and accurate updating of network data.  A later publication by the same first 

author140 described Danish pig movements over a part of a year.  Results demonstrated great 

heterogeneity of movement patterns and the author concluded that homogenous movement model 

assumptions were only valid for large scale risk evaluation efforts and that network data would be 

critical to any local disease control efforts.  A study of Scottish sheep movements134 from 2003 to 

2007 demonstrated great heterogeneity in movement patterns (both the variance and covariance 

of animals on and off farms). A descriptive analysis of cattle movements in Argentina141 revealed 

a seasonal pattern of movements as well as characterizing the distances involved. Median travel 

distances in different areas ranged between 88km and 218km. Descriptive studies of this sort are 

important to underpin modeling efforts but in general display heterogeneous farm-to-farm 

relationships. These studies repeatedly demonstrate the potential importance of animal 

movements between farms, that these may not follow normal distributions, and are likely to be 
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variable over time. Furthermore, a single long-distance transportation event may have great 

significance to epidemic spread.  

 

While not performing standard social network analysis, a 2010 study66 used trade information in 

tandem with locational information to define and describe different trade regions in Germany.  

This resulted in 9 distinct trade communities that interacted with each other as well a overlapping 

each other to some degree.  This technique relied on a neighborhood seeking, modularity function 

(Q), to analyze historical trade patterns between locations.  Rather than rely on political 

boundaries or natural geographical features, Lentz’s technique created natural groupings based 

upon the actual movements of animals. In Spain, the use of spatio-temporal cluster analysis along 

with social network analysis measures142 concluded that a regional approach for surveillance and 

prevention would be best, versus a national approach.  The methods employed were useful in 

determining where the high risk regions were located.  A survey of 421 Belgian pig herds in 

2005143 determined direct and indirect contact rates between farms.  Results showed that a few 

pig herds in Belgium had a very large number of direct contact links with other farms.  This 

knowledge would be the basis for risk assessment in a region.  The type of pig production at a 

location will likely dictate its importance in disease transmission. A 2010 article144 broke Swedish 

pig movement patterns down by production type.  This analysis showed the differences of contact 

rate and magnitude between the different types of premises.  The results clearly demonstrated that 

“source” farms (e.g. breeding herds) have a much greater impact on epidemic size than “sink” 

farms (e.g. fattening herd).  In their model exercise, an infected nucleus herd resulted in a median 

of more than 2,000 infected premises (out of a possible 3,084) while an infected fattening herd 

resulted in a median value of one infected premises (itself).  Clearly the type of production will 

dictate its movement patterns, which in turn will dictate its potential role in epidemic disease 

spread. 

 

Network analysis and modeling was used to understand wildlife interactions and disease spread. 

The brushtail possum (Trichosurus vulpecula) was the subject of a study to determine the 

implications of social networks regarding TB infection rate145.  Groups of possums were observed 

and manipulated during the trial while they were being observed for infection with TB.  This 

study used classical Social Network Analysis methods and calculations to describe the output.  

UCINET software was used to calculate 'flow-betweenness and ‘closeness’ values.  The author 

then used non-parametric methods to determine that transmission rates were significantly 
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influenced by an individual animal’s social network analysis attributes.  Drewe146 studied TB 

wild meerkats in South Africa.  By observing interactions (grooming for example) and their 

directionality, the author could determine the relative importance of network measures on 

transmission of TB.  He reported findings supporting strong directional impact of relationships; 

for example, grooming outdegree (vs. indegree) and aggression indegree (vs. outdegree) were 

correlated with TB infection.  This study points to the importance of relationship direction in 

disease transmission.  Another study147 of social networks in wildlife demonstrated a lack of 

impact in controlling disease by targeting individuals. In this study the authors used radio collars 

to understand movement patterns of the Tasmanian devil (Sarcophilus harrisii), which are known 

to carry a contagious “facial tumor” disease148.  However, the findings demonstrated a lack of 

aggregation in this population, and high risk individual were not easily identifiable and therefore 

feasible intervention strategies were not defined. 

 

Animal Disease Modeling 

 

Once epidemic data have been analyzed, and hopefully some insight has been gained about the 

behavior of a disease, a logical next step is to try and predict the occurrence of disease before it 

happens. Some examples of using predictive models have already been mentioned19, 149, 150. Other 

examples of using models to predict disease spread are seen in efforts to anticipate disease 

behavior for FMD and CSF during outbreaks. Tildesley, et al. used the fine-scale spatial and 

temporal data from the 2001 UK FMD epidemic to develop a model151. The authors showed the 

beneficial effects of vaccinating specific at-risk premises (versus simple ring vaccination) as well 

as supporting the theory that reactive vaccination and pre-emptive culling are effective disease 

control strategies. This model  showed the critical importance of having accurate farm location 

data, since it relies on specific farm-farm geographic relationships. 

 

Bates, et al. used very straight-forward Monte Carlo simulation to create a predictive model for 

predicting FMD infection in a region of California152, 153. Their model incorporated multiple host 

species, defined farm locations, various contact types and rates, and expert opinion. The purpose 

of this model was to evaluate the impact of additional control measures beyond those defined in 

the baseline response strategy for the state of California. The results of model simulations 

suggested that delay in the diagnosis of FMD in the index herd was most highly sensitive to the 
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site of the farm and the authors stressed the necessity of having an active surveillance program in 

place to reduce time to detection. 

 

Similarly, Jalvingh et al. simulated the potential spread of CSF in The Netherlands based on data 

from the 1997-98 CSF epidemic149, 150. This model used a software module called InterCSF, 

which was adapted from Interspread (part of EpiMan package mentioned earlier). This model is 

spatial, temporal, and is driven by stochastic calculation processes. The outcomes of interest were 

the size and duration of a CSF epidemic. This model included specific farm coordinates as well as 

farm attributes (size and type). The model was run using Monte Carlo simulation (similar to the 

one listed above) to evaluate the outcomes from different control approaches. A unique feature of 

this work was the incorporation of economics. When cost of disease and intervention were 

examined on a dollar basis, it was concluded that appropriate pre-emptive slaughter was cost 

justified while simply enlarging movement control restriction rings became very costly. These 

models are enlightening, but given the broad financial implications they present, more work to 

validate their reliability needs to be performed. 

 

Other applications of GIS into animal disease control 

 

Use of habitat data to define livestock disease risk 

 

A number of innovative approaches have been explored using GIS to gain insight into 

transmission and control of animal diseases. These approaches present the possibility of 

incorporating greater geographic content to exploit the strength of GIS- the ability to assemble 

and integrate diverse and disparate data for the purpose of risk analysis in a spatial context. 

 

In New Zealand, bovine tuberculosis (caused by Mycobacterium bovis) remains a major and 

problematic disease. A national eradication effort has been impeded by the presence of a several 

wildlife reservoirs, particularly the brushtail possum. Research done at EpiCentre, Massey 

University, demonstrated a relationship between of environmental variables measured using 

remote sensing and livestock disease risk 154. This analysis incorporated land slope, tree height, 

and vegetation cover which were classified from satellite imagery. They were then able to 
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demonstrate clustering of TB-infected possums in suitable habitats and the clustering was 

positively associated with clusters of TB-infected cattle. 

 

Ticks are known vectors of numerous diseases affecting both animals and/or humans (Lyme 

disease, Erlichiosis, Rocky Mountain Spotted Fever, etc…). To better understand the potential 

impact of climate and geography on the spread of tick-born disease, a Canadian study modeled 

tick population growth based on their life-cycle, the effect of cumulative environmental 

temperature, and presence of tick-carrying mice155. Results suggested that slight changes in the 

environment, may greatly increase the tick-borne disease risk for parts of Canada. 

 

Cellular Automata Models and Wild Pigs 

 

Cellular automata models utilize a raster landscape comprised of stationary individual cells.  The 

cell is the unit of concern and its state is a function of the states if its neighbors. These raster cells 

interact with their immediate neighbors and contagious effects are exhibited as step-by-step, local 

neighborhood effects are amplified. A cellular automata model simulating a FMD outbreak was 

developed in Australia156. Parts of Australia have significant wild pig populations whose size and 

activity are a function of geographic features. The investigators used land cover and terrain data 

in a GIS to generate variable habitat options (depending upon season and region). A simulated 

introduction of FMD was monitored and the different model endpoints were compared. The 

sensitivity analysis demonstrated the potential effects of wet vs. dry season, different probability 

thresholds, and variable latent-infectious periods. The authors also incorporated interactions with 

domestic livestock. Manipulation of all the variables described had very unique characteristics in 

the model output and could be useful in understanding the impact of season and environment on 

potential disease spread. 

 

Remote-Sensing 

 

Remote sensing is the technology and techniques of using remotely-captured measurements of the 

Earth’s surface to estimate the current status of its functions and processes. Airplanes and 

satellites are used to capture various types of data from the earth’s surface.  
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Remote sensing technology has been used to predict animal disease occurrence by understanding 

and defining the environmental conditions that foster disease propagation, such as habitat suitable 

for parasites known to transmit vector-borne diseases. The use of remotely sensed data to 

understand the epidemiology of Trypanosomosis and Bluetongue (two vector-borne livestock 

diseases) has been described by De La Rocque, et al.157 in 2004. In 2007 Guis, et al.158 were able 

to create an accurate model for Bluetongue using high resolution landscape imaging to predict 

infections at specific sheep farms on the island of Corsica, in the French Mediterranean. In 2006, 

Bouyer, et al.159, described a significant correlation between disease risk for African Animal 

Trypanosomosis (a vector-borne, protozoal livestock disease of genus Trypanosome) and specific 

vector-supporting habitat in Western Africa. Leblond, et al.160, in 2007 described significant 

relationships between French landscape characteristics and the risk of confirmed cases of West 

Nile virus infections in horses. 

 

Remote sensing has been assessed as a tool to identify livestock populations. A previous attempt 

to identify and catalog commercial swine populations was made in a swine dense region of North 

Carolina161, 162.  Using IKONOS 4 meter resolution satellite visual imagery, a semi-automated 

classification routine was performed using GIS software.  Using defined criteria, the program 

identified locations that were possible lagoons or swine barns.  Using a known dataset of verified 

farm locations, the semi-automated process resulted in a detection accuracy of 76% for barns and 

79% of the waste lagoons. However, this technique was highly non-specific, as many non-farm 

sites were identified as barns or lagoons (44% and 47% respectively). The purpose of this study 

was to explore the possibility that remote sensed data of surface temperature can be used to 

predict the existence of current populations of pigs in farm buildings, which could enhance the 

efficiency of efforts to control outbreaks. 

 

Visualization 

 

Even without formal analysis of geographic data, or model building, GIS is being used as a 

visualization tool. In a formal government report on PRV status, maps of feral swine populations 

illustrate the ever-increasing spread of this biosecurity risk to commercial swine populations163. 

When decision-makers are trying to understand a situation, no amount of statistics would have the 

same impact as being able to visualize the population expansion across the national landscape 



 

 34 

(Figure-1). Again,  focusing on PRV and feral swine, Thulke, et al.164 used detailed epidemiologic 

data from past PRV epidemics in Germany to demonstrate the power of visualization. In this 

work, the point specific information was used to create interpolated prevalence/risk maps. These 

maps were created in a time-series, and then compiled in a ‘movie’ to illustrate the spread of the 

disease. A person viewing the ‘data movie’ can readily appreciated distinct temporo-spatial 

patterns of disease spread. However, a previous  geostatistical analysis had not detected these 

patterns. In both cases mentioned above, visualization lends itself to initial hypothesis 

formulation by giving the user a ‘birds eye’ impression of epidemic evolution. 

 

The power of visualization for understanding animal disease spread is further demonstrated in an 

on-line article in Nature165. The author, Declan Butler, has regularly reported on the spread of 

Avian Influenza for Nature. Animal disease data from FAO, OIE, and other government 

organizations was compiled and overlain as a “mash-up” on the Earth’s surface using Google 

Earth166. The extreme visual appeal alone is impressive, but this event is important because nearly 

real-time information is being presented to the masses in a way that effectively portrays the scope 

of the problem (Figure-2). 

 

Particular to PRRS, the impact of visualization adds power to ground-level control efforts.  The 

American Association of Swine Veterinarians167 and the recently formed Minnesota PRRS 

Elimination Task Force168 both have formal position statements supporting efforts of PRRS virus 

elimination from the US swine industry.  The National Pork Board169 and National Pork 

Producers Council are currently considering language for similar position statements. Regional 

PRRS elimination efforts are also underway throughout the US and Canada170. All of these efforts 

rely on the foundation of farm-mapping tools to describe landscapes and guide actions for testing 

and elimination.  To assist in these efforts, the University of Minnesota has developed a tool to 

assist veterinarians and produces in individual and corporate PRRS elimination efforts171 (Figure-

3). Mapping tools are critical to convey the dynamic landscape to audiences.  
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Conclusion: Going forward 

 

The US swine industry has become increasingly dispersed across the landscape as it has 

intensified and evolved over the past several decades.  Farming locations are becoming more 

integrated into the connected webs of production systems.  As complexity increases, new 

opportunities will arise for government agencies, academia, and veterinarians to prevent and 

control disease spread. In the US, GIS has been employed in disease control and elimination 

programs for some time now, but only at the governmental level and only for documentation 

purposes.  Many other developed countries possess and maintain sophisticated livestock 

databases. In the US, the inventoried population has been exclusively commercial swine but other 

swine populations exist and would be susceptible to major swine diseases as well. 

 

Tools and methods are rapidly developing for use by government, academia, private business, and 

producers and knowledge of disease transmission (aerosols, fomites, etc…) continues to grow. 

When detailed disease information is loaded applied to population data, these methods can be 

applied to understand disease spread over the landscape.  This results in more accurate 

epidemiologic description and more valid prediction of disease spread during a future epidemic. 

In addition to this, use of Social Network Analysis techniques incorporates the increasingly 

complex network of farm sites. 

 

Opportunities exist to better understand the impact of farm-to-farm relationships along with other 

new potential technologies.  A more complete population at risk should be defined and the 

accuracy of the data available also needs to be assessed to accurately assess local and large-scale 

disease risk. The work presented on the following pages will address these concerns and point to 

further areas for improvement.
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Chapter-1: Assessment of the adequacy of available spatial data of the 

demographics of swine populations in Minnesota, USA 

 

Introduction 

 

The ability to analyze disease patterns in a geographic (spatial) context is contingent upon 

knowledge of the demographics of the species of concern (population at risk). For transmissible 

diseases, the proximity of livestock populations might influence the probability of transmission 

between farms, and the presence of diseased animals at a given location might influence the risk 

of infection for susceptible populations within its vicinity. Consequently, knowledge of locations 

and disease status of neighboring farms influences animal health decisions made by public or 

private veterinarians and producers. 

 

In many countries, including the USA, government policy stipulates response measures to an 

incursion of a foreign animal disease172-174. Geographic knowledge of the locations of animal 

populations is integral to containing epidemics via identification and quarantine of high risk 

populations and movement restrictions. Spatial modeling techniques can be applied to predict the 

likely spread of disease and support resource allocation and decision making19. The efficiency of 

emergency responses is therefore partly a function of the quality of spatial data of the populations 

at risk. These principles equally apply to efforts to control endemic diseases. In the USA, Porcine 

Reproductive and Respiratory Syndrome (PRRS) is widely acknowledged as the major swine 

health problem. The ability of the PRRS virus to spread locally between farms, despite substantial 

investments in biosecurity, has prompted calls for 'regional' control efforts to reduce the impact of 

the disease167, 168. 

The purpose of this study was to assess available sources of data on the demographics of swine 

populations in Minnesota to support planning of disease control initiatives. Specific objectives of 

the study were: 1) to compare publicly available datasets of the spatial distribution of swine farms 

in Minnesota; 2) to assess the positional accuracy of farm locations in two of these databases in 

relation to verified farm locations; and 3) to describe the spatial distribution of a non-commercial 

swine population (4-H pigs) in relation to commercial swine production. 
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Materials and Methods: 

 

Data Sources 

 

Five available datasets recording the demographics of swine holdings in Minnesota were 

identified and obtained from their respective sources. These were: 

 

1) National Agricultural Statistics (NASS) Census − 2002: The United States Department of 

Agriculture (USDA) conducts a national survey of agricultural activities every 5 years. Data are 

obtained by farmer surveys and aggregated at the county level for analysis and publication. For 

this analysis, the most recent (2002) data for swine production were downloaded from the NASS 

website (http://www.nass.usda.gov/Census/). The NASS census data does not include point 

coordinates for individual farm premises and could include multiple sites as a single “farm”, 

because data was collected at the owner level (a single owner may operate more than one site). 

 

2) The Minnesota Board of Animal Health (MBAH) is responsible for the control of regulated 

animal diseases in the state of Minnesota. The MBAH maintains data on locations of premises 

producing livestock, for all major livestock sectors, specifically for the purpose of supporting 

disease control activities. The MBAH swine farm locations data has been compiled over many 

years and most recently was used in the pseudorabies virus (Aujesky’s disease) eradication 

campaign. The data do not indicate the type of production (for example, farrowing, nursery, 

finishing) nor the number of animals reared at a premises. For the purposes of this analysis, data 

on swine operations obtained in 2004 were used. A farm’s county location was not recorded in 

the database, but was derived by using farm coordinates data spatially joined to counties data 

(ArcGIS version 9. ESRI Inc.). 

 

3) The Minnesota Pollution Control Agency (MPCA) is responsible for regulating potential 

sources of environmental pollution in the state of Minnesota. These include livestock operations, 

for which the agency issues permits for manure management. Farms recorded in the MPCA 

database are those farms holding valid feedlot permits. Data on feedlot operations are compiled 

and maintained by county and state offices. They include the species and total number of animal 

units for which the permit is issued (measure of herd size). Exceeding a threshold capacity of 50 
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animal units necessitates registration with MPCA (equivalent to 125 pigs weighing greater than 

136 kg each). Data for premises registered as producing swine in 2004 were used for analysis. 

 

4) The 4-H program is a youth educational program that commenced in the late 1800’s in several 

US states to provide an introduction to agricultural industries175. Typically, 4-H youth livestock 

programs allow for an annual experience that involves purchasing one or more young pigs that 

are reared to market weight and exhibited at various show events. Data on registered 4-H 

participants in Minnesota were obtained from the state 4-H office. The data included the county, 

but not the geographic coordinates, of premises. Additionally, a survey was sent to a random 

sampling of 200 4-H swine program participants that were at least in 7th grade of school 

(approximately 12 years old or older).  This survey tool was designed to assess the husbandry 

practices of 4-H swine participants as well as their attitudes about and knowledge of swine 

diseases and biosecurity measures. 

 

5) To evaluate the accuracy of the individual farm locations data in the MBAH and MPCA 

databases, recent field verified data (2006) provided a reliable 'gold standard' for specific farm 

locations (R. Morrison, E. Mondaca pers. comm.). The data were collected as part of a pilot 

PRRS control project in Stevens County and the eastern half of Rice County, Minnesota. Based 

on NASS survey data among Minnesota counties, Rice County and Stevens County rank at the 

83rd and 65th percentiles, respectively, for pig farm density and at the 76th and 57th percentiles, 

respectively, for number of pig farms per county. 

 

Software 

 

MS Office Access 2003 was used for data aggregation and reprocessing for further analysis. 

ArcGIS 9.0 (ESRI, Redlands, CA) was used for warehousing and presenting the geographic data. 

Statistix 8.0 (Analytical Software, Tallahassee, FL) was used for general statistical analyses, and 

GeoDA 9.5 (Luc Anselin, IL) was used for county-level comparisons.  
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Analyses 

 

1) Comparison of spatial distributions of swine farm premises by county in Minnesota, as 

recorded in the NASS, MBAH and MPCA databases.  

 

For all three datasets, descriptive statistics were generated and Spearman’s rank correlation was 

used to estimate correlation of county farm counts among databases. To demonstrate the 

agreement among datasets, GeoDA was used to create a series of descriptive maps. Each dataset 

was graphed as pig farm density per county (number of farms per 100 square kilometers) and 

quartiles of farm densities were mapped. County rates were then smoothed using a 1st order 

Queen’s contiguity weighting file in GeoDA. A 1st order weighting matrix was selected because 

of its inherent simplicity and the relatively large size of the counties compared to the expected 

range of local disease spread from individual farms. 

 

Spatial Clustering 

 

GeoDA was used to test for spatial clustering and to compare differences in farm counts among 

databases. The Univariate Local Indicator of Spatial Autocorrelation (LISA) with Empirical 

Bayes (EB) rate procedure in GeoDA was used to determine clustering of farm density. 

Univariate LISA demonstrates how values for contiguous areas are spatially similar or dissimilar, 

and the EB rate was used to standardize the county counts over county area (100 square 

kilometers). Moran’s I value (with the associated pseudo P-value) was calculated following 

smoothing with 1st order Queen’s contiguity weighting. Graphical representation of clustering 

was displayed for High-High, Low-Low, High-Low, and Low-High patterns. 

 

Clustering of Differences between datasets 

 

In order to better understand possible regional biases in datasets, the differences in counts 

between the three datasets (NASS minus MBAH, NASS minus MPCA, and MPCA minus 

MBAH) were calculated for each county. The Univariate LISA with EB Rate was again used to 

describe the spatial distributions of these differences. Since none of the three datasets is a “gold 

standard”, this analysis will reveal potential regional bias in one dataset relative to another. The 

over or underestimation of a regional difference cannot be precisely known, but the regional 
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trends in variation will be better understood.  

 

2) Evaluation of the accuracy of farm location data in the MBAH and MPCA databases in 

two Minnesota counties 

 

In two Minnesota counties (Stevens and the Eastern half of Rice) exact farm locations are known 

for all active swine operations (81 in Stevens County and 53 in Eastern Rice County), as of 2006. 

The geographic coordinates for farms in the MBAH and MPCA datasets are also known. A 

system relying on common-name (either owner name or premises name) and proximity (points 

located within 10 kilometers of each other) was used to create a common index for farms 

identified in all three datasets. Farms were manually matched, using knowledge of local names, 

potential misspellings, farm-coding differences, and ownership changes. While imperfect, this 

method allowed for a more complete site-by-site matching than might a rigid application of 

validation rules. The overall outcome of processing was that farms listed in multiple databases 

and possessing a common index number could be linked and compared across datasets. To 

evaluate the completeness and accuracy of the datasets, missing farms (existing farms not 

recorded in a database) and false-positive farms (recorded in a database but not currently active) 

of MBAH and MPCA datasets were used to derive two probability values. These were the 

probability that a dataset includes an actual, existent farm site and the probability that a farm 

listed in either the MBAH or the MPCA dataset was actually a current swine operation. For farms 

listed in all three datasets, the geographic error was calculated as the Euclidean distance between 

sites with the same index number. Basic descriptive statistics were generated including mean, 

standard deviation, mean center, and standard distance. After all possible sites in the three 

databases were indexed, all verified farm locations were assigned identical X,Y coordinates to fix 

the true farm location to a single point in space. The corresponding matched farm locations from 

the MPCA and MBAH datasets were likewise transformed such that their derived coordinates 

accurately represented their location relative to the respective verified ‘true’ farm location. This 

enabled both visualization of the positional error for all commonly indexed farms in the MBAH 

and MPCA databases; and calculation of positional accuracy and precision for each dataset 

relative to the true farm location.  
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3) Spatial distribution of a non-commercial swine population (4-H pigs) in relation to 

commercial swine production.  

 

Data on six years of 4-H swine program participation were collected and compiled by county. 

Descriptive statistics were generated for these data. Spearman’s rank correlation was performed 

to measure the county-level association between the six year average 4-H participation (average 

participants per county) and commercial swine production (number of swine farms in the NASS 

dataset) at county level. In GeoDA, 4-H participation density (raw rate and smoothed rate) was 

graphically rendered for evaluation. Spatial clustering of 4-H density was assessed with 

Univariate LISA with EB Rate modification and bivariate LISA analysis was performed to test 

for spatial correlation of 4-H participation and spatial correlation of 4-H participation with 

commercial swine production (NASS data). A 1st order Queen’s contiguity weighting file was 

used for spatial smoothing. Bivariate LISA allows the value of one polygon (county) to be related 

to the different values of surrounding polygons to determine whether 4-H participation is spatially 

correlated clustered with commercial production.  

 

Results: 

 

1) Comparison of spatial distributions of swine farm premises by county in Minnesota, as 

recorded in the NASS, MBAH and MPCA databases  

 

At the coarsest level, estimates of the total number of swine farms in Minnesota ranged from 

5,499 in NASS database to 10,768 farms recorded in the MBAH database (Table-1). Significant 

positive correlation (P<0.0001) was observed among county counts of swine farms among all 

three databases (Table-2).  

 

All three datasets indicate that swine farms are geographically clustered in the state. Moran’s I 

values (P<0.001) were 0.79 for the NASS data, 0.68 for the MPCA data, and 0.69 for the MBAH 

data. All datasets indicated that the density of swine farms is greater in the southern counties of 

Minnesota (Figure-4). The raw density maps and spatially smoothed density maps both reveal 

that MBAH data has relatively higher numbers of swine farms recorded in the central portion of 

the state than the other datasets. Univariate LISA with EB Rate revealed clustering of high 
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density counties with other high density counties, and vice-versa (Figure-5). NASS and MPCA 

data show clustering along the southern border, while MBAH density clusters in the southern and 

central portion of the state. The maps indicate that the three datasets have different spatial 

clustering patterns for swine farm density. 

 

With respect to the numeric differences in county counts of farms between datasets, very clear 

evidence of regional differences between datasets was seen (Figure-6). The Moran’s I values 

were moderate in range for the three comparisons (0.54 for NASS-MBAH, 0.47 for NASS-

MPCA, and 0.40 for MPCA-MBAH) and were all significant (pseudo P<0.001). MBAH 

overestimated farm density in central Minnesota and underestimated density in northern 

Minnesota (relative to NASS data). MPCA overestimated farm density in the south and 

underestimated density across a portion of the north (again relative to NASS data). Relative to the 

MPCA data, MBAH data record more farms in the central portion of the state and less in the 

south. 

 

2) Evaluation of the accuracy of farm location data in the MBAH and MPCA databases in 

two Minnesota counties 

 

A substantial proportion (16%, for MBAH and 25% for MPCA) of operational swine farms in 

both counties were not recorded in each database (Tables-3, Table-4), with the probability that a 

dataset includes an actual, existent farm site being fairly consistent between counties and datasets. 

In contrast, the probability that a farm listed in either the MBAH or the MPCA dataset was 

actually an existent swine operation was highly variable (36% and 74%) among databases and 

counties with no evident pattern. These observations demonstrate considerable inaccuracy in both 

available databases of swine farm location with respect to the presence of operational swine 

farms. Although the NASS data did not include farm identities, the NASS database recorded 69 

farms in Stevens County where 81 current operations were identified. 

 

Regarding the positional accuracy of farm coordinates, the MBAH data overall was less accurate 

in locating farms (greater 1 Standard Deviational Ellipse) than the MPCA data (Figure-7, Figure-

8). In these two figures, we see all matched farm locations plotted in reference to their true farm 

location. The direction and distance from the “True Farm Location” represents the error for every 

farm that was matched and commonly indexed to its true farm location, assuming no bias in those 
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farms that were successfully matched. In Rice County, the MBAH data included two points that 

deviated similarly in magnitude (approximately 9.8 kilometers) and direction from the verified 

sites and are likely attributable to errors in data entry. Removal of these two points would greatly 

reduce the average error in MBAH dataset and reduce the obvious N-S axis of the Standard 

Deviational Ellipse. Histograms of the error distributions show the MBAH data to be right 

skewed in both counties (Figure-9). The MPCA data appeared to have a more uniform 

distribution. Nearest neighbor analysis indicated that MBAH points were clustered around the 

verified sites and MPCA points distributed randomly (Table-5).  

 

3) Spatial distribution of a non-commercial swine population (4-H pigs) in relation to 

commercial swine production  

 

Participation in 4-H programs in Minnesota varies among counties. The 6-year mean participation 

per county ranged from 0 students to 112 students enrolled per year (mean of 30 participants per 

county per year). Analysis of year-to-year participation numbers by county revealed very little 

variation. Much of the variation in county-level participation can be attributed to the previous 

year’s participation, with correlation coefficients ranging from 0.83 to 0.98 (Table-6). We used 

the six-year mean number of 4-H swine participants per county to visualize the spatial 

distribution of the 4-H swine population in the state (Figure-10). The 4 quartiles of density 

presented on the map show an increase in density for southeastern counties. The smoothed 

county-level farm density map suggests regional concentration in the Southeastern corner of the 

state. The spatial clustering of 4-H density seen with Univariate LISA w/ EB Rate modification 

further supports the observation that there is a general trend for increased 4-H participation 

density in the southeastern counties (Figure-11). Clustering was significant but the spatial 

autocorrelation was less than seen with commercial production (Morans I = 0.48 vs. 0.79 for 

NASS data). Using the Bivariate LISA with EB Rate method, it was observed that high density 4-

H counties co-cluster geographically with high-density commercial production counties along the 

south-central portion of the state (Figure-12). 4-H production was significantly, but only 

moderately, correlated with commercial production (Table-7). 

 

The response rate for the 4-H survey was 61% (121/200). Thirty-six percent of respondents kept 

4-H pigs at the site throughout the year, and 39% indicated that their family also raised pigs 

commercially. Of these, 83% responded that the commercial pigs were within 0.5 miles (~0.8 
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kilometers) of their 4-H pigs, and 32% reared their 4-H pigs in the same barn with commercial 

pigs. For respondents whose families did not raise commercial pigs, 20% of respondents 

indicated that the nearest commercial pigs were located within 0.5 miles. 

 

Discussion: 

 

Accurate data on the spatial distribution of susceptible populations is an invaluable resource for 

planning and executing emergency responses or other programs to control or eradicate animal 

diseases. There are logistic difficulties in maintaining high quality spatial databases, particularly 

for rapidly evolving industries such as the swine industry in the USA. Until recently, the USA has 

not attempted to establish a national system for registration of premises raising animals. This 

responsibility has historically rested with the individual states. Current efforts led by the US 

Department of Agriculture to establish a national premises database as part of the National 

Animal Identifications System aim to address this shortcoming, but completion of this task is 

unlikely in the short term. The accuracy of existing spatial farm databases is likely to vary 

considerably among states, and our observations in Minnesota cannot be extrapolated beyond the 

state. 

 

For an infectious disease in a geographic area, the relevant populations at risk include all 

susceptible animal species. This study was limited to swine because the predominant swine health 

problems (notably PRRS and Porcine Circovirus Associated Disease) affecting the US industry 

appear to be highly host specific. For logistic reasons, this study was restricted to commercial 

swine enterprises and a single non-commercial sector (4-H pigs) for which relevant data were 

accessible. This dataset demonstrated not only that a niche swine population (4-H pigs) was 

geographically correlated with commercial production, but also that this niche swine population 

was relatively stable over sequential years. Further, the 4-H survey findings demonstrate the 

potential interaction between commercial and non-commercial swine populations. In this, they 

emphasize the likely importance of non-commercial swine populations as reservoirs of swine 

pathogens and the need to assess the risk that such populations present when planning regional 

control programs. Clearly, when investigating disease control options, all commercial and non-

commercial swine populations (e.g., feral, backyard, pet, etc.) in a region need to be included. 
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It should be noted that the sources of data that we evaluated were compiled for very different 

purposes. Adequacy of data is therefore a relative concept, and standards for data quality 

according to use are arguably more appropriate than absolute measures of accuracy. The 

clustering of error points in the MBAH dataset (Figure-7, Figure-8), suggests they are ‘seeking’ 

to be accurate to the true location. The MPCA error point-pattern, in contrast, does not intensify 

at its cluster center- the points exist randomly in the study area (Figure-7, Figure-8). This is likely 

an artifact of the respective data collection procedures. For MBAH data, farm locations are 

assigned to locations deemed to be the actual farm location. This fits with the data element coding 

laid out for APHIS surveillance data standards on their website 

(http://www.aphis.usda.gov/vs/nahss/resources.htm). However, these definitions of data elements 

delineate methods of geographic data collection (GPS, address geocoding, etc…), but no 

standards for precision or accuracy in reference to actual livestock locations are presented. In 

contrast, MPCA farm locations are assigned to the centroids of the quarter-section (square 

administrative unit equal to approximately 65 hectares) or full section, depending on county. 

Since actual farm sites may be anywhere within a quarter-section, the relationship between the 

actual location and the MPCA assigned location appears random within the study area. Further, 

geographic correlation and autocorrelation of county-level farm density among datasets indicate 

that differences among datasets are not spatially random and that one data resource may under or 

overestimate the density of swine farms in a multi-county region of the state.  

The databases that we obtained for this project were not accompanied by metadata files that 

normally would convey some data quality parameters and document procedures used to compile 

the data. Appropriate metadata should provide timely information to facilitate data sharing across 

organizations that could be critical in managing emergency responses. Therefore, future 

consideration of data quality standards for spatial databases to support animal health activities 

should include metadata standards. 

 

Our study primarily considered completeness and positional accuracy. In comparing the three 

databases of swine production across Minnesota, we were limited by the absence of a true ‘gold 

standard’. The unique purposes of each dataset and their differing definitions of what constitutes 

a “swine farm” will, no doubt, be cause for differences. However, when used for the purposes of 

estimating the true locations of swine farms, it can logically be concluded that there are 

significant accuracy concerns in at least two of the three databases (only one can be accurate). 

Furthermore, the existence of spatial correlation in the patterns of discrepancies among these 
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databases suggests local administrative factors, such as local office compensation for enrollment, 

or regional shifts in livestock production over time, may influence the accuracy of data.  

Substantial variability in the adequacy of available data can be expected even among counties 

within the state. This was confirmed in the analysis of verified ‘gold standard’ locations in 

Stevens and Rice counties where the probability that a farm listed in either the MBAH or the 

MPCA dataset was actually a current swine operation (and to a lesser extent the probability that a 

dataset includes an actual, existent farm site) calculated for the MPCA and MBAH databases 

varied substantially from county to county. We consider that the completeness of these databases 

observed in these two counties is substantially below what should be achievable and necessary to 

support effective emergency responses or other animal health programs. 

 

Similarly, with respect to positional accuracy of individual farms, deviations of the order of 10 

kilometers observed for a small number of farms would be problematic when managing 

emergency responses. The positional inaccuracy observed in the MPCA data could largely be 

attributed to the system for recording locations (by section rather than specific location), and 

could be considered acceptable for the purposes of their responsibilities (i.e., the management of 

livestock waste and air quality). However, the greater positional inaccuracy of the MBAH 

locations is of greater concern as locations are intended to indicate specific farm locations that 

would be used in cases of emergency response to foreign disease outbreaks.  In the two counties 

considered, 10% of farms had a positional error of more than 900 meters, a radius which would 

typically include multiple other farm sites. If resources were to be allocated to improve the 

accuracy of this database, priority should first be given to improving the completeness of the data 

more so than the positional accuracy of recorded farms. The current inadequacy of reliable spatial 

data of commercial swine enterprises in Minnesota is compounded by the presence of substantial 

populations of swine in non-commercial arenas. Planning for emergency response preparedness 

should include formal assessment of non-commercial populations and their potential role in 

disease transmission within a region.  
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Chapter-2: Demographics of Minnesota Swine Populations – Evaluation 

of Remotely Sensed Data as a Potential Tool for Identifying Swine 

Populations 

 

Introduction: 

 

With the advent of new technologies comes the possibility of using novel tools to improve 

essential processes. The National Animal Identification System of the United States Department 

of Agriculture aspires to inventory all swine premises in the county68. The use of mobile GPS 

instruments and the availability of high resolution orthophotographic images can allow users to 

identify farm buildings and locations with a high degree of accuracy and precision.  However, 

there are difficulties in maintaining currentness and completeness of spatial farm databases. This 

is the result of a dynamic agriculture system, with some farms ceasing to raise pigs while others 

construct new production facilities. Unused facilities may return to active use and facilities may 

change ownership over time. Some imperfections in livestock databases are inevitable, and the 

degree of inaccuracy will be a function of the measures employed to maintain data accuracy 

despite the volatility of the livestock populations of interest. In the face of a foreign animal 

disease outbreak, methods to rapidly verify the presence of livestock at registered farm sites could 

improve resource allocation for the implementation of emergency response measures. Sites in the 

vicinity of infected premises that could be confirmed to be populated should be given priority for 

site visits, herd testing, and forward and backward tracing of animal movements. 

 

In Minnesota, most commercial swine are confined in buildings that are easily visualized with 

orthophotographic imaging that is now freely accessible. Pigs produce heat as part of the 

metabolic processes of maintenance and growth. Ventilation of swine confinement buildings is an 

important factor in optimizing the ambient conditions in confinement operations. Overheating and 

increased levels of dangerous gases can overwhelm and kill pigs if ventilation systems are not 

adequately managed. However, not all heat is removed from the building as exhausted air. Some 

of the heat is transferred to the exterior surfaces of the building (walls and roof) and is lost from 

buildings by radiation, conduction and convection.  

 



 

 48 

Remote sensing is the technology and techniques of using remotely-captured measurements of the 

Earth’s surface to estimate the current status of its functions and processes. Webster’s New 

Millennium Dictionary176 defines remote sensing as “the technique or process of obtaining data or 

images from a distance, as from satellites or aircraft”. Remote sensing satellites capture various 

types of data from the earth’s surface. These data include radiation of various wavelengths, as 

well as thermal surface signatures. The resolution of data collected varies between type of 

satellite and information band. At the time of this writing, LandSat ETM+ data presented the 

highest resolution of thermal image data available for MN that can be purchased by the public. It 

presents surface temperature data at a comparatively crude resolution. Temperature is given as 30 

X 30 meter blocks compared with 1 meter photographic resolution from available airplane 

overflight orthophotography.  

 

Remote sensing technology has previously been used to predict animal disease occurrence by 

understanding and defining the environmental conditions that foster disease propagation.  

Generally, this has centered on monitoring the habitat range for parasites known to transmit 

diseases – vector-borne diseases. The use of remotely sensed data to understand the epidemiology 

of Trypanosomosis and Bluetongue (two vector-borne livestock diseases) has been described by 

De La Rocque et al.157 in 2004. In 2007 Guis et al.158 were able to create an accurate model for 

Bluetongue using high resolution landscape imaging to predict infections at specific sheep farms 

on the island of Corsica, in the French Mediterranean. In 2006, Bouyer, et al.159, described a 

significant correlation between disease risk for African Animal Trypanosomosis (a vector-borne 

livestock disease) and the presence of specific vector-supporting habitat in Western Africa. 

Remote sensing has been used to study West Nile, another vector-borne disease spread by 

mosquito.  Leblond et al.160, in 2007 described significant relationship between French landscape 

characteristics and confirmed cases of West Nile infections in horses. 

 

Remote sensing has been assessed as a tool to identify livestock populations. A previous attempt 

to identify and catalog commercial swine populations was made in a swine dense region of North 

Carolina161, 162.  Using IKONOS 4 meter resolution satellite visual imagery, a semi-automated 

classification routine was performed using GIS software.  Using defined criteria, the program 

identified locations that were possible lagoons or swine barns.  Using a known dataset of verified 

farm locations, the semi-automated process resulted in a detection accuracy of 76% for barns and 

79% of the waste lagoons. However, this technique was highly non-specific, as many non-farm 
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sites were identified as barns or lagoons (44% and 47% respectively). The purpose of this study is 

to explore the possibility that remote sensed data of surface temperature can be used to predict the 

existence of current populations of pigs in farm buildings. 

 

Hypotheses 

 

The following hypotheses were considered: 

• Sites identified as active swine farms emanate more heat, which can be detected by remote 

sensing, than randomly selected points in the same geographic region  

• Sites identified as being active swine farms emanate more heat, which can be detected by 

remote sensing, than non-swine farm sites in the same geographic region  

• Season impacts the magnitude of differences detectable by remote sensing 

 

Specific Objectives  

 

• Obtain surface temperature data for Rice County during cold and warm seasons and define 

the recorded surface temperature at each verified active swine farm in the region. 

• Determine the relationships of site-type and season with remotely sensed surface 

temperatures in Rice County 

 

Materials and Methods: 

 

Two surface temperature datasets were obtained from Dr. Marv Bauer and Fei Yuan of the Forest 

Resources Department. The datasets had been processed and georeferenced to a UTM15 

projected coordinate system. The first dataset (cold weather period) was captured on 2/27/01 and 

the second dataset (warm weather period) was captured on 5/21/02. Both datasets originated from 

LandSat ETM+ satellite imagery giving 30 meter by 30 meter resolution thermal bands (Figure-

13). Data were presented as raster image files with the temperature attribute given in degrees 

Kelvin. Both datasets were captured by the satellite during the daylight hours. 

 

The two raster files were imported into ArcGIS software package (v9.X) as two projected layers. 

Other data layers imported were a county land-cover raster; county-level boundaries; county 
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roads; county orthophotograph; and specific farm location points. The locations of verified farm 

locations were defined very precisely, with each point being either the centroid of multiple 

clustered buildings or the centroid of a building itself. 

 

The Eastern half of Rice County was circumscribed by a rectangular polygon which defined the 

study zone. In this domain, two additional sets of points were created. The first was a set of 

“sister” farms. These were the centroids of building sites from neighboring locations (farm sites) 

that were not identified as hog farms. These assumptions were based on a visual survey of 

orthographic images with a thorough, census-level knowledge of active swine populations in the 

county. The third dataset was composed of randomly selected points within the study zone. The 

random points were generated using a bounded random number generator employing the 

coordinate limits of the study zone. Figure-14 displays all three point datasets in Eastern Rice 

County.  

 

In ArcGIS, a script was created and run in ArcInfo Workstation that assigned the value 

(temperature Kelvin) of the 30x30 raster cell to every farm point. The end result was an attribute 

table with temperature values for every point (in all three point datasets). Frequency distributions 

and histograms were created from the data for visualization.  ANOVA analysis (General 

AOV/AOCV- Statistix 8.0 software, Analytical Software, Tallahassee, FL) was used to determine 

significant differences by Season, LocationType, and a Season X LocationType interaction 

variable.  The type of hog farm (Farrowing, Nursery, or Finishing) was also analyzed. A 

diagnostic threshold point (cut-off temperature) was selected which represented an approximate 

average for each season, the geographic data points were assigned corresponding indicator 

variables, and Logistic Regression analysis was performed (Statistix 8.0 software) to determine 

the odds of LocationType with regards to point temperature.  Further, Receiver Operating 

Characteristic (ROC) curves were created to assess the diagnostic usefulness of point temperature 

in determining the presence of a livestock population. 

 

Results: 

 

Frequency distributions show the temperature patterns for the three datasets (Figure-15 and 

Figure-16). During the winter period, there appears to be three potentially different temperature 
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distributions, with hog farm sites (Farms) being the warmest, non-hog farm sites (NonHog) being 

next warmest, and random locations (Random) being the coldest. In the summer period, the 

random locations are warmest, with the hog farm and non hog farm locations appear to be similar. 

 

ANOVA 

 

Using the AOV/AOCV ANOVA procedure in Statistix, the variables Month, LocationType (hog 

farm, non hog farm, or random), and an interaction term were selected for analysis. Results 

indicated that Season, LocationType, and their interaction term were all significant predictors of 

surface temperature (Table-8). Individual analysis for each season shows that mean temperatures 

were only significantly higher during the cold weather period (Table-9).  Surface temperature did 

not differ significantly by type of hog farm- Farrowing, Nursery, or Finishing (Table-10). 

 

Logistic Regression 

 

Indicator variables were added to the datasets to designate locations that had temperatures greater 

than or equal to the cutoffs of 10.13ºF in the February dataset and 67.73ºF in the May dataset. A 

logistic regression model was created in Statistix for the dependent variable HogFarm (0 or 1), 

using the temperature cutoff indicator (0 or 1) as the independent variable. Results (Table-11 and 

Table-12) show a significantly increased odds ratio during the winter (OR= 3.72; 95CI= [1.71, 

8.11]), but not during the summer (OR= 1.41; 95CI= [0.68, 2.92]), using these cutoff values.  

 

Diagnostic Performance 

 

Given the distributions of swine farm (Farms) and non-swine farm (NonHog), temperature would 

not appear to be a reliable, differentiable characteristic during the warm season (Figure-16). 

Receiver operating characteristic (ROC) curves for these two diagnostic threshold cut-off points 

were created to determine their usefulness in detecting the presence of swine at a specified 

location (Figure-17 and Figure-18). Using a cut-off of 10.13ºF (Feb dataset), the resulting 

sensitivity was 56% and specificity was 75%. Using a cut-off of 67.73 ºF (May dataset), 

sensitivity was 49% and specificity was 59%.  ROC curves were used to estimate area under the 

curve for both Feb (63%) and May (55%). 
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Discussion and Conclusion: 

 

The results revealed significant differences in point-specific temperature as measured by satellite, 

but these differences were not consistent between seasons.  Type of hog farm was not found to 

influence the observed temperatures. The usefulness of using a diagnostic cut-off temperature 

appears to be limited in both sensitivity and specificity. 

 

One reasons for this limitation is the lack of spatial definition it presents. The data are available as 

a 30 meter by 30 meter raster. Considering that the average finishing barn is 12 meters by 60 

meters, it becomes obvious that the temperature of a raster cell cannot be assigned to a single 

building and will be a composite of surface temps detected in that larger area (an area larger than 

the barn).  

 

A second reason could be the relative insignificance of the animals’ heat production compared to 

the influence of the sun on the earth’s surface. Crude calculations reveal a multifold magnitude of 

difference. A 1,000 head finishing barn would typically have roof dimensions of 40 feet by 200 

feet (8,000squarefeet or 743squaremeters). Pigs weighing 175 lbs (80kg) would produce 206 W 

of heat energy (27.58×kg^-0.54)177. One thousand pigs would produce 206,480 W, equaling 278 

W/m2. Energy from insolation (solar radiation) changes seasonally and may be calculated by the 

formula; I (insolation) = S (solar constant of 1,300) cos Z (solar zenith angle)178.  Values 

calculated for central Minnesota, on the dates considered, yield 775 W/squaremeter (on 

2/27/2001) and 1,180 W/squaremeter (on 2/21/2002)179.  These values are 2.8 and 4.2 times the 

pigs’ thermal heat production, respectively.  This difference would explain both the insensitivity 

of this method in general and the difference in diagnostic sensitivities for cold and warm weather 

months (56% in cold weather and 49% in warm weather). 

 

When considering tools that may be employed in disease control efforts, the benefits and draw-

backs of each should be considered.  While cumbersome, direct communication with farmers and 

other community members will likely create a solid and reliable dataset for animal population at 

risk.  Novel tools like remote-sensing are interesting because they present the user with new types 

of information that can be quickly obtained for analysis.  Based upon this study, remotely sensed 
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surface temperature data would not be sufficiently predictive of the presence of animals to 

reliably enhance the efficiency of an emergency response to a disease outbreak. 
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Chapter-3: Potential role of non-commercial (4-H) swine populations in 

the epidemiology and control of Porcine Reproductive and Respiratory 

Syndrome (PRRS) virus 

 

Introduction 

 

A reproductive syndrome of unknown etiology described in the United States in 1989 was the 

first documented clinical presentation of Porcine Reproductive and Respiratory Syndrome 

(PRRS) virus infection of swine7. The causative arterivirus is now endemic in most swine 

producing countries and, with an estimated cost of $560 million annually, PRRS is the most 

economically significant disease affecting the US swine industry. In inflation adjusted terms, this 

estimate greatly exceeds the estimated annual economic burdens of both hog cholera ($364 

million in 2004 dollars) and pseudorabies ($36 million in 2004 dollars) viruses before national 

programs were undertaken to control those diseases38. Like other RNA viruses, PRRS virus 

displays marked genetic heterogeneity that is reflected in variability in virulence, clinical 

manifestations and epidemiological attributes. Variants of the PRRS virus in Chile appear to have 

relatively low virulence, while highly virulent variants have been implicated in widespread and 

severe disease outbreaks in China180, 181. The propensity of PRRS to cause reproductive disease is 

strain dependent and variants of the virus also differ with respect to their potential for aerosol 

transmission182, 183. 

 

The foremost obstacle to PRRS control is the ability of the virus to spread among neighboring 

farms despite strict biosecurity measures. Elimination of PRRS from individual herds has been 

regularly achieved using a variety of approaches184-186, but these efforts are frequently 

undermined by reintroduction of virus via routes which in most cases are either unknown or 

speculative. In addition to obvious routes of introduction in pigs or semen, experimental studies 

have confirmed a variety of potential routes for PRRS virus transmission among herds, including 

people, fomites, transport vehicles, insects and aerosols33, 48, 50, 187. Coordinated efforts to control 

PRRS in France had qualified success53, and a government led eradication program in Chile 

appears to have been successful188. Likewise, an emergency government program immediately 

following the initial detection of PRRS in Sweden resulted in elimination of the virus189. 

However, in each of these countries a low proportion of herds was infected when the programs 
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were initiated. The American Association of Swine Veterinarians has stated a long-term goal of 

PRRS elimination in the USA190. However, in regions with a high herd prevalence of PRRS 

infection, considerable obstacles need to be overcome before any coordinated control program 

will be practical38.  

 

Effective regional control of animal disease requires an understanding of all reservoirs of 

infection and of mechanisms and risks of pathogen transmission. PRRS virus, like other 

arteriviruses191, is highly host specific and it is unlikely that non-porcine species could be 

reservoirs of the virus. Consequently, when developing regional control strategies for PRRS, 

attention may be focused entirely on populations of Suidae. Although commercial swine herds 

(meaning herds kept with the primary objective of income generation from pork production) 

constitute the vast majority of the US swine population, many other swine populations exist. 

These include feral or wild pigs, pet pigs, hobby farm pigs, and pigs reared in youth education 

programs (e.g., Future Farmers of America and 4-H). Feral or wild pig populations are important 

reservoirs of infectious diseases including brucellosis and pseudorabies81, 82, and are also 

potentially important reservoirs for PRRS virus192. Although widespread in much of the USA, as 

yet feral pigs are not known to have become established in Minnesota. Youth education programs 

which include rearing and showing of pigs attract broad participation in many US states including 

Minnesota. According to the 4-H National Headquarters, the numbers of youth involved in the 

swine educational curricula ranged from ~140,000 to 212,000 per year from 1996 to 2003. 

Currently, there is little documentation of the relationships these youth 1 have with the 

commercial swine industry. The purpose of this study was to characterize the 4-H swine 

population and to evaluate its potential importance to the epidemiology and control of PRRS. 

 

Materials and Methods: 

 

Demographics of commercial and 4-H swine populations in Minnesota and the USA 

 

Agricultural youth education programs in Minnesota are seasonal activities that are linked to 

county fairs. To understand the chronology of 4-H swine exhibition in MN, the schedule of 

Minnesota Federation of County Fairs information for 2004 was obtained193. Data of participation 

in 4-H swine programs in MN from 2000 to 2005 were obtained from the state 4-H office. These 
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data included the name, address, county, and year of participation for each participant. Data were 

summarized and aggregated by county and year. The data were then imported into ArcGIS 9.0 

(Environmental Systems Research Institute, Redlands, CA) for geoprocessing and standardization 

of data formats. GIS objects were exported as shape (.shp) files for exploratory spatial analysis 

using GeoDA software194. To evaluate the existence of co-clustering of commercial swine 

production and 4-H production in counties, the spatial distribution of 4-H participation data was 

compared with that of commercial swine populations described by the National Agricultural 

Statistics Service (NASS)195, Minnesota Pollution Control Agency (MPCA)196, 197, and Minnesota 

Board of Animal Health (MBAH)198. 

 

Data of 4-H participation for all states were obtained from the National 4-H Headquarters 

website199. These data included a range of 4-H activities by state, including enrolment in the 

Animal Science-Swine curriculum. Geographic distribution of average 4-H and 4-H swine 

curriculum enrolments were visualized as raw quartile maps of membership per 10,000 square 

kilometers. Using different spatial clustering analyses in GeoDA, the geographic distributions of 

national 4-H swine program participation and general 4-H enrollment were analyzed and 

compared with national commercial production data as measured by the 2002 NASS national 

agriculture survey statistics195. Procedures used in GeoDA to assess spatial autocorrelation were 

univariate Local Indicator of Spatial Autocorrelation (LISA), multivariate LISA, and Moran’s I 

statistic200, 201. The LISA statistic yields a measure of spatial autocorrelation for each individual 

location examined. Univariate LISA maps show the spatial autocorrelation between one variable 

(in this case 4H swine program participation) in an area (e.g., state or county) and the same 

variable in all adjacent areas. Bivariate LISA maps show the spatial autocorrelation between one 

variable (e.g., 4H swine program participation) in an area and another variable (commercial swine 

production) in adjacent areas. 

 

Mail survey and interviews of 4-H participants 

 

A 64 question survey instrument (available upon request) was developed to describe 4-H 

participants’ livestock activities and to assess their knowledge of swine health and biosecurity. In 

Minnesota in 2005 a total of 2,738 youths registered to show pigs in the 4-H program, of which 

1,725 were in the 7th grade or above. The arbitrary selection of 7th grade was chosen to focus on 

older participants likely to have more experience and education related to swine production. 
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Using a random number generating function in an MS Excel spreadsheet, a random sample of 200 

participants was selected from those students in 7th grade or higher who had mailing addresses in 

Minnesota, and who were not members of the same household as another selected participant. 

Students were encouraged to complete the survey without help from others. The initial survey 

mailing was followed by a reminder post-card mailing after two weeks, and then a second mailing 

of the complete survey to non-respondents. Descriptive statistics of survey responses were 

compiled with 95% confidence intervals. Multivariate logistic regression analysis was performed 

to evaluate relationships between survey responses and participant characteristics including age, 

gender, and family involvement in commercial swine production. The relative importance of 

swine diseases as perceived by 4-H participants was ranked as the ratio of number of the 

respondents rating a disease as important to the number that were unfamiliar with the disease. 

Two diseases not known to occur in the USA (therefore deemed of negligible importance) were 

deliberately included for comparative purposes. 

 

Forty-three 4-H participants showing pigs in two Minnesota counties were interviewed when they 

registered their pigs for exhibition. The questionnaire (available upon request) was administered 

to 20 participants in Rice County and 23 in Stevens County. The survey explored reasons for 

participation and also asked participants to list measures that can be implemented to decrease 

pathogen transmission among pigs. For descriptive purposes, the measures listed were 

categorized as “Equipment and Facility Sanitation”, “Personal Sanitation”, “Pest control”, 

“Separation or Isolation”, “Source Health”, “Vaccination or Medication”, or “Other”. In addition, 

at the Minnesota State Fair in 2005, a convenience sample of 172 4-H participants registered in 

9th grade or greater from 53 counties (of 220 participants from 54 counties), was asked a short 

series of questions regarding the origin and PRRS vaccination status of their pigs. 

 

Seroprevalence and seroconversion to PRRS virus 

 

County officials were contacted to confirm the dates of county fairs and whether the 4-H shows 

were terminal (requiring pigs to go to slaughter following the fair). The seroprevalence of PRRS 

infection in 4-H pigs was estimated in pigs from nine county fairs which shipped pigs to a 

regional slaughterhouse after livestock exhibition. Selection of the counties was by convenience 

but five of the counties rank amongst the highest hog producing counties in Minnesota (Martin 

1st; Nicollet 4th; Mower 5th; Brown 10th; Watonwan 12th). The other counties (Rice, Steele, Le 
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Sueur, and Fillmore) have less dense commercial swine populations. Samples were collected 

from the collaborating slaughterhouse on five occasions. Blood samples were collected from 

individual pigs (n = 661) following stunning without interference with the procedures of the 

plant. To assess the incidence of PRRS seroconversion following fairs, two counties (Blue Earth 

and Winona) with non-terminal fairs were selected. At these fairs, participants were invited to 

participate in the study if they intended to return pigs to their farm for at least two weeks. In 

accordance with IACUC requirements, participants gave informed consent for collection of blood 

samples from their pigs. Blood samples were collected from pigs (n = 32) on the day of 

exhibition and participants were later contacted to arrange collection of a second blood sample 

two weeks after the fair. The presence of antibodies to PRRS virus was determined using the 

IDEXX HerdChek PRRS Antibody test kit (IDEXX Laboratories, Inc., Maine) performed at the 

University of Minnesota Veterinary Diagnostic Laboratory. For the recommended cut-off of a 

Standard to Positive ratio of 0.4 that we employed, IDEXX provides estimates for sensitivity 

(97.4%) and specificity (99.6%)202, which we used with the Rogan-Gladen estimator to calculate 

true prevalence from apparent prevalence203. One-way ANOVA was used to compare mean 

PRRS Sample to Positive ratios among counties and chi-square analysis was used to compare the 

proportions of seropositive pigs. Association of seropositivity with hog farm density (using 

NASS, MPCA, and MBAH data) and 4-H participant density was assessed for these nine counties 

using Spearman’s rank correlation method. McNemar’s chi square was used to test for differences 

in seropositivity in paired samples of serum collected from pigs at fairs and two weeks later. 

 

Results: 

 

Demographics of 4-H and commercial swine populations in Minnesota and the US 

 

All county fairs in Minnesota were scheduled between weeks 24 and 37 in 2005, and more than 

half of county fairs were held in the month preceding the State Fair in early September. Only 

seven of 79 (9%) county fair boards contacted required that their shows were terminal (animals 

required to be sent to slaughter at the end of the fair). In 2005, 2318 students registered to show 

4-H pigs in the state of Minnesota, similar to a mean of 2592 over the five preceding years. 

Participation in 4-H swine programs varied markedly across Minnesota, with the greatest 

concentration in the southeastern counties. Statistically significant spatial clustering of 4-H swine 
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participation was found in the southeastern corner of the state, using Univariate LISA analysis. 

Multivariate LISA analysis using either NASS or MPCA data indicated that 4-H swine program 

participation was geographically correlated with commercial swine production at the county scale 

(Moran’s I 0.37; bootstrap estimated P = 0.001). A slightly different pattern of co-clustering was 

observed using the MBAH data, with High-High clustering occurring in both the south-central 

and central portions of the state (Moran’s I 0.24; bootstrap estimated P = 0.001). Although results 

of the analysis varied among the databases of commercial swine production selected, all analyses 

indicated that 4-H swine participation has significant geographical correlation with commercial 

pork production in Minnesota (Figure-19). 

 

The geographical association between 4-H swine production and commercial production evident 

in Minnesota was also observable on a national scale. Across the USA, the area density of swine 

curriculum enrollment (1998-2002) was highest in the traditional corn-belt states of the Midwest 

and eastern Midwest (Figure-20). The density of 4-H swine participation was correlated with 

swine farm density (Moran’s I 0.30; bootstrap P=0.001), with significant spatial autocorrelation 

(“High-High”) throughout the central Midwest and “Low-Low spatial autocorrelation throughout 

the western US. 

 

Mail survey and interviews of 4-H participants 

 

A response rate of 66.5% (133/200) was achieved for the mail survey of randomly selected 4-H 

participants. While a majority of participants exhibited pigs at only one show the previous year 

(median 1, mean 2.5, range 1 to 35), one participant claimed to have exhibited at 35 shows. The 

mean number of pigs registered for the current year was 4.8 (median=3, minimum=0, 

maximum=30) and 54% (95%CI:45%, 63%) of respondents intended to show their pigs at 

locations other than their local county fair in 2005. One-sixth of participants were also 

participating in the FFA Swine program (FFA is a youth leadership program including livestock 

projects similar to 4H. In FFA, pigs can be exhibited concurrently with 4H and “open class” pigs 

at county fairs). About one quarter (24%;17%, 32%) of respondents had contact with pigs other 

than their own 4-H pigs at least once a week and 77% (69%, 84%) had livestock other than swine 

kept at the same location as their 4-H pigs (56% cattle, 28% poultry, 26% sheep, 8% goats, 21% 

other). Approximately three-quarters of respondents (74%; 65%, 81%) obtained their 4-H pigs 

from off-farm sources, and 13% (8%, 20%) obtained pigs from another state. Of the 82% of 
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participants who purchased pigs, 95 of 111 (85%) purchased the pigs in the months of March to 

May. Commercial pig production was undertaken by 39% [31%, 48%] of families of 4-H 

respondents and 36% [28%, 45%] of respondents indicated that other (non 4-H) pigs were kept at 

the same site as their 4-H pigs. Of 47 respondents from farms rearing both 4-H and commercial 

pigs, 15 (32%) kept both groups in the same barns. For 74 respondents without any family 

involvement in commercial production, 55% indicated that other pigs were located within two 

miles of the site where they kept their 4-H pigs. 

 

With respect to knowledge and attitudes towards biosecurity and swine health, respondents 

ranked clean transportation and obtaining pigs from sources with good health status to be the 

most important measures to ensure pig health (Table-13). When asked how important 14 diseases 

were to commercial pork producers, respondents perceived swine influenza, E. coli and 

Salmonella to be the most important diseases of swine, with PRRS ranked fifth (Table-14). Forty-

one percent of respondents were not familiar with PRRS, compared with 51% for porcine 

epidemic diarrhea, a disease never reported in the USA. However, 30% indicated that their pigs 

had been either vaccinated against PRRS or treated for PRRS infection. Logistic regression 

analyses indicated that the odds of having regular contact with other pigs, having no other species 

of livestock, and certification by educational programs beyond the 4-H program all increased 

significantly for participants from families who raise commercial swine. Awareness of 

biosecurity and perceived importance of diseases was not influenced by age group, gender, or 

family involvement in commercial pork production. 

 

Of the convenience sample of 172 4-H participants interviewed at the Minnesota State Fair, most 

were from southern Minnesota. Thirty-three% of these had registered “home-raised” pigs, not 

purchased from an outside source, while 15% were exhibiting pigs that originated from other 

states. Nineteen (11%) of participants stated that they had vaccinated their pigs for PRRS. Survey 

responses collected from participants at the Rice and Stevens county fairs were similar with 

respect to grade in school, years in 4-H, whether pigs would return home after the show pigs’, and 

intended participation in other shows. One third (33%) of exhibitors were planning to show their 

pigs at other exhibitions and almost half (48%) of Stevens County 4-H swine show participants 

were bringing their show pigs home from the county fair. The primary motivations for 

participation were ‘too have fun’ (88%), to learn about pigs and livestock husbandry (54%), and 
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to go to the state fair (30%). Only 16% of participants listed that winning was their motivation for 

participation. 

 

Seroprevalence and seroconversion to PRRS virus 

 

Across all nine county fairs where 4-H pigs were sampled at slaughter (n = 661), the apparent 

seroprevalence of PRRS 48% (44%, 52%). Using the Rogan-Gladen estimator, true prevalence 

was calculated to be 49% (45%, 53%). Both mean S/P ratio and seroprevalence varied 

significantly (P < 0.0001) among counties, with apparent seroprevalence ranging from 29% to 

76% (Figure-21). Of the 32 samples from live pigs during county fairs, 19 (59%) were 

seropositive. Of these, 27 pigs (17 seropositive and 10 seronegative at the fair) were available for 

follow up sampling. Seven (70%) of the initially seronegative pigs had seroconverted by two 

weeks after the fair. However, 4 of the 17 previously seropositive pigs tested seronegative at the 

farm and McNemar’s test for symmetry showed differences in seroprevalence at the fair and on 

farm were not significant (Chi square=0.82; P=0.37). 

 

Discussion: 

 

For over two decades, persistent and severe economic losses from PRRS virus infections in the 

USA have provided strong motivation to develop and implement effective control programs for 

this disease. Local spread of virus among farms despite considerable investment in biosecurity is 

the most frustrating and problematic aspect of PRRS control204. Knowledge of the demographics 

of all potential reservoirs of an infectious agent is an important prerequisite for assessing the 

feasibility of any regional control or eradication program. From the perspective of the pork 

industry, the epidemiological significance of any potential reservoir population is a function of its 

size, the prevalence of pathogens of concern, and its proximity to and interactions with 

commercial swine populations. 

 

In Minnesota in 2005, the number of registrants in 4-H, raising a mean 4.8 pigs indicates, a total 

4-H population of the order of 12,000 pigs concentrated in the period of March to September. 

This is a trivial population relative to the estimated inventory of 6.5 million, and sale of 14.6 

million, pigs in Minnesota in 2005205. However, the significance is elevated when one considers 
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that, at both and state and national levels, participation in 4-H swine programs is geographically 

associated with commercial swine production. Within Minnesota, significant clustering of 4-H 

and commercial production was found at county level, and 39% of 4-H participants reared pigs on 

the same locations as commercial pigs. Furthermore, the frequent existence of other swine 

populations within two miles of 4-H pigs also suggests a real risk of bidirectional transmission of 

PRRS between 4-H and other pig populations in Minnesota53. 

 

A national survey of PRRS seroprevalence in US finishing hogs found more than 50% of 

finishing pigs were seropositive for PRRS206. In the same study, 75% of 639 samples from 43 

Minnesota hog farms were seropositive, and 36 of 43 (84%) Minnesota finishing herds had at 

least one seropositive pig (E. Bush, personal communication). Our observations that 49% of 4-H 

pigs sampled at slaughter, and 59% of pigs sampled at fairs, were seropositive for PRRS virus 

indicates exposure risks of similar magnitude in both the commercial and 4-H populations. Again, 

this is unsurprising given the close proximity and interactions we found between these sectors of 

swine activity. Seropositive results in some 4-H pigs (and also commercial pigs) are likely to be 

attributable to vaccination, although only 11% of state fair participants claimed to have 

vaccinated their pigs for PRRS. Based on population sizes alone, it is evident overall that 

commercial swine farms currently present much higher risk to 4-H populations than the reverse. 

However, particularly for boar studs, and nucleus or multiplier breeding herds, for which the 

economic consequences of PRRS outbreaks can be extreme, the risk presented by small non-

commercial populations in their vicinity is non-trivial. Investigations of PRRS outbreaks in 

commercial herds have implicated nearby “backyard” operations or show pigs as sources (S. 

Daniels, N. Debuse, M. Strobel, personal communications). In both cases, genomic analysis 

confirmed sequence identity between viruses at the commercial (previously PRRS negative) and 

neighboring sites. Because of the seasonality of fairs, show pig populations are often transient 

because pigs are commonly purchased and raised for the express purpose of exhibition. 

Consequently, risks presented to commercial herds are likely to be highly variable over time. 

 

The limited sampling we conducted of pigs at fairs yielded only 10 seronegative pigs for follow 

up testing. However, the fact that seven of these animals had seroconverted by two weeks after 

the fair supports the axiom that congregation of animals from multiple sources is a high risk 

activity for transmission of infectious diseases. Until Minnesota was officially declared free from 

pseudorabies, government regulations required that swine exhibitions were terminal. Subsequent 
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to pseudorabies eradication from commercial swine, most county fair boards have opted to hold 

non-terminal shows, and the frequent intention of participants to show pigs at multiple events is 

facilitated by such policies. The concentrated seasonal schedule of county fairs, and the repeated 

mixing of animals at multiple events is likely to facilitate transmission and could present 

substantial challenges to traceability in the event of a suspected foreign animal disease outbreak88, 

89, 93, 207. Better information is also important to understand the potential role of other sub-

populations of swine that may also serve as sources of entry of foreign diseases or reservoirs of 

endemic agents93. 

 

The diseases ranked highest in importance by 4-H participants (swine influenza, E. coli, and 

Salmonella) are all pathogens that attract considerable media attention due to their impact on 

human health (recognizing that the important distinction between E. coli types causing disease in 

pigs and humans is unlikely to be understood by much of the general public). In contrast, despite 

its unquestioned primacy among swine pathogens in the USA, as a highly host specific agent 

PRRS is rarely mentioned in the mainstream media. We infer that the perceptions of the 

importance of diseases by 4-H participants were probably driven more by media emphasis on 

zoonotic risks than participants’ familiarity and experience with livestock. The low level of 

awareness among participants of PRRS as the major swine health challenge in swine indicates 

that education about swine diseases and control should receive more emphasis in youth 

educational programs. This need is reinforced by the fact that overall participants ranked porcine 

epidemic diarrhea (an exotic disease never reported in the USA) to be more important than 

several prominent endemic swine pathogens (porcine parvovirus, erysipelas, Streptococcus suis). 

 

4-H youth programs have a proud history of youth education and development related to 

agriculture. The survey indicated that while respondents indicated familiarity with common 

biosecurity measures, a large proportion were unfamiliar with diseases common to swine. 

Although a seemingly negligible population of pigs overall, common practices of 4-H participants 

including sourcing pigs from distant sources and showing pigs at multiple shows can magnify 

their importance as potential reservoirs. It is important that many more participants were 

motivated by the desire “to have fun” and “to learn about pigs and livestock husbandry”, than by 

the prospect of winning. If true, this implies likely receptivity to swine industry initiatives such as 

provision of 4-H pigs by local producers, which has been encouraged by veterinarians in 

Minnesota. As the commercial swine industry increasingly looks towards regional strategies to 
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reduce the impact of PRRS190, the industry should seek to engage with educational programs. 

Specific education on biosecurity risks and disease control is a necessary component of this 

engagement. 
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Chapter-4: Network analysis of pig movements in Minnesota and their 

potential influence on interherd transmission of PRRS virus 

 

Introduction: 

 

The potential for disease dissemination via translocation of infectious hosts is self evident22, 208, 

and restricting human travel or animal transport is a time honored principle of infectious disease 

control. Government restrictions on cattle movement were an integral component of efforts to 

prevent the spread of rinderpest in European countries in the 18th century21. More recently, 

movements of livestock were a major factor in geographic dissemination of the 2001 foot and 

mouth disease (FMD) epidemic in the UK27, 28, 209. The introduction of infected animals into herds 

negates any natural barriers (e.g. distance from other farms) or deliberate biosecurity measures 

(e.g. fences, gates, air filters) to reduce the risk of agent spread among farms. The implicit risk of 

disease transmission associated with commerce underpins the international framework for 

regulating trade in animals and animal products embodied in the World Animal Health 

Organization210.  

 

The consequences of introducing infected animals into a region are amplified if an agent is 

capable of being transmitted between farms despite strict herd biosecurity practices. PRRS is the 

most economically important disease in the US swine industry and local area spread of the virus 

among farms is arguably its most problematic characteristic.  Research by Dee et al. has 

demonstrated the spread of PRRS viruses by fomites48, 51, 52, 211, insects40, 41, 187, 212, 213, and 

transport vehicles50, as well the potential for long distance aerosol transmission214-219. Given the 

apparent facility of PRRS virus to spread locally among farms, the introduction of PRRS-infected 

pigs onto a farm constitutes a potential risk to all herds in its neighborhood.  PRRS is endemic in 

the USA and is not a regulated disease. Commercial movement of pigs occurs over long distances 

and largely without consideration of PRRS status, and therefore likely constitutes a major 

mechanism for geographical dissemination of PRRS viruses. The successful implementation and 

execution of regional PRRS control programs must incorporate control of both local spread and 

movement related disease risks. Currently there is little documentation or description of point-to-

point pig transportation in the US and the implicit disease risks. 
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Social network analysis has previously been used to study relationships between farm premises. 

Social network analysis has its origins in graph theory119, using data arranged in matrices to 

provide structural insight into node-node relationships. Webb considered geographic distance and 

exhibit participation as relationship networks connecting sheep farmers in the United Kingdom133, 

and identified potential mechanisms for inter-farm disease transmission. In Denmark, where 

swine movements are captured in a central spatial database, movement patterns were shown to be 

heterogeneous, and analysis indicated that actual farm-farm movement information is necessary 

for creating valid disease transmission models140. The 2001 UK FMD epidemic allowed for 

retrospective analysis of network movement, which revealed the likely influence of network 

characteristics on FMD virus transmission risk132. 

 

 

The movement of livestock into and amongst Midwestern states has been described using data 

from health certificates required to move animals between states in the USA220. However, farm to 

farm movements at a local scale have not been previously assessed, nor have network analysis 

techniques been applied to actual animal movement data in the USA. 

 

The goal of this project was to analyze interstate and intrastate pig movements between farms to 

assess the potential disease risks for geographic dissemination of PRRS virus. 

 

Materials and Methods: 

 

The specific objectives of this study were to: 

� Use social network analysis (SNA) to describe and analyze pig movement patterns in two 

Minnesota counties. 

� Use SNA to describe and analyze Interstate Pig Movement in the US  

� Describe Interstate Movement patterns to and from Minnesota at a local level to define 

regional patterns of potential risk for pathogen introduction 
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Pig movement in two Minnesota Counties 

 

For several years, University of Minnesota has led regional PRRS management programs in two 

Minnesota counties (Rice County in south-central Minnesota; and Stevens County in west-central 

Minnesota). One-hundred and twenty-four active farms (47 in Rice County and 77 in Stevens 

County) and three local markets (one in Rice County and three in Stevens County) were used in 

this study. The PRRS status of many of these farms had been documented by serum testing 

(either ELISA 2XR or virus PCR). Farms receiving pigs from a source of known status were 

ascribed the PRRS status of their source. 

 

A standard survey instrument was administered to collect information about pig movement 

patterns for these enterprises. Farmer owners, managers, or their veterinarians were surveyed to 

collect relevant information for the survey. The survey (Figure-22) gathered the following 

information about pig movements: the geographic location of origin and destination farms; 

frequency of shipments between respective locations (number of deliveries per time period); size 

of shipment (number of pigs per load); and age group of pigs being transported (weaned pigs; 

feeder pigs; slaughter hogs; replacement stock; cull animals).  

 

A relational database (Microsoft Access) was created to warehouse these data, allowing for one-

to-many data relationships to capture the complexity of multiple relationships among farms. The 

database was incorporated into a geographic database (ESRI ArcGIS Personal Geographic 

Database) already in use for managing diagnostic and location information of Rice County and 

Stevens County (Figure-23). Certain farm characteristics were summarized and described from 

this database, including type of production, involvement in multi-site production, and PRRS 

status. Multisite production was defined as a commercial entity in which incorporated regular 

movement of pigs to non-market locations at distant sites for completion of their growth.  The 

PRRS status of site was defined as negative, positive, or unknown.  As mentioned before, this 

status was derived either by diagnostic testing or by assuming the status of source population with 

all-in-all-out pig movement.  No central database of diagnostic test results was kept. The tested or 

assumed status of sites was communicated by the herd veterinarian involved with the site or 

animal flow. Changes of PRRS status were not recorded in this dataset. 

 



 

 68 

Spatial (geographic) visualization of pig movement flow was generated using Flowdata Model 

Tools221, an ArcGIS extension developed by Allan Glennon. This mapping application presents 

point-to-point relationships as weighted arrows and allows for specific characteristic filtering (i.e. 

only market shipments). Standard cartographic techniques were also applied to point specific 

network characteristics to reflect varying levels of connectivity and potential risk. Non-

geographic network structure was also depicted using Netdraw network visualization software.222 

 

Social network analysis of the relationship data was performed using UCINET social network 

analysis software.123 Raw data were imported in Edgelist1 Data Language file format223 derived 

from a relational database query. Within UCINET, network centrality statistics were generated. In 

particular, DegreeCentrality, ReachCentrality, and FlowBetweenness were derived for all 

network components. Descriptive and inferential statistics were calculated using these values, 

alone and in combination with other related farm specific data, to understand potential influences 

within the relationship network. A value for geographic proximity to other farms was calculated 

by summing the inverse of the squared distance to each neighbor within the county [Σ (1 / 

kilometers squared)].  Farm sites outside the respective counties were not well documented and 

not used in the proximity calculation. Wilcoxon Rank Sum Test was used to compare the 

centrality statistics between the two counties, and a logistic regression model was built to assess 

possible associations of centrality measures and geographic proximity to other farms with herd 

PRRS status. To construct the model, five social network analysis centrality statistics (InDegree, 

OutDegree, InReach, OutReach, and Flowbetweenness), county, and the inverse distance squared 

value were considered. These were processed using the stepwise logistic regression technique 

with the forced inclusions of inverse distance squared (Statistix). 

 

Interstate pig movement across the United States 

 

Data of recorded interstate pig movements 2001available from the USDA Economic Research 

Service (www.ers.usda.gov/Data/InterstateLivestockMovements/) were incorporated into a 

relationship database (MS Access), compiled as a point-to-point transaction table, and converted 

to an Edgelist1 Data Language file. These network data were imported into UCINET for social 

network analysis. Network centrality characteristics (DegreeCentrality, ReachCentrality, and 

FlowBetweenness) were generated for comparison of states and Canada. Spatial and non-spatial 
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visualizations of the movement network were created using Flowdata Model Tools and Netdraw 

to illustrate the patterns of interstate pig movement.  

 

Interstate pig movement to and from points within Minnesota 

 

Paper copies of interstate pig shipments into and out Minnesota are held at the Minnesota Board 

of Animal Health office in St. Paul, MN. Information from 11,759 individual health paper 

submissions (year 2006) was captured in a relationship database (Microsoft Access). Movements 

represented included shipments to and from Minnesota and other states as well as Canada. Data 

captured included type of swine (breeding or feeding), shipment date, number of animals shipped, 

origin Zip code, and destination Zip code.  

 

The number of pig farms per county or census division was obtained from the USDA’s NASS 

website (www.nass.usda.gov) and the Canadian census of agriculture (www.statcan.ca). These 

data were imported into ArcGIS where Zip code centroids were identified by their encompassing 

county, giving a county designation to every pig movement record’s origin and destination. This 

was done because data from the 2002 US Agriculture Census and the 2001 Canadian Agriculture 

Census was available at the county and census division level. 

 

County centroids were then used to calculate approximate travel distances between sites and to 

represent animal flow between counties (using Flowdata Model Tools) differentiating between 

breeding and feeding swine moving into and out of Minnesota. Linear directional means were 

calculated using ArcGIS for each of the four types of pig movements- 1) “Breeding Swine 

Moving Into Minnesota”, 2) “Breeding Swine Moving Out Of Minnesota”, 3) “Feeder Swine 

Moving Into Minnesota”, and 4) “Feeder Swine Moving Out Of Minnesota”. Risk 

approximations were created by multiplying the count or size of pig shipments and calculated pig 

farm density of county of origin (pig farms per 100 square kilometers). Individual counties’ 

movement characteristics were summarized and differences analyzed using Kruskal-Wallis One-

Way Nonparametric AOV (Statistix). Calculated values were displayed using standard ArcGIS 

cartographic techniques to visualize the relative degree of pig movements and potential for 

transportation-associated epidemic spread. A geographic data file (“shapefile” or .shp) was 

exported to GeoDA for statistical analysis of spatial correlation of movement characteristics 
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between counties (using a queen’s contiguity weighting matrix201 to define the neighborhood of 

all areas sharing a common border). 

 

Results: 

 

Pig movement in two Minnesota Counties 

 

Farm locations were documented and specified at precise locations (Figure-24), being either the 

center of a single building or the centroid of the farm site. Of the 124 commercial farms 

considered, 112 (90%) were involved in multi-site production (Table-15). The proportion of 

multisite production differed significantly between counties (Fisher’s Exact test p-value = 0.03) 

with a greater proportion of multi-site production in Rice County. Overall, 30% of farms were 

categorized to be PRRS positive (Table-16), and the proportion of PRRS positive farms was 

significantly higher in Rice County than Stevens County (Fisher’s Exact test p-value = 0.01). 

 

Spatial visualization of animal movement patterns (Figure-25) revealed that farms in the 

movement networks of the two study counties spanned a large geographic area from Alberta to 

Quebec in Canada and as far south as Kentucky. Also notable is that Stevens County-associated 

movements frequently geographically overlapped the Rice County-associated movements, 

although no movements of pigs were recorded between the two counties. Movements of pigs (fat 

hogs or culls) to markets (either intermediary or terminal), illuminate the limited number of 

destination premises involved (Figure-26). In contrast, non-market movements (those involving 

growing pigs and replacement breeding stock) were much more dispersed (Figure-27), with most 

movement destinations being breeding stock customers or grow-out facilities in multi-site 

production systems. County-level views for Stevens and Rice Counties (Figure-28 and Figure-29) 

show that local-level pig movements frequently overlap each other. At the county level scale, the 

intermediary markets (livestock buying stations) within the counties are more obvious. 

 

The mean distances of pig movement events differed between counties. Whether considering ‘all 

pig movements’, ‘outward pig movements’, ‘outward pig movements (non-slaughter), or inward 

pig movements, the mean distance of movements involving Stevens county sites were 

consistently greater than for Rice County (Table-17). With respect to the frequency of pig 
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shipments, the two counties differed only with respect to outward pig movements with Rice 

County farms having greater frequency of annual outward pig movements than Stevens County 

(Table-18). Stevens county had statistically greater total annual shipment distance (shipments/yr * 

km/shipment) for inward pig movements, but no other significant differences were observed 

(Table-19). 

 

Table-20 and Table-21 display the measures of centrality calculated using UCINET (InDegree, 

OutDegree, InReach, OutReach, and FlowBetweenness) for farms in the two counties. The mean 

centrality measures did not differ significantly between counties, although there was a trend that 

Rice County farms had higher values for every measure except OutReach (Table-22). The five 

measures of centrality were positively correlated, but not significantly for OutDegree-InReach or 

InReach-OutReach (Table-23). Odds Ratios for PRRS positive status, using County, each of the 

five centrality measures, and InvDistSq was derived in seven single-term logistic regression 

models (Table-24). Of the terms analyzed, only County and InReach were found to be 

significantly related to the outcome of PRRS positive status. InvDistSq was presented an odds 

ratio of 1.18, but this was not statistically significant (P=0.06). When a step-wise logistic 

regression model was created (Table-25), only the County term resulted in a P<0.05, with Rice 

County being approximately 200% more likely to be PRRS positive than Stevens County.  Other 

terms were retained in the model (InvDistSq, OutDegree, and InReach) but were not found to be 

statistically significant (p > 0.05). 

 

Interstate pig movement across the United States 

 

When visualized with the Flow Data Model Tool, interstate movement of pigs in 2001 is dramatic 

(Figure-30). The highest value states were Iowa (InDegree Centrality), North Carolina 

(OutDegree Centrality), Illinois (InReach Centrality and OutReach Centrality), and Kansas 

(Flowbetweenness Centrality) – see Table-26. These rankings, reflected graphically (Figure-31 – 

Figure-35), show Minnesota, Iowa, Missouri, and Illinois to be consistently in the top quartile of 

all centrality measurements, with highest values for centrality measurements being located 

primarily in the Midwestern states.  
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Interstate pig movement to and from points in Minnesota 

 

Four sets of point-to-point lines were generated in ArcGIS using Flowdata Model Tools (Figure-

36), showing movements of breeding swine and feeder swine to and from Minnesota. A linear 

directional mean was generated each of the four movement types. The linear directional mean 

graphics show movement to be along a North-South axis for all four datasets. Minnesota received 

both breeding swine and feeder swine from Canada during the year, but did not reciprocate with 

any shipments to Canada.  Breeding swine came from several outlying points in Canada, Idaho, 

Georgia, Texas, and North Carolina at the furthest distances. 

 

Travel distances, number of shipments, sum of pigs moved, and pig farm density for county of 

origin are shown in Table-27. Kruskal-Wallis one-way non-parametric AOV reveals that 

statistically significant differences exist among the four types of pig movements. Feeding swine 

traveling from MN travel shorter distances (267.5 km mean) than for other types of pig 

movement.  Feeding swine movements were significantly larger than breeding swine movements, 

considering the number of shipments, average size of shipment, and sum of pigs moved during 

the period.  The pig farm density for county of origin was different among all four categories of 

movement, with breeding swine coming from lower density counties and feeder swine coming 

from higher density counties. 

 

Risk of transportation spread epidemics was estimated by calculating the product of movement 

data (number of shipments or sum of pigs moved) and pig farm density in the origination county.  

Maps displaying data for pigs shipped from Minnesota (Figure-37), show that the heaviest 

concentration of pigs originating from Minnesota were destined for Northern Iowa.  Maps of risk 

estimation differ slightly, but most notable are two counties in Southern Iowa that had received 

many smaller shipments over the course of the year.  In general, the patterns were the same for 

both risk maps.  Figure-38 shows pig movements and risk estimates for shipments into 

Minnesota.  All views confirm that most pigs entering the state are destined for the Southern tier 

of counties.  Risk maps were similar and support this observation. 

 

Pig movement data was analyzed in GeoDA to assess spatial clustering. The resultant maps 

demonstrate patterns of spatial clustering for sum of pigs shipped x origination county pig farm 

density, for pigs shipped out of Minnesota and into Minnesota.  Pigs shipped out of Minnesota to 
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other states demonstrated high-high clustering (Moran’s I = 0.50) throughout the Northern half of 

Iowa and the Southeastern corner of South Dakota (Figure-39).  For pig shipped into Minnesota, 

there was significant spatial clustering (Moran’s I = .23) in five source areas- 1) Southern 

Ontario, 2) Southern Manitoba, 3) Northeastern Nebraska/Southeastern South Dakota/Northern 

Iowa, 4) West-central Illinois, and 5) Samson/Duplin/Bladen Counties of North Carolina (Figure-

40).  Minnesota counties receiving pigs from other states demonstrated significant spatial 

clustering (Moran’s I = 0.68) in the Southwestern portion of the state (Figure-41).  Minnesota 

counties sending pigs to other states showed significant spatial clustering (Moran’s I = 0.35) of 

source counties in the Southcentral portion of the state (Figure-42). 

 

Discussion: 

 

The current US swine industry relies heavily upon the movement of swine between locations.  

These movements present a special risk – pigs transported into an area bypass the slower, local 

area spread, which would normally limit the speed of an epidemic disease event.  Multisite 

production is very prevalent.  The majority of sites in the two Minnesota counties evaluated (Rice 

and Stevens) were part of multisite production systems.  The predominance of this is similarly 

reflected in interstate pig movements. The average pig movement distances for Rice and Stevens 

counties were 68.6 kilometers and 132.0 kilometers, respectively.  Interstate pig movements to 

and from Minnesota had an average travel distance of 493 kilometers.  Map illustration of these 

movement patterns shows significant overlap of swine movements.  With a high degree of animal 

movement, there cease to be discretely contained geographic areas, as one area readily bleeds 

across to another distant area via transportation.  Social network analysis of a national survey of 

interstate pig movements showed states to differ with regards to their network characteristics.  In 

particular, North Carolina has a high InReach centrality statistic, illustrating their influence on 

other states via a large net pig export to the Midwest. 

 

Social network analysis has been used to describe infection risk for swine diseases in countries 

other than the US.  In these efforts, very large network datasets were available for analysis (using 

national movement-level datasets), and the authors were able to demonstrate that animal 

movement patterns were highly heterogeneous, making traditional modeling very less valid.   In 

some cases, the calculated network analysis statistics have been demonstrated as valuable in 
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identifying sites at a higher risk for infection132.  Modeling exercises which specifically restricted 

those sites identified by higher centrality values, showed significant reduction in size of a disease 

epidemic136, 137.  The current study was limited by the size and completeness of its network.  Of 

the sites considered, only half were within the county (93 or 158 sites in Stevens County and 63 

or 129 sites in Rice County).  PRRS status for sites outside the county was not known.  Therefore 

half of the potential network components were not included in the logistic regression analysis.  

Aside from this, the complexity of disease transmission over time and the persistence of PRRS on 

a farm are not well addressed by such a cross-sectional view.  For example, PRRS may have been 

introduced years before by to any number of routes, persisting until today, regardless of the size 

or nature of the farm network described here.  

 

Compared with other developed nations, the US lacks detailed livestock premise and movement.  

The data analyzed here (pig movements in two Minnesota counties, a detailed account of one 

year’s interstate pig movements into and out of Minnesota, and a summary of annual interstate 

pig movements) offer insight into the degree of pig movement occurring regularly throughout the 

year.  Social network analysis offers the possibility of identifying high risk entities and focusing 

resources for diagnostic monitoring, preventive action, and intervention during an epidemic. 

These observations further illustrate the need for a comprehensive national system to identify 

farm location and track animal movements.  
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Figures 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure-1 (Reprinted from Southeastern Cooperative Wildlife Disease Study).  Pages 13 and 33. 

Visualization of Avian Influenza Cases Using Google-Earth 

Figure-2 (Reprinted from Google Earth). Page 34. 
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Figure-3 (Reprinted from MN Cooperative Disease Mapping Website. Page 34 

Figure-4. Page 41. 
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Swine farm density of three datasets displayed as quartiles of raw rates 

(number/area) and spatial rate smoothed rates (number/area) 
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Figure-6. Page 42. 

Clustering of differences in swine farm counts between  
counties standardized by area (bivariate LISA with EB rate) 

NASS-MPCA NASS-MBAH MPCA-MBAH 

Figure-5. Page 41.  

NASS MPCA MBAH 

Cluster maps (univariate LISA with EB rate modification) of  

swine farm density (number/area) for three datasets 

(red and blue areas indicate patterns similar to those seen in the descriptive maps) 
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Figure-7. Pages 42, 44, and 45. 

Figure-8. Pages 42, 44, and 45. 
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Figure-9. Page 43. 

Histograms of point-level error  

(distance from presumed location to verified true location) 
 for two datasets in Stevens County and Rice County 
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Figure-10. Page 43. 

Q1 
Q2 
Q3 

Q4 

Raw Rate Rate Smoothed 

6 year mean 4-H participation displayed as quartiles of raw rates  

(number/area) and spatial rate smoothed rates (number/area) 

Univariate LISA w/ EB Rate

for 4H Participants

Figure-11. Page 43. 

Spatial clustering of 4-H participation rate 

Bivariate LISA 
(4-H with NASS Farms)

Figure-12. Page 43. 

Clustering of 4-H participation with commercial 

production (NASS swine farms) 
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30 meters 

Figure-13. Page 49. 

Orthophotograph with overlay of 

temperature grid given as an 

example of different data scales 

Pig Farm Locations Non-Pig Locations Random Locations 

Figure-14. Page 50. 
Geographic distributions of three different point datasets 

Frequency Distribution of Surface Temperatures in February
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Figure-15. Page 50. 
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Figure-17. Page 51. 

ROC Curve for Feb Temp
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Frequency Distribution of Surface Temperatures in May

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

53.33 55.13 56.93 58.73 60.53 62.33 64.13 65.93 67.73 69.53 71.33 73.13 74.93

Temperature in Farenheit

%
 o
f 
S
it
e
s

Farms

NonHog

Random

Month May

Count of Temp

Temp

Set

Figure-16. Pages 50 and 51. 
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Figure-18. Page 51. 

ROC Curve for May Temp
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Spatial correlation (state level) between 4-H swine program participation density and 
commercial swine production (NASS 2002). Quartile map of 4H swine program participation 
area density (upper left) Quartile map of commercial swine production area density (upper 
right). Light to dark shading indicates low to high density. Bivariate LISA map showing 
spatial correlation of 4H swine program participation area density with commercial swine 
production area density. Dark Red = “High-High” spatial autocorrelation; Dark-blue “Low-
Low” autocorrelation; Light-red = “High commercial-Low 4-H” autocorrelation; Light-blue = 

“Low commercial-High 4-H” autocorrelation; White = no significant spatial autocorrelation. 

Figure-19. Page 59. 
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Figure-21. Page 61. 

Seroprevalence of PRRS virus in nine Minnesota counties with pigs sampled at slaughter 
following the respective county fairs (inset shows locations in Minnesota) 

4H Swine Program Area Density NASS 

MBAH 

MPCA 

NASS 

MBAH 

MPCA 

4H Clustering 

Figure-20. Page 59. 

Spatial correlation (county level) between 4-H swine program participation density and 
commercial swine farm area density based on NASS (A) MBAH (B), and MPCA 
databases(C). Quartile maps of Commercial Swine production area density from three 
databases (left). Quartile map of 4H swine program participation area density (center). 
Univariate LISA map of spatial autocorrelation of 4H swine program participation area 
density (center inset). Bivariate LISA maps of spatial correlation of 4H swine program 
participation area density with three databases of commercial swine production area density 
(right). Dark Red = “High-High” spatial autocorrelation; Dark-blue “Low-Low” 
autocorrelation; Light-red = “High commercial-Low 4-H” autocorrelation; Light-blue = “Low 

commercial-High 4-H” autocorrelation; White = no significant spatial autocorellation. 
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Survey administered to farmers, managers, and veterinarians associated 

with swine farms and markets within the Rice County and Stevens County 

study area. 

 

Figure-22. Page 67. 
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Screenshot of data entry form in Microsoft Access database used for 

collecting pig movement information. 

Figure-23. Page 67. 

Rice County Stevens County 

Map Rice and Stevens counties, showing 128 farm or market locations (red 

dots), with county boundaries and public roads. Only the eastern portion of 

Rice County was included in the study. 

Figure-24. Page 70. 
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Flow representation of movements into, out of, and within Stevens County 

and Eastern Rice County, displayed at different scales- Central North 

America (top) and Southern Minnesota (bottom). Red dots represent farm 

locations. Black arrow lines represent pig movements. 

Figure-25. Page 70. 
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Flow of pigs moving to market destinations, either commercial slaughter or 

cull animals.  Markets are either intermediary or terminal. 

Figure-26. Page 70. 

Flow of pigs moving to non-market destinations, either as weaned pigs, 

feeder pigs, or replacement breeding stock. 

Figure-27. Page 70. 
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County-level view of non-market pig flow (left) and market-directed pig flow 

(right) in Stevens County 

Figure-28. Page 70. 

County-level view of non-market pig flow (left) and market-directed pig flow 

(right) in Rice County 

Figure-29. Page 70. 
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Interstate movement of pigs between all states and Canada.  Canada is 

represented as a single point.  Black flow lines are weighted to represent 

number of pigs moved. 

Figure-30. Page 71. 
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Quartile map of InDegree Centrality for states. 

 Figure-31. Page 71. 
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Quartile map of OutDegree Centrality for states. 

 Figure-32. Page 71. 
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Quartile map of InReach Centrality for states. 

 Figure-33. Page 71. 
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Quartile map of OutReach Centrality for states. 

 Figure-34. Page 71. 
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Quartile map of FlowBetweenness Centrality for states. 

 Figure-35. Page 71. 



 

 97 

 
 

Figure-36. Page 72. 

Four views showing movement patterns of Breeding Swine and Feeder Swine, 
to and from the state of Minnesota. Data are taken from Interstate Health 
Papers written in 2006 and kept at Minnesota Board of Animal Health. 
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Map showing pig movement patterns for swine traveling from Minnesota to 
other states.  Top map displays counties receiving pigs from Minnesota with 
increasing number of shipments indicated with darker shading.  Two bottom 
maps show risk estimation for receiving counties, calculated as the product of 
pig movement data and density (pig farms per 100 square kilometers) in 
origination county. 

Figure-37. Page 72. 
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Map showing pig movement patterns for swine traveling into Minnesota from 
other states or administrative areas.  Top map displays counties receiving pigs, 
with increasing number of shipments indicated with darker shading.  Two 
bottom maps show risk estimation for receiving counties, calculated as the 
product of pig movement data and density (pig farms per 100 square 

kilometers) in origination county. 

Figure-38. Page 72. 
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LISA map showing spatial correlation for Movement Risk (sum of pigs 
shipped between counties x pig farm density of origination county) for pigs 
destined for Minnesota, shipped from other states or administrative areas. 

Figure-40. Page 73. 

Figure-39. Page 73. 

LISA map showing spatial correlation for Movement Risk (sum of pigs shipped between 

counties x pig farm density of origination county) for pigs originating in Minnesota, 

shipped out of state. 

 



 

 101 

 
 

Figure-41. Page 73. 

LISA map showing spatial correlation for Movement Risk (sum of pigs shipped between 

counties x pig farm density of origination county) for pigs destined for Minnesota, 

shipped from other states or administrative areas. 

 

Figure-42. Page 73. 

LISA map showing spatial correlation for Movement Risk (sum of pigs 
shipped between counties x pig farm density of origination county) for pigs 

originating in Minnesota, shipped out of state. 
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Tables

Table-1. Page 41. 

Minnesota Swine Farm Counts

State Total

County 

Average

County 

StdDev

NASS 5626 65 53

MBAH 10768 124 111

MPCA 8331 96 115

Table-2. Page 41. 

Data Pair R

MBAH-NASS 0.87

MPCA-NASS 0.92

MBAH-MPCA 0.86

*all correlations had p<0.0001

Spearman's Rank Correlation of County 

Swine Farm Counts From Different Datasets

Table-3. Page 42. 

Present Absent

41%

Stevens County data accuracy for two datasets of farm 

locations matched to a verified farm location
Probability 

Estimate 2
b

MB
AH

 

Fa
rm
s

Verified Farms Probability 

Estimate 1
a

84%
Present 68 96

Absent 13 0
41%

74%74%

MB
AH

 

Fa
rm
s

MP
CA

 

Fa
rm
s

84%

Present 60 21

Absent 21 0

a

b
probability that a farm listed in either the MBAH or the MPCA dataset 

was actually a current swine operation

probability that a dataset includes an actual, existent farm site 

74%74%
MP

CA
 

Fa
rm
s

Table-4. Page 42. 

Present Absent

Rice County data accuracy for two datasets of farm locations 

matched to a verified farm location
Probability 

Estimate 2
b

85% 69%

Verified Farms

MB
AH

 

Fa
rm
s

Probability 

Estimate 1
a

Present 45 20

Absent 8 0
85% 69%

36%75%

MB
AH

 

Fa
rm
s

MP
CA

 

Fa
rm
s Present 40 72

Absent 13 0

a

b

probability that a dataset includes an actual, existent farm site 

probability that a farm listed in either the MBAH or the MPCA dataset 

was actually a current swine operation

36%75%
MP

CA
 

Fa
rm
s
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Nearest Neighbor Analysis

County Dataset

MBAH -3.65 Clustered

MPCA -0.17 Random

MBAH -5.86 Clustered

MPCA 1.00 Random
Rice

Stevens

Cluster Z-score

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
   

Table-5. Page 43. 

Table-6. Page 43. 

 

Year-Year R

2000-2001 0.83

2001-2002 0.93

2002-2003 0.97

2003-2004 0.97

2004-2005 0.97

*All correlations significant (P<0.0001)

Year-To-Year Spearman Correlation 

for 4-H Swine Participation by County

Table-7. Page 43. 

R

NASS Farms 0.663

MBAH Farms 0.595

MPCA Farms 0.673

*all P-values <0.0001

Spearman Rank Correlation of 4-H 

Participants vs. Commercial Production



 

 104 

 

 
 
 
 
 

 
 

   

Winter Summer

Hog Farms 8.8
a

66.8
ab

Non-Hog Farms 7.7
b

66.6
a

Random Points 5.2
c

67.8
b

One-Way ANOVA

Tukey HSD All-Pairwise Comparisons

Table-9. Page 51. 
Means and statistical differences 

in ºF for location type and season 

n Winter Summer

Farrowing 12 9.2
a

66.4
a

Nursery 6 10.4
a

67.4
a

Finishing 41 8.5
a

66.9
a

ANOVA-p 0.261 0.755

One-Way ANOVA

Table-10. Page 51. 
Means and statistical differences in ºF 

for hog farm type and season 

Table-11. Page 51. 
February Cut-Off of 10.13ºF

Variables Coefficient Std Error Coef/SE P

Constant -0.52609 0.24732 -2.13 0.0334

Cutoff10 1.31455 0.39752 3.31 0.0009

OR

Lower 95CI 1.71

Odds Ratio 3.72

Upper 95CI 8.11

Table-8. Page 51. 

ANOVA analysis of location type and season 

ANOVA table for Temp

Source DF SS MS F P

Month 1 432653 432653 48422.5 0.000

Location Type 2 202 101 11.33 0.000

Month*LocType 2 743 371 41.55 0.000

Error 828 7398 9

Total 833

Table-12. Page 51. 
May Cut-Off of 67.73ºF

Variables Coefficient Std Error Coef/SE P

Constant -0.15415 0.24881 -0.62 0.536

Cutoff68 0.34339 0.37156 0.92 0.3554

OR

Lower 95CI 0.68

Odds Ratio 1.41

Upper 95CI 2.92
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Biosecurity measure Important Unimportant Unfamiliar 

Transport sanitation 95 2 3 

Pig Source Health 94 2 4 

Segregation of pigs 85 11 4 

Pest control 85 13 3 

Washing hands/equipment 84 12 4 

Quarantine and testing 82 9 8 

Farm specific clothing 69 27 4 

Restricting visitors 66 29 5 

Boot baths 61 24 15 

Shower in/out 58 35 7 

Bird proofing 54 31 15 

Visitor log 39 53 8 

Wearing mask/gloves 38 57 6 

Table-13. Page 60. 

Perceived importance of various biosecurity measures for swine health (% of 
responses) 

Table-14. Page 60. 

 % Important % Unfamiliar Ratio
a 

Influenza 71 25 2.84 

E. coli scours 65 28 2.32 

Salmonella 63 28 2.25 

Mycoplasma 62 37 1.68 

PRRS 58 41 1.41 

Pseudorabies 55 41 1.34 

Mange 43 48 0.90 

Epidemic diarrhea
b 

43 51 0.84 

Erysipelas 44 54 0.81 

Parvovirus 39 58 0.67 

Leptospirosis 31 67 0.46 

Ileitis 31 67 0.46 

Streptococcus suis 30 67 0.45 

Teschen/Talfan
b 

28 68 0.41 

a
 Ratio of proportion ranking a disease important and proportion 

unfamiliar 
b
 exotic diseases thought likely to be unfamiliar to participants 

Proportion of 4-H respondents indicating specific diseases to be important and 

proportion unfamiliar with the disease (n = 133) 
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Farm Type
Single-Site 
Production

Multi-Site 
Production

Single-Site 
Production

Multi-Site 
Production

BoarStud 0 (0%) 0 (0%) 1 (1%) 0 (0%

Farrowing 1 (2%) 7 (15%) 10 (13%) 10 (13%)

Nursery 0 (0% 8 (17%) 0 (0% 6 (8%)
Finishing 0 (0% 31 (66%) 0 (0% 50 (65%)

Total 1 (2%) 46 (98%) 11 (14%) 66 (86%)

Rice County Stevens County

Table-15. Page 70. 

Breakdown of 124 pig farm locations, by farm type and multisite 
production, in two Minnesota Counties (Rice and Stevens) 

PRRS 
Status 

Rice 
County 

Stevens 
County 

Negative 25 (53%) 56 (73%) 

Positive 21 (45%) 16 (21%) 

Unknown 1 (2%) 5 (6%) 

Total 47 (100%) 77 (100%) 

 

Table-16. Page 70. 

Breakdown of 124 pig farm locations, by PRRS infection status. 

 

Travel Distance (Km)         

County N Mean Median P-value 

All Pig Movements 
Rice 183 74 28 

0.00 
Stevens 277 137 36 

Outward Pig 
Movements 

Rice 83 96 66 
0.00 

Stevens 125 206 207 

Outward Pig 
Movements (Non-

Slaughter) 

Rice 39 73 41 
0.00 

Stevens 55 155 164 

Inward Pig 

Movements 

Rice 46 113 30 
0.00 

Stevens 31 337 58 

 Pig movement distances for Rice and Stevens County  
 

Table-17. Page 70. 
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Table-19. Page 71. 

Annual Distance (Shpmt/Yr * Km/Shpmt)     

  County N Mean Median P-value 

All Pig Movements 
Rice 183 1881 183 

0.07 
Stevens 277 2050 351 

Outward Pig Movements 
Rice 83 3075 1043 

0.26 
Stevens 125 3628 1230 

Outward Pig Movements 
(Non-Slaughter) 

Rice 39 2872 963 
0.82 

Stevens 55 1764 1083 

Inward Pig Movements 
Rice 46 1850 255 

0.00 
Stevens 31 2939 824 

 
Pig movement annual shipment distances for Rice and Stevens 

County 

Table-18. Page 71. 

Shipments Per Year         

  County N Mean Median P-value 

All Pig Movements 
Rice 183 21 10 

0.07 
Stevens 277 15 7 

Outward Pig 
Movements 

Rice 83 29 13 
0.00 

Stevens 125 15 7 

Outward Pig 
Movements (Non-

Slaughter) 

Rice 39 32 13 
0.00 

Stevens 55 10 7 

Inward Pig 
Movements 

Rice 46 15 6 
0.07 

Stevens 31 19 13 

 Pig movement frequencies for Rice and Stevens County 
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Table-20. Page 71. 

Centrality Measures for farms in Stevens County

Farm

PRRS 

Status

Production 

Type

OutDegree 

Centrality

InDegree 

Centrality

OutReach 

Centrality

InReach 

Centrality

FlowBetwe

enness

1 Neg BoarStud 26 26 4 5 0

2 Neg Finishing 19 26 5 4 3

3 Unknown Farrowing 13 0 3 1 0

4 Neg Finishing 13 10 4 2 0

5 Neg Finishing 29 12 5 3 0

6 Neg Finishing 11 6 3 3 0

7 Pos Finishing 8 6 6 3 0
8 Neg Finishing 22 12 7 3 0

9 Pos Finishing 2 21 3 3 0

10 Neg Finishing 0 13 1 2 0

11 Neg Finishing 15 6 5 3 1

12 Neg Finishing 22 17 5 3 2

13 Pos Finishing 2 3 3 3 0

14 Neg Nursery 24 23 3 4 2

15 Neg Finishing 12 6 5 5 0

16 Neg Finishing 13 14 9 3 1

17 Neg Finishing 40 26 4 2 0

18 Neg Finishing 17 6 5 3 0

19 Neg Finishing 5 6 5 3 0

20 Neg Finishing 5 3 5 3 0

21 Neg Finishing 17 6 5 3 0

22 Neg Finishing 22 4 5 2 1

23 Neg Finishing 52 52 2 4 0

24 Neg Finishing 13 3 5 3 0

25 Neg Finishing 9 3 5 3 0

26 Neg Finishing 17 6 5 3 0
27 Neg Finishing 17 6 5 3 0

28 Neg Farrowing 29 15 9 4 1

29 Neg Finishing 81 13 11 3 6

30 Pos Finishing 30 12 6 3 0

31 Pos Finishing 4 6 6 3 0

32 Pos Finishing 30 12 6 3 0

33 Neg Finishing 77 35 6 3 0

34 Neg Nursery 53 104 7 2 0

35 Pos Finishing 46 17 6 3 0

36 Pos Finishing 8 3 6 3 0

37 Neg Finishing 11 9 5 4 0

38 Neg Finishing 35 13 6 3 1

39 Neg Finishing 17 6 5 3 0

40 Neg Finishing 39 12 3 2 0

41 Neg Nursery 104 35 4 4 2

42 Neg Nursery 55 208 13 4 14

43 Neg Finishing 107 52 15 3 0

44 Neg Nursery 60 52 13 3 0

45 Neg Farrowing 26 0 3 1 0

46 Pos Farrowing 52 0 3 1 0

47 Neg Farrowing 58 2 6 3 0

48 Neg Finishing 6 17 2 2 0

49 Unknown Farrowing 13 1 2 2 0

50 Pos Farrowing 188 1 13 2 0

51 Neg Farrowing 26 0 2 1 0

52 Neg Farrowing 147 26 6 3 1

53 Neg Finishing 12 6 5 5 0

54 Neg Finishing 30 23 9 4 1

55 Neg Farrowing 158 14 13 4 12

56 Unknown Farrowing 29 0 6 1 0

57 Pos Farrowing 26 6 3 2 0

58 Neg Farrowing 74 13 14 2 0

59 Pos Finishing 16 6 6 3 0
60 Neg Farrowing 156 2 11 2 1

61 Neg Farrowing 175 2 13 2 2

62 Neg Farrowing 27 0 4 1 0

63 Neg Farrowing 26 0 4 1 0

64 Neg Farrowing 29 5 4 2 0

65 Neg Finishing 163 58 17 3 1

66 Unknown Nursery 0 6 1 3 0

67 Neg Finishing 52 55 2 5 0

68 Neg Finishing 5 3 5 3 0

69 Unknown Farrowing 13 0 3 1 0

70 Neg Finishing 17 6 5 3 0

71 Neg Finishing 37 11 5 4 0

Stevens County social network analysis statistics 



 

 109 

Table-21. Page 71. 

Centrality Measures for farms in Rice County

Farm

PRRS 

Status

Production 

Type

OutDegree 

Centrality

InDegree 

Centrality

OutReach 

Centrality

InReach 

Centrality

FlowBetwe

enness

1 Neg Farrowing 45 0 8 1 0

2 Pos Farrowing 36 12 6 6 5

3 Neg Farrowing 126 12 12 6 32
4 Pos Nursery 78 13 3 3 2

5 Neg Farrowing 467 208 8 5 6

6 Neg Farrowing 467 208 8 5 14

7 Neg Farrowing 467 208 8 5 6
8 Pos Farrowing 50 2 11 2 6

9 Pos Finishing 14 6 4 5 0

10 Neg Farrowing 33 0 3 1 0

11 Pos Finishing 11 5 4 5 0

12 Neg Finishing 61 6 4 2 0
13 Neg Finishing 68 9 2 2 0

14 Neg Finishing 46 15 3 3 0

15 Pos Finishing 27 11 11 7 23

16 Pos Finishing 9 4 4 5 0

17 Pos Finishing 19 9 4 5 0
18 Pos Finishing 19 10 4 5 0

19 Pos Finishing 10 10 4 5 0

20 Pos Finishing 6 3 4 5 0

21 Neg Finishing 7 3 2 3 0

22 Pos Finishing 20 6 2 3 0
23 Neg Finishing 40 12 3 3 0

24 Neg Finishing 30 10 4 2 0

25 Neg Finishing 16 2 3 2 0

26 Neg Finishing 43 18 4 4 1
27 Neg Finishing 80 26 3 2 0

28 Neg Finishing 16 5 8 2 0

29 Pos Finishing 12 5 3 3 0

30 Pos Finishing 40 13 4 2 0

31 Neg Finishing 18 6 11 4 0
32 Neg Finishing 32 12 6 3 2

33 Pos Nursery 48 91 14 4 18

34 Neg Nursery 52 13 9 2 0

35 Neg Nursery 1 0 3 1 0

36 Neg Nursery 26 13 2 2 0
37 Pos Nursery 30 12 8 2 6

38 Neg Nursery 50 52 6 2 0

39 Pos Finishing 19 9 4 5 0

40 Neg Finishing 58 20 3 3 0

41 Neg Finishing 13 4 3 3 0
42 Pos Finishing 12 3 4 2 0

43 Neg Finishing 58 20 3 3 0

44 Neg Finishing 27 16 4 3 0

45 Pos Nursery 80 59 10 2 2
46 Pos Finishing 19 9 4 5 0

Rice County Averages 63.2 25.9 5.1 3.2 2.6

Rice County social network analysis statistics 
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Table-22. Page 70. 

Mean Statistics for Centrality Measures

Centrality Measure Stevens Rice P-value

InDegree 17.5 25.9 0.59

OutDegree 40.8 63.2 0.19

InReach 2.7 3.2 0.23

OutReach 5.8 5.1 0.16

Flowbetweenness 0.7 2.6 0.30

Mean values for social network analysis statistics comparing 

two Minnesota counties (Rice and Stevens).  Statistical 

differences determined using Wilcoxon Rank Sum Test p-

value. Stevens (n=76) and Rice (n=46) 

Table-23. Page 71. 

Pearson Correlation Of Centrality Measures 

InDegree OutDegree InReach OutReach 

OutDegree 0.75*       

InReach 0.25* 0.17     

OutReach 0.35* 0.39* 0.11   

FlowBetweenness 0.36* 0.34* 0.43* 0.46* 

 Correlation between different social network analysis measures for two 
Minnesota counties (Rice and Stevens).  * p<0.05 

Table-24. Page 71. 

Logistic Regression Values for PRRS Positive Status 

 
Coefficient 

Std 
Error 

P-
value 

Odds Ratio 
[95%CI] 

County(Rice) 1.124 0.421 0.01 3.08 [1.35, 7.03] 

InDegree -0.009 0.008 0.25 0.99 [0.98, 1.01] 

OutDegree -0.009 0.006 0.13 0.99 [0.98, 1.00] 

InReach 0.395 0.177 0.03 1.48 [1.05, 2.10] 

OutReach -0.003 0.061 0.96 1.00 [0.89, 1.12] 

FlowBetweenness 0.021 0.042 0.62 1.02 [0.94, 1.11] 

InvDistSq 0.167 0.090 0.06 1.18 [0.99, 1.41] 

 
Logistic regression statistics from seven different, single-term models. 
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Table-25. Page 71. 

Stepwise Logistic Regression 

Variable Coefficient 

Std 

Error 

P-

Value 

Odds Ratio 

[95%CI] 

Constant -2.395 0.694 0.00   

County(Rice) 1.125 0.448 0.01 3.08 [1.28, 7.41] 

InvDistSq 0.121 0.090 0.18 1.13 [0.95, 1.35] 

OutDegree -0.009 0.005 0.10 0.99 [0.98, 1.00] 

InReach 0.362 0.193 0.06 1.44 [0.98, 2.09] 

 Logistic regression statistics. Model P-value 0.227 and Deviance = 122 (out 
of 140 for model without terms). 

Table-26. Page 71. 

Rank InDegree OutDegree InReach OutReach FlowBet 

1 Iowa 
North 
Carolina Illinois Illinois Kansas 

2 Minnesota Missouri Minnesota Missouri Missouri 

3 Illinois Canada California Wisconsin Illinois 

4 Missouri Oklahoma Iowa Kansas Colorado 

5 Indiana Nebraska 

North 

Carolina Minnesota Minnesota 

6 
South 
Dakota Illinois Missouri Iowa 

South 
Dakota 

7 Kansas Minnesota Georgia 
North 
Carolina Nebraska 

8 Nebraska Iowa Maryland Arkansas Iowa 

9 
North 
Carolina Colorado Indiana Georgia Oklahoma 

10 Ohio Arkansas 

South 

Dakota Ohio Canada 

 
Social Network Analysis values for US interstate pig movements. 
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Table-27. Page 72. 

N Mean Minimum Maximum Median StdDev

Breeding Swine From MN
a

651 526.2 35 2109 437 354.1

Feeder Swine From MN
b

486 267.5 33 2573 205 258.7

Breeding Swine To MN
a

535 551.4 34 1859 465 358.1

Feeder Swine To MN
a

976 551.0 33 1967 462 396.7

N Mean Minimum Maximum Median StdDev

Breeding Swine From MN
a

651 2.7 1 72 1 4.9

Feeder Swine From MN
b

486 5.5 1 80 2 9.0

Breeding Swine To MN
a

535 2.0 1 22 1 2.2

Feeder Swine To MN
b

976 5.5 1 89 2 9.0

N Mean Minimum Maximum Median StdDev

Breeding Swine From MN
a

651 249.9 1 12107 20 783.1

Feeder Swine From MN
b

486 3482.2 1 89807 1255 6795.3

Breeding Swine To MN
a

535 206.4 1 6500 9 582.6

Feeder Swine To MN
b

976 3827.7 1 61450 1520 6466.8

N Mean Minimum Maximum Median StdDev

Breeding Swine From MN
a

651 78.6 1 3120 12 187.9

Feeder Swine From MN
b

486 684.1 1 5300 500 640.5

Breeding Swine To MN
a

535 84.6 1 2400 5.5 229.8

Feeder Swine To MN
c

976 744.4 1 7000 624.31 569.6

N Mean Minimum Maximum Median StdDev

Breeding Swine From MN
a

651 5.0 0 11.331 4.6294 2.9

Feeder Swine From MN
b

486 6.7 0.2703 19.048 7.0371 2.8

Breeding Swine To MN
c

533 3.7 0.1045 26.501 2.9828 3.2

Feeder Swine To MN
d

971 5.4 0.001168 28.611 3.6009 5.7

Travel Distance (Km)

Count of Pig Shipments

Sum Total of Pigs Moved

Pig Farm Density (#/100sqkm) of Origin County

Average Shipment Size

Comparison of travel distances, count of shipments, sum of pigs moved, 

average size of shipment, and pig farm density of origination county.  

Statistical differences using Kruskal-Wallis One-Way Nonparametric 

AOV are denoted by different letters. 
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Appendix 

 

Terms Defined and Abbreviations: 

 

Diseases: 

AI Avian Influenza 

BSE Bovine Spongiform Encephalopathy (aka ‘Mad Cow’ Disease) 

CSF Classical Swine Fever (aka Hog Cholera) 

FLV Feline Leukemia Virus 

FMD Foot and Mouth Disease 

PCV2 Porcine Circovirus type-2 (etiologic agent of PMWS) 

PMWS Postweaning Multisystemic Wasting Syndrome 

PRRS Porcine Reproductive and Respiratory Syndrome 

PRV Pseudorabies Virus (aka Aujesky’s Disease) 

SIV Swine Influenza Virus 

TB Tuberculosis (usually bovine tuberculosis- Mycobacterium bovis) 

VSV Vesciculo Stomatitis Virus 

 

Other: 

FAO Food and Agriculture Organization 

GIS Geographic Information System(s) 

NAIS National Animal Identification System 

OIE Office International des Epizooties (World Organisation for Animal Health) 

SNA Social Network Analysis 

USDA United States Department of Agriculture 

 


