
Improving Communication in Networked Systems using

Mobile Robots

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Ahmet Onur Tekdas

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. Ibrahim Volkan Isler

June, 2011

c© Ahmet Onur Tekdas 2011

ALL RIGHTS RESERVED

Acknowledgements

I would like to express my sincere gratitude for all people who have helped and inspired

me throughout my Ph.D. study.

I am heartily thankful to my adviser, Prof. Volkan Isler, for giving me the oppor-

tunity to pursue my Ph.D. degree with him. His inspiration and endless support from

the first day enabled me to successfully finish this thesis.

I would like to thank my committee members Prof. Janardan, Prof. Roumeliotis and

Prof. Santosa for their invaluable feedbacks. My special thanks go to Prof. Janardan.

It has been a privilege working with him. I would also like to thank Georganne Tolaas

for solving administrative issues lightning-fast for me.

It would be impossible to finish this thesis without financial support. I am indebted

to National Science Foundation for supporting this work with the grants: 0907658,

0917676 and 0936710.

I have had the honor to meet many wonderful people in Robotics Sensor Networks

Lab. I would like to thank Pratap Tokekar for inspiring me with his robotics expertise.

I am thankful to Deepak Bhadauria and Patrick Plonski for their contributions in this

thesis. My special thanks go to “the Dude” - Nikhil Karnad who is like a brother to

me. Dude, I am sincerely thankful for your help and friendship.

My deepest gratitude goes to my parents for their endless love and continuous sup-

port. I would not be the person I am today without their help. TR: [Annecim, babacim,

beni ben yapan sizin sonsuz sevginiz ve desteginiz. Herseyi size borcluyum.] To my

brother, you are the most beloved person in my life since the minute you were born.

To my love and my soul-mate ... Everything makes sense with you and is meaningless

without you. TR: [Dadlum, askim, bitanem bir gunes gibi dogdun karanligima, es oldun

yalniz ruhuma, iyi ki yanimdasin.]

i

Dedication

To my beloved parents and brother ...

Bu tezi sevgili anne ve babama, ve biricik kardesime adiyorum.

ii

Abstract

Providing network communication in large, complex environments is an important

task with applications to maintaining connectivity with mobile users, environmental

monitoring, emergency response, search and rescue, etc. Traditional approaches ac-

complish this task by deploying a static wireless network over the entire environment.

However, this solution becomes cost ineffective when the area to be covered is large.

Recent advances in robotics technology and research have made it possible to build

low-cost, robust mobile robots that can autonomously navigate in complex environ-

ments. Thanks to these advancements, it is now feasible to use robots as mobile network

nodes in place of large static network deployments. However, in order to achieve good

performance with a small number of robots, it is crucial to design efficient algorithms

for planning the robots’ paths. In this dissertation, we study the use of mobile robots

in two specific networking applications.

In the first application, we use mobile robots to provide communication between

end-points that require a persistent connection in a large, complex environment. For

instance, imagine that a mobile user in a large environment requests connectivity to a

static base station. Since the service area of wireless routers is limited by their initial

deployment locations, a static wireless network deployment requires many routers to

fully cover the entire region. Alternatively, this drawback can be overcome by using a

small number of robots as intermediate mobile routers between the user and the base

station which adaptively maintain connectivity according to the user’s movement.

In the second application, we seek the use of mobile robots in delay-tolerant networks

where a small delay in data transfer is acceptable. One such application is environmen-

tal monitoring where scientists collect statistical data such as soil temperature. The

most crucial problem in this application is to gather the data from sensors which may

be sparsely deployed over a large environment. We can avoid the inefficient use of in-

termediate relay nodes for data transfer by using mobile robots to autonomously collect

the data from sensors. Since a small delay is tolerable, using a few robotic data carriers

becomes an appealing solution.

iii

Our contributions in this dissertation are two-fold: on the theoretical front, we

present path-planning algorithms with provable performance guarantees. First, we

study the problem of maintaining the connectivity of a mobile end-point to a static

end-point by using the minimum number of mobile routers. Second, we present solu-

tions for creating a communication bridge between two static end-points by minimizing

the number of robots and their movements. Third, we study the problem of finding

robot paths so that robots collect data from sensors as quickly as possible. Lastly, we

present strategies for robots which act as mobile sensors to efficiently monitor an envi-

ronment. On the systems front, we implement our algorithms using mobile robots and

demonstrate their practical feasibility through extensive experiments.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Overview of Applications . 3

1.1.1 End-to-End Network Connectivity 3

1.1.2 Delay-tolerant Networks . 6

1.2 Problem Statement and Contributions 8

1.2.1 Robotic Routers . 9

1.2.2 Communication Bridge . 10

1.2.3 Data Mules . 11

1.2.4 Multi-Robot Patrol . 13

1.3 Outline . 14

2 Robotic Routers 15

2.1 Related Work . 17

2.2 Definitions and Notation . 19

2.3 A General Solution . 20

v

2.3.1 Problem Formulation . 20

2.3.2 Known user trajectory . 23

2.3.3 Adversarial user trajectory . 24

2.4 A Geometric Solution . 29

2.4.1 Problem Formulation . 29

2.4.2 Environments with no obstacles 31

2.4.3 Environments containing a single obstacle 34

2.4.4 Polygonal environments with multiple obstacles 45

2.4.5 Beyond O(h)-Approximation . 48

2.5 Simulations and Experiments . 54

2.5.1 Simulations . 54

2.5.2 Experiments . 60

2.6 Concluding Remarks . 66

3 Communication Bridge 69

3.1 Related Work . 72

3.2 Building a Bridge with the Minimum Number of Hubs 73

3.2.1 MaxDist: Minimizing Maximum Distance 74

3.2.2 SumDist: Minimizing the Total Distance 78

3.3 Bounds on Number of Hubs . 83

3.4 Concluding Remarks . 85

4 Data Mules 86

4.1 Related Work . 91

4.2 Background . 94

4.2.1 Wireless Sensor Networks . 94

4.2.2 Sensor and Robot Communication 95

4.2.3 TSP and Variants . 95

4.3 A Proof-of-Concept Design . 97

4.3.1 Evaluation . 99

4.4 Efficient Strategies to Gather Data from WSNs 103

4.4.1 Link Quality Experiments . 104

4.4.2 Local Search Algorithm . 108

vi

4.4.3 System Design . 111

4.4.4 Experiments . 113

4.5 Opportunistic Path-planning under Disk Model 115

4.5.1 System Design . 118

4.5.2 Experiments . 122

4.6 Path-planning under Two-Ring Model 129

4.6.1 Problem Definition . 130

4.6.2 Structural Properties . 131

4.6.3 General Case . 135

4.6.4 Special Cases . 138

4.6.5 Simulations . 143

4.6.6 Experiments . 145

4.7 Concluding Remarks . 148

5 Multi-Robot Patrol 151

5.1 Related work . 153

5.2 Problem formulation . 154

5.3 WMRP on Tree-like Environments . 156

5.3.1 Algorithm . 157

5.3.2 Correctness . 162

5.4 WMRP on Path-like Environments . 164

5.5 Concluding Remarks . 166

6 Conclusion and Discussion 167

6.1 Summary of Our Results . 168

6.2 Future Research Directions . 173

6.3 Final Remarks . 176

References 178

Appendix A. Index to Multimedia Extensions 193

vii

List of Tables

4.1 The Left table shows the package loss rates for each experiments (B:Base,LS:Local

Search,BS: Beacon Schedule, LSBS: Local Search and Beacon Schedule

together) with respect to the distance that robot starts to download or

starts to the local search. For each download we calculate the number of

packet loss until robot hears 100 beacons. Right figure shows the total

number of beacons send from 3 motes during the experiment. 116

4.2 Download and travel times in seconds from the DGP experiment. The

first row of Tour-2 includes the time to travel from S6 to S0. 126

4.3 Download and travel times in seconds from the opportunistic DGP ex-

periment. The first row of Tour-2 includes the time to travel from S6 to

S0. 128

4.4 Table showing the download and travel times from the three strategies. 148

viii

List of Figures

1.1 Left: The environment is covered with a network of stationary wireless

routers where a single user communicates with an access point (gateway)

through router-to-router links. Red circles show the active nodes. The

next location of the mobile robot and the communication path are rep-

resented in faded colors. Right: A robotic router solution where the

user (blue robot) is connected to the base station (red square) through

intermediate robotic routers. When the user moves, the robotic routers

reconfigure themselves accordingly to maintain the connectivity. 4

1.2 Left: A commercial robotic router called LANdroid [1]. Right: A com-

mon wireless sensor called telosB mote. [2] 6

1.3 Top: A simple example of WSN deployment. Red circles shows the

sensing nodes which collect data from the environment. Black circles

show the relay nodes. The purple circle shows a special relay node which

is called a sink node. In the traditional approach, the data collected from

sensing nodes is transfered over relay nodes to a gateway which stores

the data. Bottom: In an alternate method, we can use mobile robots as

data mules to autonomously collect data from sensing nodes and carry

the data back to the gateway. 7

2.1 An example which demonstrates the potential gain of using robotic routers.

We need Θ(R2/σ2) static routers whereas Θ(R/σ) robots are sufficient

to keep the user connected. When the user moves from u to u′, robotic

routers move with the same angular velocity to keep the user connected. 16

ix

2.2 When there is an obstacle in the environment, previous simple strategy

does not work. Hence better strategies are required for more complex

environments. Left: If the user moves further left from u′′, since the

communication constraints are violated, user’s connectivity will be broken

. Right: In a better strategy, a second team of robots (illustrated as

square shapes) can maintain the connectivity when robot moves further

left from u′. 17

2.3 For a small enough time step, the shortest path SP (t) changes only along

the line segment farthest from b. 32

2.4 Left: Robots ri only translate along SP while robots rj rotate about s

and translate. Right: Similar triangles used to find the relation between

|u̇⊥(t)| and |ṙi⊥(t)|. 33

2.5 Illustration of the first case of our strategy. 35

2.6 Illustration of the second case of our strategy. 36

2.7 Bounding the length of the connecting arm using triangle inequality. . . 37

2.8 The shortest geodesic distance from b to pf and the length of wrapping

arm in a convex polygon. 38

2.9 Two types of vertices of P which can obscure with [b pt] and [b p′t] . . . 39

2.10 The partitioning for single convex obstacle case. 41

2.11 The strategies for convex polygon case. 42

2.12 We show that in the third case of the strategy ESP and the motion and

communication constraints are satisfied. 43

2.13 We can show that perim(O) ≤ perim(H) 44

2.14 An example of our strategy for dealing with a non-convex obstacle . . . 46

2.15 Power diagram edges are shown in blue (light color). Circular obstacles

are shaded. The connection from b to cell Ci is shown, along with the

construction of the point ui. 47

2.16 An example of a valid tessellation for a domain with three obstacles

o1, o2, o3 with enclosing circles s1, s2, s3 also shown. The obstacles are

not circles, but each one is entirely contained within a single circle. . . . 49

x

2.17 The left figure shows the solution given by our strategy. The configuration

of the connecting and wrapping arms are illustrated when the user is at

the top region. The right figure shows the partitioning of the optimal

strategy. When the user is at u the configuration of the arms dedicated

to two left regions and central region are illustrated. 51

2.18 When there is only one obstacle, the line connecting b to the center of

the obstacle optimally partitions the space, as shown in the left figure.

If there are two obstacles, any line crossing the arcs labeled by xy and

zt is an optimal partitioning line, as shown in the middle figure. If three

obstacles are almost collinear, we can find a line which crosses through

the communication arcs shown, as shown in the right figure. In our

construction, we prevent this case by choosing R accordingly. 52

2.19 When all the h obstacles are collinear with b, our strategy divides the

polygon into O(h) regions and uses O(hD) robots, as shown in the left

figure. On the other hand, the optimal solution (shown in the right figure)

uses only two arms of length O(D) to guarantee connectivity. This shows

that our analysis is tight. 53

2.20 The communication model on the floor where experiments take place.

Left: The blue circle (in the middle of the bottom corridor) is the sta-

tionary blue robot. Fading red circles show the signal strength as the

red robot moves to the upper corridor (actual measurements). When the

red robot reaches the position shown on the map, the signal strength

becomes zero. Right: By moving a third robot (black circle) to the po-

sition shown on the map, we can reestablish the communication. The

colors indicate the signal strength from black to red and black to blue

nodes. 55

2.21 The minimum number of static routers to satisfy the connectivity and

coverage constraints is 4. The optimum deployment and its network

topology is shown. 56

xi

2.22 The known user trajectory and corresponding computed robot trajectory

are shown in top two figures. The remaining figures show snapshots of

the user’s connectivity graph (base station - circle with magenta color,

robotic router - diamond with red color and user - square with green

color). The third figure shows the initial configuration of nodes where

the user is connected to the base station through the robotic router.

The fourth figure shows the configuration at the time step when the

user is directly connected to the base station. The fifth figure shows the

configuration when the direct link between the user and base station is

broken and connectivity is supplied through the robotic router. The last

figure shows the final configuration of nodes. 57

2.23 Left figure shows an escape trajectory for the user. Until the last turn, the

user and the robotic router follow the same trajectory as in Figure 2.22.

The right figure shows the snapshot from the last step where the user is

disconnected. 58

2.24 Top three figures show the user trajectory and corresponding robot tra-

jectories. Subsequent figures are snapshots from the solution of the al-

gorithm including the connectivity graph of active nodes (base station -

circle with magenta color, two robotic routers - diamond with red and

cyan color, and user - square with green color). The first figure on the

third row shows the initial configurations of all nodes where the user is

connected to the base station through the red robotic router. The second

figure on the third row shows the configuration at the time step when

the user becomes directly connected to the base station. The first figure

on the fourth row shows the configuration when the user is connected to

base station through three links. The second figure on this row shows

the configuration when the three-link connection reduced to a two-link

connection. The first figure on the last row shows the time step when the

user is directly connected to the base station. The last figure shows the

final positions of the nodes at the last time step. 59

xii

2.25 An overhead view of the environment for the real world implementation

experiments with the initial starting positions of all of the nodes. The

triangles represent the actual location of the robots, with a blue circle at

the center. The circles are their target locations that the motion planning

algorithm produces at each step. The square represents the base station. 60

2.26 This figure shows various stages of the known user trajectory experiment

being conducted using the real world robotic system implementation.

The dark lines show the connectivity paths between the nodes. Initially,

the user is connected through a mobile router but the path changes as

the user moves closer to the base station. 62

2.27 Known user trajectory experiment-1: Left top figure shows the

implementation graphical user interface (GUI). The GUI shows the initial

configuration of the robotic router system. Right top figure shows the

Mac base station. Bottom left figure shows the mobile router in the

middle vertical hallway. Bottom right figure shows the user which is a

robot that controlled remotely by the base station. 63

2.28 Known user trajectory experiment-2: This figure shows the time

when the connection path of the user is changed as it moves down the

middle of the left hallway. The top row shows the configuration of mobile

router network on the GUI while the bottom row shows the corresponding

user location at that time step. The left column shows the final time step

when user is connected to base station through the mobile router. The

right column shows the time step right after the direct connection of user

to base station is satisfied. 64

xiii

2.29 This figure shows various stages of the adversarial user trajectory exper-

iment being conducted using the real world robotic system implemen-

tation. The dark lines show the connectivity paths between the nodes.

The first figure shows the initial configuration of the mobile router net-

work. The second screen shows a mobile router moving up to maintain

connectivity as the user moves to the right. After reaching the top, the

mobile router remains stationary until the user reaches the end of the

hallway. When this occurs, the router starts to move right in an attempt

to maintain connectivity between the user and base station. 65

2.30 Unknown user trajectory experiment-1: This figure shows the ini-

tial locations of the mobile router network. In this experiment, the mobile

router network keeps the connectivity of an adversarial user (laptop) who

requests wireless connectivity and sends acknowledgment of its move in

each time step. The top left figure shows the GUI, the top right figure

shows the message sent from user, the bottom left figure shows the robots

and base station, and the bottom right figure shows the user. 66

2.31 Unknown user trajectory experiment-2: This figure shows the sec-

ond step of the user. The user continues his movement in the right direc-

tion (the input “r” shown in top right figure). To keep him connected,

the mobile router moves one step forward. 67

3.1 Initial locations of the robots are xi, i = 1, . . . , 6; s and t cannot com-

municate. By moving x2 → x′2, x3 → x′3, x4 → x′4 and x5 → x′5 a

communication bridge with four hubs connecting s and t is established.

The circles around the nodes illustrate their communication radii. 70

3.2 Robot a (resp. robot b) can reach points inside the line segment [la, ra]

(resp. segment [lb, rb]). Although a is to the left of b, a must move to

the right of b, to ra, and b must move to the left of a, to lb, to establish a

communication bridge. The final locations of robots are shown by unfilled

circles. 71

3.3 Let xi be the projection of the initial location of robot pi. We relax the

final location of pi to li : [xi − d, xi + d] which is shown as the left-most

line segment. 75

xiv

3.4 Figure shows the case: x′j ≤ xi < x′i ≤ xj. Upper line segments show the

total cost for the initial solution and lower line segments show the costs

after swapping. When we swap the final locations of robots, we decrease

the total cost while satisfying the ordering property. 80

3.5 Let x′j be the last hub location at the reach and pi be the robot considered

at the current iteration. Top Figure: When b′ is too large both

end points of feasible region is out of the the region [x′j , R], hence b′

is redundant in this example. Next Three Figures: The three cases

considered in Equation 3.10 are illustrated. 82

3.6 Selection of points v1, v2, . . . , v2(m−1) on [s, t], with m = 4. 84

4.1 TelosB mote is an embedded sensing platform developed at UC Berkeley.

TelosB consists of a USB interface, a micro-controller unit with extended

memory, IEEE 802.15.4 radio with integrated antenna and optional build-

in sensors. It is operated by an open-source operating system called

TinyOS and powered by two AA batteries [2]. 87

4.2 Overall system architecture, including a number of sensing motes, mul-

tiple robots acting as data mules, and a gateway to which robots offload

collected data and receive further commands. Each robot communicates

with the sensing nodes and the gateway through a locally connected mote.

All collected data is eventually stored in a back-end database for further

processing and visualization. 88

4.3 Two robots charged with collecting data from the sensors and relaying

them to the base station b. The filled circles correspond to sensor lo-

cations. The circle around a sensor illustrates its communication range.

The figure shows optimum TSPN tours for the two robots that minimize

the maximum distance traveled by any robot. This solution is not ap-

propriate for data gathering because the robot assigned to the left group

would spend significantly more time downloading the data from the sen-

sors. 90

4.4 An Acroname Garcia robot visiting a sensing mote. Note the single board

computer on the robot under the clear lid and the mote connected to the

robot’s computer. 97

xv

4.5 Optimal TSP tours for one, two, and three data mules. The red square

represents the gateway and blue circles represent mote locations. 98

4.6 The map of our deployment (left) and a snapshot from the experiment

with two mules (right). 99

4.7 Total number of expected transmissions for a 3 × 4 grid as a function

of packet loss probability p. Each mote delivers a single packet to the

gateway. The different lines correspond to grids that require 0,1 or 2

relay points to connect to the network’s gateway. 101

4.8 Current consumed by the mote’s radio (TI Chipcon CC2420) as a function

of transmission power. 102

4.9 Left: Experimental setup to measure the link quality of data transfer

from a mobile robot to a base station, with the robot moving on a uniform

grid. 104

4.10 The robot visited each location, and took 50 measurements. From top

to bottom: mean and median values of the LQI measurement, mean and

median values of the RSSI measurements. 106

4.11 Time to download 50 messages from each grid point as function of lo-

cation (top), and as functions of LQI (bottom-left) and RSSI (bottom-

right). With controlled mobility, the robot can decrease the download

time significantly by moving slightly. 107

4.12 The mote is located at x = 26. The robot moves from x = 1 to x = 51.

Within a range of ±8 ft, the link quality is consistently “good”. It is

unpredictable (random) outside this range. 108

4.13 The θ-values correspond to robot orientations. Each curve corresponds

to a different location on a line. The mote is located at x = 0. The

behavior of RSSI or LQI as a function of rotation is not easily predictable.109

xvi

4.14 Bottom figures show a virtual grid used by the search algorithm. The

visited cells are labeled with the format (s, r): s is the order the cell was

visited and r is the maximum median value sampled from four orienta-

tions. The black rectangles show the location of the mote. Top Left:

The setup for an indoor experiment. The picture shows the best configu-

ration found by the search algorithm. Bottom Left: Steps in finding a

good location in the setup shown on top. Top Right: Search performed

in an outdoor setting. The picture shows the best configuration found by

the search algorithm. The shaded cell corresponds to the obstacle that

robot avoided. Bottom Right: Steps taken during outdoor search. . . 112

4.15 A proof-of-concept deployment. The stars are approximate locations of

the data nodes. The dashed lines show their communication range. The

squares are locations where the robot starts either the download or the

local search. 113

4.16 The robot interarrival times from our experiments were modeled as nor-

mal distributions. 114

4.17 Left: Cyclops robotic platform developed for data muling. Right: A

data mule system together with sensors. 118

4.18 System diagram. Robostix controls drive and servo motors, reads data

from IR sensors and compass. Eee PC communicates through robostix to

control the robot and reads data from GPS. Base mote downloads data

from sensor motes and sends the data to the laptop. 120

4.19 Field deployment in East River Flats: {S0, . . . , S6} are sensor locations.

{D0, . . . ,D6} are the respective download locations computed by our

DGP algorithm. Red (shaded) disks show the communication disks and

black tour shows the ideal TSPN tour. 123

4.20 Top: First tour by the robot (blue trace). Fi is the actual location from

where the robot downloads the data from Si for i = 0, . . . , 6. Bottom:

Two complete tours of the robot where first tour is marked in pale blue

and the second tour in red. These images are best viewed in color. . . . 125

xvii

4.21 Top: First tour from the opportunistic DGP algorithm (blue trace). Fi

is the actual location from where the robot downloads the data from Si

for i = 0, . . . , 6. Bottom: Two complete tours of the robot where first

tour is marked in pale blue and the second tour in red. These images are

best viewed in color. 127

4.22 A TRT instance. Each sensor has a two ring communication model. If

the robot enters the inner disk (shaded region), it downloads data faster

than downloading from the outer disk. For this instance the optimal

solution visits a mixture of inner and outer disks. 129

4.23 The two ring model. Download time is Tin in disk Din while it is Tout in

the region Dout −Din. 131

4.24 Three non-overlapping disks lying in a plane. The part of the optimal

TSPN tour t1, t2, t3 which visits disks D1,D2 and D3, respectively. With-

out increasing the total distance, we can transform t1 to t′1 and t3 to t′3 133

4.25 Left: Initial configurations of circles where |t′1 t2|, |t2 t′3| < 0.4786r.

Middle: After rotation without changing the total distance, D2 touches

both D1 and D3. Right: The configuration where the total distance is

minimum and equals to 0.4786r. 134

4.26 In all inner-disk visits, the algorithm chooses to sweep the 2rout size disk

centered at A in concentric circles which are rin apart. 139

4.27 Sensors are arranged on an n × n grid. For each sensor, draw vertical

tangents. Two for the outer disk and two for the inner disk. The number

of tangents = m ≤ 4n. The stabbing lines are chosen from this set of

tangents. 141

4.28 TOP: This figure shows the change in tour cost with the change in inner

disk radius rin. Interestingly the inner disk tour cost increased with in-

creasing rin. BOTTOM: This figure shows that the size of independent

set I decreases as rin increases. The independent set I is used to compute

the TSPN tour using algorithm in [3]. This attributes to the increase in

the inner disk tour cost in the TOP figure. 144

4.29 The increase in inner disk and center tour cost is linear with increase in

Tin as expected. 145

xviii

4.30 As number of sensors are increased tours costs also increase. This is

expected as the download time increases linearly with the number of

sensors. 146

4.31 Download speed vs distance for communication between two sensor motes.147

4.32 Left: An outdoor robot developed in our lab was used in the experiments

for validating the two-ring model.. Right: The setup of the experiment. 148

4.33 Left: A snapshot from the experiment. Right: Download and travelling

time of the following strategies: visit outer disk, visit inner disks and

visit disk centers. 149

5.1 An example that demonstrates how priority affects the optimal partition-

ing. Cells have different priorities represented by their color. Mid-gray

and dark-gray colored cells have weights 3 and 5 units, respectively.Left:

A solution which ignores the priorities would divide the region into three

equal parts. Right: Optimal solution, when the priority of the cells is

incorporated. 152

5.2 The left figure shows a polygon and its decomposition. Each letter repre-

sents a cell and each color represents a region. The right figure shows the

corresponding regions in the dual-graph (tree) as non-overlapping tours. 155

5.3 Every child of p not covered by the root tour π must be covered by a

separate tour as in Figure-Left. Otherwise there is at least two tours

overlapping at p as in Figure-Right. 157

5.4 Algorithm MinimumRobot starts from the deepest node in the tree (i.e.

v). Let p be its parent, Algorithm MaximumSet finds the tour subtree

for the root tour of p. For all children not covered by the root tour we

assign a new tour. We remove the children of p and repeat the process. 159

5.5 Figure-Left shows OPT (T (p)). Figure-Right shows OPT ′(T (p)) which

is constructed by cutting the root tour after vi. We use mi number of

robots to cover T (i) found by SOL(T (i)). 163

5.6 An example path-like environment which is observed in some surveillance

applications such as border surveillance. 165

xix

6.1 Left: Cyclops robotic platform developed for data muling. Right:

Miskin robotic raft developed for tracking carp tagged with radio trans-

mitters [4]. 168

6.2 Left: Starbug robotic platform developed for data muling under wa-

ter [5]. Right: Arctic Crawler robotic snowmobile developed for mon-

itoring arctic environments [6]. Bottom: RCATS/APV-3 is a UAV de-

veloped for collecting imagery data by flying over vineyards [7]. 169

6.3 Left: A convex cell partitioning using an additional empty convex cell.

Rigth: A geodesic convex partitioning. 174

xx

Chapter 1

Introduction

The robotics revolution started in the 1960s with the invention of the first robotic

arm [8]. Since then, robotics has become the engine of industrial development. Moti-

vated by its use in factories, early robotics research focused on fundamental problems

such as kinematics, manipulation, grasping, etc. In the new millennium, a new era in

robotics has started: mobile robotics. The advancements in mobile robotics were first

driven by the requirements of space missions and military applications. The Mars ex-

ploration rover Spirit [9] developed by NASA, the bomb disposal robot Packbot [10]

developed by iRobot and the Humanoid robot Asimo [11] developed by Honda are the

world-renowned mobile robots in this category.

Later advances in mobile robotics were triggered by the necessity for low-cost yet

robust mobile platforms. Especially, the growing demand for domestic robots forced

the producers to develop robust robotic platforms with small cost. As an example,

the iRobot Roomba vacuum cleaning robot (the first commercially successful domestic

robot) has sold 6 million units at the time this thesis was written [12]. While the ca-

pabilities of these robots become more complex everyday, their costs are getting lower.

Moreover, they are robust enough that the manufactures offer a standard one year war-

ranty. Hence, now it is possible to buy off-the-shelf, low-cost and robust mobile robots

that can accomplish complex tasks. Some of the standard platforms used extensively in

robotics research and education are iRobot Create (programmable version of Roomba),

MobileRobots Pioneer [13] and WillowGarage PR2 [14].

Autonomous navigation has been one of the most fundamental problems in robotics.

1

2

In pursuit of an accurate navigation system, a robot must be able to precisely estimate

its own state (position and orientation) with respect to a fixed coordinate frame. This

is achieved by various sensors such as encoders, camera, laser, etc. mounted on the

robot. However, sensory measurements are not perfect which results uncertainty in

robot’s state estimation. Hence, a robot must fuse sensor measurements to have a better

estimate of its own position. With the recent progress in state estimation research and

sensor technology, it has become possible to build robots that can navigate robustly

in both indoor and outdoor environments. In recent years, Simultaneous Localization

and Mapping (SLAM) [15] has become a standard for indoor navigation. Moreover, the

DARPA Grand Challenge 2007 showed that it is feasible to build driverless cars that

can navigate autonomously in urban areas [16]. Recently, both GM and Google have

started a driverless car project and it is anticipated to have the first car on road by

2018.

Since it is possible to build low-cost and robust robots with autonomous navigation

capabilities, robotics researchers have turned their attention to potential use of mobile

robots to achieve tasks that were infeasible or were not efficiently performed before. One

such potential use of mobile robots is to improve communication in networked systems.

In this thesis, we explore the use of mobile robots to improve the communication in

two types of network applications. In the first application, we explore the use of con-

trolled mobility to provide communication between end-points which requires persistent

connection. In the second application, we study the use of robots in delay-tolerant net-

works where a small delay in transferring data is tolerable. One application of such

systems is environmental monitoring where scientists deploy a network of sensors over

an environment to collect information about the environment without the need for real-

time data.

In the next section, we present an overview of these applications where a few robots

can provide appealing solutions to improve the communication in the network. In

Section 1.2, we present underlying path-planning problems in order to achieve these

improvements by using robots efficiently. For each problem, we present related work

and state our contributions briefly, leaving the details to individual chapters.

3

1.1 Overview of Applications

In this section, we present examples where mobile robots can improve the efficiency

in two types of networked systems. The first type is the end-to-end networks where

a persistent connection between two end-points must be established. We present two

applications according to the mobility of one of these end-points. The second type of

networked system is the delay-tolerant networks. We present examples where a few

mobile robots can reduce the number of sensors required or even remove the neces-

sity for sensors in delay-tolerant networks which are used frequently in environmental

monitoring applications.

1.1.1 End-to-End Network Connectivity

Consider a scenario where a single mobile user needs network connectivity. The mobile

user could be a person with a laptop who needs Internet connectivity or a firefighter truck

which needs continuous connectivity to a command center. The traditional approach

for providing network connectivity for a mobile user is to cover the environment that

the user resides in with a network of static wireless routers. Figure 1.1-Left shows an

example. However, static network deployments have three main drawbacks.

First, if the environment that the user resides in is large, this solution requires

many routers to fully cover the environment. This leads to a very costly solution.

Second, a Local Area Network (LAN) connects to a Wide Area Network (WAN) such

as Internet through access points (gateways). Hence, in the static network only the

routers on the path between the user and gateway are active at a time (see Figure 1.1-

Left). Since a large number of the routers are inactive in most of the time, this solution

leads to inefficient use of resources. Lastly, in hostile battlefields it would be useful to

extend the communication to support unmanned vehicles. However, if the underlying

communication medium does not exist, deploying a network infrastructure would be

impossible due to the danger of the mission.

The main reason of the inefficiency of the stationary solution is that the service

provided by a static router is limited to the immediate vicinity of its placement location.

Hence, adding mobility to the routers helps to overcome these drawbacks and provides

a more efficient solution for network communication.

4

Stationary Wireless Router

Gateway

Mobile User

Robotic Router

Figure 1.1: Left: The environment is covered with a network of stationary wireless

routers where a single user communicates with an access point (gateway) through router-

to-router links. Red circles show the active nodes. The next location of the mobile robot

and the communication path are represented in faded colors. Right: A robotic router

solution where the user (blue robot) is connected to the base station (red square) through

intermediate robotic routers. When the user moves, the robotic routers reconfigure

themselves accordingly to maintain the connectivity.

5

Robotic Routers

Robotic routers are mobile robots with communication and routing capabilities (a com-

mercial robotic router is shown in Figure 1.2-Left). We can use a small number of

robotic routers to create an adaptive network between the mobile user and the gateway.

When the user moves, robotic routers reconfigure themselves accordingly to maintain

the user’s connectivity. Hence, limited resources are used more efficiently by introduc-

ing mobility. Moreover, in battlefields where deploying a static network is infeasible,

robotic routers can autonomously deploy themselves in the environment without risking

lives 1 .

On-demand Communication Bridge

In the previous scenario, we use mobile robots to provide connectivity between a mobile

and a static node. We can also use mobile robots to create an on-demand communication

between two static end-points. For instance, consider the scenario where firefighters are

fighting a forest fire. A connected network between a command center and the disaster

area makes it possible to exchange the global information in command center (e.g. satel-

lite images) with the local information in the disaster area (e.g. images from disaster).

This helps the command center to guide the operation more effectively and helps fire-

fighters fight the fire more efficiently. However, in the presence of disasters, it might be

irrational to expect an underlying communication medium. This communication might

not exist or it might be no longer in working order. In these circumstances, we can use

robots to autonomously establish a communication bridge between the command center

and the area of interest. Moreover, robots can be reused for establishing connectivity

between any stationary entities. For example, if the number of robots is limited and

there are more multiple disaster areas, then mobile robots can be reused for providing

on-demand connectivity.

1 DARPA started the LANdroid project (see also Figure 1.2-Left) together with iRobot to build
mobile robots which provide network communication for war-fighters in the battlefield.

6

Figure 1.2: Left: A commercial robotic router called LANdroid [1]. Right: A common

wireless sensor called telosB mote. [2]

1.1.2 Delay-tolerant Networks

A Wireless Sensor Network (WSN) is a network of small and inexpensive sensor de-

vices with wireless communication capabilities (see Figure 1.2-Right). One of the most

common applications of WSN is environmental monitoring. In environmental moni-

toring, scientists deploy sensors over an environment of interest to collect statistical

information (e.g. temperature, humidity, etc.) about the environment. Since the main

interest is statistical information, real-time data is not necessary. Hence, we refer to

such sensor network deployments as delay-tolerant networks. Moreover, these sensors

have to be deployed over large areas and collect measurements for years to provide

reliable information about geographic and temporal changes.

The main challenge in this type of deployment is gathering the collected data from

the sensors. The traditional approach to achieve this task is to create a connected WSN

and transfer the data over the network (see Figure 1.3-Top) via node to node links [17].

However, this solution has two main drawbacks.

First of all, in most of the environmental monitoring tasks, the environment of

interest is very large and the sampling locations are far apart from each other. Hence, a

large number of sensors has to be deployed to maintain the connectivity of the network

which leads to a very costly solution. Moreover, deployment and maintenance of a large

network could be very labor-intensive which further increases the cost of this approach.

Secondly, since sensors are mostly battery operated, their limited energy is another

key challenge. The main energy consumer of a sensor is its radio, which consumes

twenty times more energy than its processing unit. As a consequence, sensors spend

7

Sensing

Node

Relay

Node

Sink

Node

Gateway

Data Mule

Figure 1.3: Top: A simple example of WSN deployment. Red circles shows the sensing

nodes which collect data from the environment. Black circles show the relay nodes. The

purple circle shows a special relay node which is called a sink node. In the traditional

approach, the data collected from sensing nodes is transfered over relay nodes to a

gateway which stores the data. Bottom: In an alternate method, we can use mobile

robots as data mules to autonomously collect data from sensing nodes and carry the

data back to the gateway.

most of their energy while forwarding the data from other sensors in addition to their

own collected data. Moreover, some nodes might act like a sink node that transfer the

data forwarded by multiple sensors (see Figure 1.3-Top). This causes the sink nodes

to exhaust their energy source and die quickly, which might lead to loss of network

connectivity.

Data Mules

An alternate to static deployment is to use robots as data mules [18] where robots

periodically visit sensor nodes, download the collected data from them and carry the

data to a center where we store the data (see Figure 1.3-Bottom). Since the aim is

to collect statistical information about the environment over long period of times, the

8

delay due to data muling is acceptable.

Data mules overcome the challenges discussed above and improve the efficiency of

WSNs. Thanks to recent advances in mobile robot technology, now it is feasible to build

low-cost and robust robots that can navigate autonomously and accomplish data-muling

tasks. Hence, using a small number of mobile robots provides a more cost-effective

solution than deploying a connected network. Moreover, since sensors directly offload

their data to the robots, sensors do not need to forward the data of the other sensors

anymore. Furthermore, since robots can get very close to the sensors, we can reduce

the transmission power of the sensors which further improves their energy efficiency.

Multi-robot Patrol

In the previous example, scientists monitor environments with a sensor network deployed

sparsely. However, in some environmental monitoring applications, it might be necessary

to fully monitor the environment. For instance, if the monitoring task is to detect a

potential fire in a forest, the entire forest must be monitored so that a potential fire can

detected independent of where it starts. As discussed before, it would be infeasible to

cover the entire forest with static sensors. On the other hand, we can use a few mobile

robots (e.g. UAVs) as mobile sensors to patrol the environment to detect a potential

fire. In this mobile solution, robots can monitor only a small portion of the environment

at a time. Hence, a potential fire might not be detected immediately. However, we can

choose the robot paths suitably to minimize the delay between the time a fire starts

and the time it is detected.

1.2 Problem Statement and Contributions

In the previous section, we discussed four fundamental applications in which mobile

robots can be used to improve communication in the networked systems. The most

crucial problem in these applications is path-planning for mobile robots so that each

specific task can be achieved efficiently. More specifically, we study the following four

problems: In the robotic router problem, our goal is to find minimum number of robots

and their strategies to maintain the connectivity of a mobile user to a base station. In the

second problem, the communication bridge problem, we aim to create a communication

9

bridge between two static end-points by minimizing the number of robots and their

movements. In the data mules problem, the goal is to find paths for robots so that the

sum of the time spent traveling and the time spent to download data from all sensors

is minimized. The multi-robot patrol problem asks to find the robot patrol paths where

a set of locations are visited as frequently as possible according to their priorities.

Next, we introduce these problems and our contributions.

1.2.1 Robotic Routers

In the robotic router problem, our goal is to find the minimum number of robotic routers

and their strategies to create an adaptive network so that the connectivity between a

stationary base station and a mobile user is maintained at all times. The robotic router

problem was first introduced in our work [19]. In a related work [20], Kutylowski et al.

present a strategy for using a chain of robots to create a communication chain between a

stationary camp and a mobile explorer. Similarly, in [21], the authors propose a chaining

formation approach to provide end-to-end communication. They provide solutions to

minimize signal-to-noise ratio of the communication links. However, in these works the

environments are assumed to be open spaces. In practice, we need to deal with more

complex environments than open spaces such as environments with obstacles. Hence, we

need topologies more general than communication chains to maintain the connectivity

of the user.

In other related work, Stump et al. propose two metrics for characterizing connec-

tivity and present a framework which chooses the best local decision to maintain the

connectivity of an independently moving target [22]. However, none of the previous

works provides performance guarantees on the number of robots used in their solu-

tion. In Chapter 2, we fill this gap by presenting algorithms with provable performance

guarantees. Next, we elaborate on these contributions.

Our Contributions

In Chapter 2, we present two solutions for the robotic routers problem. One crucial

parameter in a robotic router system is the communication model which tells us whether

two nodes are connected or not in their current configuration. Hence, our strategies rely

on the communication model assumption.

10

In Section 2.3, we present a general solution which works for any given communica-

tion model. The strategies presented in this solution framework depend on the motion

of the mobile user. In the first model, known-user trajectory, we assume that the trajec-

tory of the user is known. This is a valid assumption when the mobile user is an entity

under our control such as a tele-operated robot. However, in most cases this assumption

is not valid. Hence, in the unknown-trajectory model, we assume the user’s trajectory

is unknown and present a strategy which works for any possible user trajectory. We

achieve this by finding a strategy which maintains the connectivity of an adversarial user

who tries to break the connectivity as quickly as possible. Both strategies presented are

optimal. However, the running time of these strategies are exponential in the number

of robots. Hence, these solutions do not scale to large systems.

In the second solution (Section 2.4), we overcome the high time complexity by solv-

ing a geometric instance of the problem. In this version of the problem, we present

algorithms for a user who resides in a geometric environment (e.g. a polygon) and the

communication model is defined in terms of geodesic distance. We present an optimal

algorithm when the environment is a simply-connected polygon; a constant factor ap-

proximation when there is a single obstacle, and an O(h) approximation for geometric

environments with multiple obstacles, where h is the number of obstacles.

In Section 2.5, we demonstrate the practical feasibility of robotic routers with sim-

ulations and experiments.

1.2.2 Communication Bridge

Given two points on a plane, we use mobile robots to create an on-demand commu-

nication between these two end-points. We assume robots are scattered around the

environment and an initial communication between the end-points does not exist. In

the communication bridge problem, our goal is to move the robots so that, in their

final locations, there is a communication bridge constructed from robot-to-robot links

between the two end-points.

We focus on two measures of efficiency in this problem. The first one is the distance

traveled by the mobile robots. We use two metrics for the distance measure: the

maximum or the total distance traveled by the robots. When the environment is a

graph, Demaine et al. show that minimizing the maximum distance traveled to establish

11

a communication bridge is an NP-hard problem [23]. They present an O(n) solution

where n is the number of vertices in the graph. However, this solution is not efficient

in terms of the number of robots used when the underlying graph has many vertices.

The second measure is the number of robots used in the communication bridge. This

measure is important to use minimum number of resources (robots). Moreover, using

minimum number of robots reduces the data latency due to hub-to-hub data transfer

in the bridge.

Our Contributions

Since the general version of the problem is computationally hard, in Chapter 3 we study

a geometric version of the problem where the robots are restricted to move onto the

straight line segment joining the two end-points. This assumption is practical since

moving the robots to this line segment leads to a bridge with minimum number of

robots compared to any curve joining these end-points.

In Section 3.2, we present approximation algorithms for max and sum distance

metrics that use minimum of number of robots by deviating from the optimal solution

at most
√
2 times in terms of the distance traveled.

1.2.3 Data Mules

We use data mules to autonomously collect data from sparse sensor fields. Most of

the work in the literature assumes that the data mule paths are given beforehand [24].

However, computing efficient paths is the most crucial problem as it determines the

time to gather data from sensors.

In the data mule problem, we are given the locations of n sensors and aim to find the

tours of k robots so that the time to download the data from all sensors is minimized.

This formulation appears similar to a well-known NP-hard problem: Traveling Salesper-

son Problem (TSP). However, there are fundamental differences between our problem

and TSP. First, since sensors have a communication range, robots do not have to go all

the way to the sensor locations. Rather robots can get close enough to download sensor

data. A similar problem arises in TSP with Neighborhoods (TSPN) problem, where

n regions are given and the goal is to find the shortest path which visits each region.

However, the cost of a TSPN path is measured by its total length. On the other hand,

12

the cost of a data mule path is measured by the sum of time spent for travel and time

spent to download data. Note that, since the data mule problem is a generalization of

the TSP problem, there exists no polynomial time solution unless P = NP .

Our Contributions

For the data mule problem, we have two main contributions. First, we present efficient

path-planning algorithms under various communication models. Second, we present a

data mule system for monitoring outdoor environments. We demonstrate the practical

feasibility of our algorithms through extensive experiments in both indoor and outdoor

environments.

In Section 4.3, we present a proof-of-concept indoor data mule system. We present

the energy savings achieved by the proposed system by comparing a connected network

deployment with our data mule system. In Section 4.4, we further improve the energy

savings by improving the link quality between the sensor and the robot. The quality of

the link is determined by the packet-loss rate. If the link quality is not good, sensors need

to retransmit the data multiple times which leads to unnecessary energy consumption.

To overcome this inefficiency, we present a heuristic for the robot to find a good location

before starting to download data.

Next, we present path-planning algorithms for data mules. In our previous work [25],

we presented an approximation algorithm for collecting data from sensors under disk

communication model. In this model, the communication range is a disk centered at the

sensor location and the download time inside this disk is constant. However, this model

does not address various challenges of radio signals. In the real world, occasionally a

robot can hear from sensors even if it is not within the sensor’s communication range.

In Section 4.5, we present a modification of the previous algorithm to address this real-

world challenge. In this modified version, the robot opportunistically downloads from a

sensor from which it receives a good signal even though it is not in the communication

disk of the sensor.

In order to demonstrate the feasibility and utility of using robots for the data col-

lection task, we develop a low-cost, yet robust, outdoor robot platform. We present the

design details of this system in Section 4.5.1. We also demonstrate the performance of

our algorithms and the system with extensive field experiments in Section 4.5.2

13

The disk model ignores the fact that download time can vary depending on the

signal strength. Recently, it has been proposed that a two ring model better describes

the real-world scenarios [26]. In this model, there are two concentric disks centered at the

sensor location. Inside the inner disk the communication is reliable thus the expected

download time is shorter. Between the boundaries of the inner and the outer disks,

communication is possible, however due to increase in packet loss rate, the expected

download time increases. In Section 4.6, we present path-planing algorithm for the

two-ring communication problem with provable performance guarantees in terms of the

total download time.

1.2.4 Multi-Robot Patrol

Multi-Robot Patrol (MRP) problem is the problem of finding strategies for a team of

robots in order to visit a given set of locations as frequently as possible [27]. A well-

known measure for the performance of an MRP solution is its idleness. The idleness of

a location is defined as the maximum time interval between two consecutive visits to

that location [28]. Although this criterion addresses frequency of visits, it does assume

that the importance of each node is identical. On the other hand, in a real application,

it might be desirable to patrol some nodes more frequently than others depending on

the node’s importance [29].

In [30], the authors present a reinforcement learning solution where the reward col-

lected from a node is proportional to the priority and the information gained. However,

their solution does not provide any performance guarantee. In this thesis, we present

optimal solutions for environments represented by a tree.

Our Contributions

In Section 5, we present a novel version of the multi-robot patrol problem which we call

Weighted Multi-Robot Patrol (WMRP) problem. In WMRP, the environment is divided

into n non-overlapping cells and each cell is assigned a priority (weight) value. The cost

incurred by a cell is measured by its weighted idleness which is defined as the product of

its idleness and weight and the overall cost of a solution is measured by the maximum

weighted idleness. Let m be the number of robots, we partition the environment into

m non-overlapping regions where each robot is responsible to patrol inside its region.

14

Our goal is to find a partitioning such that the weighted idleness is minimized. The

non-overlapping partitioning is crucial from a practical stand point because the robots

can work independently and the collision risk is minimized. We present two optimal

solutions. In the first solution (Section 5.3), we present an algorithm for environments

whose dual-graph is a tree. In the second solution (Section 5.4), we present an optimal

solution which works only with path-like environments but has a better computational

complexity than the previous solution.

1.3 Outline

This thesis consists of six chapters including this introductory chapter. Each chapter is

self-contained and can be read independently.

In Chapter 2, we present solutions for the general and a geometric version of the

robotic routers problem. We also present the practical feasibility of the robotic routers

through experiments. A solution to the communication bridge problem is presented in

Chapter 3.

Chapter 4 is dedicated to data mule problem. First, we present a proof-of-concept in-

door data mule system. Then, we present a heuristic to find a good download location for

the robot to start downloading data. Next, we present an opportunistic path-planning

approach under disk communication model. We present the design details of an outdoor

data mule system and demonstrate the presented algorithm with extensive field exper-

iments. Finally, we present a path-planning algorithm for the two-ring communication

model, which better describes the propagation of radio signals.

In Chapter 5, we present a novel version of the Multi-Robot Patrol problem which

incorporates the importance of locations to be visited. We present optimal solutions for

environments whose dual-graph is a tree or a path.

Chapter 6 concludes the thesis with a discussion of our contributions and directions

for future research.

Chapter 2

Robotic Routers

Suppose a mobile user who is operating in a large environment, needs network connec-

tivity to a base station. The user may be a tele-operated robot and the base station

may be a gateway to the Internet. Without a communication infrastructure, the mo-

bility of the user would be restricted by the communication radius of the base-station.

The traditional solution for providing long-range network connectivity is to deploy a

network of static wireless routers which cover the entire area of interest. However when

the environment is large, covering it can be costly. Moreover, in some scenarios (such

as natural disasters or hazardous conditions) it might be impossible to manually deploy

this network in advance.

On the other hand, we can deploy a small number of robots to act as mobile routers.

These robots can autonomously relocate themselves according to the movement of the

user and maintain the users’ connectivity with the base station. In order to demon-

strate the potential gain attained by using robots, let us consider the scenario shown in

Figure 2.1. In this scenario, a user u navigates inside a semicircular arena, and wishes

to remain connected to the base station at c at all times. Suppose the communication

range of all devices is σ. If we deploy a stationary network to cover the arena, the num-

ber of necessary routers is Θ(R2/σ2). Instead, Θ(R/σ) robotic routers can maintain the

user’s connectivity by staying on the line segment [cu] (the details of a generalization

of this strategy are given in Section 2.4.2). Hence, the number of routers used can be

drastically reduced by using the mobility of robots.

15

16

R

b

u′

u

Figure 2.1: An example which demonstrates the potential gain of using robotic routers.

We need Θ(R2/σ2) static routers whereas Θ(R/σ) robots are sufficient to keep the user

connected. When the user moves from u to u′, robotic routers move with the same

angular velocity to keep the user connected.

Although the previous basic strategy works in a simple environment, more sophisti-

cated strategies are required for more complex environments. For example, when there

is an obstacle in the environment (see Figure 2.2-Left), the previous strategy does not

work since the obstacles would block the robots’ path. When user moves from u to

u′, the robotic routers have to wrap around the obstacle to maintain the connectivity.

However, when the user moves further left (i.e. when user is at u′′) the communication

constraints are violated and the robots are not able to maintain the user’s connectivity.

Moreover, adding more robots to this strategy will not help if the user continuously

moves around the obstacle. On the other hand, two teams of robots can work coop-

eratively to maintain the user’s connectivity as illustrated in Figure 2.2-Right. In this

strategy, a second team of robots (illustrated as square shapes) maintains the connec-

tivity when the user moves further left from u′.

In this chapter, we study the motion strategies of robotic routers to maintain the

connectivity of a mobile user to a base station using minimum number of robots. The

strategies of the robotic routers rely on the communication model in the environment.

In the previous example, a simple communication model of fixed radius σ was used. In

a practical application, the communication model in the environment might be more

complex due to occlusions (shadowing) and multi-path effects. In Section 2.3, we present

robotic router strategies for arbitrary communication models. While this solution is

general, its running time is exponential with the number of robots. In Section 2.4, we

present geometric solutions where the communication constraint is modeled in terms

17

b

u′u′′

u

b

u′u′′

u

Figure 2.2: When there is an obstacle in the environment, previous simple strategy does

not work. Hence better strategies are required for more complex environments. Left:

If the user moves further left from u′′, since the communication constraints are violated,

user’s connectivity will be broken . Right: In a better strategy, a second team of

robots (illustrated as square shapes) can maintain the connectivity when robot moves

further left from u′.

of geodesic distance. We present polynomial time solutions with provable performance

guarantees in terms of the number of robots used in the solution. At the end of chapter,

we present simulations and experiments to demonstrate the practical feasibility and

advantage of robotic routers.

This chapter is organized as follows: First we present a literature search on robotic

routers and related problems in Section 2.1. We present the basic definitions used

throughout the chapter in Section 2.2. We present general solutions and geometric

solutions for robotics routers in Section 2.3 and Section 2.4, respectively. Finally, we

present simulations and experiments in Section 2.5.

2.1 Related Work

A Mobile Ad-hoc Network (MANET) is a network of mobile devices connected through

wireless links. MANETs have been extensively studied by the networking commu-

nity [31]. In a MANET, each mobile device can move independently. Hence, the main

challenge is to route the information in a network whose links are constantly chang-

ing. Several routing protocols have been proposed in the literature. Optimized Link

State Routing (OLSR) [32–34], B.A.T.M.A.N [35], Ad-hoc On-demand Distance Vector

(AODV) routing [36], Temporally-Ordered Routing Algorithm (TORA) routing [37,38]

18

and MosquitoNet [39,40] are some of the most known MANET protocols. The main dif-

ference of our work from this line of work is due to the controlled mobility. Each device

in a MANET is an uncontrolled mobile entity. Whereas in a robotic router network, we

use robots’ mobility to create an adaptive network between a base station and a target

user.

The problem of maintaining connectivity of a team of robots has been studied as

rendezvous [41], coalescence [42] and formation [43] problems. In these problems, all

network entities whose connectivity needs to be maintained can be controlled. The

difference between these problems and the problem addressed in the present work is

that, here we are maintaining the connectivity of a target moving independently from

the network.

The robotic router problem is also related to some of the control problems in net-

worked multi-robot systems. In the Network Coverage Problem (NCP), the goal is to

maximize the coverage or sensing area of a mobile sensing networks [44,45]. In the lit-

erature, central [46] and distributed [47–49] approaches are proposed to solve the NCP.

Mobile robots are also used for determining gaps in a deployed network and repair

it [50–52] as well as improving the connectivity in mobile sensor networks [53,54].

Networked-robots can be also used for performing other tasks while satisfying com-

munication constraints [55]. Distributed flocking algorithms have been proposed for

migration of multi-robot networked systems [56, 57]. Communication-aware trajec-

tory [58, 59] and target [60] tracking have also been explored. Moreover, a network of

robots can be used for improving the communication in search-and-rescue tasks [61,62]

and exploration tasks [63].

When the communication model is based on visibility, the Robotic Routers problem

is related to the problem of maintaining the visibility of a single moving target. In [64],

the authors formulated the problem as a cost minimization problem where they simul-

taneously penalize the motion of the observer and loss of visibility. In case of known

target trajectory, the authors presented a dynamic programming solution which guar-

antees optimality. For partially-predictable targets, they used a probabilistic motion

model for target and presented a solution which maximizes the expected time of visi-

bility. Related work also includes [65] where a sampling-based approach is presented,

and [66] where the problem of tracking an evader with a pursuer around a corner is

19

addressed. These problems focus on maintaining the visibility of the target until it

disappears for the first time from the field of view of a single robot. In the problems

we address, the connectivity model can be more general than visibility and there are

additional constraints such as connectivity to the base station. Further, we address the

issue of controlling multiple robots.

In other related work, Stump et al. propose two metrics for characterizing connec-

tivity and present a framework which chooses the best local decision to maintain the

connectivity of an independently moving target [22]. Here, we are able to give global

guarantees by controlling the number of robots. In a related paper [21], Dixon et al.

study the problem of forming a chain of robotic relays and present an algorithm to

control robots along the chain to improve the signal-to-noise ratio. A similar prob-

lem is considered by Kutylowski et al. [20]. They present a global strategy for using

a chain of robots to create a communication bridge between a stationary camp and

a mobile explorer. In [67], they extend this strategy to local (distributed) strategies.

However, in complex environments with obstacles, topologies more general than chains

must be used. This is the main focus of the present work. In fact, despite all the recent

research effort on this problem, currently there are no algorithms with provable perfor-

mance guarantees (in terms of the number of robotic routers) to maintain connectivity

in complex environments. In this chapter, we present optimal solutions for arbitrary

communication models and approximation algorithms for a geometric instance of the

problem where communication is determined by geodesic distance.

2.2 Definitions and Notation

Before presenting our algorithms, we start with the basic definitions used throughout

the chapter.

A robotic router is a mobile robot which can communicate wirelessly. Robotic routers

are subject to communication and motion constraints such as limited communication

range and a bounded maximum speed. The base station is a static entity to which

the user (or target) wishes to establish connection. All entities are contained in a

shared environment denoted by P. The user is connected to the base station through

a communicating bridge of robotic routers. We refer to the entities that make up the

20

robotic router network (the single user, base station and robotic routers) as nodes.

In addition to these entities, we use two concepts frequently: connectivity and motion

models. In the mobile router network, two nodes are connected if they satisfy the given

connectivity requirements which may depend on the position of nodes, communication

range of nodes or possible occlusions. The user is connected if it is directly connected

to the base station or it is connected through point-to-point links in the mobile router

network. The motion model of the user is discussed in Section 2.3.1.

2.3 A General Solution

In this section, we provide general solutions to the robotic routers problem for an arbi-

trary given communication model. Given discretization of the environment, base station

location and the number of robots, we present algorithms to create an adaptive network

between the base station and a mobile target. We present our algorithms with respect

to the motion model of the mobile user. In the first model, we assume that the trajec-

tory of the user is known. This assumption is applicable when the user is a controlled

entity, e.g. a tele-operated robot. When the motion model is unknown, we determine

our strategies considering a worst-case scenario. In the unknown trajectory model, we

assume the user behaves as an adversarial and tries to break the connectivity as quickly

as possible. We present a strategy to maintain the connectivity of this adversarial user.

Hence, the presented strategy works for all possible user trajectories.

We start with a formulation of the Robotic Routers problem in Section 2.3.1. We

present optimal strategies for known and unknown user trajectory in Section 2.3.2 and

Section 2.3.3, respectively.

2.3.1 Problem Formulation

In this section, we first present the notation and assumptions specific to the section,

and then we formalize the robotic router problem.

Notation and Assumptions

Throughout the chapter, we represent the environment P as a set of n points. This

set contains all possible locations of the nodes (i.e. the user, the base station and the

21

robotic routers). We represent the time domain in unit time steps. All motion models

discussed in this section are represented in the discretized domain as a trajectory. Let

T be the end time of the user motion. The user’s trajectory is a sequence u of length

T where u(t) is the position of the user at time step t. Similarly, ri(t) is the position of

ith robotic router at time step t. Since the base station does not move, it’s trajectory

is a constant, b.

A configuration q = (q1, ..., qm) is a vector of locations of robotic routers in the

mobile router network. As we discretize the time domain, the speed of the user and

robotic routers are expressed as step sizes i.e. the distance that a node can move in

one time step. In this model, we define the neighbor points that the ith robotic router

can move from the point qj in a single time-step as Nr(qj) (The subscript r stands for

“robot.”). To simplify the notation, we assume that all robotic routers have the same

speed. One can remove this assumption by defining different neighborhood functions

for each robotic router. For the user, we use the neighborhood function Nu. Similarly,

Nc(q) is a set of neighbor configurations that can be reached from configuration q in one

time step. A trajectory ri is a valid trajectory if ∀t, ri(t+ 1) ∈ Nr(ri(t)).

Communication Model

We assume that a generic communication model is given beforehand. More specifically,

we are given a matrix A such that A(i, j) is 1 if the mobile router network nodes located

at i and j can communicate directly and 0 otherwise. Here, to simplify the notation,

we assume that the connection range of all nodes are identical for a particular location.

The user located on qu is connected by robots in configuration q = (q1, ..., qm) if one of

the following holds: (i) A(qu, b) = 1 (ii) ∃qi s.t A(qu, qi) = 1 and qi is connected to b

through point-to-point link(s) of type (i) or (ii). Let q(t) be the configuration of mobile

router network at time step t. The user is continuously connected if it is connected in

q(t) for all 1 ≤ t ≤ T .

Motion Model

In most applications, the environment, location of the base station, wireless range and

speed properties of robotic routers do not change significantly. Hence, the trajectory of

the user becomes the most important variable in determining robotic router strategies.

22

In this work, we consider two motion models. In the first model, we assume that we

know the trajectory of the user in advance. This assumption is reasonable for some

applications, e.g. tele-operated robots control whose trajectory is fixed beforehand. In

general, a user may be willing to declare its trajectory when requesting the connectivity

service.

However, in some cases it is not feasible to know the user trajectory in advance. In

such cases, we may consider the worst case trajectory where user tries to disconnect as

quickly as possible. This case analysis can give us a guarantee on whether we can connect

the user for any possible trajectory or not. We model this scenario as a pursuer-evader

game where the user tries to break the connection from the mobile router network as

quickly as possible. At the same time, the robotic routers try to extend the connection

time for as long as possible, preferably infinitely. We call this user motion strategy

as adversarial user trajectory and the shortest such trajectory as the shortest escape

trajectory.

Formulation

In this section, we formalize the robotic routers problem for two motion models: known

user trajectory and adversarial user trajectory.

Known user trajectory: Let P be the environment, A be the connectivity model,

b be the position of the base station, m be the number of robotic routers and u be the

trajectory of the user. For each robot ri, find a valid robotic router trajectory such that

the user is connected to the base station for the maximum possible amount of time.

Adversarial user trajectory: Let P be the environment, A be the connectivity

model, b be the position of the base station, m be the number of robotic routers, qu

be the initial location of the user and q be the initial configuration of mobile router

network. Find out whether there exists a user escape trajectory for pursuer-evader

game where the evader wins by breaking connectivity. If it exists, find the shortest

escape trajectory u. Compute valid robotic router trajectories, that maintain the user’s

connectivity for as long as possible. Since the user can dynamically change its trajectory

during execution, the router strategies for the adversarial case must be adaptive. For

this model, we make a design decision and impose the constraint that the robotic router

network must remain connected at all times. In other words, each router must remain

23

connected to the base station so that its strategy can be adapted in run time.

In both problems we assume that the number of robotic routers m is given. However,

it is easy to obtain the minimum number of routers required for continuous connectivity

simply by performing a binary search on m until the continuous connectivity is satis-

fied. Now, we present strategies for the known user and adversarial user models in

Section 2.3.2 and Section 2.3.3, respectively.

2.3.2 Known user trajectory

In this section, we present KnownUserTrajectory algorithm for the robotic routers prob-

lem when user trajectory is known a priori. The solution uses dynamic programming

to obtain robotic routers’ trajectories. Recall that P = {x1, . . . , xn} is the environment

denoted by a set of points. We build a table C where the entry C(q, t) stores the maxi-

mum connection time of the user until time t with routers ending in final configuration

q = (q1, ..., qm). The table size is nm × T where T is the length of the user’s trajectory.

The first m dimensions of the table correspond to router locations. The ith entry in

each of these dimensions correspond to location xi. Using C(q, t), we find robot trajec-

tories which maximize the connection time of the user. We compute the entry C(q, t)

iteratively as follows:

C(q, t) =











max
q′∈Nc(q)

C(q′, t− 1) + 1 if u(t) is connected by q

max
q′∈Nc(q)

C(q′, t− 1) otherwise.

C(q, 1) =

{

1 if u(1) is connected by q

0 otherwise.

The value: max
∀q

C(q, T) is the maximum connection time for the given user trajectory

u. KnownUserTrajectory algorithm can be easily modified to return the corresponding

robotic router trajectories r1, r2, ..., rm by backtracking as follows. If max
∀q

C(q, T) = T ,

then there exist robotic router trajectories which keep the user continuously connected.

Otherwise, we find robotic router trajectories which maximize the connection time of

the user. Let C(q, T) be the entry with maximum value among all entries at the last

time step (i.e., q = argmaxρC(ρ, T)). In our output trajectory, q will be the final

24

configuration of robotic routers, i.e. q(T) = q. Next, we find the entry C(q′, T −1) from

the previous time-step such that q ∈ Nc(q
′) and C(q′, T − 1) is maximized 1 . In the

output trajectory, q′ corresponds to the configuration at time step T − 1: q(T − 1) = q′.

We continue this computation backwards in time and for each time step, find the robot

configuration that maximizes overall connectivity time.

The correctness and optimality of KnownUserTrajectory algorithm can be proven

directly by induction on t. The running time of the algorithm is determined by the

computation time of C(q, t). There are nm × T entries. For each entry, computing the

maximum value takes O(nm) time. Hence, the running time is O(Tnm).

2.3.3 Adversarial user trajectory

In this section, we present AdversarialUserTrajectory algorithm for the robotic routers

problem for the case where the user moves in such a way that it tries to break the

connection as quickly as possible. In contrast to the known trajectory case where the

output consists of fixed robot trajectories, the output for the adversarial case is a strategy

which encodes the appropriate response to every possible user move. The strategy is

encoded in Table E where the entry E[qu, q] corresponds to the positions of the user

and robotic routers at an arbitrary time step. Each element of tuple q and qu is chosen

from all possible locations P of size n. Hence, the dimension of the table is equal to the

number of mobile entities in the network (m+ 1) and the size of the table is nm+1.

The entries of E are filled using the following algorithm:

In the first step (line 1), we initialize all the entries to infinity. At the end of the

algorithm, the entry E[qu, q] gives the length of the shortest escape trajectory starting

from user location qu and robotic routers’ initial configuration q. We will show that if

an entry E[qu, q] remains at infinity at the end of the algorithm, then there exists no

escape trajectory. In lines 2-6, we set E[qu, q] ← 0 if the robotic router network (i.e.

either user or one of the robots) is not connected. Here, we constrain the entire robotic

router network to be connected rather than requiring only the user’s connectivity as in

the known trajectory case. The reason why we use the specified connectivity condition

1 If there are multiple entries which maximize this value, then there are multiple optimal router
trajectories. When this happens, we choose an entry that requires the least amount of movement to
reach the configuration in the next time-step.

25

Algorithm 1 AdversarialUserTrajectory

Environment: P, Communication Model: A, Neighborhood Function: N

1: ∀qu∀q E[qu, q]←∞
2: for ∀qu∀q do

3: if robotic router network is not connected then

4: E[qu, q]← 0

5: end if

6: end for

7: for k = 1 to nm+1 − 1 do

8: for ∀qu∀q do

9: if min
q′u∈Nu(qu)

max
q′∈Nc(q)

E[q′u, q
′] = k − 1 then

10: E[qu, q]← k

11: end if

12: end for

13: end for

is due to the dynamic nature of the adversarial user case. Since the user’s trajectory

is unknown, its location at time t becomes available to the network only at time t. In

our system, the appropriate response is stored at the base station and corresponding

motion commands are sent to the robots. Therefore, all robots must remain connected

to the base station at all times.

After the initialization steps, we repeat the procedure between lines 8-12 for nm+1−1
times. In this procedure, we apply the min-max relation (line 9) to the entire table.

Since all configurations where the network is disconnected is already set to 0 in lines 2-6,

the maximization is implicitly over configurations where the network remains connected.

In each iteration k, we set E[qu, q] only if the shortest escape trajectory length is k.

With an additional step, we can find if there exists an initial robotic router configu-

ration q corresponding to the initial user location qu which satisfies the connectivity. If

∃q, E[qu, q] = ∞, then we can initialize our robotic routers to configuration q to keep

the connectivity uninterrupted. Moreover, if ∀qu∃q, E[qu, q] = ∞, we can say that m

robotic routers are sufficient to maintain the connectivity independent from the initial

location and the trajectory of the user.

26

Next, we explain (i) how we can extract the shortest escape trajectory and the

corresponding robotic router trajectories using table E, and (ii) how we can use E to

find robotic router trajectories to maintain the connectivity of a user in a system where

the trajectory is unknown.

We extract the shortest escape trajectory and the corresponding robotic router tra-

jectories as follows. Let qu be the initial position of the user: qu(1) = qu. First, we

find the corresponding robotic router positions q which maximize the escape trajectory

length, i.e. q = argmaxρ E[qu, ρ]. In the first time step, we will place the robots at

locations given by q. Suppose E[qu, q] = k. This means that the length of the escape

trajectory is k. We find the next positions of the user and robotic routers by finding the

entry E[q′u, q
′] = k − 1 where q′u ∈ Nu(qu) and q′ ∈ Nc(q). We update the trajectories

according to the new positions: qu(2) = q′u and q(2) = q′. Similarly, we continue for k

steps and extract the rest of the shortest escape trajectory and corresponding robotic

router trajectories from E. The correctness and optimality of this algorithm is proven

in Theorem 1.

In addition to extracting the shortest escape trajectory, we can use E to find robotic

router trajectories when we do not know the user trajectory. We assume that the table

E is stored at the base station. Further, we require the user to report its current

location when it makes a connectivity request to the network. Afterwards, whenever

the user makes its next move, it informs the network about its next location. Note that

this happens during run-time. For the new location, the base station looks up the new

locations of routers which maximize the connection time of the user. Even when the user

moves adversarially, the connectivity is ensured for at least the number of steps given by

the entry of E that corresponds to the nodes’ current locations. As an example, assume

that the user starts at position qu and robotic routers start with configuration q. The

user’s connectivity is guaranteed for E[qu, q] steps. If the user’s next location is q′u then

we move robotic routers to the configuration q′ = argmaxρE[q′u, ρ] such that q′ ∈ Nc(q).

This guarantees that the user will be connected for at least E[q′u, q
′] time-steps.

The running time of the algorithm is O(nm+1): there are nm+1 entries and for each

iteration we scan the entire table which takes O(nm+1) time. We iterate this procedure

for nm+1 times which leads to the claimed running time.

Theorem 1. Suppose there exists a shortest escape trajectory such that robotic routers

27

are initially in configuration q and user is at location qu. Let e(qu, q) be the length of

this trajectory.

1. E[qu, q] = k if and only if the length of the shortest escape trajectory e(qu, q) is k.

2. E[qu, q] is ∞ if and only if there exist a robotic router trajectory which satisfies

continuous connectivity for any possible user trajectory.

Proof. We prove the two statements in order.

Proof of (1):

We show that E[qu, q] = k ⇔ e(qu, q) = k by induction on k.

Basis: E[qu, q] = 0 ⇔ e(qu, q) = 0 holds due to the initialization step between lines

2-6. If the escape trajectory is of length 0, this means that the user is disconnected in

the initial configuration and we set E[qu, q] ← 0. Similarly, if E[qu, q] is set to zero in

the initialization step, there exists a trivial escape trajectory of length 0.

Inductive step: let us assume that ∀k, E[qu, q] = k ⇔ e(qu, q) = k holds. We show

that E[qu, q] = k+1⇔ e(qu, q) = k+1. We prove this statement by showing that both

directions of the conditional statement hold.

First we prove: E[qu, q] = k+ 1⇒ e(qu, q) = k+1. For contradiction, suppose that

E[qu, q] = k+1 but e(qu, q) 6= k+1. Due to the inductive step we have: e(qu, q) ≥ k+1

(Condition 1). This is because, due to the inductive hypothesis, e(qu, q) < k + 1 would

imply E[qu, q] < k+1, which is a contradiction. When E[qu, q] is set to k+1, due to the

min-max relation, following holds: ∃q′u ∈ Nu(qu), ∃q′ ∈ Nc(q) such that E[q′u, q
′] = k

and ∀q′′ ∈ Nc(q), E[q′u, q
′′] ≤ k. From the inductive hypothesis and the inequality:

∀q′′ ∈ Nc(q), E[q′u, q
′′] ≤ k, we have ∀q′′ ∈ Nc(q), e(q

′
u, q

′′) ≤ k. This gives us e(qu, q) ≤
k+1 (Condition 2). This is because the user can choose to go to q′u and follow an escape

trajectory of length k afterwards. From conditions (1) and (2), we have e(qu, q) = k+1

which contradicts with the original claim. Thus, E[qu, q] = k + 1 ⇒ e(qu, q) = k + 1

holds (Condition 3).

Next, we prove: e(qu, q) = k + 1 ⇒ E[qu, q] = k + 1. Again, for contradiction, let

us assume that e(qu, q) = k + 1 but E[qu, q] 6= k + 1. From the inductive hypothesis,

E[qu, q] ≥ k+ 1 holds (Condition 4). Let π be an escape trajectory of length e(qu, q) =

k+1 with initial positions of the players given by qu and q. Let q′u ∈ Nu(qu) be the user

28

location in the second step of π. Since, the escape trajectory length is exactly k + 1,

∀q′′ ∈ Nc(q), e(q
′
u, q

′′) ≤ k. Because, otherwise robotic router network can increase the

connection time by going to q′ where e(q′u, q
′) > k. Moreover, ∃q′ ∈ Nc(q), such that

e(q′u, q
′) is exactly k (otherwise by going q′u, user achieves an escape trajectory of length

less than k + 1 which is a contradiction). By the induction hypothesis: ∀q′′ ∈ Nc(q),

E[q′u, q
′′] ≤ k, thus applying the min-max relation yields E[qu, q] ≤ k+1 (Condition 5).

From conditions (4) and (5), we have E[qu, q] = k + 1. This is a contradiction with the

original claim. Therefore e(qu, q) = k + 1⇒ E[qu, q] = k + 1 holds (Condition 6).

From conditions (3) and (6), the inductive step is proven. Finally, we showed: ∀k
E[qu, q] = k ⇔ e(qu, q) = k.

Proof of (2):

The proof of the second statement is straightforward. E[qu, q] is either marked as k ≤
nm+1 or∞ and the user either has a shortest escape trajectory of length e(qu, q) ≤ nm+1

or it can not avoid the connection from the robotic router trajectory. Since the number

of iterations in the algorithm can not exceed nm+1, the claim above holds for E[qu, q].

Let us assume that there exists an escape trajectory and its length is: e(qu, q) > nm+1.

Since the number of permutations of tuples: (qu, q) is n
m+1, we can find a cycle in the

sequence of tuples. However, then we can find a shorter escape trajectory by avoiding

the cycle which is a contradiction.

29

2.4 A Geometric Solution

In the previous section, we presented general solutions for robotic router problem which

works for arbitrary communication models. However, the running time of the previous

algorithms are exponential with the number of robots. Hence, these solutions might not

be scalable for the applications where the number of robots is large. In this section, we

present robotic router strategies for geometric environments where the communication

model is defined in terms of geometric constraints. We present an optimal algorithm

for simply-connected polygons and a constant factor approximation for polygons with

single obstacle. Then, we extend these algorithms to polygons with multiple obstacles.

The running time of our solutions are polynomial with provable performance guarantees

in terms of the number of robots used.

We start with the formulation of the problem in Section 2.4.1. In Section 2.4.2, we

present an optimal solution for simply-connected polygons. In Section 2.4.3, we present

a constant-factor approximation for a polygonal environment with a single obstacle. In

Section 2.4.4, we present an O(h)-approximation algorithm for polygons with multi-

ple obstacles. In Section 2.4.5, we present instances which shed further light on the

approximation quality of our algorithms.

2.4.1 Problem Formulation

First, we present the terminology and notation used throughout the section, and for-

malize the robotic router problem.

Notation and Assumptions

Throughout the section, we assume that the time domain is continuous. We denote

the position of the user at time t as u(t), and that of the ith robotic router as ri(t).

We assume that both the robotic routers and the user have the same maximum speed.

We call this requirement as the motion constraint. We will prove the correctness of

our strategies by showing that when the robots execute our strategy, the user remains

connected to the base station at all times, and the speed of each robotic router at time

t never exceeds the speed of the user at time t. In other words, let |u̇(t)| and |ṙi(t)| be
their respective speeds; we present strategies in which |ṙi(t)| ≤ |u̇(t)| always holds.

30

We measure the distance between any two points x, y ∈ P by the length of the

geodesic path from x to y, i.e. the shortest path from x to y that lies inside P and

does not cut through any obstacles. For any time t, we denote the geodesic shortest

path from the base station b to the user u(t) as SP (t). The shortest geodesic distance

between x and y is denoted by d(x, y).

Communication Model

Various models for radio propagation are studied in the literature. Due to various

environment dependent effects (such as multi-path, fading, occlusion, etc.), it is difficult

to provide a generic model which incorporates all these effects. In this work, we assume

that two points x ∈ P and y ∈ P are connected if d(x, y) ≤ σ holds. This is the

communication constraint. This model is empirically justified the next section (i.e.

Section 2.5). In addition to fading effects (through the distance threshold), this model

implicitly addresses occlusion (shadowing) effects: If there exists a line-of-sight between

x and y the geodesic distance is same as the Euclidean distance. However, when the

polygon or an obstacle occludes between x and y, the geodesic distance increases.

Any subset of points A in P is said to be geodesically convex if for every x and y in

A, the geodesic segment [x, y] is contained in A. We define the geodesic convex hull of

a set of points X in P as the minimal geodesically convex set that contains all of the

points in X.

To simplify the notation, we scale all distances by the communication distance

threshold σ. Throughout the paper, without loss of generality, we assume that the

communication distance is the unit distance. Let D be the longest geodesic shortest

path from b to any point ∈ P; m∗ = ⌈D − 1⌉ + 1 = ⌈D⌉ is a lower bound on the

minimum number of robotic routers necessary to connect any point in P to b, including

the base station as a robotic router.

Motion Model

We define the number of robots used as follows. For a given user trajectory µ = u(t), let

n(µ) be the number of robots required to connect the user to the base station. For a given

environment, the number of robots required is the maximum number over all possible

user trajectories, i.e. n = maxµ n(µ). When computing n, we do not require that the

31

routers know the user’s trajectory in advance. The user can execute any strategy and

this information is not available to the robots. However, we require that the robotic

routers in the network are all continuously made aware of the current position of the

user2 and they can instantaneously choose their movements based on this information.

Formulation

Given an environment P (possibly with obstacles) and a base station b ∈ P, find the

minimum number of robotic routers and their motion strategies such that the user

u is connected to the base station at all times, and the motion and communication

constraints are satisfied.

2.4.2 Environments with no obstacles

In this section, we present a strategy to maintain connectivity using an optimal number

of m∗ = ⌈D⌉ routers. The strategy, which we call EQ-DIST, involves maintaining an

equidistant separation along SP (t). We show that this can be achieved without violating

communication and motion constraints.

We say that the Evenly Spaced Property (ESP) holds at time t if all the routers

are positioned uniformly along SP (t). We will refer to this chain of routers as an arm.

We assume that ESP holds at time 0 (i.e. the user is willing to wait until the initial

connection is established).

When the environment P is a polygon, it is known that SP (t) is a polygonal path

{p0 = b, p1, p2, . . . , pj , u} from b to u, where any pi for i > 0 is a vertex of P. On this

path, the parent of any point p on SP is defined as the closest vertex of P to p that lies

on the shortest path between b and p (Figure 2.3(a)). If no such vertex exists, then the

parent of p is b.

First, we prove the following lemma.

Lemma 2. For any t there exists a sufficiently small dt > 0 and a shared point s ∈
SP (t)∩SP (t+dt) such that SP (t) and SP (t+dt) only differ along a single line segment,

from their respective endpoints to s.

2 For example, this information can be provided by the user.

32

b

pj

u(t)

u(t+ dt)

(a) Parent does not change

b

pj(t+ dt)

pj(t)

u(t)

u(t+ dt)

v

(b) Parent changes

Figure 2.3: For a small enough time step, the shortest path SP (t) changes only along

the line segment farthest from b.

Proof. First, observe that for all t and for all dt, SP (t) and SP (t+ dt) share their start

point b, by definition. Therefore, s always exists. We now show that we can find a dt

and a shared point s such that the two shortest paths differ only along their last line

segment.

Take any time interval dt > 0. The user moves from u(t) to u(t + dt). Let pj(t) ∈
SP (t) be the parent of u(t), and pj(t + dt) ∈ SP (t + dt) be the parent of u(t + dt).

There are two possibilities, as shown in Figure 2.3.

Case 1. (Figure 2.3(a)) pj(t) = pj(t+ dt), i.e. the parent of the user remained the

same over the interval dt. Then s = pj(t) = pj(t+ dt) is the shared point.

Case 2. (Figure 2.3(b)) pj(t) 6= pj(t+ dt), i.e. the parent of the user changed over

the interval dt. The parent for any point on a shortest path to b changes only when

the new shortest path wraps (or unwraps) around a vertex of P. Here, we discuss the

case when it unwraps, i.e. pj(t+ dt) is an ancestor of pj(t). The case when it wraps is

similar.

Let pj−1(t) be the parent of pj(t). Shoot ray L along line segment [pj−1(t) pj(t)].

There are two possibilities. If L does not intersect [u(t) u(t + dt)], then the parent of

the user did not change, which contradicts our assumption in Case 2. Let v be the point

33

b

s

SP (t)

u(t)

ri

rj

u̇‖(t)

u̇⊥(t)

s

u(t)
u(t+ dt)

ri(t)
ri(t+ dt)

u̇⊥(t)

ṙi⊥(t)

Figure 2.4: Left: Robots ri only translate along SP while robots rj rotate about s

and translate. Right: Similar triangles used to find the relation between |u̇⊥(t)| and
|ṙi⊥(t)|.

of intersection of L and [u(t) u(t + dt)]. Since the user follows a continuous path from

u(t) through v to u(t + dt), there exists 0 < dt′ < dt for which u(t + dt′) = v. Now

s = pj(t) is the desired shared point common to SP (t) and SP (t + dt′). Hence, SP (t)

and SP (t+ dt) only differ in their last line segment when dt = dt′.

We now show that the robots can maintain connectivity using EQ-DIST:

For any point z(t) ∈ SP (t), let z†(t) denote its parent. Parameterize the velocity

ż(t) into a radial component ż‖(t), along [z†(t) z(t)], and a tangential component ż⊥

orthogonal to ż‖(t). We have |ż(t)| =
√

|ż⊥(t)|2 + |ż‖(t)|2. For any robot ri(t), we

denote its velocity components as ṙi‖(t) and ṙi⊥(t) (see Figure 2.4).

Only the radial component of the user’s velocity affects the length of SP . Let λ be a

differential change in the length of SP . We have λ = u̇‖(t). To satisfy ESP, the robotic

routers should move proportional to λ along the radial component.

34

ṙi‖(t) =
i

n+ 1
u̇‖(t) (2.1)

When the user moves, some line segments along SP rotate, while others remain the

same. The tangential velocity of any robot is thus a function of which side of the shared

point s the robot lies on.

If ri lies between s and u, we can show using similar triangles (see Figure 2.4) that

|ṙi⊥(t)|
|u̇⊥(t)|

=
||s ri(t)||
||s u(t)||

Where ||s ri(t)|| is the length of line segment [s ri(t)] and ||s u(t)|| is the length of

line segment [s u(t)]. Since ri(t) is closer to b than u(t), we have ||s ri(t)|| ≤ ||s u(t)||,
i.e.

|ṙi⊥(t)| ≤ |u̇⊥(t)| (2.2)

The robots between s and b have a tangential component of zero.

Therefore, for any robot, (2.1) and (2.2) show that the robot only needs to move at

most as fast as the user to stay on the geodesic from b to u while maintaining ESP.

Theorem 3. In a simply-connected polygon, the number of mobile robots that the EQ-

DIST strategy requires is optimal.

Proof. Recall that the cost of the optimal solution is the required number of robots to

connect any user trajectory. When the user goes to a location where SP is maximized,

the optimum solution has to use at most m = ⌈D⌉ robots. We have seen that EQ-DIST

can maintain connectivity using the same number of robots.

2.4.3 Environments containing a single obstacle

In this section, we present robotic router strategies where a user is connected to b in a

polygonal environment with a single obstacle. First we present a solution for circular

obstacles, then we show how to extend this solution to convex and non-convex obstacles.

35

Circular obstacle

Let O be a circular obstacle and let c and r be the center and radius of O. Our strategy

is as follows. First, we connect every point on O to b by extending an arm starting from

b and wrapping it around O. We call this our wrapping arm. The robotic routers in it

will remain stationary (see Figure 2.5). After connecting O to b, we use a connecting

arm which rotates around O and connects the user to O which is then connected to b

through the wrapping arm.

u(t)
u(t+ dt)

q(t), q(t+ dt)

P O
c

b

s

wrapping arm

connecting arm

Figure 2.5: Illustration of the first case of our strategy.

We place robots so that ESP is satisfied; these locations can be easily found by using

geometric properties of lines and circles. The bounds on the length of the arm and the

number of robots used will be obtained in Theorem 6.

The connecting arm’s responsibility is to connect user to O and consequently to b.

We achieve this by moving robotic routers on the Shortest Path (SP) between u and O.
To guarantee that the connecting arm is always connected to O, we use an additional

robotic router q which moves along the boundary of O. Robot q acts as a base station

for the connecting arm. Let SPO(t) be the shortest geodesic path between O and u(t)

(this path is the subset of SP between c and u(t)). Robot q always remains at the

beginning of this path on O. Recall that the parent of u(t) is the closest vertex to u(t)

36

in SPO(t) (We treat q as a vertex as well.).

We analyze the connecting arm strategy in two cases: (i) u(t) has a parent different

than q(t) (ii) u(t) has q(t) as the parent.

Case (i): If there exists a parent s of u(t) such that s 6= q, then we can find a dt

and a shared point s such that the shortest paths SPO(t) and SPO(t + dt) differ only

along their last line segment (Lemma 2). Since both shortest paths pass through s and

the shortest path from O to s is same, q does not move, i.e. q̇(t) = 0 (See Figure 2.5).

In this case, the connecting arm can execute EQ-DIST and maintain connectivity.

Case (ii): If the parent of u(t) is q, we can move q and the robots on the connecting

arm in such a way that they maintain ESP without violating motion and communication

constraints. As we did in Section 2.4.2, we divide the velocity u̇(t) into two components:

radial velocity u̇‖ and tangential velocity u̇⊥. Since q is moving on the boundary of O its

radial velocity is 0. If q is the common parent for u(t) and u(t+dt), these shortest paths

rotate around c and rotation is due to the tangential component of u (see Figure 2.6).

As angular velocity is the same for the user and each robot on SPO, we can conclude

that |q̇⊥(t)| ≤ |ṙi⊥(t)| ≤ |u̇⊥(t)|. If u(t) and u(t + dt) do not have q as their common

parent, we can show that a time interval dt′ < dt can be found such that the above

condition holds. The proof is the same as in Lemma 2.

ṙi‖(t)
ṙi⊥(t)

u̇‖(t) u̇⊥(t)

q̇⊥(t)

c

b

u(t+ dt)

SPO(t)
SPO(t+ dt)

wrapping arm

connecting arm

Figure 2.6: Illustration of the second case of our strategy.

37

Suppose u̇‖(t) is positive; in this case SPO increases in length. To satisfy ESP,

the robotic routers have to move towards u. The distance from q to ri must increase

by i
nc
|u̇‖(t)| where nc is the number of robots in the connecting arm, including q,

and i is the robot index in the connecting arm (the 0th robot refers to q). Hence,

0 = |q̇‖(t)| ≤ |ṙi‖(t)| ≤ |u̇‖(t)| holds. Together with the constant angular velocity

observation, we conclude that |q̇(t)| ≤ |ṙi(t)| ≤ |u̇(t)| and the motion constraint is

satisfied.

We now bound the number of robots used by this strategy.

Lemma 4. The length of the connecting arm is upper bounded by 2D.

Proof. Let pc and pf be the closest and furthest points on O from b, respectively. By

definition, we know that d(b, pc) ≤ d(b, pf) ≤ D where D is the maximum SP from b.

We find an upper bound on the length of the connecting arm using triangle inequality.

For any point x in the polygon, due to triangle inequality, we have d(c, x) ≤ d(c, b) +

d(b, x). We subtract r from both sides: (d(c, x) − r) ≤ d(x, b) + (d(b, c) − r). The

connecting arm has length d(q, x) where q is the closest point on O from x. This

distance is equal to the left hand side of the inequality, i.e. d(c, x) − r. By definition

d(x, b) and d(b, pc) = d(b, c) − r are upper bounded by D, hence the length of the

connecting arm is upper bounded by 2D (Figure 2.7).
b

c

x

r

d(c, x) − r d
(x
,b
)
≤

D

d(b, c)
− r

Figure 2.7: Bounding the length of the connecting arm using triangle inequality.

Lemma 5. The length of the wrapping arm is upper bounded by 3D.

38

Proof. Next, we find a bound on the length of the wrapping arm (Figure 2.8). The

length of the wrapping arm is equal to the sum of the SP distance from b to O and

the circumference of O, i.e. 2πr + d(b, pc). Since d(b, pc), the length of wrapping arm

is upper bounded by 2πr + D. Now we will find a bound on 2πr by finding a bound

on the ratio: πr
D . Although we do not know D, we use the lower bound on d(b, pf) to

find an upper bound on this ratio. Hence we will show the following inequality holds:
πr
D ≤ πr

d(b,pf)
≤ 1. First, we calculate the maximum value of this ratio for a special case

where P does not intersect with the tangents [b pt] and [b p′t]. In this case, the ratio is
πr

r(θ+cot(θ)+π/2) . Using basic calculus, we can show that the maximum value of the ratio

is 1.

b

c pc
pf

pt

p′t

r

θ

Figure 2.8: The shortest geodesic distance from b to pf and the length of wrapping arm

in a convex polygon.

We now show that if P intersects with one or both of the tangents, the ratio is

reduced. Hence, the upper bound found in the special case is valid for any case.

Two types of vertices of P exist which can intersect with one or both of the tangents.

Figure 2.9 shows these cases. The furthest point pf on obstacle has the property that it

has two shortest paths from the opposite sides of the obstacle. Any other point on the

obstacle has a unique shortest path. For example, in Figure 2.8, these shortest paths

are SP1 = {b, pt, pf} and SP2 = {b, p′t, pf}. Since both shortest paths are equal, we can

find d(b, pf) = SP1 = SP2. Moreover, since both shortest paths start from b and end

at pf , their union yields a geodesic convex hull around O and b. Hence, we can say

39

that d(b, pf) is half of perim(H) where perim(H) is the perimeter of the convex hull

H = {b, pt, pf , p′t}.

c

b
s

pnewf

pf

p′t

pt

pnewt

c

b

s

pf

p′t

pt

Figure 2.9: Two types of vertices of P which can obscure with [b pt] and [b p′t]

First, we consider the first type of vertex (Figure 2.9-Left). Let s be a vertex which

interferes with [b pt]. The distance of the furthest point on O from b is half of perim(H)
where H = {b, pt, pf , p′t}. Now assume that we remove s; the distance of furthest

point on O from b becomes half of perim(Hnew) where Hnew = {b, pnewt , pnewf , p′t, b}.
By triangle inequality (d(b, pnewt) ≤ d(b, s) + d(s, pt) + d(pt, p

new
t)), we can show that

perim(H) is longer than perim(Hnew). Hence, by introducing s, we reduce the ratio:
πr

d(b,pf)
.

Let s be a vertex of the second type (Figure 2.9-Right) which interferes with both

[b pt] and [b p′t]. Observe that πr
d(s,pf)

≤ 1 holds due to the special condition that we

discussed before. Because d(b, pf) = d(b, s) + d(s, pf), the following inequalities hold:
πr

d(b,pf)
≤ πr

d(s,pf)
≤ 1.

If there are multiple vertices of P interfering with H, this ratio still holds because

introducing additional vertices between s and b only increases d(b, pf). Finally, πr ≤ D

holds and consequently the length of the wrapping arm is upper bounded by 3D, i.e.

2πr +D ≤ 3D.

Theorem 6. In a polygon with a single circular obstacle, let m∗ be the minimum number

of robots required to maintain connectivity. The strategy presented in this section uses

at most 5m∗ robots.

Proof. From Lemma 4 and Lemma 5 the number of robots used by connecting and

wrapping arm are upper bounded by ⌈2D⌉ and ⌈3D⌉, respectively. Any solution has to

use at least ⌈D⌉ number of robots using the same reasoning in Theorem 3. Hence the

40

number of robots used in our strategy is bounded by 5 times the number of robots used

in the optimal solution which completes the proof.

⌈d(b, pc) +D⌉+ ⌈d(b, pc) + 2πr⌉ ≤ ⌈2D⌉+ ⌈3D⌉ ≤ 5⌈D⌉ ≤ 5m∗

Convex polygonal obstacle

In this section, we extend our strategy for single circular obstacles to single convex

polygonal obstacles. The main idea of the strategy remains the same. The wrapping

arm stretches from b to convex obstacle O and wraps around O. The connecting arm

stays on the shortest path (SP) from b to O and an extra robot q moves on the boundary

of O, bridging the connecting and wrapping arms.

The strategy of the robots on the wrapping arm is straightforward: We place robots

so that ESP holds. These robots do not move.

Let k be the number of vertices ofO. Let V = {v0, v1 . . . , vk−1} andE = {e0, e1 . . . , ek−1}
be the vertex and edge sets of O, respectively. We split P into 2k regions by shoot-

ing two rays from each vertex vi: one perpendicular to ei and one perpendicular to

emod(i+1,k) (See Figure 2.10).

There are two types of regions in this partitioning. The regions labeled as Vi has
the property that the shortest path from any point x ∈ Vi to O starts at vi. Similarly,

Ei has the property that the shortest path from any point x ∈ Vi to O starts at some

interior point of ei (See Figure 2.10).

Let SPO(t) be the shortest geodesic shortest path between u(t) and O and parent

of u(t) be the closest vertex to u(t) in SPO(t). We investigate the connecting arm’s

strategy in three cases: (i) u(t) has a parent which is different than q(t) (ii) u(t) has

q(t) as its parent and q(t) is on one of the vertices of O (iii) u(t) has q(t) as its parent

and q(t) is on one of the edges of O.
Case (i) If u(t) has a parent other than q(t) then as shown in Section 2.4.3, we can

show that q̇(t) = 0 (see bottom strategy in Figure 2.11). The proof is identical to the

first case in Section 2.4.3. Finally, we use EQ-DIST strategy to keep the user connected

when this condition holds.

41

v0

v1

v2

v3

v4e0

e1

e2 e3

e4

V0

V1

V2

V3

V4E0

E1

E2
E3

E4

Figure 2.10: The partitioning for single convex obstacle case.

Case (ii) If q(t) is the parent for SP from u(t) to O and q(t) ∈ V, we can think

of q(t) as a base station (i.e. q̇(t) = 0) and execute EQ-DIST strategy as long as this

condition holds (see right strategy in Figure 2.11).

Case (iii) When q(t) is the parent of u(t) and q(t) is on an edge ej , then SP becomes

a perpendicular line segment to ej . Let SPO(t) and SPO(t+ dt) be the shortest paths

at time t and t+ dt. We divide the velocity of u into two components: radial velocity

u̇‖(t) and tangential velocity u̇⊥(t). We make the same division for any robot ri on

the connecting arm including q. Since both shortest paths are perpendicular to ej ,

we can show that tangential velocities are equal: i.e. q̇⊥(t) = ṙi⊥(t) = u̇⊥(t) (see

Figure 2.12). Since q stays on the boundary, we have |q̇‖(t)| = 0. Moreover, we can

show that |ṙi‖(t)| = i
nc
|u̇‖(t)| where nc is the number of robots in the connecting arm

and i is the robot index in the connecting arm. Hence, |q̇‖(t)| ≤ |ṙi‖(t)| ≤ |u̇‖(t)| holds
which implies |q̇(t)| ≤ |ṙi(t)| ≤ |u̇(t)|.

In the above analysis, we assume that in SPO(t) and SPO(t + dt) the parent of u

is q. If this is not the case, since q is initially the parent, we can find a time interval

dt′ < dt where q is the parent of u in SPO(t + dt′). After the parent changes, we use

42

u(t)

u(t)

u(t)

u(t+ dt)

u(t+ dt)

u(t+ dt)

q(t)
q(t+ dt)

q

q

Figure 2.11: The strategies for convex polygon case.

EQ-DIST strategy.

Theorem 7. In an arbitrary polygon with a single convex obstacle, let m∗ be the number

of robots used by optimal solution. Our strategy uses at most 5m∗ robots.

Proof. The proof is very similar to the proof of Theorem 6. Recall that by using the

triangle inequality, we can show that the length of the connecting arm is less than or

equal to d(b, q)+D whereD is the length of the maximum SP from b and q be the closest

point on O from u. By definition, we have d(b, q) ≤ D. Hence connecting arm is upper

bounded by 2D. The length of the wrapping arm is equal to d(b, pc) + perim(O). By

definition, we have d(b, pc) ≤ D. In the rest of the proof, we show that perim(O) ≤ 2D

holds.

Let Hb = {b, vi, vi+1 . . . , vk, v0} be the convex hull of b and O. The distance between
b and its furthest point on O (i.e. d(b, pf)) is equal to the half of the perimeter of the

convex hull (i.e. perim(Hb)). Hence, if we show that perim(O) ≤ perim(Hb) = 2d(b, pf)

then we have perim(O) ≤ 2D.

We define the above inequality in terms of edge lengths, i.e. perim(O) = e1 + · · ·+
ei+ei+1+· · ·+ek+e0 ≤ x+y+ei+1+· · ·+ek+e0 = perim(Hb). As shown in Figure 2.13,

43

u(t+ dt)

q(t)

SPO(t)

SPO(t+ dt)
u̇‖(t)

u̇⊥(t)

ṙi‖(t)
ṙi⊥(t)

Figure 2.12: We show that in the third case of the strategy ESP and the motion and

communication constraints are satisfied.

Hb and O has common edges and we can subtract these edges from both sides of the

inequality, i.e. e1 + · · · + ei ≤ x + y. We show that this inequality holds by induction

on the number of edges ei. The base case where O differs from Hb with a single edge

is trivial (directly from triangle inequality). Let us assume that this inequality holds

for all ei, i ≤ k, then (i) e1 + · · · + ei ≤ x + y holds. Using triangle inequality in the

triangle △bb′vk+1, we have (ii) ek+1 + y ≤ (x′ − x) + y′. Combining (i) and (ii), we get

e1 + · · ·+ ek + (ek+1 + y) ≤ x+ y + (x′ − x) + y′ which proves the inductive step.

Hence, we showed that perim(O) ≤ perim(H) ≤ 2D. Note that P can occlude H,
however we showed in the proof of Theorem 6 that this only increases the perimeter of

H and the same argument holds for this case too. Hence, we skip the proof. Since the

above inequality holds, the length of the wrapping arm is upper bounded by 3D.

The number of robots used by connecting and wrapping arm are upper bounded by

⌈2D⌉ and ⌈3D⌉, respectively. Using the ⌈D⌉ lower bound on the number of robots used

by the optimal solution, we can upper bound the number of robots used by our strategy

as follows:

⌈d(b, q) +D⌉+ ⌈d(b, pc) + perim(O)⌉ ≤ ⌈2D⌉+ ⌈3D⌉ ≤ 5m∗

44

e0

e1

ei

ei+1

ek

O
v0

vk

vi

vi+1

xy

x− x′

y′

b

b′

Figure 2.13: We can show that perim(O) ≤ perim(H)

Non-convex obstacles

Let O be a general, possibly non-convex, obstacle. We can extend the strategy for

convex obstacles to O as follows.

Let H be the geodesic convex hull of O. When u is outside of H, our strategy to

maintain connectivity between u and b is similar to what it was when we were dealing

with a convex obstacle, but now we treat H as the obstacle: The wrapping arm stretches

from b to H and wraps around H. The connecting arm stays on the SP from H to u.

We add an extra robot q on the boundary of H to bridge the connecting and wrapping

arms (see Figure 2.14).

When u is inside H, the boundaries of H and O create a set of disjoint simply

connected regions, and we consider the one that contains u. This region is open only

from one side (the boundary of H), and an it does not interfere with any edges of P.
Hence, when u is inside H, we can use the same strategy as when it is outside, and

move our connecting arm so that it is on the SP between u and the boundary of H.
When u is on the boundary of H, q and other robots in the connecting arm are

45

located at the same location. Hence, when the user moves from the inside region to the

outside region (or vice versa) the transition point satisfies both the inside and outside

strategies.

In both cases, we are connecting u to the closest point on the perimeter of a convex

region with a robot q as a bridge, and we know from previously that this is possible

while satisfying the motion constraint.

Theorem 8. In an arbitrary polygon containing a single polygonal obstacle, let m∗ be

the number of robots used by the optimal strategy. Our strategy uses at most 5m∗ robots.

Proof. The proof is very similar to the proof of the case where the obstacle is convex,

except now we use geodesic shortest paths instead of straight lines. Using the triangle

inequality as before we can say that the length of the connecting arm is less than or

equal to 2D, where D is the length of the longest SP ∈ P, and as before, the part of

the wrapping arm from b to the closest point in H is shorter than D.

We define H2 as the geodesic convex hull of H and b. We know that perim(Hb) is

2D, and we want to prove that perim(H) is not more than that. As before, perim(H)
and perim(Hb) have common edges, and if we subtract these edges from the union of

perim(H) and perim(Hb) we end up with a triangle of shortest paths that connect b

and the vertices v0 and vi where Hb first touches H. By applying the triangle inequality

to this △bv0vi we can conclude that d(v0, vi) ≤ d(b, v0) + d(b, vi), and it follows that

perim(H) ≤ perim(Hb) ≤ 2D.

Therefore the upper bound on the total number of robots required by our strategy

is:

⌈D⌉+ ⌈perim(H)⌉+ ⌈2D⌉ ≤ ⌈5D⌉ ≤ 5m∗

2.4.4 Polygonal environments with multiple obstacles

Let P be a convex polygonal environment containing two or more non-intersecting

obstacles. If the convex hulls of the obstacles are disjoint, we can often extend the

46

u(t)

u(t)

u(t)

O
b

v0

v1

v2

Figure 2.14: An example of our strategy for dealing with a non-convex obstacle

strategies for the single obstacle case as follows. First, we partition P into convex cells

such that each cell contains exactly one obstacle.

For each cell we execute a strategy similar to the one we used in domains with a single

obstacle: we have a wrapping arm that connects to b and wraps around the obstacle in

the cell, and we have a connecting arm that, whenever u is in the cell, connects u to

the closest point to u on the obstacle.

We start by presenting the partitioning strategy for the case when all of the obstacles

are circular.

Power diagrams for circular obstacles

Our partitioning strategy relies on the concept of power diagrams [68]. The power

pow(x, s) of a point x with respect to a circle (or in our case a circular obstacle) s

in the Euclidean space R
2 is given by d2(x, z) − r2, where d is the Euclidean distance

function, and z and r are the center and the radius of s. For a finite set of circles S

in R
2, the power diagram of S, denoted PD(S), is a cell complex that associates each

s ∈ S with the convex domain {x ∈ R
2|pow(x, s) < pow(x, t),∀t ∈ S − s}. An example

is shown in Figure 2.15. When r = 0, i.e. the circles degenerate to points, PD(S)

becomes the Voronoi diagram. The following properties about PD(S) are relevant to

our partitioning strategy (see [68] - §2.2: Observations 1 and 2, and Lemma 1).

47

P

u

ui

si

Ci

b

Figure 2.15: Power diagram edges are shown in blue (light color). Circular obstacles

are shaded. The connection from b to cell Ci is shown, along with the construction of

the point ui.

• When the circles are non-intersecting, the edges of PD(S) do not intersect any of

the circles.

• If the cardinality of S is k, then PD(S) contains at most k cells.

Multiple circular obstacles

Let S be the set of finite circular obstacles in our environment. We intersect each cell in

PD(S) with P to get a convex tessellation of P, with each resulting cell Ci containing

one obstacle. We include the power diagram edges that bound Ci as part of Ci.

The strategy to maintain connectivity is as follows: At any time, let Cu be the cell

that contains the user u. The robots in Cu will move according to the strategy presented

in Section 2.4.3, and maintain the user’s connectivity.

The other robots move to “guard” their regions . Let Ci be a region which does not

contain u. We project the user onto the boundary of Ci by finding the closest point in

48

Ci to u using the Euclidean distance (i.e. we ignore the obstacles).

Let ui be the closest point to u in Ci (see Figure 2.15). Because Ci is convex, ui

cannot move faster than u. Therefore the robots in Ci can maintain ui’s connectivity to

b by executing the strategy presented in Section 2.4.3. This guarantees that the user’s

connectivity is maintained by the connecting arm in Ci as soon as the user enters this

cell.

We now bound the number of robots.

Lemma 9. Let m∗ be the number of robots, including the base station, used by any

optimal solution to guarantee connectivity between u and b in a convex environment

with h circular obstacles. Our strategy uses at most 5hm∗ robots.

Proof. By definition, the furthest distance from b to any point in cell Ci is bounded from

above by D. Hence the previous bound of 5m∗ for a single circular obstacle (Theorem 6)

applies to each cell Ci. Since the number of cells is equal to h, the number of robots

used by our strategy is bounded from above by 5hm∗.

Extension to non-circular obstacles

When the obstacles are non-circular, the notion of a radius is undefined and power

diagrams cannot be applied as such. However, if we can find an enclosing circle for each

obstacle such that the circles are disjoint, it is straightforward to extend the previous

result. In certain cases, a tessellation exists even if the disks defined by minimum

enclosing circles are intersecting.

Consider obstacles oi and oj with enclosing disks si and sj (see Figure 2.16). When

si 6= sj intersect each other, but do not intersect oj and oi respectively, the power

diagram edge p ∈ PD(S) that is formed by si and sj lies in the region si∩sj, which does

not contain any obstacle. The resulting partition cells remain convex [68]. Therefore

in this situation we can enact our strategy, and because each cell requires up to ⌈5D⌉
robots, the upper bound on the number of robots we need for the whole domain is 5hm∗.

2.4.5 Beyond O(h)-Approximation

Can we better approximate the number of robots necessary to maintain connectivity in

an arbitrary environment with h obstacles? In this section, we provide further insights

49

P

o1

o2

o3

Figure 2.16: An example of a valid tessellation for a domain with three obstacles o1, o2, o3

with enclosing circles s1, s2, s3 also shown. The obstacles are not circles, but each one

is entirely contained within a single circle.

on the performance of the algorithm we presented in Section 2.4.4. Recall that in order

to compare the performance of our algorithm with respect to the optimal solution, we

used a simple lower-bound on the required number of robots based on the parameter

D. In many scenarios however this is a very loose lower bound. One way of improving

the approximation ratio is to obtain a better lower-bound. Unfortunately, this seems

very difficult. In general, the optimal solution can utilize arbitrary topologies and

change them dynamically. However, under the following assumptions on the topology

of the network, one can obtain better insights on the nature of the performance of our

algorithm.

A-1. The topology of the network is an octopus topology which consists of arms directly

connected to the base station on one end. The user is connected to the other end.

A-2. The strategies are stationary, i.e. when the user returns to a previously visited

location, the configuration of the robots is the same as before.

These assumptions are in fact desirable constraints in practice. An implementation

that requires dynamically changing the network topology can have a huge communi-

cation overhead. The first assumption A-1 defines a simple yet flexible topology, and

50

clear communication direction for each arm: from the end point (connected to the user

u) to the base station b. Only the routing table in the base station will be updated.

Assumption A-2 allows the robots to plan their motion based only on current location

of u.

Under these assumptions, we are now ready to present two extremal examples which

demonstrate the quality of the approximation performance our algorithms. They also

shed light on the nature of an optimal solution which can be utilized when designing

algorithms.

In the next subsection, we present an instance where the optimal solution needs

to use almost as many robots as the number of robots used by our strategy. In these

instances our solution is almost optimal. Afterwards, we present an instance where the

lower bound on the number of robots used by the optimal strategy is close to D; this

will show that our analysis is tight, and the approximation ratio of our algorithms is

Ω(h).

Example-I: O(h) arms may be needed

Consider a regular h-gon Ph with the base station b at its center. There are h circular

obstacles, each of radius r, distributed evenly around b, close to the boundary of Ph.
The left side of Figure 2.17 illustrates an instance with h = 12. In such an environment,

our strategy divides the domain into h regions, allocating O(D) robots for each region

where D is the maximum distance from b. This makes a total of O(Dh) robots. The

left side of Figure 2.17 shows the power diagram edges, and a wrapping arm and a

connecting arm when user u is at the location shown.

We now show how one can construct an environment, for any given h, such that

the optimal solution must use Ω(Dh) robots by generalizing the environment shown in

Figure 2.17.

We start with a regular h-gon and place the centers of the obstacles on a circle of

radius R centered at b, such that they are equally distributed. At first it appears that

our construction has at least three independent parameters: r (size of the obstacles), R

(size of the distribution of the obstacles) and D (size of the domain). However, some of

these parameters constrain others. They are chosen as follows:

First, the obstacles are taken to be larger than the communication radius so that

51

rr

b

D

u

rr

b

D

R

u

Figure 2.17: The left figure shows the solution given by our strategy. The configuration

of the connecting and wrapping arms are illustrated when the user is at the top region.

The right figure shows the partitioning of the optimal strategy. When the user is at

u the configuration of the arms dedicated to two left regions and central region are

illustrated.

the robots in the optimal solution cannot be stationary, i.e. we set r to a constant

greater than 1/π. Since we place obstacles at a constant distance from the boundary,

fixing R determines D. From now on, we use R and r as the only free variables in the

construction.

We now focus on the optimal solution. Any desired strategy that respects both

A-1 and A-2 must partition Ph into regions such that a unique arm is responsible for

connecting user u in each region. Further, since two neighboring partitions must be

both convex at their common boundary, the partitions must be obtained by slicing the

polygon with straight lines. An optimal solution is one which partitions the environment

so that the number of robots used is minimized. When there is one obstacle in the

environment, the optimal partitioning has two regions as shown in the left part of

Figure 2.18. When there are two obstacles (see middle of Figure 2.18), one possible

partitioning is determined by the line crossing the centers of the obstacles. Observe

that due to the communication range the tip of the arm does not have to go all the way

52

to the line. Hence when u moves from one side of the obstacle to the other side, the

movement of the the robot at the tip of the arm will be less. More specifically for any

line crossing the communication arcs xy and zt determines a valid partitioning.

When there are three obstacles and obstacles are almost collinear as shown right of

Figure 2.18, an optimal solution can use a single line which crosses the communication

arcs of all three obstacles. In our construction, we will prevent this case by choosing

R accordingly. Hence an optimal partitioning will have at least h/2 + 1 partitions. We

choose R such that the following constraints are satisfied:

(i) R ≥ 2r sin(1/r)

1− cos(2π/h)
(ii) R ≥ r

sin(π/h)

r

b

1

r

b

x y

z t

1

r

b

ǫ

Figure 2.18: When there is only one obstacle, the line connecting b to the center of the

obstacle optimally partitions the space, as shown in the left figure. If there are two

obstacles, any line crossing the arcs labeled by xy and zt is an optimal partitioning line,

as shown in the middle figure. If three obstacles are almost collinear, we can find a line

which crosses through the communication arcs shown, as shown in the right figure. In

our construction, we prevent this case by choosing R accordingly.

The first constraint ensures that no three obstacles can be separated by a single line,

and the second constraint ensures that obstacles do not overlap. When the environment

obeys these constraints, there must be a unique partition for every two obstacle. The

right of Figure 2.17 shows the optimal partitioning when h = 12, and a snapshot of

the configuration of three arms are also shown. Using this construction we guarantee

53

that optimal uses at least hR/2 robots which is only a constant times better than our

strategy.

Example-II: O(h)-approximation ratio is tight

Even though the previous example is encouraging, there are some cases where the per-

formance of our approximation is Ω(h). In the following example, the environment is a

D ×D square and h obstacles of radii r > 2 are placed at the bottom of the environ-

ment. Since there are h obstacles, our solution uses O(Dh) number of robots (see left of

Figure 2.19). However, in this case the optimal solution can do better than that. If we

partition the environment through the centers of the obstacles, then two arms of length

O(D) is sufficient to keep the user connected. This strategy is shown in the right of

Figure 2.19. Since the number of robots used by optimal strategy is O(D), our solution

is an O(h) approximation in this instance; therefore our analysis is tight.

rr
b

D

rr
b

D

u

Figure 2.19: When all the h obstacles are collinear with b, our strategy divides the

polygon into O(h) regions and uses O(hD) robots, as shown in the left figure. On the

other hand, the optimal solution (shown in the right figure) uses only two arms of length

O(D) to guarantee connectivity. This shows that our analysis is tight.

54

2.5 Simulations and Experiments

We demonstrate the practical feasibility of the robotic router systems through simula-

tions and experiments. Our simulations and experiments are designed for creating a

robotic router network on the floor where the Robotics Laboratory at Rensselaer Poly-

technic Institute (RPI) is located (see Figure 2.20 and Figure 2.21). The Computer

Science Department owns only a small portion of this floor (left block) and our wireless

network covers only the part of the floor owned by the department. Hence, creating a

robotic router network is an appealing solution to control our robots beyond the area

limited by our wireless network. We found out the communication model on our floor

empirically by measuring the signal between two robots from varying locations (see

Figure 2.20).

The algorithms implemented in this section are based on the known and unknown

user trajectory algorithms presented in Section 2.3. The approximation algorithms

presented in Section 2.4 provide efficient solutions in terms of running time. However,

the required number of robots can be a constant time more than the minimum number

of robots required. Since we have a limited number of robots, we chose the optimal

solutions of known and unknown user algorithms over the approximation algorithms.

Although the running time of these algorithms are exponential, their computational

complexity is practical for our experiments since we use a small number of robots.

Now, we start with simulations demonstrating the advantages of using a robotic router

network over a stationary network.

2.5.1 Simulations

We demonstrate a practical application of mobile router networks with simulations for

the environment shown in Figure 2.21. We discretize the hallways into discrete locations

almost uniformly (some degeneracy exists near the corners of halls). We construct the

connectivity table according to the following rule: if the distance between two locations

is less than a fixed distance τ , and they are on the same hallway, then these two locations

are connected. If two locations are not in the same hallway, their connectivity is based

55

Figure 2.20: The communication model on the floor where experiments take place.

Left: The blue circle (in the middle of the bottom corridor) is the stationary blue

robot. Fading red circles show the signal strength as the red robot moves to the upper

corridor (actual measurements). When the red robot reaches the position shown on the

map, the signal strength becomes zero. Right: By moving a third robot (black circle)

to the position shown on the map, we can reestablish the communication. The colors

indicate the signal strength from black to red and black to blue nodes.

on the geodesic distance between them 3 . To obtain the connectivity threshold τ ′ for

this case, we subtract a fixed penalty from τ for each turn on the path between the two

locations. If the geodesic distance between the two locations is less than τ ′ then these

two locations are connected. In the following simulations, the robotic routers are twice

as fast as the user. The base station is located at the bottom of the middle vertical

hallway.

In order to obtain a baseline, we computed (by enumeration) the minimum number

of static routers to cover the environment. It turns out that at least 4 static routers, as

shown in Figure 2.21, are necessary to satisfy coverage and connectivity constraints.

In the following simulations, we start with a network of a single robotic router. For

a given (known) user trajectory, we compute the corresponding robot trajectory which

keeps the user connected during its trajectory. Next, we find an escape trajectory in

which a single robotic router is not sufficient to maintain the connectivity. Finally,

we show that two robotic routers are sufficient to keep the user connected whatever

3 The connectivity model is inspired by the observation shown in Figure 2.20 and is also discussed
in Section 2.5.2.

56

Figure 2.21: The minimum number of static routers to satisfy the connectivity and

coverage constraints is 4. The optimum deployment and its network topology is shown.

initial location or trajectory he chooses. We show how two robotic routers keep the

user connected even if the user tries to break the connection. Link to the videos of all

simulations can be found in Appendix A-Multi Media Extension No: 1.

Figure 2.22 shows the result of our first simulation. The top two figures show

the (known) user trajectory and the corresponding robot trajectory computed by our

algorithm. We identify the locations of nodes at the critical time steps with time labels.

Following figures show snapshots of the connectivity graph of active nodes at these

critical time steps. By connectivity graph of active nodes, we indicate the connectivity

links (edges) between base station and the user, and the active nodes (vertices) in this

connection path.

57

Figure 2.22: The known user trajectory and corresponding computed robot trajectory

are shown in top two figures. The remaining figures show snapshots of the user’s con-

nectivity graph (base station - circle with magenta color, robotic router - diamond with

red color and user - square with green color). The third figure shows the initial con-

figuration of nodes where the user is connected to the base station through the robotic

router. The fourth figure shows the configuration at the time step when the user is

directly connected to the base station. The fifth figure shows the configuration when

the direct link between the user and base station is broken and connectivity is supplied

through the robotic router. The last figure shows the final configuration of nodes.

Figure 2.23 shows our second simulation. In this simulation, other than the last

turn, the user follows the same trajectory as the previous simulation (see left figure).

Until this last turn, the robotic router also follows the same trajectory as the previous

simulation. However, in the last step, the robotic router can not keep the user connected.

The right figure shows the snapshot at the disconnected state.

We find the minimum number of required robotic routers for all possible user tra-

jectories by trying AdversarialUserTrajectory algorithm with increasing number of

58

robotic routers until there exist corresponding robotic router trajectories for all possi-

ble initial locations and trajectories of the user. For this environment, we found that 2

robotic routers are sufficient to provide a continuous connection.

Figure 2.23: Left figure shows an escape trajectory for the user. Until the last turn,

the user and the robotic router follow the same trajectory as in Figure 2.22. The right

figure shows the snapshot from the last step where the user is disconnected.

In the last simulation, relying on the sufficiency of two robotic routers, we solve the

known trajectory algorithm with two robotic routers for a path which is not feasible

for single robotic router network. The top three figures in Figure 2.24 show the user

trajectory and corresponding robotic router trajectories. The user starts from the top

left corner of the environment and completes a cycle by crossing from the middle vertical

hall and coming back to the top of the vertical hall. Subsequent figures show connectivity

graph of the nodes as snapshots at critical time steps.

59

Figure 2.24: Top three figures show the user trajectory and corresponding robot trajec-

tories. Subsequent figures are snapshots from the solution of the algorithm including the

connectivity graph of active nodes (base station - circle with magenta color, two robotic

routers - diamond with red and cyan color, and user - square with green color). The

first figure on the third row shows the initial configurations of all nodes where the user

is connected to the base station through the red robotic router. The second figure on

the third row shows the configuration at the time step when the user becomes directly

connected to the base station. The first figure on the fourth row shows the configuration

when the user is connected to base station through three links. The second figure on

this row shows the configuration when the three-link connection reduced to a two-link

connection. The first figure on the last row shows the time step when the user is directly

connected to the base station. The last figure shows the final positions of the nodes at

the last time step.

60

2.5.2 Experiments

To fully test the algorithm presented in Sections 2.3.2 and 2.3.3, experiments were ran in

the real world using the robotic router system which is implemented by Wei Yang [69].

Both the known and unknown user trajectory cases were tested to see whether the

actual implementation would be able to perform as well as the simulated robots.

Known User Trajectory

In this section, we present an experiment in which the robotic router system maintains

the connectivity of the user (a robot), whose trajectory is predetermined, to the base

station.

In the experiment, there is a single user robot, two mobile routers and a base station

(Figure 2.25). The user starts off at location 1 with the mobile routers at locations 40

and 69, and the base station at location 49, as seen in Figure 2.25. The triangles

represent the actual location of the robots, with a blue circle at the center. The circles

are their target locations that the motion planning algorithm produces at each step. The

square represents the base station. Initially, the user is connected to the base station

through the mobile router which is at the middle hallway. In all experiments, the dark

lines highlight the connectivity graph.

Figure 2.25: An overhead view of the environment for the real world implementation

experiments with the initial starting positions of all of the nodes. The triangles represent

the actual location of the robots, with a blue circle at the center. The circles are their

target locations that the motion planning algorithm produces at each step. The square

represents the base station.

61

The overall experiment proceeded for 15 minutes which corresponds to 10 steps in

which the user (solid red triangle) moved down the left hallway and than head right

from the bottom hallway. The mobile router at the right of bottom hallway stayed

at the same location during the experiment. This is because, the user is never close

enough to utilize its services. However, the other mobile router moved up to the top of

middle hallway and moved left to maintain the connectivity of the user (second image

in Figure 2.26). Several steps of the experiment can also be seen in Figure 2.27 and

Figure 2.28.

Although the experiment was relatively short, it was enough to demonstrate that

the overall robotic system can implement the formulation of robotic router problem. We

used the same connectivity model as we discussed in Section 2.5.1 and this experiment

also showed that the connectivity model that we introduced is matched with reality.

Moreover, this experiment was able to demonstrate that the implemented robotic routers

system can successfully implement the known user trajectory motion planning algorithm

from Section 2.3.2. Link to the videos of all experiments can be found in Appendix A-

Multi Media Extension No: 1.

Adversarial User Trajectory

In the adversarial user trajectory experiment, the same environment and experiment

setup were used as in the known user trajectory experiment. However, the user is a

human holding a laptop instead of another mobile router. This new user was allowed to

move at the same velocity as the robots but its trajectory was not known ahead of time

to the base station or the mobile routers. The only requirement for our design is that

the user sends his initial location to the base when he requests a network connection.

The user then moves by entering commands locally, such as “r” to signal a desire to

move right and similarly for the other three directions. The robotic system must then

retrieve the user’s desired movement before calculating the next location of the mobile

routers. For each next location of the user, we consider the user as an adversarial user

and choose the motion strategies for robots which maximize the connection time. This

ensures a guaranteed performance for a user whose trajectory is unknown.

In the experiment, the user first started off at location 16 (in the top hallway) with

the mobile routers and base station all at location 49 (Figure 2.30 and the first image of

62

Figure 2.26: This figure shows various stages of the known user trajectory experiment

being conducted using the real world robotic system implementation. The dark lines

show the connectivity paths between the nodes. Initially, the user is connected through

a mobile router but the path changes as the user moves closer to the base station.

63

Figure 2.27: Known user trajectory experiment-1: Left top figure shows the im-

plementation graphical user interface (GUI). The GUI shows the initial configuration

of the robotic router system. Right top figure shows the Mac base station. Bottom left

figure shows the mobile router in the middle vertical hallway. Bottom right figure shows

the user which is a robot that controlled remotely by the base station.

Figure 2.29). From here, the user proceeded to move right to the right corner of upper

hallway. Initially, the mobile routers did not move because the user was still in range of

the base station. However, once the user moved to the limits of its communication range,

the first mobile router started to move up to relay messages as seen in Figure 2.31 and

second image of Figure 2.29. As the user continued to move right, the first mobile router

also continued to move up, using itself to maintain the user to base connection. Once

this mobile router reached top of middle hallway, it stopped moving because the user

was now visible and connection range was extended. The connection was maintained

from mobile routers current position until the user reached to the right end of upper

hallway. When user was at the end of hallway mobile router moved one step right to

maintain the connectivity (the last image of Figure 4.33). During this experiment, we

64

Figure 2.28: Known user trajectory experiment-2: This figure shows the time

when the connection path of the user is changed as it moves down the middle of the

left hallway. The top row shows the configuration of mobile router network on the GUI

while the bottom row shows the corresponding user location at that time step. The left

column shows the final time step when user is connected to base station through the

mobile router. The right column shows the time step right after the direct connection

of user to base station is satisfied.

acquired perfect connection between the user and base station, and user did not lose

any sent data packets.

From this second experiment, the system clearly demonstrated the ability to react

dynamically to an unknown user trajectory. Since, we do not know the trajectory of the

user, we react to the user as it is an adversarial user. The trajectories of robots was dy-

namically calculated using the table extracted by AdversarialUserTrajectory algorithm.

Our implementation chose the robotic router strategies which maximizes the connec-

tion time of the user according to this table. Hence, the robotic system successfully

maintained the connectivity of the user by moving the mobile routers to their optimal

65

Figure 2.29: This figure shows various stages of the adversarial user trajectory exper-

iment being conducted using the real world robotic system implementation. The dark

lines show the connectivity paths between the nodes. The first figure shows the initial

configuration of the mobile router network. The second screen shows a mobile router

moving up to maintain connectivity as the user moves to the right. After reaching the

top, the mobile router remains stationary until the user reaches the end of the hallway.

When this occurs, the router starts to move right in an attempt to maintain connectivity

between the user and base station.

66

Figure 2.30: Unknown user trajectory experiment-1: This figure shows the initial

locations of the mobile router network. In this experiment, the mobile router network

keeps the connectivity of an adversarial user (laptop) who requests wireless connectivity

and sends acknowledgment of its move in each time step. The top left figure shows the

GUI, the top right figure shows the message sent from user, the bottom left figure shows

the robots and base station, and the bottom right figure shows the user.

locations.

2.6 Concluding Remarks

In this chapter, we addressed the problem of creating an adaptive network between

a stationary base station and a mobile target. In this problem, robotic routers are

used to create a communication bridge between the base and the target. For arbitrary

communication models, we presented two optimal strategies for two user motion models.

In the first model, the user’s trajectory is known whereas in the second model the user

moves in an adversarial fashion. Even though the algorithms compute optimal solutions,

67

Figure 2.31: Unknown user trajectory experiment-2: This figure shows the second

step of the user. The user continues his movement in the right direction (the input “r”

shown in top right figure). To keep him connected, the mobile router moves one step

forward.

their running times are exponential in the number of robots in the network. We improved

the running time of the previous algorithms by presenting an approximation algorithm

for a geometric instance of the robotic router problem. In this formulation, two entities

can communicate if the geodesic distance between them is less than a threshold. We

presented an optimal (in terms of the number of routers) algorithm for simply-connected

polygons, a constant factor algorithm for a polygonal environment with a single obstacle,

and an O(h)-approximation algorithm for environments with h obstacles. Finally, we

demonstrated the practical feasibility of robotic router systems through simulations and

experiments.

68

Acknowledgment

The results of this chapter appeared in ICRA2008 [19], ICRA2010 [70] and the Interna-

tional Journal of Robotics Research (IJRR) [71]. This work is joint with Nikhil Karnad,

Patrick Plonski, Wei Yang and Prof. Volkan Isler.

Chapter 3

Communication Bridge

The task of building a communication bridge connecting two locations arises frequently.

For example, when fighting forest fires, a high capacity connection between the command

center and a temporary base may be needed. When there is no underlying communica-

tion infrastructure (which is typically the case in emergency response scenarios), mobile

entities with communication capabilities can be used to build a communication bridge.

In particular, with recent advances in robotics, using mobile robots for this purpose is

becoming feasible.

In this chapter, we address the problem of building a communication bridge in an

efficient fashion. Imagine that we are given a source s and a destination t (the two

locations that need to be connected), and initial locations of n robots (or mobile hubs).

The goal is to pick a small subset of these robots and determine their final locations, so

that when the robots arrive at their final locations, there is a path between s and t in

the underlying communication graph. In this case, we say that a communication bridge

between s and t has been established. Throughout the chapter, we assume that two

entities can communicate if and only if they are within a given communication radius

r. See also Figure 3.1.

We focus on two measures of efficiency. The first one is the distance traveled by the

robots to establish the communication bridge. Relevant objectives are minimizing the

maximum or the total Euclidean (L2) distance traveled. This measure is important when

the robots have limited battery power. The maximum distance traveled also determines

how quickly the bridge can be established. The second measure is the number of robots

69

70

s t

x2

x3

x4

x5

x1 x6

x′2 x′3

x′4
x′5

Figure 3.1: Initial locations of the robots are xi, i = 1, . . . , 6; s and t cannot commu-

nicate. By moving x2 → x′2, x3 → x′3, x4 → x′4 and x5 → x′5 a communication bridge

with four hubs connecting s and t is established. The circles around the nodes illustrate

their communication radii.

required to establish the communication bridge. This is an important parameter because

if we use a small number of robots for the given task, then the remaining robots can be

used for other tasks. In addition, a communication bridge with a small number of hubs

is desirable in order to minimize the latency of the network.

Our results and techniques. We believe that the two metrics mentioned above

are equally important. Therefore, we include both metrics in the optimization problem

we study. More specifically, we present algorithms to minimize the number of hub robots

and their maximum (or total) movement to create a communication bridge between two

stationary locations.

The general problem where the environment is represented with an arbitrary graph is

NP-hard and, in fact, cannot be approximated efficiently [23]. . Hence, in this chapter,

we focus on a geometric version where the underlying environment is the Euclidean

plane, and the chosen robots are required to move onto the straight line segment [s, t] to

form a communication bridge. This special case is important from a practical standpoint

because moving the robots onto this line segment yields the minimum number of hubs

71

in the communication bridge, as compared to any other curve joining s and t. Another

motivation for this model is low power, inexpensive infra-red communication which is

becoming a popular choice for small robots: In an extreme case, if each robot is equipped

with only two IR receivers/transmitters such that the pairs are placed 180 degrees

apart, a straight line communication is necessary to establish a communication bridge

between s and t. From a theoretical perspective, these problems turn out to be quite

challenging. One of the major sources of difficulty is the lack of an “ordering property”

in the optimal solution (We make the ordering property explicit in Section 3.2.1.) As an

example, consider the version where we are given a maximum travel distance for each

robot. Suppose robot a (resp. robot b) can reach points inside the line segment [la, ra]

(resp. [lb, rb]). It is possible to build instances where ra is to the left of rb but in the

optimal solution robot a moves to the right of robot b (Figure 3.2).

s t

rr

a

d

d

rala

b

rblb

Figure 3.2: Robot a (resp. robot b) can reach points inside the line segment [la, ra]

(resp. segment [lb, rb]). Although a is to the left of b, a must move to the right of b,

to ra, and b must move to the left of a, to lb, to establish a communication bridge. The

final locations of robots are shown by unfilled circles.

For the maximum distance version (MaxDist), we overcome this hurdle by relaxing

the distance requirement: if the optimal algorithm can build a communication bridge

with at most k hubs by moving each robot at most distance d, we present an approx-

imation algorithm which builds a communication bridge with k hubs by moving each

robot at most distance
√
2d (Section 3.2.1). The key result enabling the algorithm

72

is the presence of an ordering property for the relaxed version. For the sum version

(SumDist), we show that there is an ordering property but for the L1 metric (sum of

absolute values of coordinate differences). We present an algorithm which exploits this

ordering property and returns the optimal solution for the L1 metric. This in turn yields

a
√
2-approximation algorithm for the L2 case (Section 3.2.2).

The algorithms we present are dynamic programming solutions which exploit the

ordering property. However, even with the ordering property, the dynamic programming

solutions are not straight-forward. This is mainly because the final locations of the

robots must be chosen from the continuous set of points on the line segment [s, t]: There

are instances in which robots must be placed precisely to achieve the optimal solution,

and slightly perturbing the optimal solution (to a finite set of points) breaks connectivity.

Therefore, our algorithms avoid an a priori discretization of the line segment.

Finally, we present an interesting property regarding the number of hubs. Let L > r

be the distance between s and t. Clearly, at least n∗ = ⌈L/r⌉ − 1 hubs are required to

connect s and t. However, building a bridge with n∗ hubs may not be feasible due to

the motion constraint. We show that any minimal solution which satisfies the motion

constraint uses at most 2n∗ hubs (Section 3.3). This means that by removing constraints

on distance we can gain a factor of at most 2 in the number of hubs.

3.1 Related Work

Exploiting the controlled mobility of robots to create a connected network has received

significant attention in robotics community. In the coalescence problem, the robots are

scattered in an environment and their locations are unknown to each other. The goal is

to create a single connected network [42]. In [72], the authors present a strategy where

each robot performs a random walk. When robots meet they create a connected cluster

and continue the same strategy as a single robot. Authors analyze the coalescence time

for the random walk strategy. In rendezvous problem, the goal is to minimize the time

required for two or more players (robots) to meet [41]. The robots are assumed to have

unit speed and they are randomly deployed in an environment. This problem is exten-

sively studied in the literature. Depending on whether or not players can decide their

strategies in advance, rendezvous problem is studied under two classes. In symmetric

73

rendezvous [73–76] problem, each player has to execute the same strategy. In the asym-

metric version of the problem [41,77,78], players can decide their roles in advance, e.g.

while one player waits, the other player can be charged for searching the other robot.

In the related, Network Formation Problem (NFP), robots whose locations are un-

known are placed in an environment . Initially, a single robot has the information.

This robot searches for other robots to share the information. Once the information

is shared, other robots can participate for the information propagation task [79]. A

related problem to NFP is the Freeze-Tag Problem (FTP) [80]. In FTP there is a single

awakened robot and all the other robots are asleep (frozen). A robot can be awakened

only when an awakened robot visits (tags) it. The objective is to awake all the robots

as early as possible [81].

In the previous work, network formation problems are formalized as creating a single

network from mobile robots. On the other hand, in some applications, a network has

to be established in according to accomplish a specific task such as creating a commu-

nication bridge between two stationary locations. In this work, we address the problem

of creating a communication bridge while minimizing the number of robots and their

movement.

In [23], Demaine et al. studied the problem of moving pebbles along the edges of a

graph (with n vertices) so as to achieve various connectivity objectives while minimizing

the number of moves. In particular, they sketch an O(n)-approximation algorithm for

the problem of creating a path of pebbles between two given vertices with minimum sum

distance. They also show that minimizing the total or maximum distance is NP-hard,

and that the maximum distance case cannot be approximated within a factor Ω(n1−ǫ).

Since connectivity and mobility are coupled in their model, their results do not directly

apply to the problems studied here. In this chapter, we present the first results for the

problem of building a communication bridge while minimizing the number of hubs and

the distance traveled by them for a given communication radius.

3.2 Building a Bridge with the Minimum Number of Hubs

In this section, we study the problem of building a communication bridge between s

and t while optimizing the number of hubs and the movement of the robots. We present

74

solutions to two bi-criteria optimization problems: In the first problem (MaxDist), we

seek a solution with the minimum number of hubs subject to the constraint that each

robot moves at most a given distance d. In the second problem (SumDist), the constraint

is that the total movement must not exceed B. In this chapter, we present algorithms

for given d or B. To find the minimum value of d (resp. B), one can perform a binary

search on d (resp. B resp.).

A couple of remarks: When the distance between s and t is less than r, i.e. |st| ≤ r,

there is no need for any intermediate robots. Hence, we consider the case where |st| > r.

Also, in order to achieve a bridge between s and t, it is both necessary and sufficient that

the distance along [s, t] between every consecutive pair in the communication bridge is

at most r. Therefore, |st| ≤ (n+1)r holds. Hence, we assume that the number of robots

n is at least ⌈|st|/r⌉ − 1.

3.2.1 MaxDist: Minimizing Maximum Distance

In MaxDist, we are given points s and t and a set, P = {p1, p2, . . . , pn}, of point-robots
in the plane and a maximum traveling distance d. Any two members of P ∪ {s, t} can
communicate with one another if they are within (Euclidean) distance r of each other.

Let ui = (xi, yi) be the initial position of pi. We wish to select a subset S ⊆ P and

compute a final position vi = (x′i, y
′
i) on the line segment [s, t] for each pi ∈ S such

that (i) s and t are connected via point-to-point communication links where points are

selected from the final locations of robots in S and link lengths are not greater than

the communication distance r, (ii) the distance traveled by each robot pi is not greater

than d (i.e. ∀pi∈S |uivi| ≤ d), and (iii) the total number of hubs in the communication

bridge (i.e. |S|) is minimized.

Let L be the line passing through s and t. We place a coordinate frame where the

x-axis is aligned with L, s is at 0 (i.e. xs = 0) and t is at location xt > 0. Without loss

of generality, we define right as the positive direction of this frame. The final location

of robots pi ∈ S can be determined as vi = (x′i, 0) in this new coordinate frame. Hence,

we can use x′i to denote the final location vi = (x′i, 0). Also note that the projection of

the initial location ui = (xi, yi) on to L is simply xi.

We start by pruning the set P and removing robots which are more than distance d

away from L (i.e. if |yi| > d then pi is removed). Moreover, we can remove the robots

75

pi such that xi < −d or xi > xt + d. This is because these robots cannot reach the

line segment [s, t]. Let us call the new set which consist of robots satisfying the above

constraints as P ′.

xi
xi − d xi + d

xjxj − d xj + d

xk
xk − d xk + d

Figure 3.3: Let xi be the projection of the initial location of robot pi. We relax the final

location of pi to li : [xi − d, xi + d] which is shown as the left-most line segment.

For each robot pi ∈ P ′, we compute a line segment li : [xi − d, xi + d] (Figure 3.3).

We will pick the final location of pi from this line segment. Note that this is a relaxation

because the robot may have to move more than distance d. But the deviation is bounded

as it is stated in the following proposition:

Proposition 10. For any final location x′i ∈ [xi− d, xi + d] where pi ∈ P ′, the distance

traveled is not greater than
√
2d, i.e. |uivi| ≤

√
2d.

Proof. The maximum distance traveled for pi is
√

d2 + y2i when the movement is relaxed

to li. Since yi ≤ d holds, the claim follows, i.e.,
√

d2 + y2i ≤
√
2d.

The number of hubs required for the relaxed version is not more that the number of

hubs required for the original problem:

Proposition 11. Let k∗ and k be the number of hubs used in an optimal solution to

the original problem and an optimal solution to the relaxed problem, respectively. Then,

k ≤ k∗.

Proof. An optimal solution to the original problem cannot place a robot pi outside

of li : [xi − d, xi + d]. Because otherwise the distance traveled in x-direction exceeds

the distance constraint d. Hence an optimal solution to the original problem is also a

solution for the relaxed case, and k cannot exceed k∗.

The relaxed version of the problem satisfies a simple ordering property which allows

us to design an efficient algorithm. As mentioned previously (Figure 3.2) the original

76

problem may not have the ordering property. We now explain the ordering property

satisfied in the relaxed version.

Consider a placement of robots on L where the final location of each robot pi is

chosen from the line segment [xi−d, xi+d]. We order the robots according to xi values

in non-decreasing order. We say that the placement is well-ordered if for any two robots

pi and pj such that xi ≤ xj, we have x′i ≤ x′j.

Lemma 12 (Ordering Property). There exists a well-ordered optimal solution for the

relaxed problem.

Proof. In an optimal placement, let us call (pi, pj) an unordered consecutive pair if

two robots pi and pj which are consecutive in the final bridge, are placed at respective

locations x′i and x′j with xi ≤ xj but x′i > x′j. We claim that there is an optimal

solution with zero unordered consecutive pairs. Consider an optimal solution which has

the minimum number of unordered pairs. Suppose that this number is non-zero. Let pi

and pj be two robots forming a consecutive unordered pair (if an unordered pair exists,

so does a consecutive one). We show that the final locations of these two robots can

be swapped, reducing the number of unordered pairs by one. This contradicts with the

minimality of the number of unordered pairs.

First, from the relaxed segment assumption (i) x′i ≤ xi + d and (ii) xj − d ≤ x′j
holds. Since this is an unordered pair, we have: (iii) xi ≤ xj and (iv) x′i > x′j . From

(i)-(iv) we have: xi − d ≤ xj − d ≤ x′j < x′i ≤ xi + d. Observe that xi − d ≤ x′j < xi + d

holds, hence we can move pi to x′j which is in its feasible region.

Similarly, we find that xj − d ≤ x′j < x′i ≤ xi + d ≤ xj + d. Hence, x′i is in the

feasible region of pj which makes it possible to move pj to x′i.

Finally, we can conclude that we can swap the final locations of pi and pj and

decrease the number of unordered pairs by one while pi and pj remain in their respective

feasible regions. Moreover, since pi and pj are consecutive, swapping does not introduce

additional unordered pairs. This contradicts the fact that the solution has the minimum

number of unordered pairs.

The ordering property allows us to use dynamic programming to compute an op-

timal solution. Before presenting the algorithm, we define the reach of a solution

S = {p1, p2, . . . , pm}. Without lost of generality, let us assume that S is sorted in

77

increasing order. If there is a communication bridge between s and pm, then we have a

reachable region from 0 to x′m + r where we can place a robot connected to s. As we

assume that reach starts from 0, we can define the reach of S with a single parameter,

i.e. reach(S) = x′m + r.

LetOPT (k, i) be the maximum reach which uses k robots from the set {p1, p2, . . . , pi}
to form a connected set with s where ∀1≤j≤i pj ∈ P ′. To simplify the notation, we define

the function conn(k, i). This function returns true if and only if [xi−d, xi+d] intersects

with the reach of OPT (k, i− 1). In other words, this function tests whether a robot xi

can extend the reach OPT (k, i − 1) by moving inside its feasible region li and extend

the reach of s. This condition is satisfied if the following holds: OPT (k, i− 1) ≥ xi − d

and xi + d ≥ 0.

We now present the dynamic programming algorithm.

OPT (k, i) = 0 if i < k (3.1)

OPT (0, i) = r (3.2)

OPT (k, i) =







min(xi + d,OPT (k − 1, i − 1)) + r if conn(k − 1, i)

OPT (k, i− 1) o/w
(3.3)

Since OPT (k, i) uses k robots from the set {p1, p2, . . . , pi} the cardinality of this set

cannot be less than k. This condition is addressed by the first equation. The second

equation constitutes the base case. When we do not use any robots (i.e. k = 0) then

the reach is r which is the reachability region of s.

In the last equation, we compute all remaining entries OPT (k, i). We know that

the optimal solution chooses one of the j ≤ i as the kth hub. We consider two cases: (1)

the last hub is pi: we look up the optimal solution with k − 1 hubs which are selected

from the set {p1, p2, . . . , pi−1}. If [xi − d, xi + d] intersects with OPT (k − 1, i − 1)

then the optimum solution will put pi to the rightmost possible location which is x′i =

min(xi + d,OPT (k − 1, i − 1)) and we set the reach OPT (k, i) = x′i + r. (2) The last

hub is not pi: Then the kth hub should be selected from set {p1, p2, . . . , pi−1} whose

maximum value is calculated by OPT (k, i − 1) in the previous iterations. If the first

case suffices, we pick it since it extends reach more than the second case (due to the

ordering property) otherwise we pick the second case and set it to OPT (k, i).

78

Using the above formula, we calculate the dynamic programming table where both

k and i vary between 0 and m where m ≤ n is the cardinality of pruned set P ′.

From this table we find the minimum k such that OPT (k,m) ≥ xt. This yields the

optimal solution to the relaxed problem. By Proposition 10, our solution gives a
√
2

approximation on the maximum distance traveled by using at most the same number

of hubs used in the optimal solution (due to Proposition 11).

The running time of our algorithm is O(n2). This is because the size of the table is

O(n2) and for each entry we take the maximum of two values (Equation 3.3).

Theorem 13. If there exists a solution to MaxDist that uses k hubs such that each

robot moves at most distance d, then we can compute a solution where we use at most

k hubs and each hub moves at most
√
2d in O(n2) time.

3.2.2 SumDist: Minimizing the Total Distance

In SumDist, we are given points s and t and a set P = {p1, p2, . . . , pn} of mobile hubs,

as well as a budget B on the total distance traveled. Let ui = (xi, yi) be the initial

position of pi on the plane. We wish to select a subset S ⊆ P and compute a final

position vi = (x′i, y
′
i) on the line segment [s, t] for each pi ∈ S such that (i) s and t are

connected via point-to-point communication links, (ii) the total L2 (Euclidean) distance

traveled is not greater than B (i.e.
∑

pi∈S |uivi| ≤ B), and (iii) the total number of hubs

in the communication bridge (i.e. |S|) is minimized.

Similar to MaxDist, we place a coordinate frame where the x-axis is aligned with

L (the line passing through s and t), s is at x = 0 and t is at xt > 0. The reach of a

solution is defined as before.

Unfortunately, there exist instances where the ordering property does not hold in

the L2 metric. However, it turns out that when the underlying distance metric is L1,

there is an optimal solution which satisfies an ordering property, which in turn enables

a dynamic programming based solution. We say that a placement is well-ordered if for

any two robots pi and pj such that xi ≤ xj we have x′i ≤ x′j.

Lemma 14. If the distance metric is L1, then there exists a well-ordered optimal solu-

tion.

79

Proof. Let us assume that OPT ∗
1 is an optimal solution which includes the least number

of unordered pairs. Let pi and pj be consecutive hubs used in OPT ∗
1 such that xi ≤ xj

but x′i > x′j. We will show that swapping pi and pj’s final locations does not increase

the budget, i.e. if b = |xi−x′i|+ |xj −x′j | and b′ = |xi−x′j |+ |xj −x′i| then b ≥ b′ holds.

On the other hand, the number of unordered pairs decreases by one. This contradicts

the minimality of the number of unordered pairs. Note that, since we only swap the

final locations of the hubs, the connectivity is preserved. Further, swapping does not

change the total budget used in the y direction. Therefore, the overall budget does not

increase as well.

Assume that we fix the locations of xi and xj : we have three “bins” (x ≤ xi,

xi < x ≤ xj and xj < x) for possible locations of x′i and x′j. The following set of

equations correspond to all 6 possible cases. In each case, the claim above holds. In

Figure 3.4, the second statement in the first line is illustrated.

x′j < x′i ≤ xi ≤ xj ⇒ b = b′

x′j ≤ xi < x′i ≤ xj ⇒ b > b′

x′j ≤ xi ≤ xj < x′i ⇒ b ≥ b′

xi ≤ x′j < x′i ≤ xj ⇒ b > b′

xi ≤ x′j ≤ xj < x′i ⇒ b ≥ b′

xi ≤ xj ≤ x′j < x′i ⇒ b = b′

We now solve SumDist optimally for the L1 metric (up to an arbitrarily small ad-

ditive cost). We start by building a table T (k, i, B) which stores the maximum reach

using k hubs subject to: (i) the ith robot is the kth hub, and (ii) the budget for the first

k robots is at most B. The entries are computed as follows:

80

xi xjx′ix′j

Figure 3.4: Figure shows the case: x′j ≤ xi < x′i ≤ xj . Upper line segments show the

total cost for the initial solution and lower line segments show the costs after swapping.

When we swap the final locations of robots, we decrease the total cost while satisfying

the ordering property.

T (0, i, B) =r ∀i (3.4)

T (k, i, B) =0 ∀k>i (3.5)

T (k, i, 0) =







xi + r if a k hub bridge exists initially

0 o/w
(3.6)

T (k + 1, i, B) = max
k≤j<i

max
b′∈C(xi)

min(T (k, j,B − b), xi + b′) + r (3.7)

T (k, i, B + ε) = max
k≤j<i

max
b′∈C(xi)

min(T (k, j,B + ε− b), xi + b′) + r (3.8)

where B is discretized by ε, b′ = b − yi and C(xi) is a set of possible values for

b′. We will discuss ε and C(xi) shortly. The first two equations are the base cases. If

initially the robots create a communication bridge between s and pi with k hubs, then

Equation 3.6 sets the reach T (k, i, 0) to xi+ r. This can be checked by building a graph

G whose vertices are P ′ ∪ {s, t} where P ′ is the set of hubs that are initially on [s, t].

There is an edge between two vertices if the distance between them is at most r. If G

has a path between s and pi of length at most k, then a communication bridge from s

to pi can be formed with budget 0.

Here, we discuss only how to extend the first dimension of the dynamic programming

formulation (Equation 3.7). The argument for the other dimension (Equation 3.8) is

similar.

To calculate T (k + 1, i, B), we consider the optimal reach with k hubs when using

the pj as the kth hub for all j < i (due to the ordering property we do not need to

81

consider the locations of earlier hubs in the optimal solution). Let R = T (k, j,B − b)

be the maximum reach achievable by using k robots with pj as the last hub and a total

budget of B − b. The final location of pj in this optimal reach is R − r. We need to

compute the reach for k+1 hubs where pi is the last hub and pi travels at most b units.

For this, we consider all possibilities for R.

Note that the distance of the initial location ui = (xi, yi) to L is yi. Hence, b ≥ yi

must hold for pi to act as a hub. Let b′ = b − yi, then, [xi − b′, xi + b′] is the region

that robot pi can be placed on the line L with a budget of b′. Due to the ordering

property, pi must be placed to the right of pj. Therefore, its location is after R− r and

before R (otherwise pj and pi cannot communicate). In other words, valid locations for

pi are given by the intersection of [xi − b′, xi + b′] and [R− r,R], and this set should be

non-empty.

We now compute the set of valid budgets b for robot pi. Since the robot has to

travel yi for the vertical component, the remaining budget for the horizontal component

is b′ = b − yi. Let C(xi) be the set of possible values for b′. This set is computed as

follows:

C(xi) = {b′|b′ ≤ B − yi ∧ Z(xi, R)} (3.9)

Z(xi, R) =



















R− r − xi ≤ b′ ≤ R− xi if xi ≤ R− r

0 ≤ b′ ≤ R− xi if R− r < xi ≤ R

b′ = xi −R o/w

(3.10)

For a budget b′ to be valid, we must have b ≤ B. This gives the first condition for

b′: b′ ≤ B−yi. We use the function Z to constrain b′ as a function of xi and the current

reach R. We consider the three cases based on the location of xi with respect to the

location of the last robot (x′j) and the reach R = x′j + r. See Figure 3.5.

Case 1 (xi ≤ x′j): In this case, we must have b′ ≥ R − r − xi, (otherwise pi cannot

extend the current reach) and b′ ≤ R − xi (if pi moves further to the right, pj and pi

can’t communicate).

Case 2 (x′j < xi ≤ R): Similar to case 1, b′ should not be greater than R− xi. The

lower bound is obtained by the non-negativity of b′.

82

Case 3: When xi is to the right of the current reach R, there is only one value robot

pi should move: the rightmost reachable point.

xi − b′ xi
xi + b′

x′j R = x′j + rs

xi − b′ xi
xi + b′

x′j R = x′j + rs

xi − b′ xi
xi + b′

x′j R = x′j + rs

xi − b′
xi

xi + b′

x′j R = x′j + rs

Figure 3.5: Let x′j be the last hub location at the reach and pi be the robot considered

at the current iteration. Top Figure: When b′ is too large both end points of feasible

region is out of the the region [x′j , R], hence b′ is redundant in this example. Next

Three Figures: The three cases considered in Equation 3.10 are illustrated.

The new reach after placing robot pi to min(R,xi+b) is min(R,xi+b)+r. In order

to compute T (k + 1, i, B), among all possible j < i and all possible budgets b′ ∈ C(xi),

we find the optimal reach. Since the size of the range of possible values of b′ is bounded

by r, the size of the set C(xi) is at most r/ε. Hence, each entry can be calculated in

O(nr/ε) time.

We now show how this result yields an approximation algorithm for L2. Let OPT ∗
1

and OPT ∗
2 be optimal solutions for L1 and L2 metrics, respectively. The following

lemma bounds the deviation between OPT ∗
1 and OPT ∗

2 .

Lemma 15. Let OPT ∗
2 be the optimal solution for the L2 metric with a given budget B.

Suppose OPT ∗
2 can connect s and t using k hubs. There exists optimal solution OPT ∗

1

83

for the L1 metric which can connect s and t by using k hubs and a budget of
√
2B.

Proof. Let (xi, yi) be the initial location of a robot used in OPT ∗
2 and x′i be the final

location. The L1 and L2 distances are |xi − x′i|+ yi and
√

|xi − x′i|2 + y2i , respectively.

Without loss of generality, we scale the distances by 1/yi so that the L1 and L2 distances

become a+1 and
√
a2 + 1, respectively where a = |xi−x′i|/yi. From elementary calculus,

it is easy to show that: f(a) = a+1√
a2+1

≤
√
2.

To obtain the optimal L1 solution for budget B, we solve T (k, i, B) for all possible

k, i, B (where B is discretized with ε intervals). Due to the discretization, the total

budget used here can be at most k∗1ε than the budget used by OPT ∗
1 where k∗1 is the

number of hubs used by OPT ∗
1 . In other words, our dynamic programming algorithm

can find a solution with k∗1 hubs by using at most B1 + k∗1ε budget where B1 is the

used budget with L1 metric. This means that B′, the total budget used by our solution

will be bounded by B1 +nε. Consequently, the total budget used by our algorithm will

be at most
√
2B + nε where B is the given budget in L2 metric. We can choose ε to

achieve an arbitrarily small additive error.

We now establish the running time of the algorithm. The size of the table is O(n
2B
ε)

and as we discussed earlier each entry can be calculated in O(nr/ε) time. Hence, the

time complexity of our algorithm is O(n
3Br
ε2

).

Theorem 16. If there exists a solution to SumDist that uses k hubs such that the total

movement of robots is B in the L2 (Euclidean) metric, then we can compute a solution

where we use at most k hubs and the total movement of robots is at most
√
2B + nε in

O(n
3Br
ε2

) time, where ε is the discretization constant.

3.3 Bounds on Number of Hubs

Let OPT (d) be the number of hubs in an optimal solution to MaxDist with distance

constraint d. How does this constraint affect the number of hubs on the bridge? In

other words, if OPT(∞) = ⌈|st|/r⌉ − 1 is the number of hubs required in the unre-

stricted version, how far is OPT (d) from OPT(∞)? In this section, we show that

OPT (d)/OPT(∞) ≤ 2.

84

Assume that m − 1 < |st|/r ≤ m, for some integer m > 1. (The case m = 1 is

uninteresting, as s and t are then within distance r, hence connected.)

Partition [s, t] into m equal-length intervals, labeled from s to t as I1, I2, . . . , Im.

Each interval has length greater than (1− 1/m)r and at most r. Consider any solution

for OPT(d). This solution connects s and t with the fewest number of hubs. In such

a solution, we can have at most two hubs inside any Ij, 2 ≤ j ≤ m − 1. To see this,

note that if there were three or more hubs in Ij, then all but the two extreme ones in

Ij could be removed without losing connectivity (since the length of Ij is at most r),

thereby obtaining a solution for OPT(d) that has fewer hubs than the original optimal

solution—a contradiction. Along similar lines note that I1 and Im can each contain at

most one hub; if there was more than one hub in I1 (resp. Im), then all the ones except

the one farthest from s (resp. t) can be removed without losing connectivity.

It follows that for any optimal solution, we have OPT(d) ≤ 2(m−2)+2 = 2(m−1).

Also, OPT (∞) = ⌈|st|/r⌉ − 1 = m− 1. Hence, we have the following.

Lemma 17. OPT (d)/OPT(∞) ≤ 2.

Using similar arguments, it can be shown that the same bound applies for SumDist.

We omit the details.

Next, we show that the bound in Lemma 17 is tight: We claim that, for any fi-

nite d, there is an instance of MaxDist with the optimal solution OPT(d) for which

OPT (d)/OPT (∞) = 2.

Let |st|/r = m > 1; thus, each interval I1, I2, . . . , Im defined above has length

r. Let ε be a real number in the (open) interval (0, r
m−1). Consider a set V =

{v1, v2, . . . , v2(m−1)} of points on [s, t], defined as follows: for j = 2, 4, . . . , 2(m − 1),

vj =
j
2ε+

j
2r, and for j = 1, 3, . . . , 2m− 3, vj =

j+1
2 ε+ j−1

2 r. See Figure 3.6.

s tv1 v2 v3 v4 v5 v6

εεε rrr

I1 I2 I3 I4

Figure 3.6: Selection of points v1, v2, . . . , v2(m−1) on [s, t], with m = 4.

85

The set V satisfies the following (easily-verifiable) properties: (i) v1 6= s ∈ I1 and

v2(m−1) 6= t ∈ Im; (ii) successive points in V ∪ {s, t} are within distance r; and (iii) at

least one pair of successive points in V ′ ∪{s, t} is not within distance r for any V ′ ⊂ V .

Let P be a set of n ≥ 2(m−1) robots {p1, p2, . . . , pn} and choose their initial positions

in IR2 as follows: for j = 1, 2, . . . , 2(m−1), place pj at initial position uj = (vj , d). Place

any remaining hubs in P at some distance greater than d from [s, t].

Observe that only p1, p2, . . . , p2(m−1) can move onto [s, t] and, moreover, each such

pj can move only to the location vj . By properties (ii) and (iii) above, it follows

that p1, p2, . . . , p2(m−1) are necessary and sufficient to establish a communication bridge

between s and t. Therefore, OPT (d) = 2(m− 1) and the claim follows.

3.4 Concluding Remarks

In this chapter, we introduced the problem of building a communication bridge between

two points s and t while minimizing the number of hubs on the bridge and satisfying a

maximum (or total) distance constraint for the robots. For both versions we presented

constant factor approximation algorithms for the geometric version where the robots

must move onto [s, t].

There are many interesting directions for future work. It is not clear whether the
√
2

approximation factor for the geometric version can be improved. The general version in

which the final locations of hubs can be anywhere on the plane seems difficult. Solving

the version where there are multiple source and destination pairs seems to be even

harder.

Acknowledgment

The results of this chapter appeared in ALGOSENSORS 2009 [82]. This work is joint

with Yokesh Kumar, Prof. Volkan Isler and Prof. Ravi Janardan.

Chapter 4

Data Mules

A Wireless Sensor Network (WSN) is a network of wireless sensing devices which is

deployed over an area of interest to collect environmental data. Each sensor in a WSN

consists of a low-power CPU, a small data storage unit, a wireless radio with limited

communication range, and a set of sensors to measure physical phenomena of inter-

est such as motion, temperature, humidity, etc. These embedded devices are mostly

powered by limited energy sources such as a pair of AA batteries. Figure 4.1 shows

a common sensor called mote which is extensively used by WSN researchers. Recent

advances in WSN technology have reduced the costs of these sensors to about $100 per

sensor. With this progress, now it is feasible to use WSNs in environmental monitoring

tasks. In environmental monitoring, scientists collect statistical data (e.g. temperature)

from the environment which has to be deployed for years over large geographic areas [17].

Although, reduced cost makes a WSN practical for environmental monitoring, gathering

the collected data efficiently from the sensors stills remains a big challenge.

In the literature, there are two primary techniques for gathering the collected data

from sensors. The first method is to manually gather the collected data [83, 84]. This

process requires a person to visit each sensor in the environment and manually download

the data from the sensor. However, since these sensors are sparsely deployed over large

areas and they monitor the environment for long period of times, this process requires

extensive labor.

In the second method, a connected WSN is deployed to transfer the collected data

over the network. Since the wireless range of sensors is limited (50-100 meters), these

86

87

Figure 4.1: TelosB mote is an embedded sensing platform developed at UC Berkeley.

TelosB consists of a USB interface, a micro-controller unit with extended memory, IEEE

802.15.4 radio with integrated antenna and optional build-in sensors. It is operated by

an open-source operating system called TinyOS and powered by two AA batteries [2].

networks must be deployed dense enough to ensure network connectivity. On the other

hand, in most environmental monitoring applications, the environment is very large and

the sampling locations are far apart from each other. Hence, a large number of sensors

is required just to relay messages which makes this method very costly if not infeasible.

As an example, deploying a uniform grid of resolution 100 meters over an area of 5 km

by 5 km might cost as much as $300,000.

The last decade has witnessed tremendous advancements in mobile robot and au-

tonomous navigation technologies. It is now feasible to build low-cost and robust out-

door mobile robots that can accomplish complex navigation tasks. Therefore, it is

possible to use robots as data mules where robots periodically visit sensor nodes, gather

the collected data from sensors, and carry it back to a gateway or a server where the

data is aggregated. Note that there is a delay between the time the data is collected

and the time it reaches the gateway. However, this delay is not significant in an envi-

ronmental monitoring application because the aim is to collect statistical information

about the environment over long period of times. Figure 4.2 shows an illustration of

the proposed data mule system. This alternative method provides cost-effective and

energy-efficient solutions for the data gathering task. Next, we discuss these advantages

of data mules compared to a dense WSN network deployment.

88

Figure 4.2: Overall system architecture, including a number of sensing motes, multiple

robots acting as data mules, and a gateway to which robots offload collected data and

receive further commands. Each robot communicates with the sensing nodes and the

gateway through a locally connected mote. All collected data is eventually stored in a

back-end database for further processing and visualization.

In Section 4.5, we present the design details of an outdoor robot platform. This

robot was built in our lab and its cost is on the order of $1000. This shows that data

mules could drastically reduce the costs of environmental monitoring applications. In

addition, the deployment and maintenance costs for data mules are minimal. Dense

networks require extensive labor due to the deployment of a large number of sensors.

On the other hand, only a small number of sensors (sensing nodes) has to be deployed

and maintained in a data mule system, which further cuts the labor costs.

Since motes are mostly battery operated, limited energy is another key challenge

for WSNs. The mote’s wireless radio is its largest energy consumer. These devices

operate at 1 milliwatt while running with low frequency. On the other hand, most

radios consume about 20 milliwatts when on. This observation means that the motes

can spend the majority of their energy stores transmitting collected data, especially

because they may need to forward data for other motes in the network. Moreover,

89

some nodes in the network might act as sink points which transfer data forwarded from

multiple nodes. This leads such nodes to die early on and as a consequence the network

could suffer from broken communication links.

Robots are capable of carrying large batteries and can recharge themselves au-

tonomously or optionally they can carry a solar panel to recharge themselves on the

go. Hence, robots do not suffer from limited energy sources. Rather, we can use robots’

mobility to extend the life-time of the sensor network. First of all, since robots directly

download the data from sensors, collected data has to be transmitted just once. On the

other hand, in a connected network, data has to be transmitted multiple times over the

network until it reaches the gateway. In addition, since robots can get close to the sen-

sors, the communication range of the transmitters on the sensors can be reduced, which

leads to further energy savings. In Section 4.3, we justify these claims with empirical

results by comparing a proof-of-concept data mule system to a grid WSN deployment.

In Section 4.4, we improve the life-time of the network by searching efficiently for a good

location before downloading the data. Since the robot’s energy is not the bottleneck

in the system, we can use the robot to find a location where the packet loss rate is

minimal. Hence, we can reduce the retransmission of packets, which further improves

the energy savings.

A crucial problem that arises in data muling applications is the problem of planning

the routes of robotic mules: given locations of n sensors, compute the routes of k

robots so that the time to download the data from all sensors is minimized. We call

this problem the Data Gathering Problem (DGP). A problem similar to DGP is the

well-known Traveling Salesperson Problem (TSP) which asks for the shortest path for a

salesperson to visit n cities (sensor locations) [85]. There is also a variant of TSP, called

k-TSP, where k travelers visit n cities, and the objective is to minimize the length of

the maximum tour [86]. Unlike the k-TSP problem, robots do not have to go all the

way to the sensor locations in DGP. Instead a robot can download a sensor’s data when

it is inside the sensor’s communication range. Moreover, visiting each sensor incurs a

cost in terms of the download time of the data which is not addressed by k-TSP. Hence,

a solution to the DGP problem not only depends on the sensor locations as in k-TSP

but also depends on the communication model of the sensors.

90

In our previous work [25], we addressed the DGP problem where the communication

range of the sensors is modelled as a disk of radius r. The download time is defined to

be T and identical inside the disk. A similar problem formulation to the disk model is

called TSP with Neighborhoods (TSPN) where n regions (e.g. disks) are given and the

goal is to find the shortest path that visits each neighborhood [3]. Even though DGP

under disk communication model resembles TSPN, there are important differences.

b

Figure 4.3: Two robots charged with collecting data from the sensors and relaying them

to the base station b. The filled circles correspond to sensor locations. The circle around

a sensor illustrates its communication range. The figure shows optimum TSPN tours

for the two robots that minimize the maximum distance traveled by any robot. This

solution is not appropriate for data gathering because the robot assigned to the left

group would spend significantly more time downloading the data from the sensors.

For example, consider the scenario illustrated in Figure 4.3 where the optimal TSPN

tours for two robots are shown. Note that the objective of TSPN is to minimize the

travel distance. However, in data gathering, downloading the data takes time. If we use

the TSPN solution, the robot on the left can spend significantly more time to download

the data from all assigned sensors. In fact, we can make the TSPN solution arbitrarily

bad by increasing the number of nodes in the left cluster. We present a literature on

TSP and its variants in Section 4.2.3.

The disk communication model is a simplistic model which ignores the fact that

the radio signal propagation is affected by environmental factors. As an example, a

radio signal might follow multiple paths possibly due to signal reflection from obstacles

such as buildings, rocks, etc. Hence, a receiver might receive signals through multiple

91

paths from the same signal source. When these signals interfere, the signal strength

might increase or the signals might cancel each other causing a weak signal. This

phenomenon is called multi-path effects of the radio signals. In Section 4.5, we modify

the DGP algorithm by utilizing the multi-path effects. In this modified version, the

robot opportunistically downloads from a sensor that it receives a good signal from

even though it is not in the communication disk of the sensor. We show the practical

improvements of this modification through field experiments.

Recent research [26] and our previous experimental results suggest that sensor’s

communication can be modelled better using two concentric disks. In this model, if the

robot is a distance rin away from sensor s, it can download the sensor’s data in Tin

units of time. If the distance is greater than rin but less than rout, the download time

is Tout > Tin. Otherwise, the robot can not download the data from s. We refer to this

model as the two ring model, and the problem of downloading data from a given set of

sensors in the minimum amount of time under this model as the Two-Ring Tour (TRT)

problem. In Section 4.6, we present routing algorithms for this model and demonstrate

its effectiveness through field experiments.

We start the chapter with the literature survey on data mule systems in Section 4.1.

We present background material on WSNs and TSP related problems in Section 4.2. In

Section 4.3, we present a proof-of-concept data mule implementation. In this section, we

compare the energy consumption using data mules over using a connected network. In

the Section 4.4, we discuss how we can further improve energy savings by using robots

to find a good location prior to start downloading data. In Section 4.5, we present an

opportunistic DGP algorithm. We present the details of an inexpensive outdoor robot

platform and the field experiments conducted with this robot. In Section 4.6, we present

routing algorithms under the two ring communication model and field experiments to

show the practical feasibility of this model.

4.1 Related Work

In recent years, using mobility for carrying data over networks has received significant

attention. In a Mobile Ad-hoc Network (MANET), each device is mobile and can move

independently from the others. Since the communication links are constantly changing,

92

the main challenge in a MANET is to route the information from one node to another.

Various routing protocols [32, 35–37] are proposed in the literature to reliably transfer

data over MANET. Although, most of the existing literature focuses on such settings

where the mobility of the network entities is not controlled, recently, scientists have

started to utilize controlled mobility to overcome some challenging networking tasks.

As an example, robots are now used to efficiently gather data from sensors deployed over

large environments. In this framework, robots act as data mules to get close vicinity

with sensors, download sensor data and carry the collected data back to a base station.

In this section, we present an overview of the related work on data mules.

In [18], the authors present a data muling system which uses uncontrolled entities

(such as animals, humans with wireless devices) for carrying data. The authors present

a three tier sensor network architecture. The bottom layer consists of a sparse sensor

network. In the middle layer there are mobile entities such as vehicles and humans which

carry the data from bottom layer to the access points in the top level. These ideas were

also implemented in real systems in ZebraNet [87] and Smart-tag [88] projects.

In the next set of results, the mobile agent is still uncontrolled however the mobility

model knowledge is used to optimize the various parameters of the network. In [89], the

authors explore the use of observed mobile agents in reducing the energy consumption

in sensor networks. In [90], data mules’ trajectories are parallel line segments and the

goal is to find the balanced assignment of sensors so that the tour times of data mules

is minimized. In [91], the authors explore the transmission scheduling i.e. schedule to

wake up a node and transmit to the data mule. The solution is presented under the

assumption that the mule follows a random-waypoint mobility pattern. An adaptive

data transfer protocol which minimizes the time interval for a single sensor to offload

the data is presented in [92]. This protocol considers the packet loss rate due to the

distance between sensor and the data mule at the time of offload. A simple protocol is

presented in [93] in which nodes send periodic beacons with low duty cycle and turns

on their radio when the connection with a data mule is satisfied. A recent review on

the state of the art in exploiting sink mobility can be found in [94–97]

The study of systems which use controllable agents as data mules is relatively recent.

A variant of the Data Gathering Problem (DGP) was considered as a scheduling problem

in [24]. Kansal et al. consider the control of the robot’s velocity along a fixed path to

93

improve transmission quality. They do not address the computation of the path. In

their subsequent work, Kansal et al. proposed a coverage trajectory to collect data from

sensors which are uniformly deployed in a circular arena [98]. Similarly [99] study the

speed control problem for the data mule when it is downloading data from a sensor while

traveling within its communication range. Authors present a heuristic which computes

the speed change along the mule’s path and a schedule for downloading the data from

the sensors. DGP is also considered as a coverage problem. In [100], the authors aim

to find a path for each robot such that all paths are disjoint, all sensors are covered

and all paths are of equal length. They investigate the performance of their algorithms

in simulation. In [101], the authors present a heuristic for the multi-robot boundary

coverage problem. In a boundary coverage problem we are given k robots and n convex,

two-dimensional objects. The goal is to find a tour for each robot such that all points

on the boundary of each object are inspected and the inspection load is balanced. None

of these algorithms present any theoretical guarantees on the performance of the paths.

Several other mobility patterns are proposed in the literature where the life-time of a

stationary network with stationary base station is compared over a stationary network

with a mobile base (mobile sink) [102–104].

In the following body of work, variants of DGP are formulated as TSP instances.

In [105], the authors present heuristics to schedule visits of a mobile agent to collect

data from cluster heads. The heuristics focus on data latency and data aggregation rate

of clusters. In our work we focus on the travel time of the mobile agents and present

algorithms with theoretical performance guarantees. [106] present a heuristic approach

for minimizing path length in data muling. Authors consider spatially separated WSNs

which are to be connected by a data mule. The objective is to find a path for mule which

visits one sensor each in each WSN. Their heuristic creates a path from the convex hull

of the set of sensors, choosing one sensor from each WSN, and modifies the path to add

the sensors from WSNs not covered by the convex hull. In [107], the authors formulate

the problem of collecting sensor data using a single robot as an instance of the TSP with

neighborhoods (TSPN) problem. They do not address the time spent in downloading

data. As shown in Figure 4.3, ignoring transmission time can worsen the performance

of the system drastically. None of the work that uses TSP-based heuristics has been

implemented and tested on a real system.

94

Implementations of data mule system are presented in [108]. In [108], the authors

present an underwater data muling system. In the underwater scenario, sensors and

underwater vehicles communicate through optical communication, which requires a close

proximity as well as a good view-angle to start communication. The authors use a TSP

algorithm to compute the trajectory of the robot. However since GPS localization is

not available under the water, the vehicle has to navigate under high uncertainty and

periodically surface to get GPS fix. This makes the designing global routing algorithms

challenging. The authors propose spiral movement for the robot to find the sensors.

This strategy is not efficient for our scenario, in which the sensor locations are known

and the robot can localize itself.

4.2 Background

In this section, we present background information on WSNs and the communication

protocol between sensors and robots. We also present the detailed background and

literature search on TSP and its variants since we use similar techniques throughout

the chapter.

4.2.1 Wireless Sensor Networks

A wireless sensor network (WSN) is a collection of small embedded computing devices

(motes) deployed over an area of interest, communicating through wireless radios. These

motes consist of a micro-controller, data storage devices, sensors, analog-to-digital con-

verters (ADCs), a data transceiver, and an energy source (e.g., AA batteries). Existing

motes use an 8 or 16-bit micro-controller with tens of KBytes of RAM, hundreds of

KBytes of ROM for program storage and external storage in the form of FLASH mem-

ory [109]. These devices operate at one milliwatt while running at about 10 MHz. Most

of the circuits can be powered off, so the standby power can be about one microwatt.

If such a device is active 1 percent of the time, its average power consumption is just a

few microwatts enabling long term operation even with two AA batteries. Mote radios

transmit at rates between 10-250 Kbps, consume about 20 milliwatts when in transmit,

receive, or idle listening mode, while their range typically is measured in tens of meters.

95

One of the most popular wireless sensor network applications is environmental mon-

itoring [17,110]. In its basic form, environmental monitoring involves reliably gathering

the measurements from each of the network’s motes. Furthermore, in order to observe

long term spatial and temporal trends, these networks need to be deployed for years

and cover large geographic areas. These requirements mean that such networks must

have duty cycles of 1% or lower and be deployed sparsely over the monitored area.

4.2.2 Sensor and Robot Communication

As previously mentioned, sensing motes keep their radios mostly off to conserve energy.

Then to check for any pending requests, each sensing mote transmits a beacon and

waits for an acknowledgment. If no acknowledgment arrives the mote turns its radio

off, otherwise it remains active waiting for data download requests. This Low Power

Probing (LPP) mechanism was initially proposed in [111]. By controlling the beacon

frequency the node can control its duty cycle. For example, selecting a beaconing

interval of 20 seconds, leads to a ∼ 0.1% duty cycle, as a beacon-acknowledgement cycle

lasts 20 msec.

Based on this description, the robot moves close to the sensing mote, waits for a

beacon message, acknowledges it, and then issues a command to the mote to download

(some of) its data. An alternative wakeup strategy is to use a lower power sensor to wake

up the node. For example one could use the mote’s light sensors or even a Reed switch

(i.e. an electrical switch operated by an applied magnetic field) to wake up the mote.

In this case, the robot could shine a light or carry a magnet that would activate the

sensor which will in turn activate the sensing mote’s radio for the subsequent download.

Once the mote is awake, the robot transmits a request containing the range of

collected data it needs to download from the mote. The actual data download process

uses the standard NACK-based Automatic Repeat reQuest (ARQ) protocol.

4.2.3 TSP and Variants

The Traveling Salesman Problem (TSP) is one of the most studied combinatorial opti-

mization problems. Even though TSP in its general form is inapproximable, the metric

version admits a constant factor approximation [112]. The Euclidean version in any

96

fixed dimension admits a Polynomial Time Approximation Scheme (PTAS) [113, 114].

A generalization of TSP which received significant recent attention is TSP with Neigh-

borhoods (TSPN) [3, 115, 116]. In a TSPN instance, instead of n points we are given

n neighborhoods (a neighborhood is a bounded region). The goal is to find a minimum

cost tour which visits at least one point in each neighborhood.

Arkin and Hassin [115] introduced TSPN and presented a (3
√
2+1)p approximation

algorithm for the case when neighborhoods are equal length parallel segments (Here, p

is approximation ratio for TSP). For neighborhoods which are translates of a convex

region, they gave a (
√
72 + 32 + 1)p approximation algorithm.

Elbassioni et al. presented a constant factor approximation algorithm for intersecting

fat convex objects of comparable diameters where the tour is restricted to visit each

object only at a finite set of specified points [116].

The version of TSPN where the neighborhoods are uniform disks has many appli-

cations. In fact, TRT is a generalization of this problem which in turn generalizes

Euclidean TSP. Mitchell et al. presented constant factor approximation algorithms for

TSPN with uniform disks [3]. In this work, they start with the case where the disks

are disjoint. They show that a TSP tour that visits the centers of the disks is an O(1)-

approximation to the TSPN tour. Mitchell et al. also showed that when the disks are

disjoint, TSPN admits a PTAS. The result generalizes to other “fat” regions on the

plane [113]. The algorithm can be modified to yield a PTAS for k-TSPN algorithm

where the goal is to find the shortest tour which visits at least k disks out of n disks in

the input. k-TSPN with uniform (intersecting) disks also admits a PTAS [117].

97

4.3 A Proof-of-Concept Design

Now, we present a proof of concept system we developed, as well as results from a small

experiment that proves the feasibility of using mobile robots as data mules and evaluates

the energy savings achieved by using robots.

Our proof of concept consists of a network of sensing motes and a number of mobile

robots. Each sensing mote is a Tmote Sky from Moteiv [109]. Moreover, each of the

Acroname Garcia robots has a Stargate PDA-class single board computer, that controls

the robots’ motors and sensors (see Figure 4.4). The Stargate uses a Tmote Sky motes,

directly connected to its USB interface, to communicate with the sensing nodes. The

communication between the mote and the robot’s computer follows a simple command-

and-response protocol that we developed. Once the robot approaches a sensing node,

it waits for a beacon message to verify that the node is still alive. After it receives the

beacon, the robot initiates the data download process. If on the other hand, a beacon

is not received within a predetermined amount of time, the robot proceeds to the next

sensing mote on its path.

Figure 4.4: An Acroname Garcia robot visiting a sensing mote. Note the single board

computer on the robot under the clear lid and the mote connected to the robot’s com-

puter.

We assume that the motes’ transmission power is set to its lowest level to reduce

98

energy consumption. Hence, while planning the mules’ trajectories, we set the visiting

locations to be the motes’ exact locations. The trajectories of the multi-robot system

are pre-calculated as k-TSP tours. Figure 4.5 illustrates the resulting k-TSP tours for

k = {1, 2, 3} on a regular grid where twelve motes are deployed. For this small TSP

instance, we find the optimal TSP tour by enumeration, which is feasible for this rather

small network. For larger problems, efficient TSP solvers can be used [118]. To compute

the 2-TSP and 3-TSP tours, we split the optimal TSP tour into smaller tours using the

k-SPLITOUR algorithm [86].

Gateway Gateway

Gateway

Figure 4.5: Optimal TSP tours for one, two, and three data mules. The red square

represents the gateway and blue circles represent mote locations.

We illustrate the practical feasibility of data gathering using data mules with a

small-scale experiment. For this experiment, we deployed twelve motes and a gateway

on a virtual grid on a basketball field at the Rensselaer Polytechnic Institute (see Fig-

ure 4.6(a)). The robot system we developed for the experiment follows a step by step

procedure. In each step, a robot takes a turn or takes a forward step with a length

of at most 7 m. We limit the length of each step to limit the robot’s deviation from

its designed path. Such deviations occur due to the inherent accuracy limits of the

robot’s motors. Because the goal of this experiment is not to evaluate the accuracy of

99

indoor localization techniques and autonomous repositioning, we manually re-position

the robots to correct the position if they veer off the desired path. In total, we con-

ducted three experiments with one to three data mules. Figure 4.5 shows the robots’

trajectories for each of the three experiments and Figure 4.6(b) shows a snapshot from

the experiment with two data mules. Link to the videos of all experiments can be found

in Appendix A-Multi Media Extension No: 2.

7
.3

 m

13.2 m

(a) Map of the deployment area. The deployment

consists of twelve motes (blue circles) and a gate-

way (red square), placed on a grid that spans a

quarter of a basketball court.

(b) A snapshot from the experiment with

two mules. One mule (white robot) is fol-

lowing its designed path while the other mule

(red robot) is downloading data from the as-

signed mote.

Figure 4.6: The map of our deployment (left) and a snapshot from the experiment with

two mules (right).

4.3.1 Evaluation

As described at the beginning of the chapter, one key reason for using data mules is to

reduce the sensing motes’ energy consumption and thus prolong the network’s lifetime,

while guaranteeing reliable data collection. We quantify this benefit by comparing the

energy consumed to send a single packet from each mote in two settings. In the first

setting, an end-to-end, multi-hop wireless network system is used to collect the data.

In the second setting, sensing motes directly offload their packets to data mules. We

simulate this comparison based on a grid of twelve motes whose pattern mirrors the 3×4
grid that we deployed in the basketball court. The deployment is shown in Figure 4.6(a).

100

On top of this, we make the following assumptions. First, we assume that each mote

can communicate only with its direct neighbors on the grid and therefore the longest

end-to-end network path spans four wireless links. Second, each packet can be lost

with probability p, which is uniform across all of the network’s links. Finally, we use a

hop-by-hop retransmission scheme in which case each node will retransmit the packet

if it does not receive an acknowledgment from its upstream neighbor.

Given these assumptions, we calculate the sum of the expected number of transmis-

sions (ETX) necessary to have each of the network’s twelve motes successfully deliver

a single packet to the gateway. Based on the end-to-end routing tree overlayed on the

mote grid, the aggregate ETX is equal to 30 when p = 0 (i.e., no packet loss). On the

other hand, when data mules are used, the aggregate ETX is equal to 12 since each mote

can directly offload its packet to a mule over a short and reliable wireless link. While

the benefits of using data mules are clear even with error-free radio links, as Figure 4.7

suggests, the disparity rapidly increases as p increases. Furthermore, this estimate as-

sumes that the gateway can directly communicate with some of the network’s motes.

In reality, however, the gateway may not be in sensing motes’ communication range

in which case one or more relay points are necessary. Adding relay points, however,

increases the length of the end-to-end path and thus further increases the ETX.

The second benefit of using data mules is that motes can decrease their transmission

power and thus save energy. Figure 4.8 supports this claim, showing that if a mote

reduces its transmission power level from its default level of 1 mW (0 dBm) to 0.003 mW

(-25 dBm), the energy consumption is reduced drastically. Furthermore, because the

mules can reliably approach sensing motes to a close distance, reducing the transmission

power does not increase the probability of loss.

In addition to estimating the energy the sensing motes consume, we also consider

the robot’s energy consumption. Since robot batteries are also limited, yet rechargeable

energy sources, we need to consider how long the batteries last when we dispatch the

robots to collect data. If the network is too big and therefore the tour is too long, the

energy stored in a single robot battery may not be sufficient to complete a single tour.

In that case, we can split the the single tour until we get feasible tours that each robot

can complete at least once, before recharging its battery. Even if a single robot can

tour the whole network, we need to be able to predict how many tours it can complete

101

Figure 4.7: Total number of expected transmissions for a 3 × 4 grid as a function of

packet loss probability p. Each mote delivers a single packet to the gateway. The

different lines correspond to grids that require 0,1 or 2 relay points to connect to the

network’s gateway.

before it needs to recharge its battery. Hence, accurately estimating the robot’s energy

consumption is a prerequisite for the correct operation of the data muling system.

The robots we use are powered by standard, six-cell 7.6 V 3,000 mAh NiMH battery

packs. The current drawn from the battery varies depending on the robot’s activity. We

classify these activities in three states: stand-by, moving, and downloading/uploading

data. We experimentally measured the minimum and maximum current values for each

of these three states. The measured values are: 560 ∼ 620 mA (stand-by), 630 ∼ 940 mA

(moving), and 590 ∼ 750 mA (download/upload).

During our experiments, robots had an average speed of 0.2 m/sec. Downloading

11.4 KBytes of data from each mote took one minute in average, which consists of

20 seconds beaconing and actual data download time. In the first experiment, the

trajectory length for one data mule was 46.2 m. The total time used by the robot

to follow the trajectory, download data from the motes, and upload to the gateway

was 16:51 minutes. In the second experiment, we used two robots where the robots’

trajectory lengths were 35.5 m and 34.7 m. The total times were 9:56 min and 9:57 min,

respectively. Finally, in the third experiment, we used three robots with trajectory

102

−25 −20 −15 −10 −5 0

0
5

10
15

20

Power [dBm]

C
ur

re
nt

 C
on

su
m

pt
io

n
[m

A
]

Figure 4.8: Current consumed by the mote’s radio (TI Chipcon CC2420) as a function

of transmission power.

lengths of 30.5 m, 30.6 m, and 29.3 m. The total times in that case were 8:33 min,

5:33 min and 8:26 min, respectively.

While calculating the energy consumption, we consider the maximum measured

current values. According to this assumption, the robot consumed 1.69 Wh in the first

experiment. In the second experiment, both robots consumed 1.02 Wh, while in the

third experiment, robots consumed 0.87 Wh, 0.59 Wh and 0.86 Wh, respectively. One

can then use these estimates and the battery’s capacity (22.8 Wh), to determine how

many tours the robots can complete before they need to recharge their batteries.

103

4.4 Efficient Strategies to Gather Data from WSNs

In the previous section, we showed the energy savings achieved by using robots to

directly download data from sensors. Next, we address how we can further reduce the

energy consumption due to beaconing and packet losses.

As described in Section 4.2.2, motes use beacons to check whether the robot is

arrived or not. We could further reduce the mote’s energy consumption if the mote

knew the arrival time of the robot. In this case, the mote broadcasts a single beacon

only shortly before the robot is expected to return. However, in a real system, a robots

arrival to a sensors vicinity is not a deterministic process. Rather, it is a stochastic

process where the arrival time is influenced from uncertainties in the navigation times.

However, we can still reduce the number of beacons by adapting the beacon interval to

match the robots arrival pattern. Consequently, we conserve energy and increase the

mote’s life-time. In our previous work, we address this problem and present an optimal

beaconing schedule when the time of arrival is given as a probability distribution [119].

In this Section, we further improve the energy savings by minimizing the energy

wasted due retransmissions. The quality of the communication link between a robot

and a sensor can affect the the number of transmissions to download a fix amount of

data. Due to various effects (e.g. multi-path effects) packet loss rate may vary inside

the mote’s communication range. We define a “good download location” as a location

where the packet loss is minimal. If the robot can utilize its mobility and find a good

location to download data, this can yield significant energy savings since retransmission

is minimized. This statement is further justified in Section 4.4.1 where we address this

search problem and present a data-driven strategy to find a good download location.

In indoor environments where the behavior of the signal is unpredictable due to multi-

path effects and the dynamic nature of the environment, it is easy to see that there is

no online algorithm with provable performance guarantees1 . Therefore, we present

a heuristic strategy based on extensive experiments we performed to understand the

effect of robot’s location and orientation on the signal quality.

In Section 4.5.1, we present the details of a system implementation that utilizes

1 For any given deterministic strategy, an adversary can pick the “good” location to be the last
location visited by the strategy.

104

robots for gathering data, and demonstrate the utility of our algorithms with experi-

ments run on this system.

4.4.1 Link Quality Experiments

When the robot is downloading data from a node, the quality of the wireless communi-

cation link is a crucial factor in determining energy spent in communication: when the

link quality is high, the same amount of data can be transferred using less energy. This

in turn, drastically affects the lifetime of the node. In the next section, we present a

motion strategy for a robot to find a good location to download the data. The algorithm

is based on insights from a series of experiments which we describe here.

We started our experiments by collecting data using the setup shown in Figure 4.9

where we placed an 11 × 11 grid on a 3m × 3m indoor environment. We mounted

a base station mote on our robot (iRobot Create with Asus Eee PC) and the robot

autonomously visited grid points while pointing to a fixed direction.

Figure 4.9: Left: Experimental setup to measure the link quality of data transfer from

a mobile robot to a base station, with the robot moving on a uniform grid.

Figure 4.10 shows signal strength measurements on the grid when the mote was

placed at (3,10). Each measurement was taken by sending a 4 byte message during

which Radio Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) values

105

were recorded. From each location, robot samples 50 measurements. The top two

plots in Figure 4.10 show the mean and median values of the LQI measurements. The

bottom two plots show the RSSI values. All plots give a unified view of the link quality:

although in general the LQI increases as we get closer to the mote, the surface is not

smooth and contains many deep drops due to multi-path effects.

The next experiment illustrates the effects of the location and the link quality on the

time to download the data. In Figure 4.11, the top figure shows the time to download

50 messages from each grid point. The peaks show a correlation with the deep fading

effects in the previous experiment (Figure 4.10). Bottom left (resp. right) figure shows

the relation between LQI (resp. RSSI) measurements and time transfer. As it can

be seen in the left figure, the transfer time is very low for LQI measurements above

95. On the other hand, the transfer time increases drastically for values lower than 95.

This observation shows the potential utility of controlled mobility: robots can reduce the

data download time (and increase the life of the sensor network) by finding a “good”2

location to download the data.

The next experiment sheds further light on path-loss and multi-path affects on link

quality. To cover a wider range, we moved the robot on a line-segment in a corridor in

our building and placed a mote on the mid-point of this line segment. In Figure 4.12,

the mote is located at x = 26 and robot starts taking measurements at x = 1 and ends

at x = 51 . The discretization level is 1 foot, the robot takes 50 measurements from

each location. Top figure shows mean values of 50 measurements, bottom figure shows

median of the measurements. As expected, the link quality increases when robots get

closer to the mote, while it tends to decrease while getting further away from it. After

performing similar experiments, we concluded that the following observation explains

the link-quality behavior better: Within a certain range (±8 ft, in this case), the link

quality is consistently “good” and unpredictable (random) outside this range.

Most robotic systems have a rotational component which means that we can control

the orientation of the robot. Therefore, the robot should search for not only a good

location but a good orientation as well. The next experiment focuses on this aspect.

Figure 4.13 shows the change in link quality with the various orientations of the base

station (on the robot) at fixed locations. The figure shows the results for 4 fixed points

2 In this case, a good location is one where the LQI value is greater than 95.

106

0
5

10
15

0
5

10
15
80

100

120

x

LQI map (mean)

y

0
5

10
15

0
5

10
15
80

100

120

x

LQI map (median)

y

0
5

10
15

0
5

10
15

−40

−20

0

x

RSSI map (mean)

y

0
5

10
15

0
5

10
15

−40

−20

0

x

RSSI map (median)

y

Figure 4.10: The robot visited each location, and took 50 measurements. From top to

bottom: mean and median values of the LQI measurement, mean and median values of

the RSSI measurements.

107

0
5

10
15

0
5

10
15

0

20

40

x

Transfer time (per packet) map

y

80 90 100 110
10

20

30

40

50

lqi

tim
e

−40 −30 −20 −10 0
10

20

30

40

50

rssi

tim
e

Figure 4.11: Time to download 50 messages from each grid point as function of location

(top), and as functions of LQI (bottom-left) and RSSI (bottom-right). With controlled

mobility, the robot can decrease the download time significantly by moving slightly.

at distances 5,10,15 and 20 feet from the mote. The results show that when the base

station is close to the mote, the orientation does not affect the link quality significantly.

However, when the distance is large, small changes in orientation may result in drastic

changes in link quality. Moreover, this change is not easily predictable. For example,

when the robot is at the furthest point (the 20-feet curve), mote and base station point

towards each other when the angle is 180◦. In this orientation, the LQI is 95. If robot

turns 45◦ in counter-clockwise direction, the LQI value increases to 100. If the robot

turns 45◦ more on counter-clockwise direction, then the LQI value suddenly drops to

80. This example also shows that measurements from various orientations may not give

a clear indication about the direction of the mote.

The results of these experiments can be summarized as follows:

108

0 10 20 30 40 50 60
70

80

90

100

110
LQI map (mean)

x

y

0 10 20 30 40 50 60
70

80

90

100

110
LQI map (median)

x

y

Figure 4.12: The mote is located at x = 26. The robot moves from x = 1 to x = 51.

Within a range of ±8 ft, the link quality is consistently “good”. It is unpredictable

(random) outside this range.

• Within a certain distance (an environment dependent parameter), the signal qual-

ity is predictably good and the orientation of the robot does not make a significant

difference.

• When the robot is outside this range, it is very difficult to use local information

(such as gradient) to find the location or orientation of the mote.

In the next section, we present a search strategy based on these observations.

4.4.2 Local Search Algorithm

In this section, we describe a search algorithm to find a good download location. In

many applications, it is beneficial to search for this location in an online fashion because

the location of the mote whose data will be downloaded can change locally, the signal

109

0 45 90 135 180 225 270 315 360
70

80

90

100

110

theta

lq
i

LQI map (mean)

0 45 90 135 180 225 270 315 360
80

90

100

110

theta

lq
i

LQI map (median)

x = 20 ft

x = 15 ft

x = 10 ft

x = 5 ft

Figure 4.13: The θ-values correspond to robot orientations. Each curve corresponds to

a different location on a line. The mote is located at x = 0. The behavior of RSSI or

LQI as a function of rotation is not easily predictable.

properties may change over-time, or the robot may not have the localization capability

to visit a location accurately.

The experiment in the previous section indicates that it is very difficult, if not

impossible, to use local gradient information to seek a good location. A global approach

is needed. The strategy we present uses two environment dependent parameters. The

first parameter β is a lower-bound for an acceptable signal strength (LQI value). For

example, an appropriate β value for the environment where the experiment shown in

Figure 4.11 was performed, is 95. The second value α is mainly a grid resolution and

it is set to the distance within which the link quality is predictably good. For the

environment where the experiment shown in Figure 4.12 was performed, an appropriate

α value is 8 ft.

Upon hearing a beacon message, the robot searches for a good location by placing a

110

grid on the environment where the dimension of each cell is determined by α. When the

robot visits a grid cell, it rotates 0, 90, 180, 270 degrees. This allows us to get rid of local

multi-path effects and to simultaneously seek a good orientation. At each rotation, the

robot takes five link quality measurements. The quality of each orientation is defined

as the median of these five measurements. The weight of each cell is then set to the

the highest of these four median values. In the algorithm below, measure(c) subroutine

performs these steps at cell location c. We also keep track of a table where we store

the expected link quality values. For each unvisited cell, we set the expected weight

value to the average link quality value of its immediate neighbors. Next, robot visits

the location with maximum expected weight. The algorithm is given below:

Algorithm 2 LocalSearch

Cell Discretization: C
1: expected weight(c ∈ C)← 0, c← (0, 0) (initial location)

2: while there are unexplored cells do

3: if measure(c) ≥ β then

4: return

5: end if

6: Forall c′ ∈ Neighbor(c) if c′ is unvisited,

expected weight(c′) = mean(∀c′′∈Neighbor(c′)measure(c′′))

7: c← maxc′ expected weight(c′)

8: end while

Remark 18. If the β value is not known, we can set it to a high value. In this case,

the robot will visit all grid-cells. We can then pick the best location.

Remark 19. We can incorporate collision avoidance into the strategy by setting the

weight of a cell to zero if there is an obstacle at that cell.

In the next section, we demonstrate the utility of this strategy with a series of

experiments.

111

Local Search Experiments

We tested the search algorithm in a number of settings. In this section, we present two

of these results.

The first experiment was performed in the indoor setting shown in Figure 4.14-left.

The signal strength level in TelosB mote was set to 3. The other system parameters

were α = 1.5m and β = 100.

When the robot started from the initial location shown in the figure, it quickly

converged to a good location. Robot’s steps are shown in Figure 4.14-left bottom where

the visited cells are labeled with the format (s, r): s is the order the cell was visited and

r is the maximum median value sampled from four orientations.

The second experiment was performed outdoors with α = 3m and β = 100. As

shown in Figure 4.14-right, the robot quickly converged to a good location. Link to the

videos of all experiments can be found in Appendix A-Multi Media Extension No: 3.

In conclusion, the simple search strategy presented in this section was efficient in

finding a good download location. Where most local search heuristics would get stuck

with a single cell, the presented search strategy quickly converges to a robot pose from

where the data can be downloaded efficiently.

4.4.3 System Design

We performed experiments to demonstrate the utility of incorporating both beacon

scheduling, and local search. Here, we describe the design of the data mule system used

in the experiments.

Our system consists of three classes of devices. (i) The sensor motes are Crossbow

Telos, (rev. B) [2] which use the CC2420 chip. They are IEEE 802.15.4 compliant. We

deployed three static motes in the fourth floor lounge of the Digital Technology Center

(DTC) at the University of Minnesota, Twin-Cities. The experimental setup is shown in

Figure 4.15. (ii) The mobile robot is an iRobot Create without the command module.

(iii) The control program for the robot runs on an Asus Eee PC, which interfaces with the

Create directly through a USB-to-Serial cable. The system ran Linux (Ubuntu) and our

Java and C++ programs used serial communication libraries to write motion commands

to the robot, in accordance with the Create Open Interface (OI) specifications.

112

(1, 86)

(2, 91)

(3, 96)(4, 102)

(1, 83)

(2, 0)

(3, obs) (4, 84) (5, 76)

(6, 76)(7, 98)(8, 88)

(9, 108)

Figure 4.14: Bottom figures show a virtual grid used by the search algorithm. The

visited cells are labeled with the format (s, r): s is the order the cell was visited and r is

the maximum median value sampled from four orientations. The black rectangles show

the location of the mote. Top Left: The setup for an indoor experiment. The picture

shows the best configuration found by the search algorithm. Bottom Left: Steps in

finding a good location in the setup shown on top. Top Right: Search performed

in an outdoor setting. The picture shows the best configuration found by the search

algorithm. The shaded cell corresponds to the obstacle that robot avoided. Bottom

Right: Steps taken during outdoor search.

113

4.4.4 Experiments

15 m

16 m

Figure 4.15: A proof-of-concept deployment. The stars are approximate locations of

the data nodes. The dashed lines show their communication range. The squares are

locations where the robot starts either the download or the local search.

We performed four experiments to demonstrate the utility of incorporating both

beacon scheduling (presented in [119]), and local search. The experiments are: base-

line (B), beacon scheduling (BS), local search (LS) and both local search and beacon

scheduling (LSBS). Each experiment consisted of 8 rounds. In each round, robot visits

a pre-defined location for each mote, and downloads the data from that mote. The

locations that the robot starts downloading (shown as squares in Fig. 4.15) are fixed

for comparison purposes: For example, if in experiment B the robot downloads from a

fixed location then in experiment LS, the robot starts the local search from the same

location.

We picked a range of download locations in a mote’s vicinity to simulate the effects

of localization uncertainty: If the robot does not have accurate means of localization,

even if it targets a fixed location to download data, it may be off from that location by

a distance given by the uncertainty range. After arriving at a predetermined location,

the robot either directly downloads the data (experiment B and BS), or performs a local

search to find a good location before downloading (LS and LSBS experiments). After

download finishes, the robot either continues to the next mote directly (experiments B

114

350 400 450 500 550
0

1

2

3

4

5

6

7

8

9

10

Interarrival time (sec)

N
um

be
r

of
 o

bs
er

va
tio

ns

Experiment 1 (B)
Experiment 2 (LS)

350 400 450 500 550
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Interarrival time (sec)

P
ro

ba
bi

lit
y

of
 in

te
ra

rr
iv

al

Experiment 1 (B)
Experiment 2 (LS)

Figure 4.16: The robot interarrival times from our experiments were modeled as normal

distributions.

and LS), or computes an updated beacon schedule based on interarrival times, uploads

it to that mote and proceeds to the next mote (experiments BS and LSBS).

In all experiments, the beacons are special messages whose payload consists of (i) the

node id of the mote, and (ii) a sequence number of the triggered beacon. To compare the

local search with base case, we needed a mechanism to compare the trade-off between

energy gain in efficient download and energy spent in extra beacons sent during the

search phase. Therefore, we used data packages which are the same as the beacon

type messages. To download the data on the mote, the robot must successfully hear

100 additional beacons. This represents scenarios where the data stored on the mote

corresponds to 100 messages and all of it must be successfully downloaded. This way, we

can use the last received beacon sequence number for each mote to represent the total

energy consumption metric spent in beaconing and download. Even with this modest

amount of data, each experiment lasted about an hour.

In experiment B, we chose the beacon interval for discovery phase as 5 seconds. This

guaranteed an expected robot waiting time of 2.5 sec. The optimal beacon scheduling

algorithm of [119] and the robot inter-arrival distribution observed in experiment B are

used to achieve 2.5 sec waiting time in experiment BS. In experiment LSBS, we used

the interarrival times from the LS experiment to compute the optimal beacon schedule

for this case. The recorded interarrival times and the robot’s arrival model are shown

in Figure 4.16. In experiment BS, the optimum beacon schedule uses 8 beacons.

115

In comparison to the number of beacons (550/5 = 110) in the base experiment B,

the beaconing strategy yields significant energy savings (8 beacons) while satisfying the

same expected waiting time constraint. Comparing the total number of beacons, we

can see the effect in total performance. Beacon scheduling in experiment BS reduced

the total number of beacons to 2791 compared to 4839 in experiment B, the baseline

(first and second columns in right of Table 4.1).

The left one of the two tables shown in Table 4.1, shows the packet loss rates

for various locations in each experiment. Clearly, local search provides a significant

reduction in packet loss rate for the first two locations (compare B versus LS and BS

versus LSBS) where the distance prevents a lossless communication between the mote

and robot. For example, in the experiment B, the first mote has to sent 538 packets

until the robot successfully downloads all of the 100 data packets, whereas after local

search no packet is lost. We can see the efficiency of local search for the first two rounds

of the examples in Table 4.1-right. On the other hand, for the rest of the rounds, the

local search does not provide significant gains. In fact, the energy consumption slightly

increases in experiment LSBS compared to BS experiment due to the overhead (i.e.

number of beacons sent during local search).

It is worth noting that in this indoor setting, the robot’s total path is relatively short

compared to the search distance. Thus, the search overhead becomes comparable to the

number of discovery beacons. When the travel distances are large, (e.g. in outdoor

settings), the search overhead will become negligible. In this case, local search will yield

more significant energy savings.

Overall, the experiments clearly demonstrate that (i) adaptive beaconing strategies

yield significant savings in the number of discovery beacons sent, and (ii) local search

strategies can result in drastic improvements in the download time when the link quality

is unpredictable.

4.5 Opportunistic Path-planning under Disk Model

In our recent work [25], we introduced a path-planning problem called Data Gathering

Problem (DGP). In DGP we are given n sensor locations, k robots and a communication

radius r. We assume that sensor’s communication range is modeled as a disk which is

116

Dist. B BS LS LSBS

7.5m 173% 36% 0% 1%

6.25m 7% 21% 0% 1%

5m 11% 0% 0% 0%

3.75m 8% 0% 0% 0%

2.5m 2% 3% 0% 3%

1.7m 0% 0% 0% 0%

0.9m 0% 0% 0% 0%

0.1m 0% 0% 0% 0%

B BS LS LSBS

1-2 1642 897 997 828

3-8 3197 1894 3215 2152

Total 4839 2791 4212 2980

Table 4.1: The Left table shows the package loss rates for each experiments

(B:Base,LS:Local Search,BS: Beacon Schedule, LSBS: Local Search and Beacon Sched-

ule together) with respect to the distance that robot starts to download or starts to

the local search. For each download we calculate the number of packet loss until robot

hears 100 beacons. Right figure shows the total number of beacons send from 3 motes

during the experiment.

centered at the sensor location and has radius r. The cost incurred by a robot tour is

defined as the sum of the time robot spends while traveling and the time it spends to

download data from the sensors. The goal in DGP is to find k tours which gather data

from all sensors such that the maximum of the tour costs is minimized.

In [25], we presented an approximation algorithm which uses techniques developed

for TSP with Neighborhoods (TSPN) and TSP with k salesperson (k-TSP) to obtain

an approximation ratio of e+ 2− 1/k where e is the approximation ratio for TSPN.

In this section, we present a modification of the DGP algorithm which alleviates

some of the challenges faced when executing it on a real system. In particular, there

are two major challenges: First, the sensing and actuation errors make it difficult to

precisely follow the line segments output by the DGP algorithm. When the robot steers

off the computed path, it can be within the communication range of a sensor other than

the next sensor it is headed toward. Second, the disk model used for communication is

not always accurate. One can choose the disk radius conservatively so that the expected

signal quality inside the disk is good. However, occasionally it is possible to receive a

117

good signal outside the disk. In Section 4.5.2, we make this observations explicit by

giving real examples from field experiments.

We now present a modification of the DGP algorithm which opportunistically down-

loads from all sensors within the robots communication range (Algorithm 3).

Algorithm 3 OPPORTUNISTIC DGP ALGORITHM

1: Let S be the set of sensors assigned to robot u by DGP algorithm

2: while S 6= ∅ do
3: Let si be the next sensor to visit

4: if u hears a good signal from si or close enough to si then

5: Stop and collect data from si and set S ← S/si

6: else if u hears a good signal from a sensor sj such that j >= i then

7: Stop and collect data from sj.

8: Set S ← S/sj and remove the visit of sj from the DGP tour

9: else

10: Continue the tour returned by DGP algorithm

11: end if

12: end while

13: Visit s1 for the next tour then Goto 1

Let S = {s1, . . . sn} be the ordered list of sensors assigned to a robot u after the

execution of the DGP algorithm. We assume s1 be the base station so that robot starts

its tour from the base in each tour. Let si be the next sensor to visit in S. When running

the opportunistic algorithm, the robot polls the sensors after si and checks if they are

within the communication range. Most WSN systems include low-level support for

scanning the communication channel. In our implementation, we utilize this capability

of TelosB motes. If the robot hears from any sensor sj such that j ≥ i, it stops and

collects data from sj. The robot removes sj from S, and continues toward si. After

visiting the last node in S, the robot returns to s1 ignoring all sensors heard in the

mean time because their data has been downloaded recently.

In order to demonstrate the feasibility and utility of using robots for data collection,

we developed an autonomous data muling system. In the next section, we present the

system components and details of our implementation. In Section 4.5.2, we present

118

Figure 4.17: Left: Cyclops robotic platform developed for data muling. Right: A

data mule system together with sensors.

results from field experiments.

4.5.1 System Design

In this section we describe the hardware and software components of our system.

Hardware

Since sensor networks are typically composed of inexpensive components, we focused

on developing an inexpensive yet robust and effective system so that it can be used

commonly e.g. in environmental monitoring. Considering these design choices, we

developed an outdoor robotic platform which we call “cyclops” (Figure 4.17).

The entire system is composed of the following equipment and devices:

• Robotic data mule:

– Radio controlled racing truck base (Tamiya TXT-1)

– Motor driver (Novak Super Duty XR)

– Micro controller (Robostix)

119

– Laptop computer (Asus Eee PC)

– Infra Red (IR) sensors (Sharp GP2Y0A02YK)

– Digital compass (Sparkfun HMC6352)

– GPS (BU-353)

• Environmental sensors (Crossbow TelosB motes)

The cyclops is based on an RC truck with front servo steering. In order to increase

its maneuvering capabilities, we installed a back servo motor which steers in the back

wheels in the opposite direction of the frontal wheels. A robostix micro controller

is interfaced with the motor driver and steer servo motors to control the robot. For

obstacle avoidance we placed four IR sensors in front. One sensor is pointed directly

forward whereas two sensors look 45 degrees to the sides. This configuration of IR

sensors allows the robot to cover a large range of frontal view. We also placed a fourth

sensor looking down to act as a cliff sensor.

We use a compass and a GPS for estimating the robot’s pose during navigation (We

present the details about localization and navigation in the next section.). Compass

and IR sensors are interfaced with a robostix controller. We use a laptop for computing

and executing the motion plan. The laptop is interfaced with robostix through serial

port. It sends drive commands and receives sensor reading through this serial port. In

addition, a GPS device is directly attached to the laptop’s serial port. There are three

power sources on the robot. The first one is a 12V battery which powers the motors.

Robostix controller and the laptop run on dedicated batteries. The battery life of the

entire system is approximately two hours indoors. However we observed that this time

could drop to half an hour outdoors depending on the environment. Even though this

is sufficient for field tests, a longer battery life is desirable for real-life deployments. We

are currently investigating the use of solar power to address this issue.

Finally we use TelosB motes as stationary sensor devices. TelosB motes are equipped

with a USB interface, an IEEE 802.15.4 radio, a low-power CPU and on-board sensors

(temperature, light and humidity) which are powered by two AA batteries. Using low-

power sensing, these wireless sensor devices make it feasible to monitor environments

for months. We use motes for two purposes. Motes of the first type are called sensor

motes which are deployed onto the field and collect data from the environment. The

120

IR

Compass

Robostix

Steer Servos GPS

Drive Motors

Eee PC

Base

Mote

Sensor

Mote

Figure 4.18: System diagram. Robostix controls drive and servo motors, reads data

from IR sensors and compass. Eee PC communicates through robostix to control the

robot and reads data from GPS. Base mote downloads data from sensor motes and

sends the data to the laptop.

motes of the second type are called base motes which are attached to the laptops on

the robots and used for enabling the communication between sensors and the laptop.

A base mote communicates with sensor motes using ZigBee protocol and forwards the

messages to the serial port of the laptop and vice versa to enable this communication.

A diagram of our overall system is shown in Figure 4.18.

As discussed earlier, we made our design choices so as to construct an inexpensive

and robust robotic platform for environmental monitoring applications. Cyclops has

light aluminum ladder frame and multi-link suspension to make it possible to navigate

in rough domains with high speed (max. 6 kmph) while carrying all the payload (about

7 kg including the base platform). Moreover including all the equipment and devices,

the cost of the entire system (not including sensor motes) is about $1,000.

Navigation Algorithms and Software

The software portion of our system consists of two components. The first component is

an embedded program developed for robostix. This component is implemented in C++

and provides an Application Programming Interface (API) for controlling the robot

and reading from compass and IR sensors. The second component is developed for the

121

laptop and used for high level control (navigation and sensory data download). Since

we have various sensors which have to be read in parallel, we implemented a multi-

threaded system. A separate thread reads and writes from/to each device (compass,

GPS, robostix and base mote) and updates its state in the main thread. Since Java

provides an advanced threading scheme, we used Java to implement the high level

application. We also implemented a server/client application and a GUI to visualize

the robot’s state from a remote computer.

Motes are programmed in nesC. Sensing motes send simple beacon messages, while

the base mote receives these messages and filters them according to their mote ids.

Messages coming from the target mote are processed in the base mote. The base com-

putes the link quality indicator (LQI) values of the packets received and sends them as

serial packets to the Java program running on the laptop. The java program saves the

timestamps (start and end time of the download) and packets received.

The DGP algorithm in [25] yields way-points to be visited along with the ids of sen-

sors whose data must be downloaded at each way-point. We now describe the algorithm

for navigating between these way-points.

The robot uses only compass and GPS for pose estimation. Since neither sensor

provides accurate information, the robot has to deal with large uncertainties during

navigation. At the beginning of its tour, the robot executes an initialization routine to

ensure that it receives the most accurate readings from these devices.

The compass requires an initial calibration step to adjust its values according to

the earth’s magnetic field and external electro-magnetic fields. For that purpose, robot

loops around a circle twice at the beginning and calibrates its compass. Afterward the

robot uses only compass measurements to determine its heading.

It is well-known that GPS performance changes according to external factors (e.g.

environmental effects, and the number and configuration of satellites). To improve its

accuracy, we enabled Wide Area Augmentation System (WAAS) feature of our GPS

device which corrects for GPS signal errors caused by ionospheric disturbances, timing,

and satellite orbit errors. Moreover, we determined that GPS accuracy is higher when

robot is moving compared to when it is stationary. Hence, initially to get a better

estimate, the robot moves on a straight line until the variance of the heading measure-

ments drops below a threshold. After good GPS measurements are obtained, the robot

122

computes its desired heading by using its current location and the target location (next

way-point). The robot uses its compass to move in the desired direction. However, due

to errors, sometimes it goes off of the desired trajectory. The opportunistic algorithm

presented in this section overcomes some of the inefficiencies associated with this type

of error. When the error goes beyond a threshold, the robot re-computes its trajectory

to the next node. In experiments described next, the uncertainty of GPS measurements

was about 3 meters.

4.5.2 Experiments

In this section we present field experiments conducted by the system discussed above.

These experiments are designed for two reasons. First we aim to show the practical

feasibility of using an inexpensive robot as a data mule for collecting data from sen-

sors. Second we aim to show how our algorithm can be improved in practice under

navigation and communication uncertainties. For this purpose we conducted two sets of

experiments. In the first experiment we showed the feasibility of our system using DGP

algorithm presented in our recent work [25]. Using observations from the first experi-

ment, we extended our algorithm by using the opportunistic approach presented at the

beginning of the section. Since we have only one robot, our experiments do not involve

multiple robots. However, since the DGP algorithm partitions the sensors among the

robots and robots do not communicate during the data collection, in a single robot is

sufficient to accomplish our goals.

All experiments were conducted in East River Flats near the Mississippi River/Minnesota.

The ground surface of this field is mainly covered with long grass which makes it a

challenging environment for navigation. See Figure 4.19. We placed seven sensors

(S = {S0, . . . , S6}) in a rectangular area of approximate size of 170m×70m. Since a

base and a sensor are treated as identical disks, we did not deploy a specific base. In-

stead, we treat the last sensor as the base station. Sensors’ communication range was

set to 6m. In our deployment, the communication disks of sensors S0, S1 and S2 overlap

as well as the communication disks of sensors S4 and S5 which were placed at the top

of a hill.

We computed a tour for this deployment using the SparseTspnTour algorithm pre-

sented in [25]. SparseTspnTour chose S0, S3, S4 and S6 as sensors with non-overlapping

123

Figure 4.19: Field deployment in East River Flats: {S0, . . . , S6} are sensor locations.

{D0, . . . ,D6} are the respective download locations computed by our DGP algorithm.

Red (shaded) disks show the communication disks and black tour shows the ideal TSPN

tour.

communication disks in I. For each overlapping sensor we compute a download loca-

tion. The ordered tour is given by: τ = {D0,D1,D2,D3,D4,D5,D6}. The robot was

programmed to download twenty packets of size 32 bytes from each sensor where each

sensor was programmed to send packets as beacons with time interval 250 milliseconds.

In the first experiment we made the robot execute the tour τ . Due to GPS un-

certainties we programmed the robot to stop if its distance to destination point Di is

closer than some threshold. Moreover during our initial experiments we realized that

the robot occasionally hears good signal from long distances while moving towards the

target sensor due the environmental effects. For example robot was able hear the sensor

at the top of the hill (S4) from approximately 25m distance. In these cases robot does

not have to navigate all the way to the desired download location. Hence we modified

our algorithm by adding the following condition: robot collects data from sensor Si if

it is close enough to Di or it hears a good signal from Si. Note that this modification

does not allow downloading from nodes out of order. It simply changes the download

124

location if a better signal becomes available early on.

Figure 4.20 show the GPS trace of the robot during the first (top image) and the

second (bottom image) tours respectively. The actual download locations were marked

with the different placemarks and labeled as {F0, . . . , F6}. The actual and intended

download locations were different due to the uncertainty in GPS readings and the mod-

ification regarding the download location. The download, travel and total times are

reported in Table 4.2. We also include the total tour time as the sum of download and

travel times.

Since the actual starting positions in this experiment and the next one were different,

we started the first tour from S0. Hence the travel time to reach S0 was not counted in

the first tour. However in the second tour the travel time from S6 to S0 was counted

as the travel time to reach this sensor. Observe that the download times are consistent

with each other except the last sensor in the second tour. This is because, while moving

towards S6 robot heard a temporary good signal from S6 and stopped. However the

signal strength dropped during the download which extended the download time.

125

Figure 4.20: Top: First tour by the robot (blue trace). Fi is the actual location from

where the robot downloads the data from Si for i = 0, . . . , 6. Bottom: Two complete

tours of the robot where first tour is marked in pale blue and the second tour in red.

These images are best viewed in color.

In the first experiment, we realized that the robot hears from other sensors while

126

Tour-1 Tour-2

Download time Travel Time Download Time TravelTime

S0 4.9 5.3 151.1

S1 5.1 12.2 5.9 26.0

S2 5.1 1.2 4.8 0.9

S3 5.0 100.0 5.1 113.7

S4 4.9 26.7 4.9 33.9

S5 4.8 64.5 4.8 57.3

S6 5.0 41.7 30.0 100.5

Total 34.84 246.2 60.93 483.33

Tour Total 825.3

Table 4.2: Download and travel times in seconds from the DGP experiment. The first

row of Tour-2 includes the time to travel from S6 to S0.

moving towards target location. This specially happens when robot is collecting data

from overlapping sensors. For example, when robot is moving towards S1, sometimes it

hears a good signal from S2 before S1. In this case robot can download data from S2 and

therefore can eliminate the traveling cost to S2. Hence we proposed an opportunistic

version of the DGP algorithm which is presented in detail in Algorithm 3. In contrast

to download location modification, this modification allows robot to download from any

node that the robot can hear which consequently changes the order of the tour.

Figure 4.21 show the GPS trace from the opportunistic DGP experiment. The

download and travel times during this experiment are reported in Table 4.3. In this

experiment robot leverages the opportunistic approach to reduce its tour time. The

total travel time in the first experiment was 730 seconds whereas in the opportunistic

DGP experiment the total travel time was 708 seconds. However it is hard make a

reliable comparison between the two strategies since the actual paths and the actual

download locations were different. On the other hand we can see the advantage of the

opportunistic approach when robot downloads data from S2 in the first tour. Since

S0, S1 and S2 were close robot heard a good signal from S2 when moving from S0

to S1 and download the data on the way. Hence it did not spend extra time to visit

S2 which otherwise it would have spent about 13 seconds to navigate to D2 as in the

127

second tour.

Figure 4.21: Top: First tour from the opportunistic DGP algorithm (blue trace). Fi is

the actual location from where the robot downloads the data from Si for i = 0, . . . , 6.

Bottom: Two complete tours of the robot where first tour is marked in pale blue and

the second tour in red. These images are best viewed in color.

128

Tour-1 Tour-2

Download time Travel Time Download Time TravelTime

S0 4.8 5.0 97.5

S1 4.8 46.6 4.7 8.1

S2 5.0 0 5.3 13.4

S3 4.8 113.3 6.3 111.4

S4 5.8 28.5 5.7 35.0

S5 4.9 47.6 8.2 72.5

S6 5.9 42.8 5.6 91.2

Total 36.08 278.75 40.93 429.07

Tour Total 784.82

Table 4.3: Download and travel times in seconds from the opportunistic DGP experi-

ment. The first row of Tour-2 includes the time to travel from S6 to S0.

Next we compute how much the robot deviates from the ideal solution shown in

Figure 4.19. The length of the ideal tour is 550m. The length of the robot’s path in

the first experiment was 625m. In the second experiment (opportunistic) this length

was 629m. Therefore the uncertainties increase the tour length by 13.6% and 14.3%

respectively. In terms of download times ideal solution would have spent at least 65.8

seconds to download data from all the sensors (assuming 4.7 seconds download time

from each sensor). On the other hand in the first and the second experiments the total

download times were 95.8 and 77 seconds, respectively. These yield to 45.6% and 17%

increase in the download times. In terms of total tour times ideal solution would spend

615.8 seconds to finish two tours assuming a 1 m/sec average speed. The total tour

times in the first and the second experiments were 825.3 and 784.8 seconds respectively.

Hence the overall deviations from the ideal solution were 34% and 27.4%. Link to the

videos of all experiments can be found in Appendix A-Multi Media Extension No: 4.

Although the number of experiments conducted were limited, the results show that

despite the navigation and communication uncertainties, the performance of the system

was not too far from the ideal solution. More importantly, they demonstrate that a data

muling system built from inexpensive off-the-shelf components is feasible. In the future

we aim to reduce navigational uncertainties by improving our algorithms and hardware

129

capabilities.

4.6 Path-planning under Two-Ring Model

The uniform disk model ignores the fact that download time is a function of the

signal strength. Recent experimental work [26], showed that the following two ring com-

munication model models the dependency of communication quality on signal strength

accurately in most sensor network deployments. In this model, there are two concentric

disks centered at the sensor location. Inside the inner disk the communication is reli-

able thus the expected download time is shorter. Between the boundaries of the inner

and the outer disks, communication is possible however due to increase in packet loss

rate, the expected download time increases (see Figure 4.23). Collecting data under two

ring communication model is a new optimization problem which we call Two-Ring Tour

Problem (TRT). In this version of the problem the tours are no longer optimal TSPN

paths. An optimal tour is the one which trades-off between downloading from the outer

disk or going further to download from the inner disk with shorter download time (see

Figure 4.22).

OPT

Figure 4.22: A TRT instance. Each sensor has a two ring communication model. If the

robot enters the inner disk (shaded region), it downloads data faster than downloading

from the outer disk. For this instance the optimal solution visits a mixture of inner and

outer disks.

Our Contributions: We first study the general case of collecting data from sensors

on the plane. In Section 4.6.3, we present a (p + q)-approximation where p and q are

130

the approximation factors for TSPN and k-TSPN problems (These problems will be

defined shortly). Next we present simple polynomial algorithms for TRT which have

approximation factors O(Tout/Tin) and O(rout/rin) (Section 4.6.3 and Section 4.6.3).

We also study the following special cases for TRT problem: non-intersecting outer

disks and uniform deployment. When the outer disks are non-intersecting, we present a

constant factor approximation algorithm (Section 4.6.4) based on a novel lower bound

presented in Theorem 23. When sensors are deployed uniformly (possibly intersecting),

we formalize the problem as an integer linear program, solve the relaxed version (lin-

ear program) optimally and show how it can be rounded to obtain a 4-approximation

(Section 4.6.4). In Section 4.6.5, we present results from simulations and an experiment

performed using a ground robot.

4.6.1 Problem Definition

Let S = {s1, . . . , sn} be a given set of the locations of n sensors. For each sensor s ∈ S,

define Din as the inner disk (i.e. the disk centered at s with radius rin) and Dout as

the outer disk (with radius rout). The download time inside the inner disk is Tin and

the download time inside Dout − Din is Tout. Without loss of generality, we scale the

distances so that the robot’s maximum velocity is one unit.

The objective is to find a tour which visits either the inner disk or the outer disk

of each sensor and minimizes the total time taken to travel and download data from

all sensors. We refer to this problem as the Two-Ring Tour Problem (TRT). We also

assume that the robot stops first and then downloads the data. Observe that the robot

can reduce the total time of the tour by at most half if it downloads while travelling.

Therefore, our results yield approximation algorithms for this model (increased by a

factor 2) as well.

The TRT problem is a generalization of the Eucledian TSP problem which is an

NP-complete problem. This implies that the there is no algorithm which can solve the

TRT problem in polynomial time unless P = NP . For such problems, approximation

algorithms can be used to get an approximate solution. An approximation algorithm is

an algorithm which runs in polynomial time on the size of input and guarantees that

the solution is close to the optimal value. For minimization problems like TRT, an

α−approximation algorithm gives a solution which is at most α times of the optimal

131

rin
rout

Tin

Tout

Din

Dout

Figure 4.23: The two ring model. Download time is Tin in disk Din while it is Tout in

the region Dout −Din.

value. In Section 4.6.3 and Section 4.6.4, we present approximation algorithms for the

general TRT problem and for some special cases of it.

4.6.2 Structural Properties

In this section, we present some basic properties of an optimal TRT solution.

Proposition 20. |Cin| ≥ |C∗
out|, where |Cin| is any tour that visits all inner disks, and

C∗
out is the optimal TSPN tour visiting outer disks.

Proposition 20 follows from the fact that any tour that visits the inner disks also

visits the outer disks. Using Proposition 20 we obtain a lower bound on the cost of the

optimal solution to the TRT problem.

Proposition 21. OPT ≥ |C∗
out|+nTin , where OPT is the cost incurred by the optimal

TRT tour.

The first term on the right side of the inequality in Proposition 21 is the lower bound

on the travel time taken by the optimal tour that visits all the sensors, while the second

term is the lower bound on the time to download data from all the sensors.

132

The following theorem yields a lower bound on the optimal solution. We will use

this lower bound in some of the approximation algorithms presented in this section.

Lemma 22. For any three non-overlapping, equal-size disks on the plane, the length of

any path that visits all three disks is lower bounded by αr, where r is the radius of the

disks and α = 0.4786.

Proof. Let τ∗ be the optimal TSPN solution visiting n > 2 disks. Let D1,D2 and D3 be

three consecutive disjoint disks on τ∗ with centers c1, c2 and c3 respectively. Consider

the segment of τ∗ which visits these disks. τ∗ either touches the boundary of a disk or

it crosses the boundary twice. For each disk Di, we identify a point ti which is either

the touching point or one of the points where τ∗ crosses Di as follows (see Figure 4.24):

- If τ∗ touches D2, pick the touching point as t2, otherwise pick one of the two points

on the boundary of D2 arbitrarily which is crossed by τ∗

- If τ∗ touches D1, pick the touching point as t1, otherwise pick the closest crossing

point to t2 as t1 (similarly choose t3)

We will present a couple of transformations on the disks such that the length of τ∗

will not increase. Afterwards, we will present a lower bound on |t1 t2|+ |t2 t3|.
In the first transformation, we will replace points t1 and t3. In the second transfor-

mation, we will move disks D1 and D3 in such a way that D2 touches both disks. Both

of these transformations will be done without increasing the total distance. Finally, we

will establish the lower bound by optimizing the location of t2.

Let t′1 be the point that segment [t2 c1] crosses the boundary of D1. By moving t1

to t′1, we do not increase the total distance (see Figure 4.24). Same observation can be

applied for t3 and t′3.

If either |t1 t2| or |t2 t3| is greater than or equal to 0.4786r, lower bound holds since

the total distance is at least as claimed. If both distances are less than 0.4786r then

we do the following transformation. Without loss of generality, let us assume that D1

is to the left of D3 (see left of Figure 4.25). If D1 touches D2, we do not move D1.

Otherwise, we rotate D1 along t2 in counterclockwise direction until D1 touches D2.

Similarly, if D3 does not touch D2, initially, we rotate it in clockwise direction until it

touches D2. Note that this transformation is only a rotation and does not change the

total distance. Middle of Figure 4.25 shows this transformation.

133

t1

t2

t3

t′1

t′3

c1

c2

c3

D1

D2

D3

Figure 4.24: Three non-overlapping disks lying in a plane. The part of the optimal

TSPN tour t1, t2, t3 which visits disks D1,D2 and D3, respectively. Without increasing

the total distance, we can transform t1 to t′1 and t3 to t′3

In this transformed version of the problem, we formulate the total distance in terms

of parameters θ = ∠t2 c2 c
′
3 and β = ∠c′1 c2 c

′
3 where c

′
1 and c′3 are centers of transformed

disks D1 and D3. Since t2 is on the boundary of D2, we can define all possible locations

of t2 in terms of θ. Since |t1 t2| is less than 0.4786r, we can show that the angle ∠c′1 t2 c2

is greater than π/2. Using the same fact on |t2 t3|, we can show that the angle ∠c′3 t2 c2

is greater than π/2. Together with the previous inequality, we establish that t2 is inside

the triangle △c′1 c2 c
′
3. Using the same distance constraints, we can show that β is upper

bounded by π/2. Moreover, since all disks are non-overlapping, it is lower bounded by

π/3 (the configuration when all disks touch each other). The total distance can be

expressed as:

r
(

√

5− 4 cos(θ) +
√

5− 4 cos(β − θ)− 2
)

Taking the derivative of this formula with respect to θ and setting it to zero yields

that the total distance is minimized when θ = β/2 and this value is 2r
(

√

5− 4 cos(β/2) − 1
)

.

134

t2

t′1

t′3

c1

c2

c3

D1

D2

D3

t2

t′1

t′3

c2

c′1

c′3

D1

D2

D3

θ
β

t2

t′1
t′3

c2

c′1

c′3

D1

D2

D3

π
6

Figure 4.25: Left: Initial configurations of circles where |t′1 t2|, |t2 t′3| < 0.4786r. Mid-

dle: After rotation without changing the total distance, D2 touches both D1 and D3.

Right: The configuration where the total distance is minimum and equals to 0.4786r.

This value can be further minimized with respect to π
3 ≤ β < π

2 (i.e. β = π/3). Find-

ing this value yields a configuration where all the circles touch each other and t2 is

in the middle of tangent points. In this configuration the total distance is 0.4786 × r

which will be used in the next Theorem to find a lower bound on the tour length. This

configuration is shown in right of Figure 4.25.

We use Lemma 22 to find a lower bound on any tour of non-overlapping, equal-

sized disks in a plane. This lower bound is used for analysis of algorithms presented in

subsequent sections.

Theorem 23. Any tour τ of n disjoint, equal-sized disks of radius r, satisfies

|τ | ≥ n

2
αr, (4.1)

where α = 0.4786 and n ≥ 3.

Proof. Take the tour τ . It will give an order of sensors in which to visit them. Let the

order be s1, s2, s3 , . . . , sn. From Lemma 22 we know that the cost of every sub-path

Pi which joins si, si+1 and si+2 in τ , is lower bounded by αr for every i ∈ 1, n. Also

|τ | ≥ 1
2

∑n
i=1 |Pi|. Therefore |τ | ≥ n

2αr.

135

4.6.3 General Case

In the general case, the communication disks of sensors are placed arbitrarily on the

plane possibly overlapping. This section presents three algorithms for this case.

Our first algorithm uses algorithms for TSPN and k-TSPN problems as subroutines.

If TSPN solution is p-approximate and k-TSPN solution is q-approximate then our

algorithm gives a (p + q)-approximate solution for the TRT problem. For example, we

can use the PTAS for k-TSPN [113,117] and PTAS for TSPN from [3] to get a (2+ ǫ)-

approximate solution for TRT (where ǫ can be made arbitrarily small at the expense of

running time).

PTAS algorithms are generally difficult to implement and they have high running

times in practice. Therefore, we present two algorithms which are easy to implement

with approximation ratios of O(Tout

Tin
) and O(routrin

) where Tout > Tin > 0. In practice,

the ratios Tout

Tin
and rout

rin
are expected to be small, therefore the two algorithms are very

relevant for the real world instances of TRT.

General Approximation Algorithm

Let C∗ be the optimal tour, SI be the set of sensors whose inner disks are visited by

C∗, and SO be the remaining sensors whose outer disks are visited by C∗. We have

|SI | + |SO| = n. Then the total cost of this tour is OPT = |C∗| + |SI |Tin + |SO|Tout

where Tin and Tout are the download times from the inner and outer disks of a single

sensor.

We observe that C∗ is a k-TSPN tour (k = |SI |) of the inner disks and therefore,

the optimal k-TSPN tour of all the inner disks is no longer than C∗. Let C∗
1 be the

optimal k-TSPN tour. By the previous argument, |C∗
1 | ≤ |C∗|. Suppose we can guess

k (|SI |), then we find an approximate k-TSPN tour using a q-approximation algorithm

for the problem. Then the tour C1 given by this algorithm will be of length at most

q|C∗
1 |.
Next, let C∗

2 be an optimal TSPN tour of the outer disks of sensors not visited by

C1. This tour will be shorter or equal in length than the optimal tour C∗
out which visits

all the outer disks, i.e., |C∗
2 | ≤ |C∗

out|. But the length of the optimal tour of the outer

disks is a lower bound on the length C∗ (Proposition 20). Therefore, |C∗
out| ≤ |C∗|. We

136

compute a p−approximate TSPN tour by using a p-approximation algorithm for the

TSPN problem. If C2 is the tour given by this algorithm, then we have |C2| ≤ p|C∗|
Therefore, the total cost incurred by |C1 ∪ C2| is

|C1|+ |C2|+ |SI |Tin + |SO|Tout

≤ q|C∗|+ p|C∗|+ |SI |Tin + |SO|Tout

≤ (p+ q)OPT

Algorithm 4 implements the steps mentioned above. It guesses k by enumerating all

possible k values and then picking up the value of k for which the total cost is minimized.

Algorithm 4 GENERAL APPROX ALGORITHM

TOUR← φ

minCost← BIGNUMBER

for k = 1 to n do

C1 ← k-TSPN tour of the inner disks

S ← { sensors visited by C1}
C2 ← TSPN tour of the outer disks of the sensors not included in S

cost← |C1|+ |C2|+ kTin + (n− k)Tout

if minCost > cost then

TOUR← C1 ∪ C2

minCost← cost

end if

end for

return TOUR

Mitchell presents PTAS algorithms for both TSPN and k-TSPN problems [113].

If we use these algorithms for the case when the outer disks are disjoint, then we get

p = (1+ǫ/2) and q = (1+ǫ/2). In that case our algorithm yields a (2+ǫ)-approximation

factor. In the remaining case, we can use the constant factor approximation algorithm

for the outer disks [3] to find a TSPN tour (p = 11.5) and the PTAS for inner disks to

find a k-TSPN tour which yield to an approximation algorithm with factor (12.15 + ǫ).

137

O(Tout

Tin
)-approximation

The algorithm presented in this section is appropriate for the case when the download

times of the inner and the outer disks are comparable. For this scenario, we show that the

strategy of visiting just the outer disks of the sensors yields an O(Tout

Tin
)-approximation

for TRT.

First, we use a TSPN algorithm (e.g. [3]) to find a TSPN tour Cout of all the outer

disks. Let p be the approximation factor for this algorithm and p ≥ 1. Since the tour

visits the outer disks, the robot downloads data from the sensors with the download

speed of Tout. Therefore, the approximation factor of the algorithm is:

|Cout|+ nTout

OPT
≤ |Cout|+ nTout

|C∗
out|+ nTin

≤ p|C∗
out|+ nTout

|C∗
out|+ nTin

≤ p
|C∗

out|+ nTout

|C∗
out|+ nTin

≤ p
Tout

Tin
(4.2)

The first inequality in Equation 4.2 comes from Proposition 21. TSPN approxima-

tion directly yields the second inequality. Therefore, our algorithm has an approximation

factor of O(Tout

Tin
).

O(routrin
)-approximation

For some problem instances the ratio of radii may be better than the ratio of download

times. In such cases if the ratio of radii is small, we can find an efficient algorithm with

the approximation factor of order O(routrin
).

In this algorithm, first we compute a maximal non-overlapping set I of the outer

disks. For this we use Algorithm 5. Then we find a TSPN tour CI
out of the disks in I.

For each disk A ∈ I, we define the set of sensors whose outer disks intersect with A as

SA. Next, we will show that how we can extend CI
out such that it visits all the inner

disks of the sensors in SA. Also, we assume that |I| ≥ 3.

Let D be a disk of radius 2rout and is co-centered with A. All the sensors in SA lie

on or in D. We traverse D in concentric circles which are distance rin apart as shown

in Figure 4.26. This will ensure that all the inner disks of the sensors in SA are visited.

138

Algorithm 5 PARTITION ALGORITHM(S)

1: I ← φ

2: while S 6= φ do

3: Pick a outer disk D of a sensor ∈ S.

4: I ← I ∪D

5: SD ←{ sensor with outer disk D′ ∈ S : D′ ∩D 6= φ}
6: S ← S − SD

7: end while

8: return MIS set I and all partitions SD.

Let dA be the extra distance traveled in this process and let k = ⌊2routrin
⌋. Then,

dA =
∑k

i=1 2πirin = πrink(k+1) = 2πrout(k+1). The cost of this tour is |CI
out|+mdA

= |CI
out|+ 2mπrout(k + 1), where m = |I|. This gives us the approximation ratio:

|CI
out|+mdA + nTin

|Cout
∗|+ nTin

≤ |CI
out|+mdA
|Cout

∗|

=
|CI

out|
|Cout

∗| +
2mπrout(k + 1)

|C∗
out|

≤ p+
2mπrout(k + 1)

m
2 routα

= p+
4π(k + 1)

α
(4.3)

In the second inequality we use p as the approximation ratio for the TSPN algorithm

and the lower bound on C∗
out is obtained from Theorem 23. Finally, this gives us an

O(routrin
) approximation algorithm under the requirement that |I| ≥ 3.

4.6.4 Special Cases

In this section, we consider efficient solutions for some practical sensor deployments. In

the first scenario, we consider a sparse network deployment where communication disks

do not overlap. In the second scenario, we consider a common network topology where

the sensors are deployed uniformly over a grid.

139

A

rin
rin

2rout

CI
out

CI
out

DA

Figure 4.26: In all inner-disk visits, the algorithm chooses to sweep the 2rout size disk

centered at A in concentric circles which are rin apart.

Non-Overlapping Outer Disks

In this section, we consider the case when all the outer disks are non-overlapping. Our

algorithm is simple. We compute a TSPN tour Cin of inner disks and download data

from inner disks with cost of Tin at each disk. This tour can be computed by visiting

centers of the disks in polynomial time with (1 + ǫ) approximation using PTAS given

in [3].

When n = 1, the solution is trivial. For n = 2, all possible cases (visiting both inner

disks, both outer disks or one inner and one outer disk) can be calculated and the one

giving the minimum cost is picked. For n ≥ 3 we present the following lemma.

Lemma 24. Given n equal size disk of radius r, where n ≥ 3, one can compute a TSPN

tour Cin of the inner disks such that

|Cin|+ nTin

|C∗
out|+ nTin

≤ (1 + ǫ)(1 +
4

α
) (4.4)

Proof. We observe that any outer disk TSPN tour can be converted in to an inner

disk TSPN tour by extending it at most 2(ro − ri) in length at each disk. From this

140

observation we get:

|C∗
in| ≤ |C∗

out|+ 2n(ro − ri) ≤ |C∗
out|+ 2nro, (4.5)

where C∗
in is the optimal inner disk TSPN tour. Therefore,

|Cin|+ nTin

|C∗
out|+ nTin

≤ (1 + ǫ)
|C∗

in|
|C∗

out|
≤ (1 + ǫ)

(

1 +
2nro
|C∗

out|

)

≤ (1 + ǫ)(1 +
4

α
) (4.6)

Equation 4.6 is obtained by applying the lower bound obtained in Theorem 23 to

Equation 4.5. The (1 + ǫ)-approximation is obtained by the PTAS for finding TSPN

tour of non-overlapping equal size disks given in [3].

This gives us the following result.

Theorem 25. A TSPN tour of inner disks is a factor (1 + 4
α)-approximation for TRT

with non-overlapping outer disks (α = 0.4786).

Uniform Deployment

In this section, we consider a common scenario where n2 sensors are deployed uniformly

over an n × n grid. Let us define a boustrophedon path as a path that goes back and

forth along a fixed direction (vertical or horizontal) until it touches the boundary. For

the case of uniform deployment, there exists an optimal solution OPT which follows

a boustrophedon path. In other words, assuming OPT starts from the top left corner

of the grid, first it moves right until it reaches the first vertical line, then follows the

vertical line downwards until the bottom of the grid. It then moves right to a vertical

line and follows it upwards until it reaches the top and so on. Therefore, if we compute

the set of vertical lines traversed by OPT, we can construct the TRT path. Note that

this path does not necessarily go through each sensor location (centers of the disks), it

simply intersects one of the disks of each sensor.

We restrict the candidate vertical lines to the set of tangent lines L. Each sensor

introduces four vertical tangent lines: two tangent to the outer disk and two tangent

to the inner disk. It is easy to show that if there exists a solution where there is a

141

vertical line in between two tangent lines in L then we can replace this line with one of

its neighbor tangent lines to achieve the same cost. Figure 4.27 shows an instance (only

one row) and its vertical tangent lines. From now on, we focus on selecting a subset of

L such that the total time is minimized.

x1 x2 x3 xm

s1

s2

s3

sn

Figure 4.27: Sensors are arranged on an n × n grid. For each sensor, draw vertical

tangents. Two for the outer disk and two for the inner disk. The number of tangents

= m ≤ 4n. The stabbing lines are chosen from this set of tangents.

LP-formulation

For each column i where 1 ≤ i ≤ n, we define four binary variables: x4i−3 for the left

outer tangent line, x4i−2 for the left inner tangent line, x4i−1 for the right inner tangent

line and x4i for the right outer tangent line. We set xj = 1 if and only if the tangent

line xj is traversed. We define a variable yi such that yi = 1 iff the robot visits the inner

disks of sensor column i.

For each column at least one tangent line should be visited hence we have (i) x4i−3+

x4i−2 + x4i−1 + x4i ≥ 1. Moreover, if one of the inner tangent lines is visited then yi

should be set to 1. We satisfy this by the following two constraints: (ii) yi ≤ x4i−2+x4i−1

142

and (iii) yi ≤ 1.

Finally we define the cost of the solution. Let C be the cost of traveling a stabbing

line, Tin (resp. Tout) be the cost of downloading from inner (resp. outer) disks from an

entire column.

The total download time is

C

4n
∑

j=1

xj + (Tin − Tout)

n
∑

i=1

yi + nTout

The integer solution to the above cost function under constraints (i)-(iii) gives us the

optimal solution for the uniform case. The following formulation shows the full integer

linear program solution:

minimize

C
4n
∑

j=1

xj + (Tin − Tout)
n
∑

i=1

yi + nTout

such that

x4i−3 + x4i−2 + x4i−1 + x4i ≥ 1 1 ≤ i ≤ n

yi ≤ x4i−2 + x4i−1 1 ≤ i ≤ n

yi ≤ 1 1 ≤ i ≤ n

xi, yi ∈ {0, 1}

Next we show that the relaxed version can be rounded to obtain a 4-approximation

to the uniform case.

Relaxation and Rounding

We relax xj and yi by replacing the binary constraints with xj ≥ 0 and yi ≥ 0. Let

OPT (LP) be the cost incurred by the optimal solution to the relaxed version. After

solving the LP relaxation, we round the solution as follows: If xj ≥ 1
4 we set it to one.

Otherwise, we set it to zero. These are the vertical lines that will be traversed. We

then use the values of xj to determine the values of yi. Let SOL be the cost incurred

143

by this integer solution, and OPT (ILP) be the cost incurred by the optimal binary

solution. Observe that OPT (LP) ≤ OPT (ILP) and SOL ≤ 4OPT (LP). Therefore,

SOL ≤ 4OPT (ILP).

We now show that the rounding gives a feasible solution. To see this, observe that

due to constraint (i), one of x4i−3, x4i−2, x4i−1 and x4i is at least 1
4 . Therefore, after

rounding at least one of these stabbing lines is selected, which means that data from

every sensor column is collected.

4.6.5 Simulations

In this section we compare the tour of outer disks, the tour of inner disks and the tour

of centers of the sensors using simulations. The setup consists of 100 sensors deployed

uniformly at random on a 100 × 100 grid. The radii of the outer disks was set to 10

units for all the trials. Similarly, the download time Tout for the outer disks was fixed

to 10 units.

First, we varied the inner disk radii rin from 1 to rout and computed the inner disks

tour cost. The inner disk download time Tin was fixed to 5 units. We performed 100

trials for each rin value and reported the average tour cost. Top:Figure 4.28 shows the

average tour cost for different values of the rin. The vertical bars in the figure shows

the standard deviation of the tour cost. It was surprising to observe that the inner

disk tour’s cost increased with increasing rin. On further analysis, we observed that as

rin increases the size of the independent set I used to compute TSPN tour decreases

(see Bottom:Figure 4.28). When the intersections are few the approximation algorithm

yields simple tours and the computed tours are closer to optimal tour. But when the

intersections are significant, although the tour cost is bounded by a constant factor, the

tours computed are somewhat complex and are relatively less closer to optimal.

144

0 1 2 3 4 5 6 7 8 9 10
800

1000

1200

1400

1600

1800

2000

2200

2400

Inner disk radius (r
in

)

C
os

t

Coverage cost vs inner disk radius

Inner disks coverage cost (C

in
 + nT

in
)

Outer disks coverage cost (C
out

 + nT
out

)

Centers coverage cost (C
center

 + nT
in

)

Outer disks tour length (C
out

)

1 2 3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

Inner disk radius (r
in

)

S
iz

e
of

 in
de

pe
nd

en
t s

et
 I

Average independent set size vs inner disk radius

Figure 4.28: TOP: This figure shows the change in tour cost with the change in in-

ner disk radius rin. Interestingly the inner disk tour cost increased with increasing

rin. BOTTOM: This figure shows that the size of independent set I decreases as rin

increases. The independent set I is used to compute the TSPN tour using algorithm

in [3]. This attributes to the increase in the inner disk tour cost in the TOP figure.

In the second simulation, we vary Tin while keeping rin fixed to 5. As expected, the

inner disk tour cost varies linearly with Tin (Figure 4.29). The dashed line in the figure

145

represents the length of the outer disk tour (it also gives the time to travel since we

assume unit speed). From Proposition 20, the length of the optimal outer disk tour is

a lower bound on the cost of any inner disk tour. This is observed in the Figure 4.29.

When Tin = 0, the inner tour cost is slightly lower than the outer tour cost. This is an

artifact of the approximation algorithm as described in the previous simulation.

In the final simulation, we fixed both rin and Tin to 5. We increased the number

of sensors on the grid and computed the tours. Figure 4.30 shows the plot of the

experiment. We observe that after approximately 250 sensors, the outer disk tour

length does not change significantly. This is because the size of the independent set

I used in the approximation algorithm for TSPN [3] does not change with increasing

number of sensors. Hence, the tour length also does not vary much. Since the number

of sensors increase consequently the download time increases and this causes coverage

cost to increase linearly for inner disks tour.

0 1 2 3 4 5 6 7 8 9
800

1000

1200

1400

1600

1800

2000

2200

2400

C
os

t

Inner disk download time (T
in

)

Coverage cost vs inner disk download time

Inner disks coverage cost (C

in
 + nT

in
)

Centers coverage cost (C
center

 + nT
in

)

Outer disks coverage cost (C
out

 + nT
out

)

Outer disks tour length (C
out

)

Figure 4.29: The increase in inner disk and center tour cost is linear with increase in

Tin as expected.

4.6.6 Experiments

In addition to simulations, we performed experiments using wireless sensors (telosB

motes) and a custom-built robot. First, we obtained the model parameters. Figure 4.31

146

100 200 300 400 500 600 700 800
0

2000

4000

6000

8000

10000

12000

14000

Number of sensors (n)

C
os

t

Coverage cost vs Number of sensors

Inner disks coverage cost (C

in
 + nT

in
)

Outer disks coverage cost (C
out

 + nT
out

)

Centers coverage cost (C
center

 + nT
in

)

Outer disks tour length (C
out

)

Figure 4.30: As number of sensors are increased tours costs also increase. This is

expected as the download time increases linearly with the number of sensors.

shows the average download times as a function of distance from the sensor. For each

distance value d, we moved the base mote on a circle which has radius d and centered

at the sensor mote location. In each trial, we downloaded 100 packets and recorded

their download times. The blue line in the figure shows the average download times and

the red error bar shows the minimum and maximum download times observed during

each trial. The download times show us that until a distance of 30 feet (gray line)

the communication between sensor and base motes is reliable and the download times

are short. However beyond 30 feet the communication becomes very unreliable and we

observed long download times up to as much as 22 seconds. Beyond 45 feet there was

no communication.

Next, we conducted real experiments with a robot to compare the performance of

various TRT tours. We used an outdoor robot developed in our lab to collect data from

four telosB sensors. These sensors were deployed on the corners of a square field of size

70x70 feet (See Figure 4.32). In this particular experiment, we set the inner disk radius

to 18 feet and the outer disk radius to 30 feet.

We tested three natural strategies and compared their performances. In the first

strategy the robot followed a TSP tour which visits the centers. In the second and third

strategies, the robot visited the outer and inner disks respectively. In each visit the

147

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
x 10

4 Distance Vs Download Time

Distance (feet)

D
ow

nl
oa

d
T

im
e

(m
ill

is
ec

on
d)

Upper and Lower Bounds
Average Download Time

Figure 4.31: Download speed vs distance for communication between two sensor motes.

robot downloaded 100 packets and the time to download varied according to the packet

loss.

First we treated the TRT problem as a TSP problem and made the robot visit the

sensor locations. In this case the total download time was 8 seconds where as the travel

time was 140 seconds (see Figure 4.33 and Table 1). In the second experiment, the

robot visited the outer disks which dropped the tour time from 148 seconds to 114

seconds. In this case the download time and the travel time were 50 seconds and 64

seconds respectively. In the last experiment, the robot followed an inner disk tour.

The download time drastically decreased from 50 seconds to 9 seconds in this case.

However, the travel time increased from 64 seconds to 119 seconds and the overall tour

time increased by 14 seconds to 128 seconds.

148

18 feet

30 feet

robot

sensor 1 s.2

s.3 s.4

70 feet

inner disk
outer disk

inner disk tour
outer disk tour

center tour

Figure 4.32: Left: An outdoor robot developed in our lab was used in the experiments

for validating the two-ring model.. Right: The setup of the experiment.

Download Travel Total

Visit Disk Centers 8 140 148

Visit Outer Disks 50 64 114

Visit Inner Disks 9 119 128

Table 4.4: Table showing the download and travel times from the three strategies.

4.7 Concluding Remarks

Wireless sensor network technology has the potential to enable major breakthroughs

in natural sciences by giving scientists the capability to collect high fidelity data over

large geographic regions and extended periods of time. We argue that mobile robots

can help sensor networks achieve their full potential. In this chapter, we explored one

such synergy between robots and a static sensor field, in which robots act as mules that

collect the measurements acquired by the sensors. In Section 4.3, we used a proof-of-

concept system to show that this approach is feasible and yields important savings in

energy costs, prolonging the network’s lifetime.

149

outerDiscVisit innerDiscVisit centerDiscVisit
0

50

100

150

algorithms

se
c

Performance of algorithms for downloading 10 packages

download time

traveling time

total time

Figure 4.33: Left: A snapshot from the experiment. Right: Download and travelling

time of the following strategies: visit outer disk, visit inner disks and visit disk centers.

In Section 4.4, we investigated further energy improvements by minimizing the num-

ber of beacons and reducing the packet loss rate. To minimize the number of retransmis-

sions, we presented a strategy for the robot to adaptively discover a download location

where the signal is strong. The strategy is based on insights gathered by empirical re-

sults. Finally, we presented an indoor data mule system and showed the improvements

in the energy consumption through experiments.

In the rest of the chapter, we studied path planning problem for robots to efficiently

gather data from sensors which we call, the Data Gathering Problem (DGP). When the

underlying communication model is a disk, we presented an approximation algorithm

for DGP in [25]. However, this algorithm ignores the fact that robot can sometimes

create a good communication with sensor even when its outside of the communication

disk. This might occur due to the navigation uncertainties or constructive multi-path

affects. In Section 4.5, we presented a modification to the DGP algorithm which utilizes

this fact. In this version of DGP, robot opportunistically downloads data from sensors

whenever it hears a good beacon signal.

We also presented the details of an outdoor data mule system. We presented the

150

design choices for an outdoor robot platform and the implementation details for its nav-

igation software. Finally, we presented the results from a field experiment demonstrated

the effectiveness and utility of opportunistic DGP algorithm.

In Section 4.6, we introduced a DGP problem where the communication is modeled

in terms of two concentric disks around each sensor with different download times. In

this formulation, which we call Two-Ring Tour (TRT) problem, the mobile entity must

decide which disk to visit for each sensor, and spend the corresponding time to download

its data.

For the general case, we first presented an algorithm whose approximation is a

function of the approximations to k-TSPN and TSPN problems. We also presented two

polynomial time algorithms whose performance ratios are proportional to the ratio of

the two radii or the ratio of the download times. As demonstrated in an experimental

setting, these two parameters are usually small in some practical scenarios.

For two special but common cases of the problem (uniform deployment and sparse

deployments where the outer disks are disjoint), we presented constant factor approxi-

mation algorithms.

Acknowledgment

The results of this chapter appeared in IEEE Wireless Communications [120], Sympo-

sium on Robotics Research [119] and Journal of Field Robotics [25]. This work is joint

with Deepak Bhadauria, Nikhil Karnad, Jong Hyun Lim, Prof. Andreas Terzis and

Prof. Volkan Isler.

Chapter 5

Multi-Robot Patrol

Consider a scenario where robots (e.g. UAVs) are charged with monitoring a large

forest for detecting fires. Due to the limited number of robots and their limited sensing

range, it may not be possible to cover every location in the forest at all times. Hence,

the robots have to patrol the area efficiently so that a potential fire can be detected

as quickly as possible. Multi-Robot Patrol (MRP) problem is the problem of finding

strategies for a team of robots in order to visit a given set of locations as frequently as

possible. An efficient MRP solution can be used in many applications in environmental

monitoring (e.g. forest fire detection), surveillance [121] (e.g. detecting intrusions in a

border) and search and rescue [122].

A well-known measure for the performance of an MRP solution is its idleness. The

idleness of a location is defined as the maximum time interval between two consecutive

visits to that location [28]. Although this criterion addresses the frequency of visits, it

assumes that the locations have the same priority. As shown in [30], in real applications,

it is desirable to have a different priority for each location. In the the fire monitoring

example, the fire risk might be higher in some locations possibly due to the type of

trees or human activity. In such a scenario, higher priority areas should be visited more

frequently.

In this work, we introduce a novel version of the MRP problem which captures this

property. In the Weighted Multi-Robot Patrol problem (WMRP), the environment is

divided into n non-overlapping cells and each cell is assigned a priority (weight) value.

We are given m robots which are charged with patrolling the environment. The cost

151

152

Figure 5.1: An example that demonstrates how priority affects the optimal partitioning.

Cells have different priorities represented by their color. Mid-gray and dark-gray colored

cells have weights 3 and 5 units, respectively.Left: A solution which ignores the priorities

would divide the region into three equal parts. Right: Optimal solution, when the

priority of the cells is incorporated.

incurred by a cell is measured by its weighted idleness which is the product of its idleness

and weight. The overall cost of a solution is measured by the maximum weighted idleness

over all cells. The goal is to partition the environment into m non-overlapping regions

(one for each robot) such that the cost is minimized. Having non-overlapping regions

is desirable for multi-robot applications (e.g. fleet of UAVs) because the robots can

operate independently and collision avoidance is simplified.

In order to demonstrate the practical significance of introducing weights, let us

consider an instance with three robots and the simple environment shown in Figure 5.1.

The color of a cell represents its priority (weight) (light-gray: 1, mid-gray: 3 and dark-

gray: 5 units). For simplicity let us assume that a robot covers a cell when it visits

its center. A solution which ignores the priorities would divide the region into three

equal parts as shown in Figure 5.1-Left. Assuming the tour length is proportional to

the number of cells visited, the cost of this solution is max(5 × 1, 5 × 1, 5 × 5) = 25.

This value is computed as follows: The idleness of each cell in a region is computed

by the tour length in that region. The maximum weight in the region determines the

maximum weighted idleness in that region. The cost of the solution is computed as the

153

maximum weighted idleness over all regions.

When the priority of the cells is incorporated, the cost of the optimal solution is

max(10 × 1, 3 × 3, 2 × 5) = 10 (Figure 5.1-Right). This simple example shows how

efficient strategies can change with respect to the priorities assigned for each cell. In

this chapter, we present a study on how optimal solutions can be computed in the

weighted case.

We start the chapter with an overview of related work on MRP and WMRP prob-

lems. WMRP problem is formalized in Section 5.2. In Section 5.3, we present an optimal

solution to the MRP problem when the topology of the environment can be represented

as a tree. An example of such an environment is a simply-connected polygon. The

running time of our algorithm for general trees is O(n2 log n × logC) where n is the

number of cells and C is the cost of a single tour that visits every cell in the environ-

ment. In some surveillance applications, such as border surveillance, the environment

is simpler and can be represented by a path. For such environments, we present an

optimal solution in Section 5.4 whose running time is O(n2m) where m is the number

of robots. This solution removes the dependency on C in the previous solution and

provides a better running time.

5.1 Related work

Multi-Robot Patrolling (MRP) problem has recently received the attention of the re-

searchers in both robotics and artificial intelligence communities. This problem was first

introduced in [27]. In this paper, the authors define various performance measures for

the MRP problem including maximum idleness. Several multi-agent strategies are pre-

sented according to various criteria such as agent type, communication model, decision

making, etc. In a related work [123], an auction based strategy is presented. Chevaleyre

presents the first approximation algorithm for MRP [28]. He presents a Cyclic Strategy

(CS) where agents are uniformly distributed along a cycle. He proves that the idleness

this solution when the cycle is computed by Christofides’ TSP algorithm is at most

7 times the idleness of the optimal strategy. A strategy inspired from ant colonies is

presented in [124,125]. The strategy is similar to CS except that the cycle is found using

a probabilistic ant walk algorithm. The performance of this solution is upper-bounded

154

by a value proportional to the ratio between the maximum and the minimum edge costs

in the graph. Santana et. al proposed a reinforcement learning approach for MRP

problem [126]. A survey on these results are presented in [127].

Other formulations of the MRP problem were proposed in the literature. Agmon

et al. considered the MRP problem in adversarial settings where robots patrol an area

while intruders try to penetrate into this area without getting caught [128, 129]. They

present strategies which maximize the probability of penetration detection throughout

the perimeter of this area. In [130], the authors present an optimal strategy for direc-

tional grids where the velocity of robots are constrained depending on the location and

the direction of the robots.

All of the previous work listed above assumes that each location has the same prior-

ity. A priority based formulation similar to our formulation was first proposed in [29].

In this work, the authors assume that the environment is divided into regions and a

graph where each node corresponds to a region is given. For each region there is an

idleness constraint and a coverage time. A task strength is computed by a central

server which determines the robot strategies using gradient descent without any opti-

mality guarantees. Our work can provide an optimal solution for this problem when

the graph is a tree. A reinforcement learning solution is presented in [30] where the

reward collected from a node is proportional to the priority and the information gained.

Information gain is computed in terms of exponential idleness and the uncertainty in the

observations. Since the state space is exponential, the authors use several approxima-

tions including anytime online algorithms and reactive algorithms to reduce the search

space [131]. Hence, their solutions do not guarantee optimality. In [132], the authors

present a two-approximation for the problem of minimizing the maximum change of

features placed on a compact space. This solution relies on the fact that the locations

are placed according to a distribution. In our work, we do not make such assumptions

and provide optimal solutions.

5.2 Problem formulation

In this section, we formalize the WMRP problem. We assume that we are given a poly-

gon and m robots. We assume that the polygon is decomposed into n non-overlapping

155

A

B

C

D

E

F

G

H

I

J

K

L
A

B

C

D

E

F G

H

I J K L

Figure 5.2: The left figure shows a polygon and its decomposition. Each letter represents

a cell and each color represents a region. The right figure shows the corresponding

regions in the dual-graph (tree) as non-overlapping tours.

cells. A survey on polygon decompositions can be found in [133]. Each cell is associated

with a priority (weight) and a coverage cost which is required for a robot to visit each

location in the cell. A survey on efficient coverage strategies are presented in [134].

Moreover, we assume that there is a transition cost associated with moving from one

cell to the other. Our goal is to partition the environment into m non-overlapping re-

gions. Each robot is assigned to a region and charged with repeatedly visiting the cells

in its region. We assume that the coverage costs are much higher than the transition

costs. Hence, the robot covers each cell once per tour although it may travel through

the cell multiple times. The idleness of the cells inside a region is determined by the

time it takes for the robot to cover each cell in its region. Therefore, the idleness of

cells inside a region is computed as the sum of the coverage costs and the transitions

costs in that region. The objective is to compute the tours of the robots to minimize

the overall weighted idleness.

The model described above can be represented as a graph (dual-graph), where each

node corresponds to a cell and each edge corresponds to the transition between the two

cells. The non-overlapping regions in a polygon can be represented as non-overlapping

tours in its dual-graph (see Figure 5.2). Hence, partitioning a polygon into m regions

is equivalent to partitioning its dual-graph into m non-overlapping tours. For the rest

of the chapter, we focus on finding an optimal partitioning for the dual-graph.

Let G(V,E) be the dual-graph such that V = {v0, v1, . . . , vn−1} is the set of nodes

156

and E ⊆ V ×V is the set of edges in G. Each edge ei is associated with an edge length li

and each node vi has a weight wi which represents the priority of that node and ci which

represents the coverage cost. Let m be the number of robots and πi = {vi0, vi1, . . . , vini
}

be a tour that robot i follows. We assume that the robots travel with unit speed. We

define the WMRP problem as finding a solution Π = {π0, π1, . . . , πm−1} which minimizes

the cost C(G,Π) such that every node is covered (i.e.
⋃

π∈Π π = V) and the tours are

non-overlapping (i.e. ∀πi 6=πj∈Ππi ∩πj = ∅). Let di be the idleness of vi with strategy Π,

we define the cost C(G,Π):

max
vi∈V

di × wi = max
0≤i<m

(

‖πi‖max
vj∈πi

wj

)

(5.1)

where ‖πi‖ is the total tour length of robot i. Since robot travels with unit speed,

this value is equal to the idleness of each cell covered by robot i. The right equality in

Equation 5.1 uses this fact to formalize the cost in terms of maximum of the weights in

each partition i.

5.3 WMRP on Tree-like Environments

In this section, we present an optimal WMRP solution for environments whose dual

graph is a tree. A target application of this algorithm is simply-connected polygons

whose decomposition (e.g. trapezoidal decomposition) can be represented as a tree. Fig-

ure 5.2 shows an example simply-connected polygon and its trapezoidal decomposition

(left) and its corresponding tree representation (right). Let T (V,G) be a corresponding

tree for the given environment, we define two properties that we exploit throughout our

algorithm.

Property 1. Any partitioning of T can be represented by a set of subtrees. An optimal

tour on a subtree can be found by traversing each node in a depth-first fashion and

crossing each edge twice. The cost (length) of the tour which covers T can be computed

using the following formula:

tourCost(T (V,E)) = 2
∑

ei∈E
li +

∑

vi∈V
ci (5.2)

157

π π

p

Figure 5.3: Every child of p not covered by the root tour π must be covered by a

separate tour as in Figure-Left. Otherwise there is at least two tours overlapping at p

as in Figure-Right.

Equation 5.2 sums the transition costs by doubling the edge costs (i.e. li) for each

edge and the coverage costs (i.e. ci) for each node in T .

Figure 5.2-Right shows a partitioning of subtrees and their corresponding tours.

Property 2. Let Tp be a subtree rooted at node p. We call the tour which visits the

parent node p as the root tour of Tp. Since tours are non-overlapping, each child node

not covered by the root tour π must be covered by a separate tour.

Figure 5.3-Left shows an example where tours are non-overlapping. Two children

not covered by π cannot share the same tour. Otherwise, π and the tour covering these

children would overlap on p (Figure 5.3-Right), which would violate the non-overlapping

assumption.

5.3.1 Algorithm

Let C∗ = C(T,OPT) be the cost incurred by the optimal solution in T with m robots.

The algorithm MinimumCost (i.e. Algorithm 6) searches for this value. Given C∗

the algorithm MinimumRobot (Algorithm 7) computes the minimum number of robots

necessary to achieve C∗. The algorithm MinimumCost performs a binary search on

possible values of C∗ using MinimumRobot and finds the minimum cost C∗ that can

be achieved by m robots. Algorithm 6 shows how we perform this search. The value ǫ

in Algorithm 6 is a precision parameter.

158

Algorithm 6 MinimumCost

Tree: T (V,E), NumOfRobots: m

1: l← −ǫ, u← tourCost(T (V,E))

2: while l + ǫ < u do

3: C ← (l + u)/2

4: m∗ ←MinimumRobot(T (V,E), C)

5: if m∗ > m then

6: l ← C

7: else

8: u← C

9: end if

10: end while

11: C∗ ← u

We define WMRP (C∗) as the problem of finding the minimum number of robots

necessary to achieve given cost C∗. Since C∗ is computed as C∗ = maxvi∈V di × wi the

idleness of each node vi must satisfy the upper bound: di ≤ C∗

wi
. This gives an upper

bound on the length of the tour that visits vi. We define the tour subtree Tp(Vp, Ep) as

the subtree rooted at p which is constructed from the nodes visited by the root tour. Let

π be the root tour and ‖π‖ be its length, the following upper bound must be satisfied:

‖π‖ ≤ minvi∈Vp

C∗

wi
.

Now we define the tour budget. Let π be the tour on Tp(Vp, Ep), we define the budget

bp as the maximum length of the tour that we can attach to π. This value is given by:

bp = min
vi∈Vp

C∗

wi
− tourCost(Tp(Vp, Ep)) (5.3)

In other words, bp is an upper bound on how much we can extend the tour π without

violating the C∗ constraint.

There might be multiple optimal solutions to the WMRP (C∗). Let m∗ be the

minimum number of tours used in the optimal solution to WMRP (C∗). S is the set

of optimal solutions such that the number of tours used is m∗. For the rest of the

chapter, we will focus on a particular optimal solution in S whose root tour budget is

the maximum and we define OPT as this particular solution.

159

pp

v

To
ur

Su
bt
re
e

Figure 5.4: Algorithm MinimumRobot starts from the deepest node in the tree (i.e. v).

Let p be its parent, Algorithm MaximumSet finds the tour subtree for the root tour of

p. For all children not covered by the root tour we assign a new tour. We remove the

children of p and repeat the process.

Now we present the MinimumRobot algorithm which is an optimal solution to the

WMRP (C∗). Our algorithm starts from the deepest node in the tree. Let p be the

parent of this node. We find a root tour which covers as many child nodes as possible

while maximizing the tour budget. This tour is found by the algorithm MaximumSet.

The nodes visited by the root tour are stored as a tree (i.e. tour subtree) so that they

can be merged later with the root tours in the upper levels. We remove the children of

p and repeat the process until the tree is exhausted. Figure 5.4 illustrates the algorithm

MinimumRobot.

MinimumRobot takes the cost C∗ and the tree T (V,E) as input. For each node vi,

we set the maximum length of the tour that covers vi, i.e. di =
C∗

wi
(Line 1). For each

node, we set the tour subtree Ti to its root node vi (Line 2). We start constructing

tours beginning from the deepest node in T (Line 5). Let p be the parent of this node,

we find the nodes visited by the root tour using the algorithm MaximumSet (Line 7).

The nodes visited by the root tour is stored in the tour subtree Tp.

Due to Property 2, for each child vi not covered by the root tour, a separate tour

must be created which is performed at Line 8. This tour is constructed from the tour

subtree Ti. We remove all children of p from T and repeat this process until T is

exhausted (Line 12). Since at least one node is trimmed in each iteration, the algorithm

MinimumRobot terminates and returns the minimum number of robots necessary to

achieve C∗ (Line 14).

Algorithm MaximumSet takes the parent p and the tour subtree set T as input.

160

Algorithm 7 MinimumRobot

Tree: T (V,E), Cost: C∗

1: ∀vi∈V di ← C∗

wi

2: ∀i∈V Ti ← vi, T ← {T0, T1, . . . , Tn−1}
3: Tour Index: i← 0

4: while T 6= ∅ do
5: Find the leaf node v whose depth is the largest

6: p← parent(v)

7: [Tp]←MaximumSet(p,T)
8: for vj ∈ child(p) ∧ vj /∈ Tp do

9: assign(πi, Tj)

10: i← i+ 1

11: end for

12: T ← T − child(p)

13: end while

14: m← i+ 1

MaximumSet finds a subset Vmax from the children of p whose cardinality is maximum.

Among all sets with maximum cardinality, it chooses the one with maximum budget.

Let P be the set of p and its children and Di be the set of maximum length constraints

in tree Ti. We start with removing the children from P which cannot be covered by the

root tour (Line 1). For each node vi in P , the maximum length of the parent tour is

determined by the minimum of maximum tour length constraints in Di. We find a set

Vi of nodes whose minimum maximum tour length constraints are greater than min(Di)

(Line 7). We compute the cost of the root tour which visits each node in Vi. If it is

greater than the constraint min(Di), we remove the node with the highest cost to the

tour. Let vj be a node in Vi, its cost to the root tour is computed as 2ljp+ tourCost(Tj)

where ljp is the edge cost between vj and p and tourCost(Tj) is the cost of the parent

tour of Tj . We repeat this until tour cost satisfies the maximum length constraint

(Line 8).

We compute Vi for each node in P and set Vmax to the set Vi with the maximum car-

dinality and whose budget is maximum among sets with the same cardinality (Line 12).

161

Algorithm 8 MaximumSet

Parent: p, ConstraintSet: D, SubTreeSet: T
1: P ← {p} ∪ {i|tourCost(Tp(Ti ∪ p)) ≤ min(Di, dp), vi ∈ child(p)}
2: MaxRootSet: Vmax ← ∅
3: for vi ∈ P do

4: if min(Di) > dp then

5: continue

6: end if

7: Vi ← {vj |min(Dj) ≥ min(Di) ∧ vj ∈ P − {vi, p}}
8: while tourCost(Tp(Vi ∪ {vi, p})) > min(Di) do

9: removeMaxCost(Vi)

10: end while

11: Vi ← Vi ∪ {vi, p}
12: if ‖Vi‖ > ‖Vmax‖∨

(‖Vi‖ = ‖Vmax‖ ∧ budget(Vi) > budget(Vmax)) then

13: Vmax ← Vi

14: end if

15: end for

16: return Tp ←
⋃

vi∈Vmax
Ti

162

Algorithm MaximumSet returns the tour subtree Tp constructed from Vmax (Line 16).

Lemma 26. Given node p, MaximumSet finds a set of nodes with maximum cardi-

nality whose budget is the maximum among the sets with the same cardinality.

Proof. Let V ∗ be the optimal subset and Ti be the subtree with the minimum maximum

tour length constraint. Let Vi be the set of nodes whose maximum tour length constraint

is not less than min(Di). Since we compute Vi for all possible nodes, it is one of the

sets considered in MaximumSet (Line 1). Let V ′
i be the set constructed from the ‖V ∗‖

smallest nodes in Vi. Suppose there exist a node vj in V ′
i but not in V ∗. Select the node

whose tour cost is the highest in V ∗ and replace it with vj . This will lead to a solution

whose cardinality is same as V ∗ but its budget is greater which contradicts with the

optimality of V ∗. Hence, V ′
i must be equal to V ∗. Since V ′

i is a valid set, it is found by

MaximumSet in Line 8 where we remove the costliest nodes from Vi until the budget

constraint is satisfied. Hence, MaximumSet returns the optimal subset.

Let f < n be the branching factor of T , each sorting operation in MaximumSet

can be performed in O(n log n) steps. Each node will be considered at most twice

(as a parent or a child) in MaximumSet. Hence, the inner loop in MaximumSet is

executed at most 2n times. The deepest node computation in MinimumRobot can be

done by traversing T once (i.e. O(n)). Therefore, the overall complexity of algorithm

MiniumRobot is O(n2 log n). Since algorithm MinimumCost performs a binary search,

MinimumRobot is executed logC times where C = tourCost(T (V,E)). Hence, overall

complexity of our algorithm is O(n2 log n× logC) .

5.3.2 Correctness

In this section, we prove that MinimumRobot is an optimal solution for WMRP (C∗).

Since the binary search in MinimumCost covers all possible values, the optimality of

MinimumCost follows.

Theorem 27. Given tree T (V,E) and a cost constraint C∗, MinimumRobot finds the

minimum number of robots necessary to cover T with cost at most C∗.

Let T (p) be a tree rooted at p with height k+1 and T (i) be a subtree whose root is a

child node vi of p and height is at most k. We define SOL(T (p)) as our MinimumRobot

163

T (0) T (i) T (j)

m∗
0 m∗

i m∗
j

ro
ot

to
ur

T (0) T (i) T (j)

mi < m∗
im∗

0 m∗
j

ro
ot

to
ur

Figure 5.5: Figure-Left shows OPT (T (p)). Figure-Right shows OPT ′(T (p)) which is

constructed by cutting the root tour after vi. We use mi number of robots to cover T (i)

found by SOL(T (i)).

solution and OPT (T (p)) as the optimal solution on tree T (p). As we mentioned before

OPT is a particular optimal solution which uses minimum number of robots and its

root budget is maximum. Let m and m∗ be the number of tours used by SOL(T (p))

and OPT (T (p)), respectively. Similarly b and b∗ be the root tour budgets. For each

subtree T (i) we define corresponding variables: mi,m
∗
i , bi and b∗i .

We prove Theorem 27 by induction.

Inductive hypothesis: SOL(T (p)) is an optimal solution for all trees of height

up to k.

Basis case: When k = 0, there exists a single node and it is trivial to show that

SOL(p) which assigns a single robot to p is optimal.

Inductive step: Assume that the inductive hypothesis holds for all trees of height

up to and including k, we show that SOL(T (p)) is optimal for any tree T (p) of height

k + 1. We first show that the number of tours used to cover each subtree T (i) in SOL

and OPT satisfy the equality mi = m∗
i .

Lemma 28. ∀vi∈child(p)mi ≤ m∗
i

Lemma 28 follows from the inductive hypothesis.

Lemma 29. ∀vi∈child(p)mi ≥ m∗
i

164

Proof. Assume that the lemma is not correct. Then there exists a subtree T (i) such

that mi < m∗
i . We define a solution OPT ′(T (p)) which uses OPT (T (p)) with a small

modification. We cut the root tour after vi and find a solution for T (i) using SOL. Since

mi < m∗
i , the total number of tours used in OPT ′(T (p)) is not greater than the number

of robots used in OPT (T (p)). However since the root tour was cut after vi, the budget

of the new root tour is greater. This contradicts with the optimality of OPT (T (p)) and

the result follows. This construction is shown in Figure 5.5.

We now have the following lemma which follows from Lemma 28 and Lemma 29.

Lemma 30. ∀vi∈child(p)mi = m∗
i

We are now ready to prove Theorem 27.

of Theorem 27. From Lemma 30 we know that ∀vi∈child(p)mi = m∗
i . Moreover from the

inductive hypothesis, the budget for each node ∀vi∈child(p)bi ≥ b∗i holds. Let π and π∗ be

the root tour of SOL(T (p)) and OPT (T (p)), respectively. Similarly let Vp ⊆ child(p)

and V ∗
p ⊆ child(p) be the set of children of p visited by π and π∗, respectively. For

each vi ∈ Vp the root tour in Ti is merged with π. Hence, the total number of tours are

m =
∑

vi∈child(p)mi−‖Vp‖+1 and m∗ =
∑

vi∈child(p)m
∗
i −‖V ∗

p ‖+1. In Lemma 26, we

showed that MaximumSet chooses Vp with the maximum cardinality and maximum

budget. Thus, m ≤ m∗ and b ≥ b∗ holds which proves the Theorem.

5.4 WMRP on Path-like Environments

The previous algorithm works for any environment whose dual-graph is a tree. However

the time complexity of this algorithm depends on C where C is the time required to

covered the environment with single tour. In this section, we remove this dependency

for path-like environments. In some surveillance applications such as border surveillance

or securing a corridor, the topology is simpler and the dual-graph can be represented

as a path. Figure 5.6 shows an example of such an environment.

Let P (V,E) be a path with node set V = {v0, v1, . . . , vn−1} and edge set E = {ei =
(vi, vi+1), i = 0, . . . , n−1}. Note that there is a direct correspondence between vertices

and edges: edge ei is the edge between node vi and vi+1. Given P and the number of

165

v0 v1

vi vn−1

e0 e1

ei

en−2

Figure 5.6: An example path-like environment which is observed in some surveillance

applications such as border surveillance.

robots m, our goal is to findm tours in P such that the cost measure is minimized. Since

tours are non-overlapping, each tour can be represented by its start node vi ∈ P and

end node vj ∈ P . Let π(i, j) be a tour whose start node and end node are determined

by vi and vj, then π(i, j) = {vi, vi+1, . . . , vj−1, vj , vj−1, . . . , vi−2, vi−1}. The cost of π is

computed as:

c(i, j) =



2
∑

i≤k<j

lk +
∑

i≤k≤j

ck



× max
i≤k≤j

wk (5.4)

The left side of the Equation 5.4 computes the length of the tour and the right side

computes the maximum of the node weights.

Our solution for path-like environments is based on dynamic programming. Let

OPT (j, k) be the optimal solution which uses k robots to cover nodes 0 through j. For

a single tour, we compute OPT (j, 1) as follows: ∀0≤j<nOPT (j, 1) = c(0, j). Then we

find OPT (j, k) using the following recurrence relation:

OPT (j, k) = min
0≤i≤j

max (OPT (i− 1, k − 1), c(i, j)) (5.5)

We find OPT (j, k) by using the values computed in the previous iterations. For all

possible start nodes of the last tour i (i.e. 0 ≤ i ≤ j), we check the cost of the solution

whose last tour ends at i − 1 using k − 1 robots (i.e. OPT (i− 1, k − 1)). Overall cost

is the max of OPT (i− 1, k − 1) and the cost of the last tour (i.e. c(i, j)).

After finding OPT (n− 1,m), we can compute the optimal solution by backtracking

from OPT (n − 1,m). For example the last tour can be found by searching for i such

166

that max(OPT (i − 1,m − 1), c(i, n − 1)) = OPT (n − 1,m). Then the last tour starts

at i and ends at n− 1. The rest of the tour can be found using the same procedure.

OPT (n − 1,m) can be found in O(n2m) time using efficient data structures. We

can use a cumulative cost matrix to make c(i, j) queries in constant time. Moreover a

pointer to previous entry can be stored to perform backtracking in linear time with m.

Finally, since there are n×m entries and for each entry we need to search over possible

start nodes (i.e. at most n possibilities), overall complexity of this algorithm is O(n2m).

5.5 Concluding Remarks

In this chapter, we presented a new formulation of the Multi-Robot Patrol (MRP)

problem. In this new formulation, an environment is divided into cells and each cell is

assigned a priority (weight). In Weighted Multi-Robot Patrol (WMRP) problem, the

goal is to find m non-overlapping regions to be covered by m robots independently.

For environments whose topology can be represented as a tree (e.g. simply-connected

polygons), we presented an optimal solution. The time complexity of this solution is

O(n2 log n × logC) where n is the number of cells and C is the cost of a single tour

that visits every cell in the environment. For path-like environments such as a border,

we presented an optimal solution whose running time does not depend on C. The time

complexity for this solution is O(n2m).

The future work includes solving WMRP in general environments such as polygons

with obstacles. It is also interesting to relax the non-overlapping constraint so that

robots can collaborate to improve the performance of the WMRP.

Chapter 6

Conclusion and Discussion

Recent advances in robotics have made it possible to use mobile robots in complex

tasks which were previously not possible. One such task is to provide communication in

networked systems. As an example consider the environmental monitoring task where

scientists collect statistical data using sensors deployed over an environment of interest.

The traditional approach to gather data from sensors is to deploy a connected network

of wireless sensors so that data can be transfered over the network to a server where

scientists store the data. However, the environment of interest could be very large such

as an entire forest which makes it infeasible to create a connected network using wireless

sensor nodes with limited communication range.

On the other hand, using mobile robots can provide an appealing solution for the

data gathering task. Robots which act as data mules can autonomously collect data

from sensors and carry the data to the server. Alternatively, we can use robots to patrol

over the environment to directly collect sensory data. A small delay in data transfer

due to data muling is acceptable because scientists are more interested in statistical

information then real-time data. Since a single robot can achieve a complex task which

otherwise requires many static wireless nodes, using mobility leads to more efficient

solutions.

Thanks to recent advances in robotics, now it is feasible to use robots in environ-

mental monitoring tasks. Figure 6.1 and Figure 6.2 show robots that have been used

for various environmental monitoring tasks. The robots shown in Figure 6.1 have been

developed in our lab (Robotic Sensor Networks Lab at the University of Minnesota).

167

168

The first robot (Figure 6.1-Left) is an autonomous land vehicle which was developed

for autonomously collecting data from sensors deployed over outdoor environments. A

detailed description of this robot was presented in Section 4.5.1. The second robot

(Figure 6.1-Right) is a robotic raft. This autonomous robot has been used for tracking

carp which were tagged with radio transmitters [4].

Figure 6.1: Left: Cyclops robotic platform developed for data muling. Right: Miskin

robotic raft developed for tracking carp tagged with radio transmitters [4].

Figure 6.2-Left shows an Autonomous Underwater Vehicle (named Starbug) designed

for collecting data from sensors deployed under water [5]. Figure 6.2-Right shows an

autonomous snowmobile (named Arctic Crawler) which has been designed for monitor-

ing arctic environments [6]. The last image (Figure 6.2-Bottom) shows an Unmanned

Aerial Vehicle (named RCATS/APV-3) which collects vegetation images by flying over

vineyards [7].

In this thesis, we focused on theoretical and systems aspect of using robots to im-

prove communication in networked systems. In particular, we studied two types of

networked systems and four applications of these systems. In the next section, we

present a summary of these results.

6.1 Summary of Our Results

In this dissertation, we studied two types of networked systems. The first system is the

end-to-end network where we aim to create a persistent connection between two end-

points. We study two applications in the first category. In the first application, a mobile

169

Figure 6.2: Left: Starbug robotic platform developed for data muling under water [5].

Right: Arctic Crawler robotic snowmobile developed for monitoring arctic environ-

ments [6]. Bottom: RCATS/APV-3 is a UAV developed for collecting imagery data

by flying over vineyards [7].

user requests connectivity with a static base station. We solved this problem by using

robots as robotic routers to create an adaptive network between the mobile and static

end-points. When the user moves, robotic routers autonomously reconfigure themselves

to maintain the user’s connectivity. In the second application, we used mobile robots

to create an on-demand communication bridge between two static end-points. In this

scenario, we assume robots are scattered around an environment and our goal is to move

the robots so that there is a path between the two end-points in the communication

graph of the final configuration.

The second system is the delay-tolerant networks where a small delay in the data

transfer is acceptable. As an example, in environmental monitoring, scientists deploy

a network of sensors over an environment to collect statistical data. Since statistical

information is extracted using data collected for long period of times, it is not necessary

to have real-time data. In such applications, we can use mobile robots as data mules

170

to autonomously collect data from sensor nodes and carry it to the server where the

statistical information is extracted. If the sensors are not sufficient to fully monitor

the environment, we can use robots as mobile sensors to directly collect the data from

the environment. In this case, multiple robots patrol the environment periodically to

minimize the delay between the two consecutive visits to the same location.

Next, we present an overview of our results.

Robotic Routers

In robotic routers problem, we find the minimum number of robots and their strategies

to create an adaptive network between a mobile user and a static base station. Since the

communication model is important to determine connectivity between the robots, our

strategies depend on the communication model assumption. In Chapter 2, we present

two strategies for the robotic routers problem.

In Section 2.3, we presented optimal solutions that work for arbitrary communication

models. We presented two strategies for possible motion models of the user. In the

known-user trajectory model, we assume the trajectory of the user is known. This is

the case when the user is an entity under our control such as a tele-operated robot. On

the other hand, if the user trajectory is unknown, we consider a worst case scenario

where an adversarial user tries to break connectivity as quickly as possible. Hence, this

strategy works for all possible user trajectories. Although these solutions are optimal

in terms of the number of robots used in the system, their running time is exponential

in the number of robots. Hence, these solutions might not scale to larger systems.

In our second solution (Section 2.4), we overcame the high time complexity of the

previous solution by using a polynomial-time approximate solution. In this solution,

we studied a geometric instance of the problem, where the user resides in a geometric

environment (e.g. a polygon) and the communication model is determined in terms of

geodesic distance. In this model, two nodes are connected iff the length of the shortest

path between their locations is not greater than a given threshold. For simply-connected

polygons, we presented an optimal solution in terms of the number of robots used in

the system. When there is a single obstacle, we presented a strategy which uses at

most five times the number of robots used by the optimal solution. We extended this

strategy to multiple obstacles by partitioning the environment into convex cells with a

171

single obstacle inside each. Then, we executed the single obstacle strategy inside each

partition. Hence, this solution leads to 5h approximation where h is the number of

obstacles (partitions) in the polygon.

Finally, we discussed the practical utility of using robotic routers with simulations

and experiments. We conducted experiments for both known and unknown user trajec-

tory algorithms and reported the results in Section 2.5.

Communication Bridge

In Chapter 3, we introduced the communication bridge problem, where the goal is to

create a communication bridge between two static end-points while minimizing both

the number of robots on the bridge and their maximum (or total) distance traveled.

We presented approximation algorithms, for a geometric instance of the problem where

robots are restricted to move on the line segment joining the two end-points. For the

maximum distance measure, we presented an approximation algorithm whose running

time is O(n2) where n is the number of robots. This solution uses minimum number of

robots and the maximum distance travelled is at most
√
2 times the maximum distance

travelled in the optimal solution. For the total distance measure, we presented an

approximation algorithm whose running time is O(n
3Br
ǫ2

) where B is the total distance

travelled in the optimal solution, r is the communication range and ǫ is the discretization

factor. Our solution guarantees that we use the minimum number of robots by a total

movement of at most
√
2B + nǫ. We also presented an interesting property about the

bound on the number of robots. Let OPT (∞) andOPT (d) be the number of robots used

in an unrestricted optimal solution and an optimal solution whose distance constraint is

d, respectively. We showed that the constrained version uses at most twice the number

of robots used by the unrestricted version.

Data Mules

We have two main contributions in Chapter 4. First, we explored the possible energy

savings by using data mules. In Section 4.3, we presented a proof-of-concept indoor data

mules system. Moreover, we compared our proposed system with a connected wireless

sensor network deployment. In a connected network, data packets are transfered over the

network hop-by-hop. Hence, some packets have to be transmitted multiple times. On

172

the other hand, data mules eliminate unnecessary transmissions by directly downloading

data from sensors. We compared the energy consumption of both approaches and

concluded that the data mules provide an energy efficient solution which reduces the

energy consumption and prolongs the life-time of the sensors. In Section 4.4, we achieved

more energy savings by using robots to find a good location prior to downloading data.

We presented a heuristic for the robot to find a location where the packet loss rate of

robot-sensor communication is small. This heuristic is based on insights extracted from

our empirical results. In this approach, since sensors are less likely to retransmit lost

data packets, we further improved the life-time of sensors.

Our second contribution is on the path-planning problem where our goal is to find

paths for multiple robots so that data from all sensors can be gathered as quickly as

possible. We considered this data gathering problem under two communication models.

In the first model, we assumed the communication model is a disk centered at the sensor

location. In our previous work [25], we presented an approximation algorithm for this

model. However, this algorithm ignores the fact that the robot can sometimes have

good communication with sensor even when its outside of the communication disk. In

Section 4.5, we presented a modification of this algorithm where robots opportunisti-

cally download data from sensors whenever they detect a good beacon signal. We also

presented the details of an outdoor data mule system shown in Figure 6.1-Left. We

presented design choices and implementation details of its navigation system. Finally,

we presented the practical feasibility of the algorithms and the system through field

experiments.

The disk communication model ignores the fact that download time can vary inside

the communication range. As proposed in [26], the two-ring model is a better model since

the time to download data from a sensor s is a function of the locations of the robot and

s: If the robot is a distance rin away from s, it can download the sensor’s data in Tin units

of time. If the distance is greater than rin but less than rout, the download time is Tout >

Tin. Otherwise, the robot cannot download the data from s. Here, rin, rout, Tin and

Tout are input parameters. In Section 4.6.3, we presented a (p+q)-approximation where

p and q are the approximation factors for TSPN and k-TSPN problems. In Section 4.6.3

and Section 4.6.3, we presented simple polynomial algorithms that have approximation

factors O(Tout/Tin) and O(rout/rin). We also studied some special cases. When the

173

outer disks are disjoint, we presented a constant factor approximation (Section 4.6.4).

If the sensors deployed uniformly, we presented an integer linear program which yields a

4-approximation (Section 4.6.4). In Section 4.6.5, we presented results from simulations

and outdoor experiments.

Multi-Robot Patrol

In Chapter 5, we presented a novel version for the multi-robot patrol problem. In this

formulation, we are given a cellular decomposition of the environment. Each cell has a

coverage cost for a single robot to patrol the cell. We also have transition costs between

cells incurred by the time to travel from one cell to another. Given k robots, our goal is

to partition the environment into k non-overlapping partitions such that the maximum

cost is minimized. The cost of each partition is the total of the coverage costs and

transition costs in that partition. Let G be the dual graph of the decomposition where

each vertex corresponds to a cell and each edge corresponds to the transition from the

cell to one of its neighbors. If G is a tree, we presented an optimal solution whose

running time is O(n2 log n × logC) where n is the number of cells and C is the cost of

a single tour that visits every cell in the environment (Section 5.3). If G is a path, as

in Section 5.4, we presented an optimal solution with O(n2m) running time where m is

the number of robots. This solution removes the dependency on C and, thus provides

a better running time.

6.2 Future Research Directions

In this dissertation, we presented several path-planning algorithms to improve commu-

nication in networked-systems by using mobile robots. However, there are still many

open research problems that need to be addressed. Next, we discuss such future research

directions.

Robotic Routers

In Section 2.4, we presented a geometric solution for the robotic routers problem. We

presented a constant factor approximation for polygons with a single circular obstacle.

Then we extended this to polygons with multiple circular obstacles. We achieved this

174

by partitioning the polygon into cells such that each cell contains a single obstacle. In

Section 2.4.4, we used power diagrams to choose the cells that have convex boundaries.

Inside each cell, there is a team of robots which executes the single obstacle strategy.

We also presented a strategy which guarantees a smooth transition when the user moves

from one cell to the other.

The main reason for choosing convex boundaries is to achieve this transition. If the

user exits the cell from one point and enters from another point, it is necessary that

the shortest path between these points must lie inside the cell. Otherwise, the user

can follow the shortest (outer) path while the tip of the connecting arm might have to

possibly travel inside because there is an obstacle between the two points. Hence, the

connecting arm cannot reach the user when it enters the cell, which would lead to break

in connectivity.

In Section 2.4.4, we show how we can extend the power diagrams for polygonal

obstacles by using circumcircles. However, if a circumcircle of an obstacle coincides

with another obstacle, power diagrams will not work. We can overcome this problem

by introducing additional empty convex cells. Figure 6.3-Left shows an example for

this partitioning strategy. We introduce an empty triangular cell at the middle of the

obstacles so that we can put each obstacle inside a cell with convex boundary. However,

to generalize this strategy, we need to show that the number of additional cells is

bounded.

Figure 6.3: Left: A convex cell partitioning using an additional empty convex cell.

Rigth: A geodesic convex partitioning.

175

While convex boundaries are sufficient, they are not necessary to achieve this prop-

erty. Rather we can use geodesic convex cells where the shortest path between any

two points in the cell lies inside the cell. Figure 6.3-Right, shows an example geodesic

convex partitioning. However, finding such partitions remains as a challenging research

problem.

Finally determining the computational complexity of this problem is a challenging

open question.

Communication Bridge

In the communication bridge problem, we forced the robots to move on the line segment

joining two end-points. This solution is practical for line-of-sight communication devices.

However, if robots are capable of range communication, then the communication bridge

can be any path joining the two end-points. The difficulty in this general formulation of

the problem is the lack of an ordering property. Without knowing the order, we cannot

determine the possible final locations of the robots. In the line case, we were able to

achieve this property by relaxing the problem. Then, we show how much we deviate

from the optimal solution due to this relaxation. However, for an arbitrary path, finding

an ordering property seems to be a challenging research problem.

Data Mules

In this thesis, we studied the problem of finding efficient paths to collect data from sen-

sors deployed over an environment. We made two assumptions to simplify the problem.

First, we assumed that the sensors are deployed over a planar environment. Hence, the

paths we compute are straight line segments between the download locations. However,

in a real world scenario, there might be obstacles in the environment that overlap with

the computed paths. There are several results [135] for computing shortest paths in

polygonal environments with obstacles. However, computing data gathering paths for

complex environments remains an open research problem.

Another assumption we made is that sensors have enough memory to store collected

data between two visits to the sensor. However, some sensors might have limited storage

or they might sample more data compared to other sensors. In this case, robots must

visit these sensors more frequently than others to prevent possible data loss. Hence, we

176

should incorporate the time window constraint which determines the earliest and latest

times to download data. TSP with time windows is a well-known problem [136]. How-

ever, since the data gathering task not only includes travel time but also the download

time, it is nontrivial to modify existing algorithms for the data gathering problem.

Multi-Robot Patrol

In Weighted Multi-Robot Problem, we presented an optimal strategy for tree-like en-

vironments. More specifically, this solution works for a cellular decomposition of an

environment whose dual-graph is a tree. In this graph, each vertex corresponds to a cell

and each edge corresponds to a neighborhood.

The trapezoidal decomposition is a well-known decomposition method in robotics.

The dual graph of the trapezoidal decomposition of an arbitrary polygon is a planar

graph. As a special case, the dual-graph of the trapezoidal decomposition of a simply-

connected polygon is a tree. Hence, our result works for simply-connected polygons.

However, extending it to planar graphs would solve the problem for more practical

applications.

Another important research direction is to remove the non-overlapping constraint.

We partition the cells into non-overlapping regions to avoid collisions. However, using

a collision detection algorithm, one can remove this constraint. Since we might merge

partitions that violate the non-overlapping constraint, this would improve the minimum

cost. However, computing the optimal solution without this constraint seems to be

challenging since we increase the search space of possible solutions.

6.3 Final Remarks

In this dissertation, we studied path-planning problems to improve communication in

networked systems using mobile robots. We presented geometric and combinatorial

solutions to these problems. The robotics research in this field has been only recently

explored. Hence, there are many open research problems. We believe that in the near

future, robots will be extensively used in networked systems and will change the way

we approach networking tasks. However, to fully utilize mobile robots, it is essential

to overcome some real-world challenges. One such challenge is robots’ limited energy

177

sources. In this work, we addressed this problem by presenting energy efficient robot

strategies. With recent advances in solar power technology, it has become appealing to

mount solar panels on robots and make them harvest their own energy. This approach

which allows the robots to collect energy along their path introduces many interesting

and challenging path-planning problems.

References

[1] iRobot. Landroid, 2011. http://www.irobot.com/gi/research/Advanced_Platforms/

LANdroids_Robot.

[2] MEMSIC. Telosb datasheet. http://www.memsic.com/support/documentation/

wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb.

[3] A. Dumitrescu and J.S.B. Mitchell. Approximation algorithms for TSP with neigh-

borhoods in the plane. Journal of Algorithms, 48(1):135–159, 2003.

[4] P. Tokekar, D. Bhadauria, A. Studenski, and V. Isler. A robotic system for

monitoring carp in minnesota lakes. Journal of Field Robotics, 27(6):779–789,

2010.

[5] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. Au-

tonomous deployment and repair of a sensor network using an unmanned aerial

vehicle. In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE

International Conference on, volume 4, pages 3602–3608. IEEE, 2004.

[6] S. Williams, V. Jimenez, L. Antidio, and A.M. Howard. A robotic mobile sensor

network for achieving scientific measurements in challenging environments. 2008.

[7] L. Johnson, S. Herwitz, S. Dunagan, B. Lobitz, D. Sullivan, and R. Slye. Collection

of ultra high spatial and spectral resolution image data over california vineyards

with a small uav. In Proceedings of the International Symposium on Remote

Sensing of Environment.

[8] G.B. Andeen. Robot design handbook. McGraw-Hill Companies, 1988.

178

http://www.irobot.com/gi/research/Advanced_Platforms/ LANdroids_Robot
http://www.memsic.com/support/documentation/ wireless-sensor-networks/category/7-datasheets.html?download=152%3Atelosb

179

[9] S. Squyres. Roving Mars: Spirit, Opportunity, and the exploration of the red

planet. Hyperion, 2005.

[10] B. Yamauchi. Packbot: A versatile platform for military robotics. In Proceedings

of SPIE, volume 5422, pages 228–237. Citeseer, 2004.

[11] R. Hirose and T. Takenaka. Development of the humanoid robot asimo. Honda

R&D Technical Review, 13(1):1–6, 2001.

[12] J.L. Jones. Robots at the tipping point: the road to irobot roomba. Robotics &

Automation Magazine, IEEE, 13(1):76–78, 2006.

[13] Adept MobileRobots. Research robots, 2011. http://www.mobilerobots.com/

ResearchRobots/ResearchRobots.aspx.

[14] W. Garage. Personal robot 2 (pr2). Online: www. willowgarage. com.

[15] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and

M. Csorba. A solution to the simultaneous localization and map building (slam)

problem. Robotics and Automation, IEEE Transactions on, 17(3):229–241, 2001.

[16] C. Urmson, C. Baker, J. Dolan, P. Rybski, B. Salesky, W. Whittaker, D. Ferguson,

and M. Darms. Autonomous driving in traffic: Boss and the urban challenge. AI

Magazine, 30(2):17, 2009.

[17] R. Musaloiu-E, A. Terzis, K. Szlavecz, A. Szalay, J. Cogan, and J. Gray. Life

under your feet: A wireless soil ecology sensor network. In Proc. 3rd Workshop

on Embedded Networked Sensors (EmNets 2006). Citeseer, 2006.

[18] R.C. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling and analysis

of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2-

3):215–233, 2003.

[19] O. Tekdas and V. Isler. Robotic routers. In Robotics and Automation, 2008.

ICRA 2008. IEEE International Conference on, pages 1513–1518. IEEE, 2008.

[20] J. Kutylowski and F. Meyer auf der Heide. Optimal strategies for maintaining

a chain of relays between an explorer and a base camp. Theoretical Computer

Science, 410(36):3391–3405, 2009.

http://www.mobilerobots.com/ ResearchRobots/ResearchRobots.aspx

180

[21] C. Dixon and E.W. Frew. Maintaining optimal communication chains in robotic

sensor networks using mobility control. Mobile Networks and Applications,

14(3):281–291, 2009.

[22] E. Stump, A. Jadbabaie, and V. Kumar. Connectivity management in mobile

robot teams. In Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, pages 1525–1530. IEEE, 2008.

[23] E.D. Demaine, M.T. Hajiaghayi, H. Mahini, A.S. Sayedi-Roshkhar, S. Oveisgha-

ran, and M. Zadimoghaddam. Minimizing movement. ACM Transactions on

Algorithms (TALG), 5(3):1–30, 2009.

[24] A. Kansal, A.A. Somasundara, D.D. Jea, M.B. Srivastava, and D. Estrin. Intelli-

gent fluid infrastructure for embedded networks. In Proceedings of the 2nd inter-

national conference on Mobile systems, applications, and services, pages 111–124,

Boston, MA, USA, 2004. ACM.

[25] D. Bhadauria, O. Tekdas, and V. Isler. Robotic data mules for collecting data

over sparse sensor fields. Journal of Field Robotics.

[26] Y. Chen and A. Terzis. Poster abstract: On the spatial characteristics of the gray

region for 802.15. 4 radios. In Information Processing in Sensor Networks, 2009.

IPSN 2009. International Conference on, pages 393–394. IEEE.

[27] A. Machado, G. Ramalho, J.D. Zucker, and A. Drogoul. Multi-agent patrolling:

An empirical analysis of alternative architectures. Multi-Agent-Based Simulation

II, pages 81–97, 2003.

[28] Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. 2004.

[29] F. Sempé and A. Drogoul. Adaptive patrol for a group of robots. In Intelligent

Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ Interna-

tional Conference on, volume 3, pages 2865–2869. IEEE, 2004.

[30] J.S. Marier, C. Besse, and B. Chaib-Draa. A Markov model for multiagent pa-

trolling in continuous time. In Neural Information Processing, pages 648–656.

Springer, 2009.

181

[31] C.E. Perkins. Ad hoc networking. Addison-Wesley Professional, 2008.

[32] T. Clausen, G. Hansen, L. Christensen, and G. Behrmann. The optimized link

state routing protocol, evaluation through experiments and simulation. In IEEE

Symposium on” Wireless Personal Mobile Communications. Citeseer, 2001.

[33] T. Clausen, P. Jacquet, C. Adjih, A. Laouiti, P. Minet, P. Muhlethaler,

A. Qayyum, and L. Viennot. Optimized link state routing protocol (OLSR).

2003.

[34] T. Clausen and P. Jacquet. RFC3626: Optimized Link State Routing Protocol

(OLSR). RFC Editor United States, 2003.

[35] M. Ikeda, G. De Marco, L. Barolli, and M. Takizawa. A BAT in the lab: ex-

perimental results of new link state routing protocol. In 22nd International Con-

ference on Advanced Information Networking and Applications, pages 295–302.

IEEE, 2008.

[36] C. Perkins, E. Belding-Royer, S. Das, et al. Ad hoc on-demand distance vector

(AODV) routing. 2003.

[37] V.D. Park and M.S. Corson. A highly adaptive distributed routing algorithm for

mobile wireless networks. In infocom, page 1405. Published by the IEEE Computer

Society, 1997.

[38] V. Park and M.S. Corson. Temporally-ordered routing algorithm (TORA) version

1 functional specification. Technical report, Internet-Draft, draft-ietf-manet-tora-

spec-00. txt, 1997.

[39] M.G. Baker, X. Zhao, S. Cheshire, and J. Stone. Supporting mobility in

MosquitoNet. In Proceedings of the 1996 USENIX Technical Conference, pages

127–140. Citeseer, 1996.

[40] S. Cheshire and M. Baker. A wireless network in mosquitonet. Micro, IEEE,

16(1):44–52, 1996.

[41] S. Alpern. The rendezvous search problem. SIAM Journal on Control and Opti-

mization, 33:673, 1995.

182

[42] S. Poduri and G.S. Sukhatme. Latency Analysis of Coalescence for Robot Groups.

In Robotics and Automation, 2007 IEEE International Conference on, pages 3295–

3300. IEEE, 2007.

[43] Z. Lin, M. Broucke, and B. Francis. Local control strategies for groups of mobile

autonomous agents. Automatic Control, IEEE Transactions on, 49(4):622–629,

2004.

[44] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G.S. Sukhatme. Robo-

mote: enabling mobility in sensor networks. In Proceedings of the 4th international

symposium on Information processing in sensor networks, page 55. IEEE Press,

2005.

[45] A. Kansal, M. Rahimi, D. Estrin, W.J. Kaiser, G.J. Pottie, and M.B. Srivas-

tava. Controlled mobility for sustainable wireless sensor networks. In Proc. IEEE

SECON, volume 4, 2004.

[46] A. Okabe and A. Suzuki. Locational optimization problems solved through

Voronoi diagrams. European Journal of Operational Research, 98(3):445–456,

1997.

[47] A. Howard, M.J. Mataric, and G.S. Sukhatme. Mobile sensor network deploy-

ment using potential fields: A distributed, scalable solution to the area coverage

problem. Distributed autonomous robotic systems, 5:299–308, 2002.

[48] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile

sensing networks. Robotics and Automation, IEEE Transactions on, 20(2):243–

255, 2004.

[49] P. Ogren, E. Fiorelli, and N.E. Leonard. Cooperative control of mobile sensor

networks: Adaptive gradient climbing in a distributed environment. Automatic

Control, IEEE Transactions on, 49(8):1292–1302, 2004.

[50] P. Corke, S. Hrabar, R. Peterson, D. Rus, S. Saripalli, and G. Sukhatme. Deploy-

ment and connectivity repair of a sensor net with a flying robot. Experimental

Robotics IX, pages 333–343, 2006.

183

[51] N. Atay and B. Bayazit. Mobile wireless sensor network connectivity repair with

k-redundancy. Algorithmic Foundation of Robotics VIII, pages 35–49, 2009.

[52] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in net-

worked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[53] J. Butterfield, K. Dantu, B. Gerkey, O.C. Jenkins, and G.S. Sukhatme. Au-

tonomous biconnected networks of mobile robots. In Modeling and Optimization

in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008. WiOPT 2008.

6th International Symposium on, pages 640–646. IEEE, 2008.

[54] D.K. Goldenberg, J. Lin, A.S. Morse, B.E. Rosen, and Y.R. Yang. Towards mo-

bility as a network control primitive. In Proceedings of the 5th ACM international

symposium on Mobile ad hoc networking and computing, pages 163–174. ACM,

2004.

[55] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. Lynch. Keeping mobile robot swarms

connected. Distributed Computing, pages 496–511, 2009.

[56] R. Olfati-Saber. Flocking for multi-agent dynamic systems: Algorithms and the-

ory. Automatic Control, IEEE Transactions on, 51(3):401–420, 2006.

[57] M.M. Zavlanos, A. Jadbabaie, and G.J. Pappas. Flocking while preserving network

connectivity. In Decision and Control, 2007 46th IEEE Conference on, pages

2919–2924. IEEE, 2007.

[58] M. Lindhé and K.H. Johansson. Communication-aware trajectory tracking. In

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on,

pages 1519–1524. IEEE, 2008.

[59] Y. Mostofi. Communication-aware motion planning in fading environments. In

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on,

pages 3169–3174. IEEE, 2008.

[60] A. Ghaffarkhah and Y. Mostofi. Communication-aware target tracking using nav-

igation functions-centralized case. In Robot Communication and Coordination,

184

2009. ROBOCOMM’09. Second International Conference on, pages 1–8. IEEE,

2009.

[61] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira, and

J. Spletzer. Distributed search and rescue with robot and sensor teams. In Proc.

of the 4th Intl. Conf. on Field and Service Robotics, Japan. Springer, 2003.

[62] V. Kumar, D. Rus, and S. Singh. Robot and sensor networks for first responders.

IEEE Pervasive Computing, pages 24–33, 2004.

[63] M.A. Batalin and G.S. Sukhatme. Coverage, exploration and deployment by a mo-

bile robot and communication network. Telecommunication Systems, 26(2):181–

196, 2004.

[64] S.M. LaValle, H.H. González-Banos, C. Becker, and J.C. Latombe. Motion strate-

gies for maintaining visibility of a moving target. In Robotics and Automation,

1997. Proceedings., 1997 IEEE International Conference on, volume 1, pages 731–

736. IEEE, 1997.

[65] R. Murrieta-Cid, B. Tovar, and S. Hutchinson. A sampling-based motion planning

approach to maintain visibility of unpredictable targets. Autonomous Robots,

19(3):285–300, 2005.

[66] S. Bhattacharya, S. Candido, and S. Hutchinson. Motion strategies for surveil-

lance. Proceedings of Robotics: Science and Systems, Atlanta, GA, USA, 2007.

[67] F. auf der Heide and B. Schneider. Local strategies for connecting stations by

small robotic networks. Biologically-Inspired Collaborative Computing, pages 95–

104, 2008.

[68] F. Aurenhammer. Power diagrams: properties, algorithms and applications. SIAM

Journal on Computing, 16:78, 1987.

[69] W. Yang. An algorithm for network formation and an implementation of a mobile

robotic router system. PhD thesis, Rensselaer Polytechnic Institute, 2008.

185

[70] O. Tekdas, P.A. Plonski, N. Karnad, and V. Isler. Maintaining connectivity in

environments with obstacles. In Robotics and Automation (ICRA), 2010 IEEE

International Conference on, pages 1952–1957. IEEE, 2010.

[71] O. Tekdas, W. Yang, and V. Isler. Robotic routers: Algorithms and implementa-

tion. The International Journal of Robotics Research, 29(1):110, 2010.

[72] S. Poduri and G.S. Sukhatme. Achieving connectivity through coalescence in

mobile robot networks. In Proceedings of the 1st international conference on

Robot communication and coordination, pages 1–6. IEEE Press, 2007.

[73] E.J. Anderson and S. Essegaier. Rendezvous search on the line with indistinguish-

able players. SIAM Journal on Control and Optimization, 33:1637, 1995.

[74] Q. Han, D. Du, J. Vera, and L.F. Zuluaga. Improved bounds for the symmetric

rendezvous value on the line. In Proceedings of the eighteenth annual ACM-SIAM

symposium on Discrete algorithms, pages 69–78. Society for Industrial and Applied

Mathematics, 2007.

[75] N. Gordon, I.A. Wagner, and A.M. Bruckstein. Gathering multiple robotic a

(ge) nts with limited sensing capabilities. Ant Colony, Optimization and Swarm

Intelligence, pages 60–87, 2004.

[76] E.J. Anderson and RR Weber. The rendezvous problem on discrete locations.

Journal of Applied Probability, 27(4):839–851, 1990.

[77] V. Baston and S. Gal. Rendezvous on the line when the players’ initial distance

is given by an unknown probability distribution. SIAM journal on control and

optimization, 36:1880, 1998.

[78] N. Roy and G. Dudek. Collaborative robot exploration and rendezvous: Algo-

rithms, performance bounds and observations. Autonomous Robots, 11(2):117–

136, 2001.

[79] E. Meisner, W. Yang, and V. Isler. Probabilistic network formation through

coverage and freeze-tag. Algorithmic Foundation of Robotics VIII, pages 3–17,

2009.

186

[80] E.M. Arkin, M.A. Bender, S.P. Fekete, J.S.B. Mitchell, and M. Skutella. The

freeze-tag problem: how to wake up a swarm of robots. In Proceedings of the

thirteenth annual ACM-SIAM symposium on Discrete algorithms, pages 568–577.

Society for Industrial and Applied Mathematics, 2002.

[81] E.M. Arkin, M.A. Bender, and D. Ge. Improved approximation algorithms for

the freeze-tag problem. In Proceedings of the fifteenth annual ACM symposium

on Parallel algorithms and architectures, pages 295–303. ACM, 2003.

[82] O. Tekdas, Y. Kumar, V. Isler, and R. Janardan. Building a communication

bridge with mobile hubs. Algorithmic Aspects of Wireless Sensor Networks, pages

179–190, 2009.

[83] RS Kanwar, D. Bjorneberg, and D. Baker. An automated system for monitor-

ing the quality and quantity of subsurface drain flow. Journal of agricultural

engineering research, 73(2):123–129, 1999.

[84] J. Cavender-Bares and NM Holbrook. Hydraulic properties and freezing-induced

cavitation in sympatric evergreen and deciduous oaks with contrasting habitats.

Plant, Cell & Environment, 24(12):1243–1256, 2001.

[85] D.L. Applegate. The traveling salesman problem: a computational study. Prince-

ton Univ Pr, 2006.

[86] G.N. Frederickson, M.S. Hecht, and C.E. Kim. Approximation algorithms for

some routing problems. In 17th Annual Symposium on Foundations of Computer

Science, pages 216–227. IEEE, 1976.

[87] P. Juang, H. Oki, Y. Wang, M. Martonosi, L.S. Peh, and D. Rubenstein. Energy-

efficient computing for wildlife tracking: design tradeoffs and early experiences

with ZebraNet. In Proceedings of the 10th international conference on Architec-

tural support for programming languages and operating systems, pages 96–107.

ACM, 2002.

[88] A. Beaufour, M. Leopold, and P. Bonnet. Smart-tag based data dissemination. In

Proceedings of the 1st ACM international workshop on Wireless sensor networks

and applications, pages 68–77. ACM, 2002.

187

[89] A. Chakrabarti, A. Sabharwal, and B. Aazhang. Using predictable observer mo-

bility for power efficient design of sensor networks. In Proceedings of the 2nd

International Conference on Information Processing in Sensor Networks, pages

129–145, Palo Alto, CA, USA, 2003. Springer-Verlag.

[90] D. Jea, A. Somasundara, and M. Srivastava. Multiple controlled mobile elements

(data mules) for data collection in sensor networks. pages 244–257, Marina del

Rey, CA, USA, 2005. Springer.

[91] L. Boloni and D. Turgut. Should I send now or send later? A decision-theoretic ap-

proach to transmission scheduling in sensor networks with mobile sinks. Wireless

Communications and Mobile Computing, 8(3):385–403, 2008.

[92] G. Anastasi, M. Conti, E. Monaldi, and A. Passarella. An adaptive data-transfer

protocol for sensor networks with Data Mules. In IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks, pages 1–8, Helsinki,

Finland, 2007.

[93] G. Anastasi, M. Conti, and M. Di Francesco. Data collection in sensor networks

with data mules: An integrated simulation analysis. In Computers and Com-

munications, 2008. ISCC 2008. IEEE Symposium on, pages 1096–1102. IEEE,

2008.

[94] J. Ma, C. Chen, and J.P. Salomaa. mWSN for large scale mobile sensing. Journal

of Signal Processing Systems, 51(2):195–206, 2008.

[95] E. Ekici, Y. Gu, and D. Bozdag. Mobility-based communication in wireless sensor

networks. IEEE Communications Magazine, 44(7):56, 2006.

[96] Y. Gu, D. Bozdag, E. Ekici, F. Ozguner, and C.G. Lee. Partitioning based mobile

element scheduling in wireless sensor networks. In Second Annual IEEE Communi-

cations Society Conference on Sensor and Ad Hoc Communications and Networks,

pages 386–395, Santa Clara, CA, USA, 2005.

[97] J. Xing, H. Wang, K. Han, D.A. Ray, C.H. Huang, L.G. Chemnick, C.B. Stewart,

T.R. Disotell, O.A. Ryder, and M.A. Batzer. A mobile element based phylogeny

188

of Old World monkeys. Molecular Phylogenetics and Rvolution, 37(3):872–880,

2005.

[98] A.A. Somasundara, A. Kansal, D.D. Jea, D. Estrin, and M.B. Srivastava. Control-

lably mobile infrastructure for low energy embedded networks. IEEE Transactions

on Mobile Computing, pages 958–973, 2006.

[99] R. Sugihara and R.K. Gupta. Optimal speed control of mobile node for data

collection in sensor networks. IEEE Transactions on Mobile Computing, pages

127–139, 2009.

[100] A. Gasparri, B. Krishnamachari, and G.S. Sukhatme. A framework for multi-

robot node coverage in sensor networks. Annals of Mathematics and Artificial

Intelligence, 52(2):281–305, 2008.

[101] K. Williams and J. Burdick. Multi-robot boundary coverage with plan revision.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE Interna-

tional Conference on, pages 1716–1723. IEEE, 2006.

[102] I. Chatzigiannakis, A. Kinalis, and S. Nikoletseas. Efficient data propagation

strategies in wireless sensor networks using a single mobile sink. Computer Com-

munications, 31(5):896–914, 2008.

[103] W. Wang, V. Srinivasan, and K.C. Chua. Using mobile relays to prolong the

lifetime of wireless sensor networks. In Proceedings of the 11th annual international

conference on Mobile computing and networking, pages 270–283. ACM, 2005.

[104] J. Luo and J.P. Hubaux. Joint mobility and routing for lifetime elongation in

wireless sensor networks. In INFOCOM 2005. 24th Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings IEEE, volume 3,

pages 1735–1746. IEEE, 2005.

[105] Y. Tirta, Z. Li, Y.H. Lu, and S. Bagchi. Efficient collection of sensor data in

remote fields using mobile collectors. In Computer Communications and Networks,

2004. ICCCN 2004. Proceedings. 13th International Conference on, pages 515–

519. IEEE, 2004.

189

[106] F.J. Wu, C.F. Huang, and Y.C. Tseng. Data gathering by mobile mules in

a spatially separated wireless sensor network. In International Conference on

Mobile Data Management: Systems, Services and Middleware, pages 293–298,

Taipei,Taiwan, 2009. IEEE Computer Society.

[107] B. Yuan, M. Orlowska, and S. Sadiq. On the optimal robot routing problem in

wireless sensor networks. IEEE transactions on knowledge and data engineering,

pages 1252–1261, 2007.

[108] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus. Data muling over underwater

wireless sensor networks using an autonomous underwater vehicle. In Robotics and

Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference

on, pages 2091–2098. IEEE, 2006.

[109] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless

research. In Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth

International Symposium on, pages 364–369. IEEE, 2005.

[110] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang,

J. Stankovic, D. Young, et al. Luster: wireless sensor network for environmental

research. In Proceedings of the 5th international conference on Embedded net-

worked sensor systems, pages 103–116. ACM, 2007.

[111] R. Musaloiu-E, C.J.M. Liang, and A. Terzis. Koala: Ultra-low power data retrieval

in wireless sensor networks. In 2008 International Conference on Information

Processing in Sensor Networks, pages 421–432. IEEE, 2008.

[112] N. Christofides. Worst-Case Analysis of a New Heuristic for the Travelling Sales-

man Problem. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH

PA MANAGEMENT SCIENCES RESEARCH GROUP, 1976.

[113] J.S.B. Mitchell. A PTAS for TSP with neighborhoods among fat regions in the

plane. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 11–18. Society for Industrial and Applied Mathematics, 2007.

190

[114] J.S.B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A

simple polynomial-time approximation scheme for geometric TSP, k-MST, and

related problems. SIAM J. Comput., 28(4):1298–1309, 1999.

[115] E.M. Arkin and R. Hassin. Approximation algorithms for the geometric covering

salesman problem. Discrete Applied Mathematics, 55(3):197–218, 1994.

[116] K. Elbassioni, A. Fishkin, and R. Sitters. On approximating the TSP with inter-

secting neighborhoods. Algorithms and Computation, pages 213–222, 2006.

[117] J.S.B. Mitchell. Personal Communication.

[118] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Concorde tsp solver, 2006.

http: // www. tsp. gatech. edu/ concorde .

[119] O. Tekdas, N. Karnad, and V. Isler. Efficient strategies for collecting data from

wireless sensor network nodes using mobile robots. In 14th International Sympo-

sium on Robotics Research (ISRR), 2009.

[120] O. Tekdas, V. Isler, J.H. Lim, and A. Terzis. Using mobile robots to harvest data

from sensor fields. Wireless Communications, IEEE, 16(1):22–28, 2009.

[121] D. Reis, A. Melo, A. Coelho, and V. Furtado. Towards optimal police patrol

routes with genetic algorithms. Intelligence and Security Informatics, pages 485–

491, 2006.

[122] M. Haque. Sustainable Group Sizes for Multi-Agent Search-and-Patrol Teams.

Technical report, Georgia Institute of Technology. School of Electrical and Com-

puter Enginering, 2010.

[123] T. Menezes, P. Tedesco, and G. Ramalho. Negotiator agents for the patrolling

task. Advances in Artificial Intelligence-IBERAMIA-SBIA 2006, pages 48–57,

2006.

[124] Y. Elor and A. Bruckstein. Autonomous multi-agent cycle based patrolling. Swarm

Intelligence, pages 119–130, 2010.

http://www. tsp. gatech. edu/concorde

191

[125] Y. Elor and A.M. Bruckstein. Autonomous Multi-Agent Cycle Based Patrolling.

2009.

[126] H. Santana, G. Ramalho, V. Corruble, and B. Ratitch. Multi-agent patrolling

with reinforcement learning. 2004.

[127] A. Almeida, G. Ramalho, H. Santana, P. Tedesco, T. Menezes, V. Corruble, and

Y. Chevaleyre. Recent advances on multi-agent patrolling. Advances in Artificial

Intelligence–SBIA 2004, pages 126–138, 2004.

[128] N. Agmon, S. Kraus, and G.A. Kaminka. Multi-robot perimeter patrol in adversar-

ial settings. In Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, pages 2339–2345. IEEE, 2008.

[129] N. Agmon, S. Kraus, G.A. Kaminka, and V. Sadov. Adversarial uncertainty in

multi-robot patrol. In Proceedings of the 21st international jont conference on

Artifical intelligence, pages 1811–1817. Morgan Kaufmann Publishers Inc., 2009.

[130] Y. Elmaliach, N. Agmon, and G.A. Kaminka. Multi-robot area patrol under

frequency constraints. In Robotics and Automation, 2007 IEEE International

Conference on, pages 385–390. IEEE, 2007.

[131] J.S. Marier, C. Besse, and B. Chaib-draa. Solving the continuous time multiagent

patrol problem. In Robotics and Automation (ICRA), 2010 IEEE International

Conference on, pages 941–946. IEEE, 2010.

[132] S.L. Smith and D. Rus. Multi-robot monitoring in dynamic environments with

guaranteed currency of observations. In IEEE Conf. on Decision and Control,

Atlanta, GA, 2010.

[133] J.M. Keil. Polygon decomposition. Handbook of Computational Geometry, pages

491–518, 2000.

[134] H. Choset. Coverage for robotics–A survey of recent results. Annals of Mathe-

matics and Artificial Intelligence, 31(1):113–126, 2001.

[135] T. Lozano-Pérez and M.A. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Communications of the ACM, 22(10):560–570, 1979.

192

[136] Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An optimal algorithm

for the traveling salesman problem with time windows. Operations Research,

43(2):367–371, 1995.

Appendix A

Index to Multimedia Extensions

No Media

Type

Description Link

1 Video Simulations and videos from proof

of concept robotic router experi-

ments (Section 2.5)

http://rsn.cs.umn.edu/

index.php/Robotic_Routers

2 Video Videos from proof-of-concept data

mule experiments (Section 4.3)

http://www.youtube.com/

watch?v=hEje5oanYC0

3 Video Videos from good download location

search experiments (Section 4.4)

http://www.youtube.com/

watch?v=21YN4ccz-fM

4 Video Videos from outdoor data mule ex-

periments (Section 4.5)

http://rsn.cs.umn.edu/

index.php/Data_Mules

193

http://rsn.cs.umn.edu/ index.php/Robotic_Routers
http://www.youtube.com/ watch?v=hEje5oanYC0
http://www.youtube.com/ watch?v=21YN4ccz-fM
http://rsn.cs.umn.edu/ index.php/Data_Mules

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Overview of Applications
	End-to-End Network Connectivity
	Delay-tolerant Networks

	Problem Statement and Contributions
	Robotic Routers
	Communication Bridge
	Data Mules
	Multi-Robot Patrol

	Outline

	Robotic Routers
	Related Work
	Definitions and Notation
	A General Solution
	Problem Formulation
	Known user trajectory
	Adversarial user trajectory

	A Geometric Solution
	Problem Formulation
	Environments with no obstacles
	Environments containing a single obstacle
	Polygonal environments with multiple obstacles
	Beyond O(h)-Approximation

	Simulations and Experiments
	Simulations
	Experiments

	Concluding Remarks

	Communication Bridge
	Related Work
	Building a Bridge with the Minimum Number of Hubs
	MaxDist: Minimizing Maximum Distance
	SumDist: Minimizing the Total Distance

	Bounds on Number of Hubs
	Concluding Remarks

	Data Mules
	Related Work
	Background
	Wireless Sensor Networks
	Sensor and Robot Communication
	TSP and Variants

	A Proof-of-Concept Design
	Evaluation

	Efficient Strategies to Gather Data from WSNs
	Link Quality Experiments
	Local Search Algorithm
	System Design
	Experiments

	Opportunistic Path-planning under Disk Model
	System Design
	Experiments

	Path-planning under Two-Ring Model
	Problem Definition
	Structural Properties
	General Case
	Special Cases
	Simulations
	Experiments

	Concluding Remarks

	Multi-Robot Patrol
	Related work
	Problem formulation
	WMRP on Tree-like Environments
	Algorithm
	Correctness

	WMRP on Path-like Environments
	Concluding Remarks

	Conclusion and Discussion
	Summary of Our Results
	Future Research Directions
	Final Remarks

	References
	 Appendix A. Index to Multimedia Extensions

