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The effectiveness of a Bayesian approach to the es-
timation problem in item response models has been
sufficiently documented in recent years. Although re-
search has indicated that Bayesian estimates, in gen-
eral, are more accurate than joint maximum likelihood
(JML) estimates, the effect of choice of priors on the
Bayesian estimates is not well known. Moreover, the
extent to which the Bayesian estimates are biased in
comparison with JML estimates is not known. The ef
fect of priors and the amount of bias in Bayesian esti-
mates is examined in this paper through simulation
studies. It is shown that different specifications of
prior information have relatively modest effects on the
Bayesian estimates. For small samples, it is shown
that the Bayesian estimates are less biased than their
JML counterparts. Index terms: accuracy, Bayesian
estimates, bias, item response models, joint maximum
likelihood estimates, priors.

Item response theory has the potential for sig-
nificantly improving educational and psychological
measurement. However, the successful application
of this theory relies heavily on the existence of
adequate estimation techniques. The effectiveness
of a Bayesian approach to the estimation problem
in the one-, two-, and three-parameter item re-
sponse models has been demonstrated (Mislevy,
1986; Rigdon & Tsutakawa, 1983; Swaminathan

& Gifford, 1982, 1985, 1986; Tsutakawa, 1984;
Tsutakawa & Lin, 1986).

Swaminathan and Gifford demonstrated the fea-

sibility of a joint Bayesian estimation procedure in
item response models. They developed a hierar-
chical approach suggested by Lindley ( 1971 ) and
showed that the Bayesian procedure produced more
accurate estimates with short tests and small ex-
aminee samples than did the joint maximum like-
lihood (JML) procedures implemented by LOGIST
is (Wood, Wingersky, & Lord, 1976). However,
because the Bayesian approach to estimation relies
on the specification of priors, it is of interest to
know how the various choices for the prior distri-
butions placed on parameters affect the accuracy
of estimation. A simulation study was implemented
to study the effect of priors in the one-, two-, and
three-parameter logistic models.

Although Swaminathan and Gifford showed that
Bayesian estimates are more accurate than JML es-
timates, the Bayesian estimates theoretically would
be expected to be biased. Although the extent of
bias in JML estimators of item parameters is known
when examinee abilities are known (Lord, 1983),
the extent to which the JML estimators are biased
is unknown. Hence it is of interest to further in-

vestigate the error of estimation and establish the
relative sizes of bias and sampling error. A second
simulation study was therefore conducted to in-
vestigate the bias in the Bayesian and JML esti-
mates.
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The Model

For the three-parameter logistic model, the prob-
ability that examinee i responds correctly to item
g is given as

where Oi is the ability level of examinee i,
bg is the difficulty level of item g,
ag is the discrimination of item g, and

cg is the lower asymptote for item g.
The two-parameter logistic model is obtained by
setting c equal to 0 for all items, while the addi-
tional restriction of fixing all ag = 1 results in the
one-parameter model. To obtain Bayesian esti-
mates of the parameters of logistic models, it is

necessary to specify the priors on the parameters.
Following the procedures developed by Swami-
nathan and Gifford (1982, 1985, 1986), the priors
for Oi and bg were specified in two stages. In the
first stage, it is assumed that Oi (and bg) are inde-
pendently and identically normally distributed:

In the second stage, the information on ~4, 4)~, f.Lb’
and ~b is specified. In setting the priors for R, and
~b, it is assumed a priori that f.Lb is distributed

uniformly, while ~b has the form of an inverse chi-
square distribution with parameters vb and Ab. That
is,

The same procedure was used in setting the priors
for f.1o and ~§o .

The prior for ag was taken as the chi distribution,
that is,

The prior distribution for c, was taken as the beta
distribution:

Justifications for these choices of prior distributions
are given in Swaminathan and Gifford (1982, 1985,
1986) and hence will not be repeated here. The

joint posterior probability, after integration with
respect to the nuisance parameters &mu; and &phis;, is given
by Swaminathan and Gifford (1986).

Study 1:
The Effect of Priors on Accuracy

The Bayesian approach has often been criticized
because of the subjective nature of the specification
of priors. An important issue to investigate, there-
fore, is the susceptibility of the Bayesian procedure
to changes in the specification of the prior distri-
bution for different sample sizes and test lengths.
Do large fluctuations in estimates occur when small
changes in priors are made, or is the procedure
reasonably robust or stable with respect to these
changes?

The One-Parameter Model

To investigate the effect of priors in the one-
parameter model, test lengths of 15, 25, and 50
items were completely crossed with sample sizes
of 25, 50, 150, and 500 examinees. The true &thetas;s

and item difficulties were distributed uniformly in
the interval [-1.73,1.73]. These distributions were
chosen to differ from the distributions selected for

priors. Note that as tests were lengthened, the orig-
inal items were retained and combined with newly
selected items. The same holds true for examinees.
That is, as sample size was increased, it was as if
the same examinees, along with additional exam-
inees, were administered the item set. This pro-
vided for more clarity of interpretation of trends,
because the variability due to sampling from the
population of true values was minimized. Data were
generated through the use of a modification of the
DATAGEN program (Hambleton & Rovinelli, 1973).
The &chi;-2(&nu;,&lambda;) prior was placed on both &phis;b and

&phis;&thetas;. To obtain a range of priors, the scale parameter
&lambda; was fixed at 10.0 while the degrees of freedom
&nu; were set at 5, 8, 15, 25, and 50. (See Swami-
nathan & Gifford, 1985, for justification of the
choice of the value for &lambda;.) Table 1 contains a de-

scription of the nature of the priors. When &nu; is

small, the distribution is skewed with extremely
large variance. As &nu; increases, the &chi;-2 approaches
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Table 1
Characteristics of the Inverse Chi-Square

Distribution for A - 10 and Selected Values of v

normality and the credibility interval becomes
smaller.

Estimates and true values were scaled by stand-
ardizing on 0. Accuracy of estimation was exam-
ined in two ways. First, the correlations of the
estimates with the true values were calculated for

each testing situation. Second, the squared differ-
ences between each estimate and true value were
calculated. These were averaged across all items
(or Os) to yield an index for accuracy, denoted mean
squared difference (MSD). Because MSD is in squared
units, its square root, RMSD, was used for clarity
of interpretation.
The results of the effect of varying v are pre-

sented in Table 2. A single correlation is reported
for each test situation because the correlations were

virtually unaffected by the choice of v. However,
RMSD steadily increases as v increases. This occurs
because as v increases, the distribution of 4) be-
comes concentrated, reflecting increasingly stronger
beliefs about the value of 4). Furthermore, the value
of 4~ itself decreases as v increases. Consequently,
with large v, firm beliefs about small variances for
the 0 and b parameters are expressed. These result
in greater regression toward the mean, hence larger
RMSD.

To prevent extreme biasing when k = 10, rel-
atively small values of v must be specified. These
values of v and B result in a large value of 4)
together with a diffuse belief about its value. Clearly,
for values of v between 5 and 15, the prior distri-
butions produce similar, if not identical, results.

Table 2
RMSDs and Correlation (p) of Estimated and True Parameter Values
for Prior Distributions With v - 5, 8, 15, 25, and 50 for Tests of

15, 25, and 50 Items and Sample Sizes of 25, 50, 150, and 500 Examinees
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The accuracy of estimation of b and 0 parameters
does not seem to be affected by such values of v.
Only large values of v (> 15) seem to have a det-
rimental effect on estimation.

The effects of sample size and test length on
RMSD are clear. RMSD decreases as sample size
increases and as test length increases. These trends
indicate that as the amount of information obtained
from data increases, the accuracy of estimation in-
creases.

The Two-Parameter Model

For the two-parameter model, because the effect
of prior specification on the a parameter was of
primary concern, noninformative priors were placed
on the b and 0 parameters. The chi distribution was
chosen to indicate prior belief on cc, and priors were
selected through the use of the normal approxi-
mation to the chi distribution (Swaminathan & Gif-

ford, 1985). Identical priors were placed on each
ag. Table 3 contains descriptive information about
the various chi distributions chosen for study.
The effects of the 12 prior distributions on the

estimates were compared through analyses of two
testing situations: (1) test length n = 25, sample
size N = 100 and (2) n = 35, N = 200. For data
generation, the bs and Os were distributed normally

with mean 0 and variance 1. These distributions
were chosen to differ from the distributions se-

lected for priors. The ag were distributed uniformly
in the interval [.6,1.9].

Results are presented in Table 4. Certain spec-
ifications of prior information on the a parameter
resulted in nonconvergence of the numerical pro-
cedure. This nonconvergence occurred when ex-
treme values for the priors were specified, that is,
when the mean was set at a large value together
with a small standard deviation. This does not seem

surprising in light of the fact that the true ag were
generated from a uniform distribution in the inter-
val [.6,1.9]. Although the problem of noncon-
vergence occurred frequently for n = 25 and 1V =
100, it was less of a problem in the second situa-
tion, when re = 35 and 1V = 200.

For the cases where convergence occurred, the
correlations between true and estimated values for

0 and b were unaffected by the specification of
prior information. The correlations between esti-
mated and true values for the a parameter, how-
ever, were affected by the specification of the prior
distribution on the a~. A similar trend was observed
for RMSDS. In general, the priors with pa, = 1.0 or

1.5 and cr = .25 or .50 showed the best results.
This result indicates that values for jjL and or that

reflect the distribution of ag reasonably well result

Table 3
Characteristics of the Chi Distribution for

Selected Parameters
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Table 4
Effect of Prior Distribution for Values of p - [w(v-.5) ]1/2
and a - (w/2)1~2 in the Two-Parameter Model for 25 Items

and 100 Examinees and for 35 Items and 200 Examinees

in the most accurate estimation. The effects of the

prior distribution on 0 and b estimates are negli-
gible for these values of R and cr.

The Three-Parameter Model

To investigate the effect of specification of prior
distributions on the c parameter, a single testing
situation was selected = 35, N = 200. Values
of 0 and b were drawn from uniform distributions
in the interval [ - 1.73,1.73]. This was done to
ensure an adequate number of low-0 examinees
which, in turn, ensures reasonable estimates of the
c parameter. To ensure that the priors were not
consistent with the true distribution of parameters,

a8 and c, were selected from uniform populations
in the intervals [.6,1.9] and [.00,.22], respectively.

Noninformative priors were placed on both 0 and
b parameters. Identical chi priors were placed on
each ag. Because the specification p = 1.5 and
or = .5 produced consistently good results for the
two-parameter model, it was employed here. To
investigate the effect of varying the priors on the
c,,, nine beta distributions were selected in the fol-

lowing manner. Because the cg were drawn from
a uniform distribution in the interval [.00,.22], three
modal values-.06, .11, and .16-were chosen to
evenly span the interval. These were crossed with
three levels of dispersion. The widths of the 99%
credibility intervals were chosen to be .12, .15,
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and .22. These represent varying strengths in belief
about the value of c,. The descriptive information
about the beta distributions for selected values of

s and t is presented in Table 5.
The results are summarized in Table 6. Values

of b and 0 show very little change as the priors on
c, are varied, with the exception of the analysis
with s = 1.0, t = 15.7 (which resulted in an in-

appropriate solution). For b, the correlations main-
tain the value of .986, while RMSD are in the range
of .21 to .23. For 0, correlations vary from .953
to .956 while RMSDS stay the same.
The estimation of the a parameter seems to be

affected to a greater extent by the specification of
priors on c,. The worst estimation occurs for the
highest mode (.16) and strongest prior (width =

.12). Here the correlation and RMSD are .654 and

.33 respectively. The best estimation of the a pa-
rameter occurs when a more diffuse prior (width
- .15) is specified for c, with a mode of .06. This
results in a correlation of .698 and RMSD of .26.

The choice of priors has a discernible effect on
the estimates of c,. The priors with the mode of
.11 result in better estimates. This could be ex-

pected because the distribution of true C goes from
.00 to .22. The most accurate guess as to a typical
value for c in the absence of any other information,
on the average, could be obtained through the choice
of a value in the middle of the range.

Study 2: Bias

Swaminathan and Gifford (1982, 1985, 1986)
demonstrated that the Bayesian procedure consis-
tently produced more accurate estimates than did
the JML procedure as implemented by LOGIST IV
(Wood et al., 1976). As before, accuracy was de-
fined as the mean of the squared differences be-
tween estimates and true values. Although this in-
dex represents the overall accuracy of the estimation

procedure, it does not provide any explanation of
the nature of the differences between estimates and

true values. The difference could be attributable to

sampling error or to systematic bias.
In order to separate the error into these two com-

ponents, a single test situation was selected and
replicated for each of the three models. The rep-
lications were generated as follows: For a given
testing situation, true values for item and 0 param-
eters were generated according to specified distri-
butions ; these true values were held fixed and 20
item response data matrices were generated ran-
domly. This simulated the responses to an item by
an examinee with a given level of 11 over a set of
independent replications.

For any parameter T, let mk be the estimate for

replication k. Then accuracy can be measured in
terms of the discrepancy (mk - T). Now

Table 5

Characteristics of the Beta Distribution
for Selected Parameters
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Table 6

Effect of Prior Distribution for Values of s and t in the Three-Parameter
Model for 35 Items and 200 Examinees

*All cs were estimated to be 0.0.

where m. represents the mean estimate of or over
the r replications. It follows that

or equivalently,

This relationship demonstrates that the MSD across
r replications is separable into two components.
One component, the variance of the estimates, is
given as

while the second, bias, is given as

For each parameter type in each model, these quan-
tities were calculated for each item and each ex-
aminee. In order to summarize this information,
MSD, V(m), and By!) were averaged across items
(or examinees) to give overall indices.
To further investigate the bias quantity B(m),

for each item (or 6) the mean of the estimates
obtained from the 20 replications was calculated.
The distribution of these means for the test (or
examinee sample) enabled comparison with the dis-
tribution of true values. The distributions were

compared with respect to the first four moments
and the range.

The One-Parameter Model

A testing situation of n = 25, lV = 100 was se-
lected to be replicated for the investigation of bias.
The true item and 0 parameters were generated
from a uniform distribution in the interval [ -1.73,
1.73]. This ensured that the distributions had means
of 0 and standard deviations of 1.

For the Bayesian estimation, X-2 priors with
v = 8, k = 10 were placed on the variances of Oi
and bg. In Table 7 a description of the distribution
of true values is presented alongside the distribu-
tion of the mean of the estimates (across replica-
tions). In general, the two estimation procedures
reproduce the true distribution reasonably well. The
distributions of Bayesian estimates for b and 0 have
smaller standard deviations than the true distribu-

tions, while JML estimates have larger standard de-
viations.

From Table 8 it can be seen that the two pro-
cedures clearly differ in the decomposition of error
into the two components. Although the Bayesian
estimates have smaller MSD and smaller variance
of the estimates, they tend to be more biased than
the JML estimates. The bias is more evident with
the 0 estimates than with the b estimates.
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Table 7
Distributions of True Values and Means of the Bayesian

and ML Estimates in the One-Parameter Model

The Two-Parameter Model

To investigate bias in the two-parameter model,
a testing situation of n = 25, N = 200 was selected
for the 20 replications. The true values for b and
0 parameters were drawn from normal distributions
with means of 0 and standard deviations of 1, while
the a parameters were drawn from a uniform dis-
tribution in the interval [.6,1.9]. For Bayesian es-
timation, uniform priors were placed on Oi and bg
while a chi prior with 1L = 1.5 and cr = .5 was
chosen for each a parameter. The resulting distri-
bution of the mean of the estimates (across the 20

replications) is compared to the distribution of true
values in Table 9.
As in the one-parameter model, only slight dif-

ferences occur with respect to b and 0. With respect
to a, however, the Bayesian procedure clearly re-
produces the original distribution more closely than
does JML.

The error components that combine to form the
MSD are presented in Table 10. Again there are
virtually no differences between the JML and

Bayesian estimates for b and 0. It should be noted
that the priors on b and 0 were chosen to be uni-
form, hence differences would not be expected to
occur. On the other hand, for the a parameters, the
Bayesian procedure produces dramatically smaller
error components than the JML procedure. The priors
arrest the outward drift of the estimates and hence
the resulting estimates have clearly less variance
and bias.

The Three-Parameter Model

A test situation of n = 35, N = 200 was repli-
cated in order to examine the bias in the three-

parameter model. As in Study 1, all true values
were drawn from uniform distributions. The a pa-
rameters were generated in the interval [.fi,l.9];
the chance-level parameters were in the interval
[.00,.22]; 0 and b parameters were in the interval
[ -1.73,1.73]. For Bayesian estimation, noninfor-
mative priors were placed on 0 and b. The chi prior
of)JL==1.5,cr=.5 that was used previously was

Table 8
Error Components in the Estimates of the

One-Parameter Model Based on 20 Replications
(n - 25, N - 100)
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Table 9
Distributions of True Values and Means of the Bayesian and ML

Estimates in the Two-Parameter Model

again chosen for this study. The parameters chosen
to define the beta prior for the c, were s = 3 and
t = 22.

Table 11 contains the comparison of the distri-
bution of true values to the distribution of the es-
timates averaged across replications. As was the
case in both the one- and two-parameter models,
there are only slight differences between the dis-
tributions of JML and Bayesian estimates for b and
0. These parameters seem to be estimated with

stability for both procedures.
As in the two-parameter model, the a parameter

is recovered much better with the Bayesian pro-
cedure than with JML. The distribution of JML mean
estimates has a standard deviation of 1.146 while

the true standard deviation was .347. This is due
to the tendency of JML estimates of a to drift up-
ward.

With respect to the c parameter, both estimation

procedures produce distributions that are tighter
than the true distribution. The Bayesian and JML
procedures result in standard deviations of .027 and

.024, respectively, while the true standard devia-
tion was .065. This is also demonstrated by the
ranges. The JML estimates are in the interval

(.045,.154], Bayesian estimates are in the interval
[.064,.184], and the true values are in the interval
[.014,.217].
The tight distribution for JML estimates is a result

of the very controlled estimation procedure of LOG-
IST IV. Most analyses resulting from LOGIST yield
the majority of the estimates of c placed at a single
value, with a few c values falling above or below
the common value. Although the distribution of
Bayesian estimates is equally tight, the mean of
the distribution is closer to the true value than is
the JML mean.
The information pertaining to the error compo-

nents is presented in Table 12. Over all entries in
the table, the Bayesian values are smaller than the
JML entries. As expected, the JML procedure results
in larger V(m) for all parameters (except for the
cg, where the procedures produce equivalent re-
sults). In addition the JML estimates are consistently

Table 10
Error Components in the Estimates of the

Two-Parameter Model Based on 20 Replications
(n - 25, N - 200)
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Table 11
Distributions of True Values and Means of the Bayesian

and ML Estimates in the Three-Parameter Model

more biased, as indicated by Bum), than the Bayes-
ian estimates in the three-parameter model.

Conclusion

The results of the simulation studies reported
here show that different specifications of prior dis-
tributions have relatively modest effects on the
Bayesian estimates. Exceptions to this finding oc-
cur with distributions that are &dquo;extreme&dquo; in nature.
Prior information that reflects extreme values of

parameters often results in nonconvergence of the
numerical procedure. Vague or diffuse priors seem
to provide less regressed estimates and improved
correlations between true values and estimates.

Note that identical prior distributions were used
for each parameter and for each chance-level

parameter. This approach was chosen to represent
the situation where very little knowledge is avail-
able about individual items. Prior distributions that
are not too tight are clearly preferable in these
circumstances. However, in the event that infor-

mation is available for individual items, different

priors can be selected for each item and these can
afford to be specific. Further improvement in es-
timation can be expected to occur with such specific
priors.

Bias was present in estimates of b and 0 in the

one-parameter model, with the Bayesian estimates
showing slightly more bias than the JML estimates.
In the two- and three-parameter models the Bayes-
ian estimates had very little bias, even less than
the JML estimates. This is because in the two- and

three-parameter models, noninformative priors were
placed on the 6 and b parameters, whereas in the
one-parameter model informative priors are used.
Consequently, the estimates in the one-parameter
model were regressed and showed more bias.

Although bias was present for both Bayesian and
JML estimates of a and chance-level parameters,
the Bayesian procedure was shown to be less biased
throughout the study, even though the priors cho-
sen for cm and c clearly differed from the generating
distributions. This could be a result of the influence

Table 12
Error Components in the Estimates of the

Three-Parameter Model Based on 20 Replications
________ 

(n-35, N = 200)
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of highly unstable estimates of the ca parameter on
the estimates of other parameters in the JML pro-
cedure. Thus it appears that using prior information
that is not very specific improves the quality of
estimation.

In general, it appears that a Bayesian procedure
that places priors on the a and c parameters im-
proves the accuracy of estimation of parameters in
item response models. Surprisingly, the Bayesian
estimates are less biased than the JML estimates.

Different choices for parameters of the prior dis-
tributions do not have any marked effect on the

estimation as long as the prior distributions are not
too extreme.
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