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Residual Centering, Exploratory and
Confirmatory Moderator Analysis, and
Decomposition of Effects in Path Models
Containing Interactions
Charles E. Lance

University of Georgia

Hierarchical moderated regression (HMR) analysis
may lead to interpretational problems in tests of mod-
erator (interaction) hypotheses. An alternative, resid-
ual-centering approach is described and compared to
traditional HMR analysis. Procedures for evaluating in-
teraction hypotheses and general effect analysis proce-

dures are described for path (causal) models contain-
ing interactions. Index terms: Confirmatory
analysis, Effect analysis in path models, Goodness-of-
fit tests, Hierarchical moderated regression, Media-
tors, Moderated regression, Multicollinearity, Path
models, Residual centering.

Hierarchical moderated regression (~1~~) analysis yields appropriate tests of interaction hypotheses
in experimental and nonexperimental data (Arnold, 1982, 1984; Cohen, 1978; Cohen & Cohen, 1975;
Saunders, 1956; Zedeck, 1971). However, various problems are often encountered with HMR analysis in
field research, including (1) multicollinearity due to high correlation between cross-product and main
effect terms, (2) inflated standard errors and unstable regression estimates, (3) unpredictable suppressor
or &dquo;enhancer&dquo; effects (McFatter, 1979), and (4) uninterpretable regression parameter estimates. Various
centering methods (e.g., Tate, 1984) and biased regression procedures (e.g., l3entler & Woodward, 1979;
Morris, Sherman, & Mansiield, 1986) have been proposed as analytic alternatives to overcome these
limitations to HMR analysis. The purposes of this paper are (1) to describe an alternative, cross-product
residual-centering approach to regression tests of interaction effects, (2) to illustrate this approach and
compare it to HMR analysis, (3) to outline interaction hypothesis testing procedures in path models, and
(4) to describe effect analysis procedures for path models containing interactions.

Residual Centering

HMR analysis involves a comparison of Rzs between one regression model that contains only linear
terms, such as

and a second model that contains linear terms and a cross-product between predictors:
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For algebraic convenience, all terms in Equations 1 and 2 are expressed in standard score form, b, and
b2 are the ordinary least squares (&reg;t,s) weights from the regression of Y on X, and X,,, ds are OLS residuals,
and in Equation 2 b, is the OLS regression weight associated with the X, x X, cross-product term X, ~;, z
(Arnold, 1982, 1984; Cohen & Cohen, 1975). An interaction hypothesis is supported if the R2 from the
Equation 2 regression model is significantly larger than the Equation 1 R2 (Cohen, 1978). This simul-
taneously tests for homogeneity of slope of the regression of the dependent variable on one predictor
across all levels of the second predictor (Arnold, 1982; Gulliksen Wilks, 1950).

In field research, the XI x2 cross-product term in Equation 2 will often be highly correlated with X,
and/or X2, leading to interpretational problems associated with multicollinearity (Belsley, Kuh, & Welch,
1980). Furthermore, the XI x2 term in Equation 2 confounds the interaction and predictor main effects
(Stone & Hollenbeck, 1984). An alternative approach that avoids these problems begins with a regression
of the cross-product term on main effects, for example:

In the second step, cross-product residuals are c&reg;~st~cted:

d,,,, 2 may be restandardized, and then used in the full equation regression:

The decision to rescale c~, XZ should be based, in part, on whether the original variables were measured
on some non-arbitrary metric (Stolzenberg, 1980). If they were, unstandardized regression estimates
should be used in Equations 4 and 5 to preserve the metrics of the original variables. However, for many
psychological variables that have arbitrary scales, standardization may aid interpretation by placing all
variables on a common measurement scale.’ I

The difference R’- comparing the models in Equations 1 and 5 ( 5 _ , = R5 - R, 2) will equal the
difference ~2 between the models in Equations 1 and 2 ( 2_, _ ~Z - Ri)9 but the 5_, F-test (Kerlinger
& Pedhazur, 1973) will have degrees of freedom equal to 1 ~nd ~ - ~a - 3 with n observations and p
predictors (compared with degrees of freedom of I and n - p - 1 for AR2 _ ). Thus the AR5 test will
be slightly less powerful (negligibly so with large samples) but has a number of advantages: It results in
reduced multicollinearity among predictors as well as smaller standard errors, it separates interaction and
main effects, and (with standardized data) it yields a regression coefficient for the residualized cross-
product term that is directly interpretable as the effect of the X, x X2 interaction on Y. As in traditional
HMR analysis, a finding of a significant interaction effect is appropriately followed by subgroup regression
analyses of the form of the interaction (Arnold, 1982).

An Example

As part of another study, it was hypothesized that rater cognitive complexity would have stronger
effects on memory for ratee behaviors under high (rather than low) memory demand conditions. Under-
graduate psychology students (l~ = 207) at the University of Georgia completed Vannoy’s ( 1965) version
of Bieri’s Role Construct Repertory Grid measure of Cognitive Complexity. They then read one of two

’A reviewer also pointed out that standard errors of standardized regression weights for stochastic predictors are miscalculated by
many regression packages, although these effects may often be minor. Bentler and Lee (1983, pp. 212-214) discussed this problem
and proposed a solution using polynomial constraints in the analysis of covariance structures. Correct statistical inferences can also
be drawn from standard errors of corresponding unstandardized weights.
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randomly assigned scripts (differing in overall favorability) of a hypothetical college lecture. Respondents
were randomly assigned to one of two Memory Demand conditions; one group completed a recognition
test of memory for behavioral incidents immediately after reading a script, and the other group was tested
two days later. (Memory Demand was coded 1 = immediate rating, 2 = two-day delay.) The memory
test included equal numbers of behavioral incidents that were or were not included in the script read
previously. The dependent variable, memory for behaviors, was measured as the number of incidents
correctly identified as having been included, plus the number of incidents correctly identified as having
not been included in the script.

Correlations among variables are shown in Table 1. Note that ( 1 ) the Memory Demand x Cognitive
Complexity cross-product X2) was highly correlated with main effects, creating the potential for
multicollinearity in HMR analysis; (2) residual centering effectively eliminated collinearity; (3) the Memory
Demand x Cognitive Complexity residual (~1x2) is empirically distinguishable from the cross-product
term; and (4) the residual (interaction) term is significantly correlated with the dependent variable, while
the cross-product term is not.

Table 2 compares results from a traditional HMR analysis and the present approach in testing for
interaction effects between Memory Demand (X,) and Cognitive Complexity (X2) on Memory for Behaviors
(Y). Models I, II, and III correspond to regression models in Equations 1, 2, and 5, respectively. For
ease of comparison, standardized regression parameter estimates and standard errors (SES) are shown.

Comparisons between Models I and II suggest the presence of multicollinearity among predictors:
Coefficients and standard errors are inflated in Model II estimates. The Memory Demand x Cognitive
Complexity cross-product term also served as a suppressor or enhancer variable (McFatter, 1979) in the
Model II equation: The X, and X2 regression weights are much larger than corresponding zero-order
correlations with the criterion (Tzelgov & Henik, 1985). Thus Model II parameter estimates themselves
are not easily interpreted. However, the difference R2 comparing Models I and II is significant (~’ _
5.659 ~ < .05), and suggests the presence of a significant interaction effect.

On the other hand, Model III regression estimates have smaller standard errors than their Model II
counterparts, and are more interpretable. In particular, the statistically significant ~,x2 coefficient may
be interpreted as ( 1 ) the standard unit change in Y per standard unit change in the Memory Demand x

Cognitive Complexity interaction (Stolzenberg, 1980), and (2) the square root of the incremental proportion
of variance in Y explained by the interaction effect (Cohen, 1978).

Table 3 compares HMR and residual-centering analyses in terms of several collinearity diagnostics:
Belsley et al.’s (1980) singular-value decomposition (svo) of the n x p predictor data matrix X, and
Chatterjee and Price’s (1977) variance inflation factors (VIFS). Chatterjee and Price defined vt~; _

Table 1

Correlations Among Variables
for the Memory For Ratee Behaviors Experiment
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Table 2
Standardized Regression Analyses of the Cognitive Complexity

x Memory Demand Effect on Memory For Behaviors

1/( 1 - ~2), where R? is the squared multiple correlation from the regression of the ith predictor on the
p - I other predictors. Belsley et al. (1980) defined the kth condition index as Xx = (l~n,~X)&dquo;’-~(~~)&dquo;’-, where
Àmax and Àk refer to the maximum and kth eigenvalues of X’X, respectively. The kth singular value is

(X,) 1/2 . The condition number of the X matrix is given as k(X) = (hmdx)~/2~(~min)’/29 where kmin refers to the
minimum eigenvalue of X’X. The a,kth variance-decomposition proportion represents the proportion of
the variance of the ith regression coefficient associated with the kth component of its decomposition
(l3elsley ~t al., 1980, p. 106).

The presence of multicollinearity is signaled by ( 1 ) one or more near-zero eigenvalues (Morris et
at., 1986), (2) one or more &dquo;high&dquo; condition indiceS2, (3) &dquo;high&dquo; VIFS (e.g., VIF¡ > 10; Johnston, 1984),
and (4) two or more large variance-decomposition proportions associated with a high condition index
(see Belsley, 1984; Belsley et ~l. , 1980). For HMR analysis Table 3 shows ( 1 ) one small eigenvalue
(.021), (2) one large condition index (9.274), (3) high VIFS (16.985 and 21.778), and (4) one row of
large variance-decomposition proportions associated with the large condition index. These results are
consistent in suggesting that for this dataset, HMR analysis is more likely to suffer ill effects of multi-

collinearity than residual-centering analysis.
In summary, residual-centering analysis of interaction hypotheses not only minimizes multicolli-

nearity problems that may threaten HMR analysis, but also provides a straightforward means to assess the
predictability of some criterion from the interaction among predictors.

Results in Table 2 supported a significant interaction effect between Memory Demand and Cognitive
Complexity in predicting Memory for Behaviors. Follow-up subgroup standardized regression analysis
showed that Cognitive Complexity (X2) had a significant effect on Memory for Behaviors (~ in the high
Memory Demand condition (1!’ = .224X2; p < .05) but not in the low Memory Demand condition (Y =
.150X,9 p > .10). Expected values for Y, in its original metric, may also be easily calculated from
unstandardized regression coefficients:

2Belsley et al. (1980) referred to a condition index of 30 or above as "high" but also cautioned that condition numbers as low as
8 may signal ill-conditioned data.
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Table 3

Collinearity Diagnostics

which, when substituting the estimates for
~.2=~.x2-(-147.809+104.589~,+!.392~) , (7)

reduces to the usual OLS estimates:

Y = 32.713-8.306X,-.101~+.067X,~ . . (8)
Thus the reduced-form residual-centered estimates are identical to OLS estimates.

Moderators in Confirmatory Analysis

The focus so far has been on exploratory moderator analysis, but moderator effects can also be easily
incorporated and tested in causal (path) models. Figure 1 shows the path model for the interaction
hypothesis above. The model proposes that an interaction between Memory Demand and Cognitive
Complexity (d, X 2) has a direct effect (solid line) on Memory for Behaviors. Memory Demand and Cognitive
Complexity are presumed to not have direct effects (broken lines) &reg;n Memory for Behaviors.

This model is appropriately evaluated by first constructing cross-product residuals d, x, as in Equation
4. The interaction hypothesis is then tested directly by regressing Memory for Behaviors (V) on <~,x2- A

significant standardized regression parameter estimate (b = .163 9 p = .019) supported the hypothesis in
the present example.

Next, a disturbance term regression test (Lance, 1986) evaluates additional hypotheses that neither
Memory Demand (X, ) nor Cognitive Complexity (X,) has a direct effect on Memory for Behaviors:

~lY = fjX j +!2X2+e , (9)

where 3y = Y - I = Y - (bd, x2) are residuals from the regression of F on the d, x interaction term, and
e contains OLS residuals from the regression of on X, and X2. A significant/, and/or £ would indicate
model misspecification(s): Direct rather than indirect effects from X, and/or X, would be implied. In the
present neither 1, _ - .121 ( p > nor Î2 _ - .039 ( p > were suggesting
that the model had been correctly specified. This implies that any Cognitive Complexity effect on Memory
for Behaviors is contingent on level of Memory Demand.

&dquo;Partial moderation&dquo; models may be similarly evaluated. In Figure 2a, for example, both X, and
the interaction between X, and are presumed to have direct effects on Y, whereas the effect of X, on
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Figure I
Path Model for Memory of Ratee Behaviors

Y is presumed to be indirect. This model is appropriately evaluated by creating d, , 2 residuals and regressing
Y on X, and d¡ x2’ Significant regression estimates would support model propositions. A nonsignificant i,
in

where 3y = F &horbar; V == Y - (~X, + ~ZC~,X2)9 would support the additional hypothesis that X~ has no direct
effect on Y.

If the model in Figure 2a is supported empirically, direct effects ofX, and the X, x X-, interaction
on Y can be calculated by taking partial derivatives of the estimated structural equations (Stc~lz~raberg9
1980):

with respect to explanatory variables:

Although X2 is not an explanatory variable in Figure 2a, it too has an effect on Y that is confounded

with the direct interaction effect:

~~’laX2 = - ê2) - ( 14)

Equation 12 illustrates the intuitive notion that the direct main effect &reg;f X, on Y cannot be interpreted
independently of the direct X, x XZ interaction effect: The direct main effect of X, must be evaluated
separately at various levels &reg;f ~Z. Equation 13 indicates a constant rate of change in Y as a function of
the interaction effect. Equation 14 shows that the effect of X2 on Y is linked solely to the interaction
effect and must also be evaluated at various levels of ~, .

~d~~~~~s and Moderators

A moderator is defined here as some measured across whose values the relationship between
two (or more) other variables varies. A mediator is defined as some measured variable that serves, in
whole or in part, to transmit the causal effect of some antecedent variable on a consequent variable

(James, Mulaik, & Brett, 1982). Mediation (but not moderation) connotes causality, though causal relations
may be moderated (James & Brett, 1984).
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Figures2
Hypothetical Path Models Containing Interactions

Baron and Kenny (1986) and James and Brett ( 19~~) raised the possibility of moderated mediator
effects and of mediated moderator effects. Two simple examples are shown in Figures 2b and 2c. Figure
2b (moderated mediation) proposes a model in which the effect of an antecedent variable X, on a consequent
variable Y is transmitted through an interaction between two mediating variables X2 and X, (solid lines).
Broken lines indicate hypotheses of zero effects. The model in Figure 2c (mediated moderation) proposes
that an interaction effect between two antecedent variables X, and X2 is transmitted to the consequent
variable Y through a mediator Broken lines again indicate hypotheses of zero effects.

Models such as those in Figures 2b and 2c may also be evaluated using the procedures described
above. Significant effects predicted Model 2b are tested by regressing Y on ~2x3, and ~x3 on X,, 9
where, as in Equation 4,
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and X~x3 is the X, x ~3 cross-product. Significant regression parameter estimates would indicate support
for model predictions. Zero effect hypotheses (broken tines) for the model in Figure 2b may be evaluated
by constructing the regression residual

and estimating regression parameters ~L,~nce9 1986):

- ~ J J- - 1 J ., I ~ ° ~ /

where es again represent oLs residuals. Nonsignificant estimates of the fs in Equations 17 through 19
would support zero effect predictions. Significant estimates for one or more fs would indicate specific
misspecified zero effect hypotheses. significant effects predicted by th~ model in Figure 2c
are evaluated by regressing Y &reg;n and on d¡ x2 (constructed as in Equation 4).

Disturbance-term regression tests of zero effect hypotheses (broken proceeds by constructing
the residuals
- A A

and estimating regression parameters in

and

Once again, nonsignificant estimates for fs in Equations 22 and 23 would support model propositions,
while significant ~°s would indicate misspecified zero effect hypotheses.

Example Continued

In the study described above, it was also hypothesized that Memory for Behaviors would have a
direct effect on performance rating accuracy. Immediately after completing the memory test measure
described above, respondents also rated the performance of the hypothetical lecturer on five 7-point
dimensional performance rating scales. Dimensional rating accuracy was operationalized as the absolute
deviation of each rating from the hypothetical lecturer’s nominal performance dimension true score. For
each respondent, overall Rating Accuracy was computed as the average of dimensional performance
rating accuracy score. 3

All effects of Memory Demand and Cognitive Complexity on Rating Accuracy were presumed to
be mediated by Memory for Behaviors. The path model depicting these hypotheses is shown in Figure
3. Nonzero effect hypotheses are shown as solid lines, zero effect hypotheses as broken lines.

Table 4 shows results of tests of predictions shown in the model in Figure 3. Entries predicted to
be nonzero are underlined; those predicted to be zero are not underlined. Standardized regression estimates
are shown.

3Note that this is actually a measure of rating inaccuracy.
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Figures3
Path Model for Performance Rating Accuracy

The first column in Table 4 reports regression results required to construct ~,x2 residuals. The large
R2 = .953 in this column points to the usual source of multicollinearity in HMR analysis, and corroborates
results shown in Table 3.4 4

The next two columns show OLS estimates for nonzero effects predicted by the model; both were
significant. The last two columns show results from disturbance term regression tests of zero effect
predictions (see Equations 20 and 21). As predicted, none were significant.

General Effect in Path Models Containing Interactions

Direct, indirect, and total effects are easily calculated in models containing mediated moderation or
moderated mediation effects. Procedures will be illustrated using the model in Figure 2b (containing a
mediating moderator).

Table 4

Standardized Cross-Product Residual Analysis
and Disturbance Term Regression Results
For Performance Rating Model in Figure 4

........ ’V ’9 .. &dquo;I ’&dquo;9

4This also represents the auxiliary regression equation recommended by Belsley et al. (1980) to detect the source(s) of collinearity
indicated in the top half of Table 3.
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The direct effects of variables are calculated from the structural equations by taking partial derivatives
of the endogenous (dependent) variable with respect to each determinant (Stolzenberg, 1980). Sample
estimates for parameters in structural equations for the model in Figure 2b may be written:

Partial derivatives show the estimated direct effects of d2 X on Y, and &reg;f X, on d2x3:

Effects of X, and X, on Y are computed from

where X2x3 is the X2 x X3 cross-product, and are given as

These results illustrate the symmetry of moderator effects.
Total effects are obtained from reduced-form equations. For the model in Figure 2b, these are

and

from Equation 31. For the model in Figure 2b, the total effect &reg;f X, on d2 X is calculated from Equation
3 ~ 1 and is simply a~2 x ~~a~, = b, . Total effects of XI, Xz X3, and d2x3 on Y are

and

..,,. , I

Indirect effects are computed by subtracting direct effects from total effects. In the model in Figure
2b, the only indirect effect is from X, to Y (i.e., b~b,).

The model in Figure 3 and results in Table 4 lend a more concrete example. Structural parameter
estimates in the X3 and Y equations were

~/3 J~ = .163 and 3~/8X3 ~ &horbar; 145 are the direct effects ofJ,x2 &reg;n X3, and &reg;f X3 on ~’9 respectively.
Total effects are calculated from the reduced form equations:

I A _ . - - .. -
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and

The total effects of d, Xz on X3 (aX3/ad¡ x2 = .163) and of on Y (aYl~X~ _ .145) are equal to the
direct effects. The total effect of d, X on Y, aYlad, X 2 = ( - 163) = - .024, is an indirect effect.

Discussion

Pitfalls in interpreting individual regression parameter estimates are well known (see Ward, 1969).
The residual-centered cross-product approach to regression tests of moderator effects, described above,
is a method by which estimates of interaction effects are made more interpretable, symptoms of multi-
collinearity in HMR analysis are avoided, and hypothesis testing and effect analysis procedures can be
performed in path models containing interactions.

The residual-centering approach was presented as an alternative to HMR analysis because of the
current interest in testing person-situation interaction hypotheses (e.g., Bowers, 1973; Ekehammer, 1974;
Epstein & O’Brien, 1985) and moderator hypotheses in general (Baron & Kenny, 1986). However, there
are situations in which HMR may be preferable to the residual-centering approach. For example, if a
researcher is only interested in comparing ~zs to test for the presence of moderator effects, then HMR is
simpler than the residual-centering approach while providing the same inferential statistics. HMR and

residual-centering analyses will also yield identical results if predictor main effects are orthogonal to
interactions (as in balanced ANOVA designs), and will yield equivalent results if they are nearly orthogonal.
HMR may also be preferred in small sample sizes, as residual centering requires the estimation of two
additional parameters (see Equation 4).

Residual centering will be an attractive alternative to HMR when ( 1 ) predictor main effects and the
interaction are correlated and it is desired to interpret and test hypotheses about individual regression
coefficients, (2) multicollinearity poses a threat to the integrity Of HMR estimates, (3) sample sizes are
moderate to large, or (4) decomposition of effects is desired (as in path analysis). The approach may
also be viewed as a plausible alternative to other OLS applications, for example, polynomial regression
tests of nonlinear effects. For instance, a presumed quadratic effect of some X on Y can be tested directly
by constructing Jy2 = X2 - X2 = ~z _ (bX) and regressing Y on dx2. Interpretational problems stemming
from collinearity between X and X2 are thus avoided. Higher-order functions and cross-products among
various powers of variables (Southwood, 1978; Stolzenberg, 1980) may be similarly treated.

For algebraic and interpretational simplicity, only standardized regression and effect analyses were
discussed. In general, however, moderator hypotheses should be evaluated using unstandardized variables
(Arnold, 1982). Heterogeneous variances or intercepts across subsamples may be disguised by standardized
regression parameter estimates. Also, standard errors for standardized regression estimates may be mis-
calculated in the random predictor case (Bentler & Lee, 1983). If these are concerns, unstandardized

regression formulas may simply be substituted for standardized counterparts in this paper. Equations 6
through 8 demonstrate the ease of this substitution as well as the basic identity between reduced-form
residual-centering and HMR analyses.

This paper shows that analysis of interaction effects in nonexperimental data need not be fraught
with common interpretational problems. The residual-centering approach to testing interaction hypotheses
in exploratory research is easily generalized to confirmatory analyses and decomposition of effects in
path models.
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