
High Throughput VLSI Architectures for CRC/BCH
Encoders and FFT computations

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Manohar Ayinala

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master Of Science

Keshab K. Parhi

December, 2010

c© Manohar Ayinala 2010

ALL RIGHTS RESERVED

Acknowledgements

I would like to acknowledge the support of my adviser, Prof. Keshab K. Parhi in guiding

and providing the necessary direction throughout this work.

I would like to acknowledge Michael Brown for providing the help and contribution

to this work. And also all those people who directly and indirectly have helped me in

pursuing this work.

The work on FFT architectures is carried out at Leanics Corporation, Minneapolis.

i

Dedication

I would like to dedicate this work to my family whose support has helped me to achieve

my goals and are responsible for what I am today.

ii

Abstract

Linear feedback shift register (LFSR) is an important component of the cyclic redun-

dancy check (CRC) operations and BCH encoders. This thesis presents a mathematical

proof of existence of a linear transformation to transform LFSR circuits into equivalent

state space formulations. This transformation achieves a full speed-up compared to the

serial architecture at the cost of an increase in hardware overhead. This method applies

to all irreducible polynomials used in CRC operations and BCH encoders. A new formu-

lation is proposed to modify the LFSR into the form of an IIR filter. We propose a novel

high speed parallel LFSR architecture based on parallel Infinite Impulse Response (IIR)

filter design, pipelining and retiming algorithms. The advantage of proposed approach

over the previous architectures is that it has both feedforward and feedback paths. We

further propose to apply combined parallel and pipelining techniques to eliminate the

fanout effect in long generator polynomials. The proposed scheme can be applied to any

generator polynomial, i.e., any LFSR in general. A comparison between the proposed

and previous architectures shows that the proposed parallel architecture achieves the

same critical path as that of previous designs with a reduced hardware cost.

Further, this thesis presents a novel approach to develop the pipelined architectures

for the fast Fourier transform (FFT). A formal procedure for designing FFT architec-

tures using folding transformation and register minimization techniques is proposed.

Novel parallel-pipelined architectures for the computation of fast Fourier transform are

derived. The proposed architecture takes advantage of under utilized hardware in the

serial architecture to derive L-parallel architectures without increasing the hardware

complexity by a factor of L. The operating frequency of the proposed architecture can

be decreased which in turn reduces the power consumption. A comparison is drawn be-

tween the proposed designs and the previous architectures. The power consumption can

be reduced up to 37% and 50% in 2-parallel FFT architectures. The output samples are

obtained in a scrambled order in the proposed architectures. Circuits to reorder these

scrambled sequences to desired order are presented.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 CRC/BCH Encoder Architectures 4

2.1 Linear Feedback Shift Registers (LFSR) 4

2.2 Prior Designs . 5

2.2.1 Mathematical deduction . 6

2.2.2 Unfolding . 6

2.3 State Space Representation of LFSR . 8

2.4 State Space Transformation . 11

2.4.1 Transformation . 11

2.4.2 Existence of Transformation matrix 12

2.4.3 Construction of matrix T . 14

2.5 Example for state space Transformation 15

3 Proposed LFSR Architectures 19

3.1 IIR Filter Representation of LFSR . 19

iv

3.2 Parallel LFSR Architecture based on IIR Filtering 21

3.3 Pipelining and retiming for reducing Critical Path 25

3.3.1 Combined parallel processing and pipelining 25

3.4 Comparison and Analysis . 27

4 Fast Fourier Transform 30

4.1 FFT Algorithms . 30

4.1.1 Radix-2 DIF FFT . 31

4.1.2 Radix-22 DIF FFT . 31

4.1.3 Radix-23 DIF FFT . 32

4.2 Related Work . 34

4.3 FFT Architectures via Folding . 36

4.3.1 Feed-forward Architecture . 38

4.3.2 Feedback Architecture . 41

5 Novel Parallel FFT Architectures 45

5.1 Radix-2 FFT Architectures . 45

5.1.1 2-parallel Radix-2 FFT Architecture 45

5.1.2 4-parallel Radix-2 FFT Architecture 48

5.2 Radix-22 and Radix-23 FFT Architectures 49

5.2.1 2-parallel radix-22 FFT Architecture 50

5.2.2 2-parallel radix-23 FFT Architecture 51

5.3 Reordering of the Output Samples . 52

5.4 Comparison and Analysis . 55

5.4.1 Power Consumption . 56

6 Conclusion and Discussion 58

References 59

v

List of Tables

3.1 Data flow of Fig. 3.3 when the input message is 101011010 21

3.2 Data flow of Fig. when the input message is 101011010 24

3.3 Commonly used generator polynomials 27

3.4 Comparison between previous LFSR architectures and the proposed one 28

3.5 Comparison for parallel long BCH(8191,7684) encoders 29

5.1 Comparison of pipelined hardware architectures for of N-point FFT . . 56

vi

List of Figures

2.1 Basic LFSR architecture . 5

2.2 Three step implementation of modified BCH encoding 7

2.3 Serial LFSR Architecture . 10

2.4 M-parallel LFSR Architecture . 10

2.5 Modified LFSR Architecture using state space transformation 12

2.6 Modified feedback loop of Fig. 2.5 . 12

3.1 General LFSR architecture. 20

3.2 LFSR architecture for g(x) = 1 + x + x8 + x9. 20

3.3 LFSR architecture for G(x) = 1 + x + x8 + x9 after the proposed formulation. 22

3.4 Loop update equations for block size L = 3. 22

3.5 Three parallel LFSR architecture after pipelining for Fig. 3.2. 23

3.6 Retiming and Pipelining cutsets for Fig. 3.2 24

3.7 Loop update for combined parallel pipelined LFSR 26

3.8 Loop update for combined parallel pipelined LFSR 27

4.1 Flow graph of a radix-2 8-point DIF FFT. 31

4.2 Radix-2 Flow graph of a 16-point radix-22 DIF FFT. 33

4.3 Flow graph of a 64-point radix-23 DIF Complex FFT 35

4.4 Flow graph of a radix-2 8-point DIF FFT. 37

4.5 Data Flow graph (DFG) of a radix-2 8-point DIF FFT. 37

4.6 Pipelined Data Flow graph (DFG) of a 8-point DIF FFT 39

4.7 Linear lifetime chart for the variables y0, y1, ...y7. 40

4.8 Register allocation table for the data represented in Fig. 4.7. 40

4.9 Delay circuit for the register allocation table in Fig. 4.8. 41

4.10 Folded circuit between Node A and Node B. 41

vii

4.11 Register allocation table for the data represented in Fig. 4.7. 42

4.12 Folded architecture for the DFG in Fig. 4.6 42

4.13 Linear lifetime chart for variables for a 8-point FFT architecture. 43

4.14 Register allocation table for the data represented in Fig. 4.13. 44

4.15 Folded architecture for the DFG in Fig. 4.6 44

5.1 Data Flow graph (DFG) of a Radix-2 16-point DIF FFT with retiming for folding. 46

5.2 Proposed 2-parallel architecture of a radix-2 16-point DIF FFT 47

5.3 Data Flow graph (DFG) of a Radix-2 16-point DIT FFT with retiming for folding. 47

5.4 Proposed 2-parallel architecture of a radix-2 16-point DIT FFT 48

5.5 DFG of a radix-2 16-point DIF FFT with retiming for folding for 4-parallel architecture 49

5.6 Proposed 4-parallel architecture of 16-point radix-2 DIF FFT. 49

5.7 Butterfly structure for the proposed FFT architecture in the complex datapath 50

5.8 Proposed 2-parallel architecture of a radix-22 16-point DIF FFT 51

5.9 Proposed 4-parallel architecture of a radix-22 16-point DIF FFT 51

5.10 Proposed 2-parallel architecture of 64-point radix-23 DIF FFT 51

5.11 Proposed 2-parallel architecture of 64-point radix-23 DIF FFT 52

5.12 Solution to the reordering of the output samples 53

5.13 Basic circuit for the shuffling the data. 54

5.14 Linear lifetime chart for the 1st stage shuffling of the data. 54

5.15 Register allocation table for the 1st stage shuffling of the data. 55

5.16 Structure for reordering the output data of 16-point DIF FFT. 55

viii

Chapter 1

Introduction

Communication standards continue to be defined that push the bar higher for through-

put. For example, 10 Gbps IEEE 802.3ak was standardized in 2003, and recently 100

Gbps IEEE 802.3ba is standardized in 2010. In order to support these high throughput

requirements at a reasonable frequency, parallel architectures are required. At the same

time, the power consumption and hardware overhead should be kept to a minimum.

The research in this thesis is directed towards designing high throughput architectures

for two key components of the modern communication standards, CRC/BCH encoders

and Fast Fourier Transform (FFT).

Cyclic Redundancy Check (CRC) is widely used in data communications and storage

devices as an efficient way to detect transmission errors. Examples of digital communi-

cation standards that employ CRC include Asynchronous Transfer Mode (ATM), Eth-

ernet (IEEE 802.3), WiFi (IEEE 802.11) and WiMAX (802.16). The Bose-Chaudhuri-

Hochquenghem (BCH) codes are one of the most powerful algebraic codes and are exten-

sively used in modern communication systems. Compared to Reed-Solomon codes, BCH

codes can achieve around additional 0.6dB coding gain over the additive white Gaus-

sian noise (AWGN) channel with similar rate and codeword length. Many applications

of BCH codes such as long-haul optical communication systems used in International

Telecommunication Union-Telecommunication Standardization sector (ITU-T) G.975,

magnetic recording systems, solid-state storage devices and digital communications re-

quire high throughput as well as large error correcting capability. Hence, BCH codes

are of great interest for their efficient and high speed hardware encoding and decoding

1

2

implementation.

The BCH encoders and CRC operations are conventionally implemented by a linear

feedback shift register (LFSR) architecture. While such an architecture is simple and

can run at high frequency, it suffers from serial-in and serial-out limitation. In optical

communication systems, where throughput over 1 Gbps is usually desired, the clock

frequency of such LFSR based encoders cannot keep up with data transmission rate

and thus parallel processing must be employed. Doubling the data width, i.e two par-

allel architecture doesn’t double the throughput, the worst case timing path becomes

slower. Since the parallel architectures contain feedback loops, pipelining cannot be

applied to reduce the critical path. Another issue with the parallel architectures is

hardware complexity. A novel parallel CRC architecture based on state space repre-

sentation is proposed in the literature. The main advantage of this architecture is that

the complexity is shifted out of the feedback loop. The full speedup can be achieved

by pipelining the feedforward paths. A state space transformation has been proposed

to reduce complexity but the existence of such a transformation was not proved and

whether such a transformation is unique has been unknown so far. In this thesis, we

present a mathematical proof to show that such a transformation exists for all CRC

and BCH generator polynomials. We also show that this transformation is non-unique.

In fact, we show the existence of infinite such transformations and how these can be

derived. We then propose novel schemes based on pipelining, retiming and look ahead

computations to reduce the critical path in the parallel architectures based on parallel

and pipelined IIR filter design.

The orthogonal frequency division multiplexing (OFDM) technology has become

more and more significant in modern communication systems. The key concept of

OFDM technique makes use of multi-carrier modulation. For example, WiMAX, DVB-

T2, Wireless LAN, ADSL, and VDSL all utilize OFDM technology for baseband mod-

ulations. The OFDM systems need FFT and IFFT processors to perform real-time

operations for orthogonal multi-carrier modulations and demodulations. Thus, the de-

sign of efficient FFT processor is necessarily required. Much research has been carried

out in designing parallel architectures. A formal method of developing these architec-

tures has not been proposed until recently which is based on hypercube methodology.

Further, most of these architectures are not fully utilized which leads to high hardware

3

complexity. In this research, we present a new approach to designing FFT architectures

from the FFT flow graphs. Folding transformation and register minimization techniques

are used to derive several known FFT architectures. Novel architectures are developed

using the proposed methodology which have not been presented in the literature.

The thesis is organized in the following way.

• Chapter 2 briefly describes how Linear feedback shift register (LFSR) is used for

CRC and BCH encoding and the prior designs. The proof for the existence of

state space transformation for LFSR is also presented.

• In Chapter 3 proposed LFSR architectures based on IIR filters are presented. The

proposed architectures are compared with the previous designs.

• Chapter 4 briefly describes the FFT algorithms and their prior architectures. Fur-

ther, the proposed approach for designing these architectures is presented.

• Chapter 5 presents the novel parallel FFT architectures derived via folding for

radix-2, radix-22 and radix-23 algorithms. Comparisons with previous architec-

tures and the power consumption analysis is also presented.

• Chapter 6, Conclusions

Chapter 2

CRC/BCH Encoder

Architectures

In this chapter, we describe how CRC operations and BCH encoders are implemented

using Linear Feedback Shift registers (LFSR). Some of the prior designs including folding

and state space based designs have been described. Further, the proof of existence of

state space transformation for the irreducible polynomials is presented.

2.1 Linear Feedback Shift Registers (LFSR)

CRC computations and BCH encoders are implemented by using Linear Feedback Shift

Registers (LFSR)[1], [2], [3]. A sequential LFSR circuit cannot meet the speed require-

ment when high speed data transmission is required. Because of this limitation, parallel

architectures must be employed in high speed applications such as optical communica-

tion systems where throughput of several gigabits/sec is required. LFSRs are also used

in conventional Design for Test (DFT) and Built in Self Test (BIST) [4]. LFSRs are

used to carry out response compression in BIST, while for the DFT, it is a source of

pseudorandom binary test sequences.

A basic LFSR architecture for Kth order generating polynomial in GF (2) is shown

in Fig. 2.1. K denotes the length of the LFSR, i.e., the number of delay elements

and g0, g1, g2, ..., gK represent the coefficients of the characteristic polynomial. The

4

5

D D DD XXXX g0 g1 g2 gK-1x0(n) x1(n) x2(n) xK-1(n)
Figure 2.1: Basic LFSR architecture

characteristic polynomial of this LFSR is

g(x) = g0 + g1x + g2x
2 + ... + gKxK

where g0, g1, g2, ..., gK ∈ GF (2). Usually, gK = g0 = 1. In GF(2), multiplier elements

are either open circuits or short circuits i.e., gi = 1 implies that a connection exists. On

the other hand gi = 0 implies that no connection exists and the corresponding XOR

gate can be replaced by a direct connection from input to output.

Let u(x), for x = 0, 1, ...N − 1, u(x) ∈ GF (2), 0 ≤ n ≤ N − 1 be input sequence

of length N . Both CRC computation and BCH encoding involve the division of the

polynomial u(x)xK by g(x) to obtain the remainder, Rem(u(x)xK)g(x). During the

first N clock cycles, the N -bit message is input to the LFSR with most significant bit

(MSB) first. At the same time, the message bits are also sent to the output to form the

BCH encoded codeword. After N clock cycles, the feedback is reset to zero and the K

registers contain the coefficients of Rem(u(x)xK)g(x). In BCH encoding, the remaining

bits are then shifted out bit by bit to form the remaining systematic codeword bits.

The throughput of the system is limited by the propagation delay around the feed-

back loop, which consists of two XOR gates. We can increase the throughput by modi-

fying the system to process some number of bits in parallel.

2.2 Prior Designs

In order to meet the increasing demand on processing capabilities, much research has

been carried out on parallel architectures of LFSR for CRC and BCH encoders. In

[5], first serial to parallel transformation of linear feedback shift register was described

and was first applied to CRC computation in [6]. Several other approaches have been

6

recently presented to parallelize LFSR computations [7], [8], [9], [10]. We review some

of these approaches below.

2.2.1 Mathematical deduction

In [7] and [8], parallel CRC implementations have been proposed based on mathematical

deduction. In these papers, recursive formulations were used to derive parallel CRC

architectures. High speed architectures for BCH encoders have been proposed in [8]

and [11]. These are based on multiplication and division computations on generator

polynomials and can be used for any LFSR of any generator polynomial. They are

efficient in terms of speeding up the LFSR but their hardware cost is high. A method

to reduce the worst case delay is discussed in [12]. In this paper, CRC is calculated

using shorter polynomials that has fewer feedback terms. At the end, a final division is

performed on the larger polynomial to get the final result. The implementation is used

to process 8 bits in parallel, but large number of parallel bits need larger polynomials

which could be problematic to find. The parallel processing leads to a long critical path

even though it increases the number of message bits processed. Parallel architecture

based on state space representation [13] is described in section III.

2.2.2 Unfolding

Unfolding [14] technique has been used in [8] [9] [10] to implement parallel LFSR archi-

tectures. But, when we unfold the LFSR architectures directly, it may lead to a parallel

circuit with long critical path. The LFSR architectures can also face fanout issues due

to the large number of non-zero coefficients especially in longer generator polynomials.

In [8], a new method has been proposed to eliminate the fan-out bottleneck by mod-

ifying the generator polynomial. The fanout bottleneck can always be eliminated by

retiming. But the unfolded circuit might have the same issue if the number of delays

before rightmost XOR gate is less than the unfolding factor J [15].

If the generator polynomial is expressed as

g(x) = xt0 + xt1 + ... + xtm−2 + 1

where t0, t1, ..., tm−2 are positive integers with t0 > t1 > ... > tm−2 and m is the total

number of nonzero terms of g(x). There are t0 − t1 consecutive delays at the input of

7

rightmost XOR gate. If a J-unfolded LFSR is desired, t0−t1 >= J should be satisfied so

that there will be at least one delay at the input of each of the J copies of the rightmost

XOR gate, retiming can be applied to move the delay to the output. An algorithm

[8] was proposed to modify the generator polynomial to enable the retiming of the

rightmost XOR gate in the J-unfolded architecture. The algorithm finds a polynomial

p(x) such that the new polynomial g(x)p(x) will contain the required number of delays

at the rightmost XOR gate. The data flow model for the modified LFSR architecture

is shown in Fig. 2.2. Multiply by p(x) Dividing m(x)p(x)xn-k by g’(x) Dividing by p(x)Message Input m(x) remainder quotient Rem(m(x)xn-k)g(x)
Figure 2.2: Three step implementation of modified BCH encoding

Fig. 2.2 shows a three step implementation. In the first step the message is multi-

plied by p(x). In the second step, Rem(m(x)p(x)xK)g′(x) is calculated using a LFSR

similar to that in Fig. 2.1. In the third step, Rem(m(x)p(x)xK)g′(x) needs to be divided

by p(x) to get the final result. At this stage, the output is the quotient instead of the

remainder from the second stage LFSR.

The fanout problem is now transferred to the third stage. Also, if we directly unfold

the LFSR, the iteration bound, i.e., the minimum achievable critical path increases.

In addition, the hardware cost also increases due to the additional stages. The later

problem is addressed in [9]. Look-ahead pipelining technique is used to reduce the

iteration bound in the LFSR, so that the iteration bound of the unfolded architecture

is reduced. But the design is applicable only to the generator polynomials that have

many zero coefficients between second and the third highest order coefficients. In [10]

a two step approach is proposed to reduce the effect of fanout on the third stage which

is described below.

• Iteratively multiply g(x) by short length polynomials such as 1 + xk to insert the

required number of delay elements in the rightmost feedback loop to eliminate the

fanout bottleneck of the LFSR architecture to get g′(x).

• Multiply g′(x) iteratively by 1+xk to get g′′(x), which will lead to the smallest it-

eration bound for the current g′′(x). The iteration exits when the desired iteration

8

bound or the best iteration bound for certain hardware requirement is reached.

The disadvantage of this method is that the hardware requirement grows consider-

ably as the unfolding factor increases. In general, the complexity of the feedback loop

increases in the parallel architecture which leads to an increase in critical path.

In general, parallel architectures for LFSR proposed in the literature lead to an

increase in the critical path. The longer the critical path, the speed of operation of

the circuit decreases; thus the throughput rate achieved by parallel processing will be

reduced. Since these parallel architectures consist of feedback loops, pipelining tech-

nique cannot be applied to reduce the critical path. Another issue with the parallel

architectures is the hardware cost. A novel parallel CRC architecture based on state

space representation is proposed in [13]. The main advantage of this architecture is that

the complexity is shifted out of the feedback loop. The full speedup can be achieved by

pipelining the feedforward paths. A state space transformation has been proposed in

[13] to reduce complexity but the existence of such a transformation was not proved in

[13] and whether such a transformation is unique has been unknown so far.

In this thesis, we present a mathematical proof to show that such a transformation

exists for all CRC and BCH generator polynomials. We also show that this transforma-

tion is non-unique. In fact, we show the existence of infinite such transformations and

how these can be derived. We then propose novel schemes based on pipelining, retiming

and look ahead computations to reduce the critical path in the parallel architectures

based on parallel and pipelined IIR filter design [15]. The proposed IIR filter based

parallel architectures have both feedback and feedforward paths, and pipelining can be

applied to further reduce the critical path. We show that the proposed architecture can

achieve a critical path similar to previous designs with less hardware overhead. Without

loss of generality, only binary codes are considered.

2.3 State Space Representation of LFSR

A parallel LFSR architecture based on state space computation has been proposed in

[13]. The LFSR shown in Fig. 2.1 can be described by the equation

x(n + 1) = Ax(n) + bu(n); n >= 0 (2.1)

9

with the initial state x(0) = xo. The K-dimensional state vector x(n) is given by

x(n) = [x0(n) x1(n)...xK−1(n)]T

and A is the K ×K matrix given by

A =




0 0 0 ... 0 g0

1 0 0 ... 0 g1

0 1 0 ... 0 g2

...

0 0 0 ... 1 gK−1




(2.2)

The K × 1 matrix b is

b = [g0 g1...gK−1]T .

The output of the system is the remainder of the polynomial division that it computes,

which is the state vector itself. We call the output vector y(n) and add the output

equation y(n) = Cx(n) to the state equation in (2.1), with C equal to the K × K

identity matrix. The coefficients of the generator polynomial g(x) appear in the right-

hand column of the matrix A. Note that, this is the companion matrix of polynomial

g(x) and g(x) is the characteristic polynomial of this matrix. The initial state xo

depends on the specific definition of the CRC for a given application.

The L-parallel system can be derived so that L elements of the input sequence u(n)

are processed in parallel. Let the elements of u(n) be grouped together, so that the

input to the parallel system is a vector uL(mL) where

uL(mL) = [u(mL + L− 1) u(mL + L− 2) ...

u(mL + 1) u(mL)]; (2.3)

m = 0, 1, ..., (N/L)− 1

where N is the length of the input sequence. Assume that N is an integral multiple of

L. The state space equation can be written as

x(mL + L) = ALx(mL) + BLuL(mL) (2.4)

where the index mL is incremented by L for each block of L input bits.

10

D

A

b
1 K KKu(n) x(n)x(n+1)

Figure 2.3: Serial LFSR Architecture

D

AL
BLL K KKuL(mL) x(mL)x(mL+L)

Figure 2.4: M-parallel LFSR Architecture

The matrix BL is a K × L matrix given by

BL = [b Ab A2b...AL−1b]

The output vector remains the same which is equal to the state vector at m = N/L,

where N is the message length. Fig. 2.4 shows an L-parallel system which processes

L-bits at a time. The issue in this system is that the delay in the feedback loop increases

due to the complexity of AL.

We can compare the throughput of the original system and the modified L-parallel

system described by (2.4) using the block diagrams shown in Fig. 2.3 and Fig. 2.4. The

throughput of both systems is limited by the delay in feedback loop. The main difference

in the two systems is computing the product of Ax and ALx. We can observe that

from (2.2), no row of A has more than two non-zero elements. Thus the time required

for the computation of the product Ax in GF (2) is the delay of a two input XOR gate.

Similarly, the time required for the product ALx will depend on the number of non-zero

elements in the matrix AL.

Consider the standard 16-bit CRC with the generator polynomial

g(x) = x16 + x15 + x14 + x2 + x + 1

with L = 16. The maximum number of non-zero elements in any row of A16 is 5,

i.e., the time required to compute the product is the time to compute exclusive or of 5

11

terms. The detailed analysis for this example is presented in the Appendix. In a similar

manner, the maximum number of non-zero entries in A32 for the standard 32-bit CRC

is 17. This computation is the bottleneck for achieving required speed-up factor.

We can observe from Fig. 2.4 that a speed-up factor of L is possible if the block AL

can be replaced by a block whose circuit complexity is no greater than that of block

A. This is possible given the restrictions on the generator polynomial g(x) that are

always met for the CRC and BCH codes in general. The computation in the feedback

loop can be simplified by applying a linear transformation to (2.4). The linear trans-

formation moves the complexity from the feedback loop to the blocks that are outside

the loop. These blocks can be pipelined and their complexity will not affect the system

throughput.

2.4 State Space Transformation

2.4.1 Transformation

A linear transformation has been proposed [13] to reduce the complexity in the feedback

loop. The state space equation of L-parallel system with an explicit output equation is

described as

x(mL + L) = ALx(mL) + BLuL(mL);y(mL) = CLx(mL) (2.5)

where CL = I, the K × K identity matrix. The output vector y(mL) is equal to the

state vector which has the remainder at m = N/L. Consider the linear transformation

of the state vector x(mL) through a constant non-singular matrix T, i.e.,

x(mL) = Txt(mL)

Given T and its inverse, we can express the state space equation (2.5) in terms of the

state vector xt(mL), as follows:

xt(mL + L) = ALtxt(mL) + BLtuL(mL);y(mL) = CLtxt(mL)

where

ALt = T−1ALT;BLt = T−1BL;CLt = T (2.6)

12

D

ALt
CLtBLtL K KKuL(mL) xt(mL)xt+1(mL+L)

Figure 2.5: Modified LFSR Architecture using state space transformation

D D DD XXXX g0 g1 g2 gK-1xt0(mL) xt1(mL) xt2(mL) xtK-1(mL)
Figure 2.6: Modified feedback loop of Fig. 2.5

and T is the transformation matrix. The parallel LFSR architecture after the transfor-

mation is shown in Fig. 2.5 and the modified feedback loop in Fig. 2.6. We can observe

from the figure that if ALt is a companion matrix, then the complexity of the feedback

loop will be same as that of the original LFSR. If there exists a T such that ALt is a

companion matrix, then the complexity in the feedback loop comes down. It is evident

that (2.6) represents a similarity transformation and we can state that there exists a T

such that ALt is a companion matrix if and only if AL is similar to companion matrix.

The following theorem proves that AL is similar to a companion matrix provided the

generator polynomial is irreducible. The latter condition is met for all CRC and BCH

codes.

2.4.2 Existence of Transformation matrix

Theorem: Given an irreducible generator polynomial g(x) with its companion matrix

A, AL is similar to a companion matrix.

Proof: A companion matrix is similar to a diagonal matrix if its characteristic

polynomial has distinct roots. From the theory of finite fields [17], if f is an irreducible

polynomial in GF (q) of degree k, then f has root α in its splitting field GF (qk). The

proof of this statement is presented in the next theorem. Furthermore, all the roots of

f are simple and are given by the distinct elements α, αq, αq2
, ..., αqk−1

of GF (qk).

13

Since, the generator polynomial is irreducible, g(x) has distinct roots in its splitting

field. Therefore, we can diagonalize A as follows:

A = V −1DV (2.7)

where D is diagonal matrix with distinct roots of g(x) as its elements. Now

AL = (V −1DV)L (2.8)

= (V −1DV)(V −1DV)...(V −1DV)

= V −1DLV

⇒ V ALV −1 = DL

Let λ1, λ2, ..., λk be the distinct roots of the polynomial g(x). Then,

DL =




λL
1 0 ... 0

0 λL
2 ... 0

...

0 0 ... λL
k




(2.9)

Since λ1, λ2, ..., λk are distinct roots in the splitting field GF (qk), λL
1 , λL

2 , ..., λL
k will be

distinct in the same field. Therefore, there exists a companion matrix C such that

C = BDLB−1 (2.10)

or DL = B−1CB

∴ V ALV −1 = B−1CB (2.11)

(BV)AL(V −1B−1) = C

This shows that AL is similar to a companion matrix.¥
The following theorem is presented below from [17].

Theorem: If f is an irreducible polynomial in GF (q) of degree k, then f has a root

α in GF (qk). Furthermore, all the roots of f are simple and are given by the k distinct

elements α, αq, αq2
, ..., αqk−1

of GF (qk).

Proof: Let α be a root of f in the splitting field of f over GF (q). Next we show that

if β ∈ GF (qk) is a root of f , then βq is also a root of f . Write f(x) = akx
k+...+a1x+a0

14

with ai ∈ GF (q) for 0 ≤ i ≤ k.Then,

f(βq) = akβ
qk + ... + a1β

q + a0 (2.12)

= aq
kβ

qk + ... + aq
1β

q + aq
0

= (akβ
qk + ... + a1β

q + a0)q

= [f(β)]q = 0

Therefore, the elements α, αq, αq2
, ..., αqk−1

are roots of f . It remains to prove that these

elements are distinct. Suppose, on the contrary, that αqi
= αqj

for some integers i and

j with 0 ≤ i ≤ j ≤ k − 1. By raising this identity to the power qk−j , we get

αqk−j+i=αqk

= α.

It follows that f(x) divides xqk−j+i − x. This is only possible if k divides k− j + i. But

we have 0 < k − j + i < k, which contradicts the assumption.¥

2.4.3 Construction of matrix T

Given that AL is similar to a companion matrix, it remains to construct ALt as the

appropriate companion matrix and then to find a matrix T that represents the similarity

transformation in (2.6). The matrix T is chosen such that ALt has the same form as

A. In general, the matrix T is not unique.

Theorem: Transformation matrix T is not unique.

Proof: Using theorem in Section IV(B), a transformation matrix T exists for a given

companion matrix A. Let us assume T is unique. From (2.6), we have

ALt = T−1ALT

Let T1 = AiT, where i is any integer.

T−1
1 ALT1 = T−1A−iALAiT

= T−1ALT = ALt

This shows that T1 is also a transformation matrix which leads to same similarity

transformation which by contradiction prove that T is not unique.¥

15

As a counter example, we obtain two different T matrices for a given generator

polynomial. An example for the standard 16-bit CRC polynomial is presented in the

next section.

The approach presented here is based on cyclic vector of the transformation repre-

sented by the matrix AL. Select an arbitrary vector b1, subject only to the condition

that the vectors AkLb1, for k = 0, 1, .., K − 1, are linearly independent. Now, let T be

the matrix whose columns are these vectors, i.e.,

T = [b1 ALb1 A2Lb1...A(K−1)Lb1] (2.13)

Since all the columns are linearly independent, T is non-singular. We can show that

matrix T implements the desired similarity relationship described in (2.6).

T−1ALT = T−1[ALb1 A2Lb1...AKLb1]

We can observe that the first K − 1 columns in the matrix on the right hand side

are same as the last K − 1 columns in the T matrix. Therefore, ALt is similar to a

companion matrix since first K − 1 columns will form the identity matrix and the last

column depends on the chosen vector b1. Then by theorem from page. 230 in [18], we

can show that for such a matrix AL, a cyclic vector exists.

Then the complexity of feedback loop will be identical to that of the original system.

The feedback loop after the transformation looks as shown in Fig. 2.6. The complexity

has been moved out of the feedback loop. Also the matrix multiplication has to be

pipelined to reduce the critical path which leads to an increase in the hardware cost.

We propose a new architecture based on parallel IIR filter design to achieve high speed

with less hardware cost.

2.5 Example for state space Transformation

Consider the standard 16-bit CRC with the generator polynomial

g16(x) = x16 + x15 + x14 + x2 + x + 1

16

with L = 16, i.e., processing 16-bits of input sequence at a time. Using (2.2), we can
compute matrices A and AL are as follows:

A =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




A
L

=




1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1




We can observe that the maximum number of non-zero elements in any row of AL is

5, i.e., the time required to compute the product is the time to compute 5 exclusive

or operations. By using the proposed transformation, we can transform the matrix AL

into a companion matrix ALt. We can compute T, T−1 and ALt from (2.13) and (2.6),

which are shown below. In this case we use b1 = [1 0...0].

17

T =




1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0

0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0

0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0




T
−1

=




1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1

0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0

0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1

0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1

0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1




ALt =




0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1




We provide another matrix T1 = AT below to show that this transformation is

not unique. We get a different T, by just changing the cyclic vector in the T matrix

computation. We can observe that the two T matrices are different and lead to the same

18

similarity transformation. This shows that multiple solutions exist for transformation

matrix T .

T1 =




0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0

1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1

0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1

0 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1

0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0

0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0

0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0

0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0

0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0




T
−1
1 =




1 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1

1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0

0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0

1 0 0 0 1 0 1 1 0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1

0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1




It may indeed be noted that any Ti = AiT is a valid similarity transformation.

Chapter 3

Proposed LFSR Architectures

In this chapter, a new formulation of designing the LFSR architectures based on IIR filter

is described. Parallel architectures are developed using pipelining, retiming and look-

ahead techniques [21]. Further, combined parallel processing and pipelining techniques

are presented to reduce the critical path and eliminate the fanout effect for long BCH

codes [22].

3.1 IIR Filter Representation of LFSR

In this section, we propose a new formulation for LFSR architecture. Let’s assume that

the input to the LFSR is u(n), and the required output, i.e., the remainder, is y(n) as

shown in Fig. 3.1. Then the LFSR can be described using the following equations;

w(n) = y(n) + u(n) (3.1)

y(n) = gK−1 ∗ w(n− 1) + gK−2 ∗ w(n− 2) + ...

+g0 ∗ w(n−K) (3.2)

Substituting (1) into (2), we get

y(n) = gK−1 ∗ y(n− 1) + gK−2 ∗ y(n− 2) + ...

+g0 ∗ y(n−K) + f(n) (3.3)

where,

f(n) = gK−1 ∗ u(n− 1) + gK−2 ∗ u(n− 2) + ... + g0 ∗ u(n−K).

19

20

In the equations above, ′+′ denotes XOR operation. We can observe that equation

resembles an IIR filter with g0, g1, ..., gK−1 as coefficients.

D D DD XXXX g0 g1 g2 gK-1 y(n) w(n)u(n)
Figure 3.1: General LFSR architecture.

7D DD y(n) w(n) u(n)
Figure 3.2: LFSR architecture for g(x) = 1 + x + x8 + x9.

Consider a generator polynomial g(y) = 1 + x + x8 + x9, the CRC architecture is

shown in Fig. 3.2. By using the above formulation,

y(n) = y(n− 9) + y(n− 8) + y(n− 1) + f(n) (3.4)

where,

f(n) = u(n− 9) + u(n− 8) + u(n− 1).

The following example illustrates the correctness of the proposed method. The CRC

architecture for the above equation is shown in Fig. 3.3. Let the message sequence be

101011010; Table 1 shows the data flow at the marked points of this architecture at

different time slots.

In Table 1, we can see that this architecture requires 18 clock cycles to compute

the output. Since this is a serial computation, we need to input 0’s for the next 9

clock cycles after the message has been processed. In addition, the feedback has to be

removed after the message bits are processed for the correct functioning of the circuit.

Since this operation is in GF (2), guaranteeing the feedback to be 0 after 9 clock cycles

will have the same effect.

21

Table 3.1: Data flow of Fig. 3.3 when the input message is 101011010
clock u(n) f(n) y(n)

1 1 1 1
2 0 0 1
3 1 1 0
4 0 0 0
5 1 1 1
6 1 1 0
7 0 0 0
8 1 0 0
9 0 1 0
10 0 1 1
11 0 1 0
12 0 1 1
13 0 0 1
14 0 1 0
15 0 1 1
16 0 1 1
17 0 0 0

3.2 Parallel LFSR Architecture based on IIR Filtering

We can derive parallel architectures for IIR filters using look ahead techniques as de-

scribed in [23]. We use the same look-ahead technique to derive parallel system for a

given LFSR. Parallel architecture for a simple LFSR described in the previous section

is discussed first.

Consider the design of a 3-parallel architecture for the LFSR in Fig. 3.2. In the

parallel system, each delay element is referred to as a block delay where the clock period

of the block system is 3 times the sample period. Therefore, instead of (3), the loop

update equation should update y(n) using inputs and y(n−3). The loop update process

for the 3-parallel system is shown in Fig. 3.4, where y(3k + 3), y(3k + 4) and y(3k + 5)

are computed using y(3k), y(3k + 1) and y(3k + 2). By iterating the recursion or by

22y(n)
7D
D

D

u(n)
7D
D

D

f(n) 0

Figure 3.3: LFSR architecture for G(x) = 1+x+x8+x9 after the proposed formulation.Dy(3k+3) y(3k)Dy(3k+4) y(3k+1)Dy(3k+5) y(3k+2)

Figure 3.4: Loop update equations for block size L = 3.

applying look-ahead technique, we get

y(n) = y(n− 1) + y(n− 8) + y(n− 9) + f(n) (3.5)

= y(n− 2) + y(n− 8) + y(n− 10) + f(n− 1)

+f(n) (3.6)

= y(n− 3) + y(n− 8) + y(n− 11) + f(n− 2)

+f(n− 1) + f(n). (3.7)

Substituting n = 3k +3, 3k +4, 3k +5 in the above equations, we have the following

3 loop update equations:

23

Pipelining
cutset

2D

D D

2D

D

D

D

D

DD

2D

2D
y(3k+2)

y(3k+1)

y(3k)

u(3k+2)u(3k+1)
u(3k)

0
0
0

Figure 3.5: Three parallel LFSR architecture after pipelining for Fig. 3.2.

y(3k + 3) = y(3k + 2) + y(3k − 5) + y(3k − 6)

+f(3k + 3) (3.8)

y(3k + 4) = y(3k + 2) + y(3k − 4) + y(3k − 6)

+f(3k + 3) + f(3k + 4) (3.9)

y(3k + 5) = y(3k + 2) + y(3k − 3) + y(3k − 6)

+f(3k + 3) + f(3k + 4) + f(3k + 5) (3.10)

where

f(3k + 3) = u(3k + 2) + u(3k − 5) + u(3k − 6)

f(3k + 4) = u(3k + 3) + u(3k − 4) + u(3k − 5)

f(3k + 5) = u(3k + 4) + u(3k − 3) + u(3k − 4).

The 3-parallel system is shown in Fig. 3.5. The input message 101011010 in the

previous example leads to the data flow as shown in Table 3.2. We can see that 6

clock cycles are needed to encode a 9-bit message. The proposed architecture requires

24

2D

D D

2D

D

D

D

D

DD

2D

2D
y(3k+2)

y(3k+1)

y(3k)

u(3k+1)
u(3k)

0
0
0

Pipelining
cutset

Fanout
effect

No extra delays in the
feedback loop

u(3k+2)

Figure 3.6: Retiming and Pipelining cutsets in three parallel LFSR architecture to
reduce C.P to 2Txor for Fig. 3.2.

(N + K)/L cycles where N is the length of the message, K is the length of the code

and L is the parallellism level. Similar to the serial architecture, the feedback path has

to be broken after the message bits have been processed. The critical path (CP) of the

design is 6Txor, where Txor is the XOR gate delay. We can further reduce this delay by

pipelining which is explained in the next section.

Table 3.2: Data flow of Fig. when the input message is 101011010
Clock# u(3k) u(3k + 1) u(3k + 2) y(3k) y(3k + 1) y(3k + 2)

1 1 0 1 0 1 1
2 0 1 1 0 0 1
3 0 1 0 0 0 0
4 0 0 0 0 1 0
5 0 0 0 1 1 0
6 0 0 0 1 1 0

25

3.3 Pipelining and retiming for reducing Critical Path

The critical path of the parallel system can be reduced by further pipelining and retiming

the architecture. In this section, we show how to pipeline and retime for reducing the

critical path to obtain fast parallel architecture by using the example in Fig. 3.2.

Pipelining is possible only when there exist feed-forward cutsets [15]. When we unfold

an LFSR directly, pipelining is not possible since there are no feed-forward cutsets. In

the proposed method, the calculation of f(n) terms is feed-forward. So, we can pipeline

at this stage to reduce the critical path.

By designing the 3-parallel system, we obtain the design in Fig. 3.5. It is obvious

that critical path of the system is 6Txor, where Txor is the XOR gate delay. We can

reduce it to 3Txor by applying pipelining cutset as shown in Fig. 3.5.

Further if the parallelism level (L) is high, the number of f(n) terms to be added

will increase leading to a large critical path. We apply tree structure and sub-expression

sharing to reduce the critical path while keeping the hardware overhead to a minimum

[15]. We observe many common terms in the filter equations if the parallelism level is

high. We can reduce the hardware by using substructure sharing [15]. In particular, we

used multiple constant multiplication (MCM) [24] method to find the common compu-

tations across the filter equations. The algorithm uses an iterative matching process to

find the common subexpressions.

Retiming can be applied to further reduce the critical path to 2Txor. By using the

pipelining cutsets as shown in Fig. 3.6 and the retiming around the circled nodes, we

can reduce the critical path to 2Txor. We can observe that there will be some hardware

overhead to achieve this critical path. But one path around the bottom circled node has

still 3 XOR gates. This is because, one of the feedback paths does not have preexisting

delays. This can be solved by using combined parallel and pipelining technique of IIR

filter design.

3.3.1 Combined parallel processing and pipelining

We can see from Fig. 3.6 that, when we have additional delays at the feedback loops,

we can retime around the commonly shared nodes (as indicated in Fig. 3.6) to remove

the large fanout effect. We can further reduce the critical path by combining parallel

26

processing and pipelining concepts for IIR filter design [15]. Instead of using one-step

look ahead, we use two-step look ahead computation to generate the filter equations.

In this example, we need to compute y(3k + 8), y(3k + 7), y(3k + 6) instead of y(3k +

5), y(3k + 4), y(3k + 3). By doing this, we get two delays in the feedback loop, we can

then retime to reduce the critical path and also remove the fanout effect on the shared

node.

Now, the loop update equations are

y(3k + 3) = y(3k + 2) + y(3k − 2) + y(3k − 6)

+f(3k + 3) + ... + f(3k + 6) (3.11)

y(3k + 4) = y(3k + 2) + y(3k − 1) + y(3k − 6)

+f(3k + 3) + ... + f(3k + 7) (3.12)

y(3k + 5) = y(3k + 2) + y(3k) + y(3k − 6)

+f(3k + 3) + ... + f(3k + 8) (3.13)

The feedback part of the architecture is shown in Fig. 3.7. We can observe from this

2D

2D

2D

2D

D

D
y(3k+2)

y(3k+1)

y(3k)

Fanout effect

f terms

f terms

f terms

Figure 3.7: Loop update for combined parallel pipelined LFSR

figure that retiming can be applied at all the circled nodes to reduce the critical path

in the feedback section. Further, fanout bottleneck can be alleviated using retiming at

that particular node. The final architecture after retiming is shown in Fig. 3.8.

The proposed architecture is compared against the prior designs in Chapter 6. A

detailed analysis shows that the proposed architecture can reduce the critical path with

less hardware complexity compared to previous designs for all the regularly used CRC

27

D

D

2D

2D

2D
y(3k+2)

y(3k)f terms

f terms

f terms

D

D

D

D

Figure 3.8: Loop update for combined parallel pipelined LFSR

and BCH polynomials. Comparison is made for BCH(8191,7684) code to show that the

proposed design works even for long generating polynomials.

3.4 Comparison and Analysis

We limit our discussion to the commonly used generator polynomials for CRC and BCH

encoders that are shown in Table 3.3. A comparison between the previous high-speed

architectures and the proposed ones is shown in Table 3.4 for different parallelism levels

of different generator polynomials. The comparison is made in terms of required number

of xor gates (# XOR), required number of delay elements (#D.E.) and critical path

(C.P.) of the architectures for different parallelism levels (L).

Table 3.3: Commonly used generator polynomials
CRC-12 y12 + y11 + y3 + y2 + y + 1
CRC-16 y16 + y15 + y2 + y + 1
SDLC y16 + y12 + y5 + y + 1

CRC-16 REVERSE y16 + y14 + y + 1
SDLC y16 + y11 + y4 + 1

CRC-32 y32 + y26 + y23 + y22 + y16 +
y12 +y11 +y10 +y8 +y7 +y5 +
y4 + y2 + y + 1

The numbers for [13] are calculated after the design is pipelined to have a critical

path of 4Txor. We can further pipeline the architecture to reduce the critical path to

28

2Txor but it will increase the required number of delay elements. Note that the latency

of this design increases by 2. The critical path for design in [10] shown in Table 3.4 is

the minimum achievable critical path, i.e., the iteration bound. Tree structure is applied

to further reduce the CP to O(log(CP)) at the cost of some additional XOR gates.

Table 3.4: Comparison between previous LFSR architectures and the proposed one
Poly (L) Algorithm # XOR # D.E. C.P.

CRC-12
(12)

[13] 121 35 5
[10] 276 47 3.15

Proposed 109 36 5

CRC-16
(16)

[13] 203 48 5
[10] 400 76 4

Proposed 113 50 5

SDLC
(16)

[13] 223 48 5
[10] 400 54 5.44

Proposed 139 50 5
CRC-16
Reverse
(16)

[13] 235 46 5
[10] 592 68 5.97

Proposed 126 50 5
SDLC
Reverse
(16)

[13] 688 48 5
[10] 233 76 7.4

Proposed 127 50 5

CRC-32
(32)

[13] 1000 96 6
[10] 6496 344 16.13

Proposed 794 96 5
BCH
(255,223)
(32)

[13] 934 96 6
[10] 4832 276 14

Proposed 863 96 5

In the table, we can observe that for all the listed commonly used generator polyno-

mials, the proposed design achieves a critical path that is same as the previous designs

without increasing the hardware overhead. Furthermore, the number of clock cycles to

process N -bits is almost same as the previous designs. Our design can achieve the same

throughput rate at the reduced hardware cost.

Comparison of critical path (C.P) and XOR gates of the proposed design with previ-

ous parallel long BCH(8191,7684) encoders in [10] and [11] for L-parallel architecture is

shown in Table 3.5. From the table, we can observe that the proposed design performs

better in terms of hardware efficiency. The proposed design also performs better in

29

terms of critical path for higher levels of parallelism. The values reported in [10] and

[11] are iteration bounds i.e., the minimum achievable critical path. Even for the cases

L = 8 and L = 16, we can further pipeline and retime to reduce the critical path as

proposed in Section VII.

Table 3.5: Comparison of C.P and XOR gates of the proposed design and previous
parallel long BCH(8191,7684) encoders for L-parallel architecture

L = 8 L = 16 L = 24 L = 32

C.P
(Txor)

Proposed 9 9 9 9
[10]* 3.5 7.03 10.2 13.63
[11]* 4.167 7.769 11.111 14.034

XOR
gates

Proposed 2012 4069 6125 8229
[10] 2360 4032 8520 10592
[11] 2845 5469 9532 12512

*Reported values are minimum achievable C.P

We can see from Fig. 3.8 that critical path in the feedback loop can be reduced. This

is possible because of the extra delay in the feedback path. This shows that our proposed

approach of combined parallel and pipelining technique can reduce the critical path as

a whole. The elimination of fanout effect on the XOR gate (shared subexpression) is

another advantage of this approach. This comes at the cost of extra hardware.

Chapter 4

Fast Fourier Transform

In this chapter, a short introduction to fast fourier transform (FFT) and its hardware

architectures is provided. Further, this chapter proposes a new approach for the de-

sign of FFT hardware architectures. The approach is based on folding and register

minimization techniques.

4.1 FFT Algorithms

In this section, radix-2, radix-22 and radix-23 algorithms are reviewed and comparison

between these algorithms is made in terms of multiplications required. The N -point

Discrete Fourier Transform (DFT) of a sequence x[n] is defined as

X[k] =
N−1∑

n=0

x[n]Wnk
N , (4.1)

where Wnk
N = e−j(2π/N)nk.

The FFT includes a collection of algorithms that reduce the number of operations

of the DFT. The Cooley-Tukey algorithm [25] is the most used among them. It is based

on decomposing the DFT in n = logrN stages, where r is the radix. This achieves a

reduction on the number of operations from order O(N2) in the DFT to order O(NlogN)

in the FFT. The decomposition can be carried out in different ways. The most common

ones are the Decimation in Time (DIT) and the Decimation in Frequency (DIF).

30

31x0x1x2x3x4x5x6x7
X0X4X2X6X1X5X3X7W1W2W3

W2
W2W0
W0W0

Figure 4.1: Flow graph of a radix-2 8-point DIF FFT.

4.1.1 Radix-2 DIF FFT

For radix-2, the DIF decomposition separates the output sequence X[k] into even and

odd samples. The following equations are obtained:

X[2r] =
N/2−1∑

n=0

(x[n] + x[n + N/2])e−j 2π
N/2

rn
, r = 0, 1..., N/2− 1

X[2r + 1] =
N/2−1∑

n=0

(x[n]− x[n + N/2])e−j2π/Nne
−j 2π

N/2
rn

, r = 0, 1..., N/2− 1(4.2)

The N -point DFT is transformed into two N/2 point DFTs. Applying the procedure

iteratively leads to decomposition into 2-point DFTs. Fig. 4.1 shows the flow graph of

8-point radix-2 DIF FFT.

4.1.2 Radix-22 DIF FFT

The radix-22 FFT algorithm is proposed in [26]. We can derive the algorithm by using

the following new indices,

n = <
N

2
n1 +

N

4
n2 + n3 >N

k = < k1 + 2k2 + 4k3 >N (4.3)

Substituting (4.3) in (4.1), we get

X(k1 + 2k2 + 4k3)

=

N
4
−1∑

n3=0

1∑

n2=0

1∑

n1=0

x(
N

2
n1 +

N

4
n2 + n3)Wnk

N (4.4)

32

By decomposing the twiddle factor, we get

Wnk
N = (−j)n2(k1+2k2)W

n3(k1+2k2)
N W 4n3k3

N (4.5)

Substituting (4.5) in (4.4) and expanding the summation with indices n1, n2, and

we get,

X(k1 + 2k2 + 4k3) =

N
4
−1∑

n3=0

[HN
4
(n3, k1, k2)W

n3(k1+2k2)
N]Wn3k3

N
4

(4.6)

where H(k1, k2, n3) is expressed as,

HN
4
(n3, k1, k2) = BN

2
(n3, k1) + (−j)(k1+2k2)BN

2
(n3 +

N

4
, k1)

BN
2
(n3, k1) = x(n3) + (−1)k1x(n3 +

N

2
) (4.7)

Equation (4.7) represents the first two stages of butterflies with only trivial multipli-

cations. After these two stages, full multipliers are required to compute the product

of decomposed twiddle factors. The complete radix-22 algorithm can be derived by

applying (4.6) recursively. Fig. 4.2 shows the flow graph of an N = 16 point FFT an

decomposed according to decimation in frequency (DIF). The numbers at the inputs

and output of the graph represent the index of input and output samples, respectively.

The advantage of the algorithm is that it has the same multiplicative complexity as

radix-4 algorithms, but still retains the radix-2 butterfly structures. We can observe

that, only every other stage of the flow graph has non-trivial multiplications. The −j

notion represents the trivial multiplication, which involves only real-imaginary swapping

and sign inversion.

4.1.3 Radix-23 DIF FFT

The radix-23 FFT algorithm is proposed in [27]. Similar to radix-22, we can derive the

algorithm by using the following new indices,

n = <
N

2
n1 +

N

4
n2 +

N

8
n3 + n4 >N

k = < k1 + 2k2 + 4k3 + 8k4 >N (4.8)

33x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)

X(0)X(8)X(4)X(12)X(2)X(10)X(6)X(14)X(1)X(9)X(5)X(13)X(3)X(11)X(7)X(15)
-j-j-j-j

-j
-j
-j
-j

W2W4W6W1W2W3W3W6W9
Figure 4.2: Radix-2 Flow graph of a 16-point radix-22 DIF FFT.

Substituting (4.8) in (4.1), we get

X(k1 + 2k2 + 4k3 + 8k4)

=

N
8
−1∑

n4=0

1∑

n3=0

1∑

n2=0

1∑

n1=0

x(
N

2
n1 +

N

4
n2 +

N

8
n3 + n4)Wnk

N (4.9)

The twiddle can be decomposed into the following form

Wnk
N = (−j)n2(k1+2k2)W

N
8 n3(k1+2k2+4k3)

N

.W
n4(k1+2k2+4k3)
N W 8n4k4

N (4.10)

Substitute (4.10) into (4.9) and expand the summation with regard to index n1, n2

and n3. After simplification we have a set of 8 DFTs of length N/8,

X(k1 + 2k2 + 4k3 + 8k4)

=

N
8
−1∑

n4=0

[TN
8
(n4, k1, k2, k3)W

n4(k1+2k2+4k3)
N]Wn4k4

N
8

(4.11)

34

where a third butterfly structure has the expression of

TN
8
(n4, k1, k2, k3)

= HN
4
(n4, k1, k2) + W

N
8

(k1+2k2+4k3)

N HN
4

(n4+N
8

,k1,k2) (4.12)

As in radix-22 algorithm, the first two columns of butterflies contain only trivial

multiplications. The third butterfly contains a special twiddle factor

W
N
8

(k1+2k2+4k)

N = (
1√
2
(1− j))k

1(−j)k2+2k3 (4.13)

It can be easily seen that applying this twiddle factor requires only two real multipli-

cations. Full complex multiplications are used to apply the decomposed twiddle factor

W
n4(k1+2k2+4k3)
N after the third column. An N = 64 example is shown in Fig. 4.3.

4.2 Related Work

Fast Fourier Transform (FFT) is widely used in the field of digital signal processing

(DSP) such as filtering, spectral analysis etc., to compute the discrete Fourier transform

(DFT). FFT plays a critical role in modern digital communications such as digital video

broadcasting and orthogonal frequency division multiplexing (OFDM) systems. Much

research has been carried out on designing pipelined architectures for computation of

FFT of complex valued signals. Various algorithms have been developed to reduce the

computational complexity, of which Cooley-Tukey radix-2 FFT [25] is very popular.

Algorithms including radix-4 [28], split-radix [29], radix-22 [26] have been developed

based on the basic radix-2 FFT approach. The architectures based on these algo-

rithms are some of the standard FFT architectures in the literature [30]-[35]. Radix-2

Multi-path delay commutator (R2MDC) [30] is one of the most classical approaches

for pipelined implementation of radix-2 FFT is shown in Fig. Efficient usage of the

storage buffer in R2MDC leads to Radix-2 Single-path delay feedback (R2SDF) archi-

tecture with reduced memory [31]. Fig shows a radix-2 feedback pipelined architecture

for N = 16 points. R4MDC [32] and R4SDF [33], [34] are proposed as radix-4 versions

of R2MDC and R4SDF respectively. Radix-4 single-path delay commutator (R4SDC)

35

-j-j-j-j
-j-j-j-j
-j-j-j-j
-j-j-j-j

-j-j-j-j
-j-j-j-j

-jW8-jW8-jW8-jW8-jW8-jW8-jW8-jW8
W8W8W8W8W8W8W8W8

-j-j
-j-j
-j-j
-j-j
-j-j
-j-j
-j-j
-j-j

-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8

W35W30W25W20W10W15W5
W42W36W30W24W12W18W6W14W12W10W8W4W6W2W28W24W20W16W8W12W4

W7W6W5W4W2W3W1

W49W42W35W28W14W21W7W21W18W15W12W6W9W3

x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)x(16)x(17)x(18)x(19)x(20)x(21)x(22)x(23)x(24)x(25)x(26)x(27)x(28)x(29)x(30)x(31)x(32)x(33)x(34)x(35)x(36)x(37)x(38)x(39)x(40)x(41)x(42)x(43)x(44)x(45)x(46)x(47)x(48)x(49)x(50)x(51)x(52)x(53)x(54)x(55)x(56)x(57)x(58)x(59)x(60)x(61)x(62)x(63)

X(0)X(32)X(16)X(48)X(8)X(40)X(24)X(56)X(4)X(36)X(20)X(52)X(12)X(44)X(28)X(60)X(2)X(34)X(18)X(50)X(10)X(42)X(26)X(58)X(6)X(38)X(22)X(54)X(14)X(46)X(30)X(62)X(1)X(33)X(17)X(49)X(9)X(41)X(25)X(57)X(5)X(37)X(21)X(53)X(13)X(45)X(29)X(61)X(3)X(35)X(19)X(51)X(11)X(43)X(27)X(59)X(7)X(39)X(23)X(55)X(15)X(47)X(31)X(63)
Figure 4.3: Flow graph of a 64-point radix-23 DIF Complex FFT

[35] is proposed using a modified radix-4 algorithm to reduce the complexity of R4MDC

architecture.

Many parallel architectures for FFT have been proposed in the literature [36]-[39].

A formal method of developing these architectures from the algorithms has not been

proposed till now. Further, most of these hardware architectures are not fully utilized

which leads to high hardware complexity. In the era of high speed digital communi-

cations, high throughput and low power designs are required to meet the speed and

power requirements while keeping the hardware overhead to minimum. In this thesis,

we present a new approach to design these architectures from the FFT flow graphs.

Folding transformation [40] and register minimization techniques [41], [42] are used to

derive several known FFT architectures. Novel architectures are developed using the

36

proposed methodology which have not been presented in the literature.

In the folding transformation, all butterflies in the same column can be mapped to

one butterfly unit. If the FFT size is N , then this corresponds to a folding factor of

N/2. This leads to a 2-parallel architecture. In another design, we can choose a folding

factor of N/4 to design a 4-parallel architectures, where 4 samples are processed in the

same clock cycle. Different folding sets lead to a family of FFT architectures. Alter-

natively, known FFT architectures can also be described by the proposed methodology

by selecting the appropriate folding set. Folding sets are designed intuitively to reduce

latency and to reduce the number of storage elements. It may be noted that prior FFT

architectures were derived in an adhoc way, and their derivations were not explained in

a systematic way. This is the first attempt to generalize design of FFT architectures for

arbitrary level of parallelism in a systematic manner via the folding transformation. In

this paper, design of prior architectures is first explained by constructing specific fold-

ing sets. Then, several new architectures are derived for various radices, and various

levels of parallelism, and for either the decimation-in-time (DIT) or the decimation-in-

frequency (DIF) flow graphs. All new architectures achieve full hardware utilization.

It may be noted that all prior parallel FFT architectures did not achieve full hardware

utilization.

4.3 FFT Architectures via Folding

In this section, we present a method to derive several known FFT architectures in

general. The process is described using an 8-point radix-2 DIF FFT as an example. It

can be extended to other radices in a similar fashion. Fig. 4.4 shows the flow graph of a

radix-2 8-point DIF FFT. The graph is divided into 3 stages and each of them consists

of a set of butterflies and multipliers. The twiddle factor in between the stages indicates

a multiplication by W k
N , where WN denotes the Nth root of unity, with its exponent

evaluated modulo N . This algorithm can be represented as a data flow graph (DFG)

as shown in Fig. 4.5. The nodes in the DFG represent tasks or computations. In this

case, all the nodes represent the butterfly computations of the radix-2 FFT algorithm.

In particular, assume nodes A and B have the multiplier operation on the bottom edge

of the butterfly.

37x0x1x2x3x4x5x6x7
X0X4X2X6X1X5X3X7W1W2W3

W2
W2W0
W0W0

Figure 4.4: Flow graph of a radix-2 8-point DIF FFT.A0A1A2A3
B0B1B2B3

C0C1C2C3

x0x4x1x5x2x6x3x7

y0y1y5y2y6y3y7
y4 z0z2z1z3z4z6z5z7

X0X4X2X6X1X5X3X7
Figure 4.5: Data Flow graph (DFG) of a radix-2 8-point DIF FFT.

The folding transformation is used on the DFG in Fig. 4.5 to derive a pipelined

architecture [15]. To transform the DFG, we require a folding set, which is an ordered

set of operations executed by the same functional unit. Each folding set contains K

entries some of which may be null operations. K is called the folding factor, the number

of operations folded into a single function unit. The operation in the j-th position within

the folding set (where j goes from 0 to K− 1) is executed by the functional unit during

the time partition j. The term j is the folding order, the time instance to which the

node is scheduled to be executed in hardware.

For example, consider the folding set A = {φ, φ, φ, φ, A0, A1, A2, A3} for K = 8.

The operation A0 belongs to the folding set A with the folding order 4. The functional

unit A executes the operations A0, A1, A2, A3 at the respective time instances and will

be idle during the null operations. We use the systematic folding techniques to derive

the 8-point FFT architecture. Consider an edge e connecting the nodes U and V with

w(e) delays. Let the executions of the l-th iteration of the nodes U and V be scheduled

38

at the time units Kl + u and Kl + v, respectively, where u and v are the folding orders

of the nodes U and V . The folding equation for the edge e is

DF (U → V) = Kw(e)− PU + v − u (4.14)

where PU is the number of pipeline stages in the hardware unit which executes the node

U [40].

4.3.1 Feed-forward Architecture

Consider folding of the DFG in Fig. 4.5 with the folding sets

A = {φ, φ, φ, φ,A0, A1, A2, A3},
B = {B2, B3, φ, φ, φ, φ, B0, B1},
C = {C1, C2, C3, φ, φ, φ, φ, C0}.

Assume that the butterfly operations do not have any pipeline stages, i.e., PA = 0,

PB = 0, PC = 0. The folded architecture can be derived by writing the folding equation

in (4.14) for all the edges in the DFG. These equations are

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = −4 DF (B0 → C1) = −6

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = −4 DF (B1 → C1) = −7

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = −6 DF (B2 → C3) = 2

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = −6 DF (B3 → C3) = 1 (4.15)

For example, DF (A0 → B0) = 2 means that there is an edge from the butterfly node

A to node B in the folded DFG with 2 delays. For the folded system to be realizable,

DF (U → V) ≥ 0 must hold for all the edges in the DFG. Retiming and/or pipelining

can be used to either satisfy this property or determine that the folding sets are not

feasible [15]. We can observe the negative delays on some edges in (4.15). The DFG

39A0A1A2A3
B0B1B2B3

C0C1C2C3

Pipeline cutset

D DDD
DD X0X4X2X6X1X5X3X7

DDx0x4x1x5x2x6x3x7
Figure 4.6: Pipelined Data Flow graph (DFG) of a 8-point DIF FFT as a preprocessing
step for folding

can be pipelined as shown in Fig. 4.6 to ensure that folded hardware has a non-negative

number of delays. The updated folding equations for all the edges are

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = 4 DF (B0 → C1) = 2

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = 4 DF (B1 → C1) = 1

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = 2 DF (B2 → C3) = 2

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = 2 DF (B3 → C3) = 1 (4.16)

From (4.16), we can observe that 24 registers are required to implement the folded

architecture. Lifetime analysis technique [42] is used to design the folded architecture

that use the minimum possible registers. For example, in the current 8-point FFT

design, consider the variables y0, y1, ...y7 i.e., the outputs at the nodes A0, A1, A2, A3

respectively. It takes 16 registers to synthesize these edges in the folded architecture.

The linear lifetime chart for these variables is shown in Fig. 4.7. From the lifetime chart,

it can be seen that the folded architecture requires 4 registers as opposed to 16 registers

in a straightforward implementation. The next step is to perform forward-backward

40456789
Cycle# y0 y1 y2 y3 y4 y5 y6 y7 Live#024442

Figure 4.7: Linear lifetime chart for the variables y0, y1, ...y7.

register allocation. The allocation table is shown in Fig. 4.8. From the allocation

table in Fig. 4.8 and the folding equations in (4.16), the delay circuit in Fig. 4.9 can

be synthesized. Fig. 4.10 shows how node A and node B are connected in the folded

architecture. R3 R4R1 R2y4y5y6y7 y4y5y6y7
y0 y0y4y5 y1y1y4y5

y0,y4y1,y5y2,y6y3,y7
I/P456789

Figure 4.8: Register allocation table for the data represented in Fig. 4.7.

The control complexity of the derived circuit is high. Four different signals are

needed to control the multiplexers. A better register allocation is found such that the

number of multiplexers are reduced in the final architecture. The more optimized regis-

ter allocation for the same lifetime analysis chart is shown in Fig. 4.11. Similarly, we can

apply lifetime analysis and register allocation techniques for the variables x0, ..., x7 and

z0, ..., z7, inputs to the DFG and the outputs from nodes B0, B1, B2, B3 respectively

as shown in Fig. 4.5. From the allocation table in Fig. 4.11 and the folding equations

41

R 3R 1 R 4R 2y 7 , y 6 , y 5 , y 4y 3 , y 2 , y 1 , y 0 B o t t o m o u t p u tT o p o u t p u t
{ 6 , 7 }{ 0 , 1 }{ 0 , 1 , 7 }{ 6 }{ 4 }{ 0 , 5 , 6 , 7 } { 5 } { 6 }{ 0 , 7 }

Figure 4.9: Delay circuit for the register allocation table in Fig. 4.8.R 3
R 1 XNode

A
Node
BX

R 4
R 2

MUXMUX
MUXMUX

Figure 4.10: Folded circuit between Node A and Node B.

in (4.16), the final architecture in Fig. 4.12 can be synthesized.

We can observe that the derived architecture is the same as R2MDC architecture

[30]. Similarly, the R2SDF architecture can be derived by minimizing the registers on

all the variables at once.

4.3.2 Feedback Architecture

We derive the feedback architecture using the same 8-point radix-2 DIT FFT example

in Fig. 4.4. Consider the following folding sets

A = {φ, φ, φ, φ,A0, A1, A2, A3},
B = {φ, φ, B2, B3, φ, φ, B0, B1},
C = {φ,C1, φ, C2, φ, C3, φ, C0}.

Assume that the butterfly operations do not have any pipeline stages, i.e., PA = 0,

PB = 0, PC = 0. The folded architecture can be derived by writing the folding equation

42R3 R4R1 R2y4y5y6y7 y4y5y6y7
y0y1y4y5 y0y1y4y5

y0,y4y1,y5y2,y6y3,y7
I/P456789

Figure 4.11: Register allocation table for the data represented in Fig. 4.7.4 D R 3
R 1 D

DXBFI BFII BFIIIX
R 4

R 2

x [n] X (k)
X (k + 4)

MUXMUX

MUXMUX
Figure 4.12: Folded architecture for the DFG in Fig. 4.6. This corresponds to the well
known radix-2 feed-forward (R2MDC) architecture.

in (4.14) for all the edges in the DFG. The folding equations are

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = −2 DF (B0 → C1) = −5

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = −2 DF (B1 → C1) = −6

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = −4 DF (B2 → C3) = 3

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = −4 DF (B3 → C3) = 2 (4.17)

It can be seen from the folding equations in (4.17) that some edges contain negative

delays. Retiming is used to make sure that the folded hardware has non-negative number

43

45678910111213

0123Cycle# Live#
45676+06+14+24+32+42+5

0123y0 y1 y2 y3 y4 y5 y6 y7 z0 z1 z2 z3 z4 z5 z6 z7x0 x1 x2 x3 x4 x5 x6 x7

Figure 4.13: Linear lifetime chart for variables for a 8-point FFT architecture.

of delays. The pipelined DFG is the same as the one in the feed-forward example and

is shown in Fig. 4.6. The updated folding equations are shown in (4.18).

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = 6 DF (B0 → C1) = 3

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = 6 DF (B1 → C1) = 2

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = 4 DF (B2 → C3) = 3

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = 4 DF (B3 → C3) = 2 (4.18)

The number of registers required to implement the folding equations in (4.18) is 40.

The linear life time chart is shown in Fig. 4.13 and the register allocation table is shown

in Fig. 4.14. We can implement the same equations using 7 registers by using these

register minimization techniques. The folded architecture in Fig. 4.15 is synthesized

using the folding equations in (4.18) and register allocation table.

The hardware utilization is only 50% in the derived architecture. This can also

be observed from the folding sets where half of the time null operations are being

executed, i.e., hardware is idle. Using this methodology, we present low-power parallel

FFT architectures in the next chapter.

44

R3 R4R1 R2I/P R6 R7R5
456789

0123

10111213

x0 x0 x0 x0 x0x1x2x3 x1x2x3 x1x2x3 x1x2x3y4y5y6y7 y4y5y6y7 y4y5y6y7 y4y5y6y7 y4y5 y4y5

y0y1 y0y1z3z2 z3z2 z2z0z4z7z6 z7z6 z6

y0,y4y1,y5y2,y6y3,y7

x1x2x3x4x5x6x7z3z2z0z1
z7z6z4z5

Figure 4.14: Register allocation table for the data represented in Fig. 4.13.

BFI

R 1 R 2 R 3 R 4M U X

BFII

R 5 R 6M U X

BFIII

R 7XXx [n] X (k)
X (k + 4)

Figure 4.15: Folded architecture for the DFG in Fig. 4.6. This corresponds to the well
known radix-2 feedback (R2SDF) architecture.

Chapter 5

Novel Parallel FFT Architectures

This chapter shows the application of the new approach presented in chapter 4 to design

novel FFT architectures. A family of high throughput FFT architectures have been

obtained by using the new approach based on radix-2 algorithm. They are feed-forward

architectures with different number of input samples in parallel. The parallelization

can be arbitrarily chosen. Furthermore, architectures based on radix-22 and radix-23

algorithms have also been developed. The circuits to reorder the output samples are

also presented.

5.1 Radix-2 FFT Architectures

In this section, we present parallel architectures for complex valued signals based on

radix-2 algorithm. These architectures are derived using the approach presented in the

previous section. The same approach can be extended to radix-22, radix-23 and other

radices as well. Due to space constraints, only folding sets are presented for different

architectures. The folding equations and register allocation tables can be obtained

easily.

5.1.1 2-parallel Radix-2 FFT Architecture

The utilization of hardware components in the feedforward architecture is only 50%.

This can also be observed from the folding sets of the DFG where half of the time null

operations are being executed. We can derive new architectures by changing the folding

45

46B0B1B2B3
C0C1C2C3

D0D1D2D3B4B5B6B7
C4C5C6C7

D4D5D6D7

A0A1A2A3A4A5A6A7 D

DDDD
DD
DD

D D

D
DD

Pipelining Cutset

Retiming Cutset

x0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15

X0X8X1X9X2X10X3X11X4X12X5X13X6X14X7X15

DD

Figure 5.1: Data Flow graph (DFG) of a Radix-2 16-point DIF FFT with retiming for
folding.

sets which can lead to efficient architectures in terms of hardware utilization and power

consumption. We present here one such example of a 2-parallel architecture which leads

to 100% hardware utilization and consumes less power.

Fig. 5.1 shows the DFG of radix-2 DIF FFT for N = 16. All the nodes in this

figure represent radix-2 butterfly operations. Assume the nodes A, B and C contain the

multiplier operation at the bottom output of the butterfly. Consider the folding sets

A = {A0, A2, A4, A6, A1, A3, A5, A7},
B = {B5, B7, B0, B2, B4, B6, B1, B3},
C = {C3, C5, C7, C0, C2, C4, C6, C1},
D = {D2, D4, D6, D1, D3, D5, D7, D0} (5.1)

We can derive the folded architecture by writing the folding equation in (4.14) for

all the edges. Pipelining and retiming are required to get non-negative delays in the

folded architecture. The DFG in Fig. 5.1 also shows the retimed delays on some of the

edges of the graph. The final folded architecture is shown in Fig. 5.2. The register

minimization techniques and forward-backward register allocation are also applied in

deriving this architecture as described in Section II. Note the similarity of the datapath

474 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX4 D BFI BFII BFIII BFIV

sw i tch X Xx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

Figure 5.2: Proposed 2-parallel (Architecture 1) for the computation of a radix-2 16-
point DIF FFT.

to R2MDC. This architecture processes two input samples at the same time instead of

one sample in R2MDC. The implementation uses regular radix-2 butterflies. Due to the

spatial regularity of the radix-2 algorithm, the synchronization control of the design is

very simple. A log2N -bit counter serves two purposes: synchronization controller i.e.,

the control input to the switches, and address counter for twiddle factor selection in

each stage.

We can observe that the hardware utilization is 100% in this architecture. In a

general case of N-point FFT, with N power of 2, the architecture requires log2(N)

complex butterflies, log2(N) − 1 complex multipliers and 3N/2 − 2 delay elements or

buffers. A0A1A2A3A4A5A6A7

B0B1B2B3B4B5B6B7

C0C1C2C3C4C5C6C7

D0D1D2D3D4D5D6D7
Retiming Cutset DDDD

DD DD
DDDDDD

Pipelining Cutsetx0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15

X0X8X1X9X2X10X3X11X4X12X5X13X6X14X7X15

DD

Figure 5.3: Data Flow graph (DFG) of a Radix-2 16-point DIT FFT with retiming for
folding.

In a similar manner, we can derive the 2-parallel architecture for Radix-2 DIT FFT

484 D sw i tch sw i tch sw i tchD
D 2 D

2 D 4 D
4 D4 D BFI BFII BFIII BFIV

sw i tch X X Xx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

Figure 5.4: Proposed 2-parallel (Architecture 1) for the computation of a radix-2 16-
point DIT Complex FFT.

using the following folding sets. Assume that multiplier is at the bottom input of the

nodes B, C, D.

A = {A0, A2, A1, A3, A4, A6, A5, A7},
B = {B5, B7, B0, B2, B1, B3, B4, B6},
C = {C6, C5, C7, C0, C2, C1, C3, C4},
D = {D2, D1, D3, D4, D6, D5, D7, D0}

The pipelined/retimed version of the DFG is shown in Fig. 5.3 and the 2-parallel

architecture is in Fig. 5.4. The only difference in the two architectures (Fig. 5.2 and

Fig. 5.4) is the position of the multiplier in between the butterflies. The rest of the

design remains same.

5.1.2 4-parallel Radix-2 FFT Architecture

A 4-parallel architecture can be derived using the following folding sets.

A = {A0, A1, A2, A3} A′ = {A′0, A′1, A′2, A′3}
B = {B1, B3, B0, B2} B′ = {B′1, B′3, B′0, B′2}
C = {C2, C1, C3, C0} C ′ = {C ′2, C ′1, C ′3, C ′0}
D = {D3, D0, D2, D1} D′ = {D′3, D′0, D′2, D′1}

The DFG shown in Fig. 5.5 is retimed to get the non-negative folded delays. The

final architecture in Fig. 5.6 can be obtained following the proposed approach. For

a N -point FFT, the architecture takes 4(log4N − 1) complex multipliers and 2N − 4

delay elements. We can observe that hardware complexity is almost double that of the

serial architecture and processes 4-samples in parallel. The power consumption can be

reduced by 50% (see Section V) by lowering the operational frequency of the circuit.

49B0B1B2B3
C0C1C2C3

D0D1D2D3
A0A’0A1A’1A2A’2A3A’3

B’0B’1B’2B’3
C’0C’1C’2C’3

D’0D’1D’2D’3D

DD

DD
DD

DD
D

DD
D D

DDDDDD

Pipelining Cutset

Retiming Cutset

X0X8X1X9X2X10X3X11X4X12X5X13X6X14X7X15

x0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15
Figure 5.5: Data Flow graph (DFG) of a Radix-2 16-point DIF FFT with retiming for
folding for 4-parallel architecture.

2 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX2 D BFI BFII BFIII BFIV

sw i tch
X

X

2 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX2 D BFI BFII BFIII BFIV

sw i tch X X

x (4 k)x (4 k + 2)
x (4 k + 1)x (4 k + 3)

X (k)
X (k + 8)X (k + 4)

X (k + 1 2)
Figure 5.6: Proposed 4-parallel (Architecture 2) for the computation of 16-point radix-2
DIF FFT.

5.2 Radix-22 and Radix-23 FFT Architectures

The hardware complexity in the parallel architectures can be further reduced by using

radix-2n FFT algorithms. In this section, we consider the cases of radix-22 and radix-

23 to demonstrate how the proposed approach can be used to radix-2n algorithms.

Similarly, we can develop architectures for radix-24 and other higher radices using the

same approach.

50

5.2.1 2-parallel radix-22 FFT Architecture

The DFG of radix-22 DIF FFT for N = 16 will be similar to the DFG of radix-2 DIF

FFT as shown in Fig. 5.1. All the nodes in this figure represent radix-2 butterfly oper-

ations including some special functionality. Nodes A and C represent regular butterfly

operations. Nodes B and D are designed to include the −j multiplication factor. Fig.

5.7 shows the butterfly logic needed to implement the radix-22 FFT. The factor −j is

handled in the second butterfly stage using the logic shown in Fig. 5.7b to switch the

real and imaginary parts to the input of the multiplier.

- -
(a) BFI

--++-
(b) BFII

Figure 5.7: Butterfly structure for the proposed FFT architecture in the complex dat-
apath

Consider the folding sets

A = {A0, A2, A4, A6, A1, A3, A5, A7},
B = {B5, B7, B0, B2, B4, B6, B1, B3},
C = {C3, C5, C7, C0, C2, C4, C6, C1},
D = {D2, D4, D6, D1, D3, D5, D7, D0} (5.2)

Using the folding sets above, the final architecture shown in Fig. 5.8 is obtained. We

can observe that the number of complex multipliers required for radix-22 architecture

is less compared to radix-2 architecture in Fig. 5.2. In general, for a N-point FFT,

radix-22 architecture requires 2(log4N − 1) multipliers.

514 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX4 D BFI BFII BFI BFII

sw i tchx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

X

Figure 5.8: Proposed 2-parallel (Architecture 3) for the computation of a radix-22 16-
point DIF FFT.

Similar to 4-parallel radix-2 architecture, we can derive 4-parallel radix-22 architec-

ture using the similar folding sets. The 4-parallel radix-22 architecture is shown in Fig.

5.9. In general, for a N-point FFT, 4-parallel radix-22 architecture requires 3(log4N−1)

complex multipliers compared 4(log4N − 1) multipliers in radix-2 architecture. That is,

the multiplier complexity is reduced by 25% compared to radix-2 architectures.

2 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX2 D BFI BFII BFI BFII

sw i tch
2 D sw i tch sw i tch sw i tch2 D

2 D D
D 4 D

4 DX2 D BFI BFII BFI BFII

sw i tch
x (4 k)x (4 k + 2)

x (4 k + 1)x (4 k + 3)

X (k)
X (k + 8)X (k + 4)

X (k + 1 2)

X

Figure 5.9: Proposed 4-parallel (Architecture 4) for the computation of a radix-22 16-
point DIF FFT.

5.2.2 2-parallel radix-23 FFT Architecture

We consider the example of a 64-point radix-23 FFT algorithm [27]. The advantage of

radix-23 over radix-2 algorithm is its multiplicative complexity reduction. A 2-parallel

architecture is derived using folding sets in (5.2). Here the DFG contains 32 nodes

instead of 8 in 16-point FFT.1 6 D s w itch sw itch sw itch8 D8 D 4 D 4 D 2 D2 DX1 6D B F I B F I I B F I I I B F I V sw itch 3 2 D3 2 D B F V Isw itch DD B F VX XXsw itc hx (2 k)x (2 k + 1) C S D M u l t i p l i e r C S D M u l t i p l i e rF u l l M u l t i p l i e r

X (k)X (k + 8)

Figure 5.10: Proposed 2-parallel (Architecture 5) for the computation of 64-point radix-
23 DIF FFT.

52

The folded architecture is shown in Fig. 5.10. The design contains only two full

multipliers and two constant multipliers. The constant multiplier can be implemented

using Canonic Signed Digit (CSD) format with much less hardware compared to a full

multiplier. For a N -point FFT, where N is a power of 23, the proposed architecture

takes 2(log8N − 1) multipliers and 3N/2 − 2 delays. The multiplier complexity can

be halved by computing the two operations using one multiplier. This can be seen in

the modified architecture shown in Fig. 5.11. The only disadvantage of this design is

that two different clocks are needed. Multiplier has to be run at double the frequency

compared to the rest of the design. The architecture requires only log8N−1 multipliers.

A 4-parallel radix-23 architecture can be derived similar to 4-parallel radix-2 FFT ar-

chitecture. A large number of architectures can be derived using the approach presented

in Section II. Using the folding sets of same pattern, 2-parallel and 4-parallel architec-

tures can be derived for radix-22 and radix-24 algorithms. We show that changing the

folding sets can lead to different parallel architectures. Further DIT and DIF algorithms

will lead to similar architectures except the position of the multiplier operation.sw itc h sw itch8 D8 D 4 D 4 DXB F I B F I I B F I I I

s w itc h2 D 2 DB F I Vsw itch3 2 D 3 2 DB F V I sw itchD DB F V X
P /S S /PX1 6 D1 6 D sw itchx (2 k)x (2 k + 1) F u l l M u l t i p l i e rC S D M u l t i p l i e r C S D M u l t i p l i e rX (k)X (k + 8)

Figure 5.11: Proposed 2-parallel (Architecture 6) for the computation of 64-point radix-
23 DIF FFT.

5.3 Reordering of the Output Samples

Reordering of the output samples is an inherent problem in FFT computation. The

outputs are obtained in the bit-reversal order [30] in the serial architectures. In general

the problem is solved using a memory of size N . Samples are stored in the memory in

natural order using a counter for the addresses and then they are read in bit-reversal

order by reversing the bits of the counter. In embedded DSP systems, special memory

53

addressing schemes are developed to solve this problem. But in case of real-time systems,

this will lead to an increase in latency and area.

The order of the output samples in the proposed architectures is not in the bit-

reversed order. The output order changes for different architectures because of different

folding sets/scheduling schemes. We need a general scheme for reordering these samples.

One such approach is presented in this section.

0123456789101112131415

0821019311412614513715

0123891011456712131415

0123456789101112131415

OutputOrder Intermediate Order Final OrderIndex

Figure 5.12: Solution to the reordering of the output samples for the architecture in
Fig. 5.2.

The approach is described using a 16-point radix-2 DIF FFT example and the cor-

responding architecture is shown in Fig. 5.2. The order of output samples is shown in

Fig. 5.12. The first column (index) shows the order of arrival of the output samples.

The second column (output order) indicates the indices of the output frequencies. The

goal is to obtain the frequencies in the desired order provided the order in the last

column. We can observe that it is a type of de-interleaving from the output order and

the final order. Given the order of samples, the sorting can be performed in two stages.

It can be seen that the first and the second half of the frequencies are interleaved. The

intermediate order can be obtained by de-interleaving these samples as shown in the

table. Next, the final order can be obtained by changing the order of the samples. It

54

can be generalized for higher number of points, the reordering can be done by shuffling

the samples in the respective positions according to the final order required.

A shuffling circuit is required to do the de-interleaving of the output data. Fig.

5.13 shows a general circuit which can shuffle the data separated by R positions. If the

multiplexer is set to ”1” the output will be in the same order as the input, whereas setting

it to ”0” the input sample in that position is shuffled with the sample separated by R

positions. The circuit can be obtained using lifetime analysis and forward-backward

register allocation techniques. There is an inherent latency of R in this circuit.

The life time analysis chart for the 1st stage shuffling in Fig. 5.12 is shown in Fig.

5.14 and the register allocation table is in Fig. 5.15. Similar analysis can be done for the

2nd stage too. Combining the two stages of reordering in Fig. 5.12, the circuit in Fig.

5.16 performs the shuffling of the outputs to obtain them in the natural order. It uses

seven complex registers for a 16-point FFT. In general case, a N -point FFT requires a

memory of 5N/8− 3 complex data to obtain the outputs in natural order.

R D01 10
Figure 5.13: Basic circuit for the shuffling the data.

45678910
0123Cycle#

33333+02+11+2
0123Live#0 8 2 10 1 9 3 11

Figure 5.14: Linear lifetime chart for the 1st stage shuffling of the data.

55R3R1 R2I/P
456789

0123

10

19311

08210 0 0 08 8 88 8 8
2 2 210 10109 9 910 10 1011 11 11

Figure 5.15: Register allocation table for the 1st stage shuffling of the data.

3D01 10 4D01 10
Figure 5.16: Structure for reordering the output data of 16-point DIF FFT.

5.4 Comparison and Analysis

A comparison is made between the previous pipelined architectures and the proposed

ones for the case of computing an N -point complex FFT in Table 5.1. The comparison

is made in terms of required number of complex multipliers, adders, delay elements and

twiddle factors and throughput.

The proposed architectures are all feed-forward which can process 2 samples in

parallel, thereby achieving a higher performance than previous designs which are serial

in nature. When compared to some previous architectures, the proposed design doubles

56

Table 5.1: Comparison of pipelined hardware architectures for the computation of N-
point FFT

Architecture # Multipliers # Adders # Delays # Twiddle factors Throughput
R2MDC 2(log4N − 1) 4log4N 3N/2− 2 N 1
R2SDF 2(log4N − 1) 4log4N N − 1 N 1
R4SDC (log4N − 1) 3log4N 2N − 2 N 1
R22SDF (log4N − 1) 4log4N N − 1 N 1
R23SDF* (log8N − 1) 4log4N N − 1 N 1

Proposed Architectures
Arch 1 (radix-2) 2(log4N − 1) 4log4N 3N/2− 2 N 2
Arch 2 (radix-2) 4(log4N − 1) 8log4N 2N − 4 N 4
Arch 3 (radix-22) 2(log4N − 1) 4log4N 3N/2− 2 N 2
Arch 4 (radix-22) 3(log4N − 1) 8log4N 2N − 4 N 4
Arch 5 (radix-23)* 2(log8N − 1) 4log4N 3N/2− 2 N 2
Arch 6 (radix-23)* log8N − 1 4log4N 3N/2− 2 N 2
* These architectures need 2 constant multipliers as described in Radix-23algorithm

the throughput and halves the latency while maintaining the same hardware complexity.

The proposed architectures maintain hardware regularity compared to previous designs.

5.4.1 Power Consumption

We compare power consumption of the serial feedback architecture with the proposed

parallel feedforward architectures of same radix. The dynamic power consumption of a

CMOS circuit can be estimated using the following equation,

Pser = CserV
2fser, (5.3)

where Cser denotes the total capacitance of the serial circuit, V is the supply voltage

and fser is the clock frequency of the circuit. Let Pser denotes the power consumption

of the serial architecture.

In an L-parallel system, to maintain the same sample rate, the clock frequency

must be decreased to fser/L. The power consumption in the L-parallel system can be

calculated as

Ppar = CparV
2 fser

L
, (5.4)

where Cpar is the total capacitance of the L-parallel system.

57

For example, consider the proposed architecture in Fig. 5.2 and R2SDF architec-

ture [31]. The hardware overhead of the proposed architecture is 50% increase in the

number of delays. Assume the delays account for half of the circuit complexity in serial

architecture. Then Cpar = 1.25Cser which leads to

Ppar = 1.25CserV
2 fser

2
= 0.625Pser (5.5)

Therefore, the power consumption in a 2-parallel architecture has been reduced by 37%

compared to the serial architecture.

Similarly, for the proposed 4-parallel architecture in Fig. 5.6, the hardware complex-

ity doubles compared to R2SDF architecture. This leads to a 50% reduction in power

compared to serial architecture.

Chapter 6

Conclusion and Discussion

This thesis has presented a complete mathematical proof to show that a transformation

exists in state space to reduce the complexity of the parallel LFSR feedback loop. This

leads to a novel method for high speed parallel implementation of linear feedback shift

registers which is based on parallel IIR filter design. Our design can reduce the critical

path without increasing the hardware cost at the same time. The design is applicable

to any type of LFSR architecture. Further we show that using combined pipelining and

parallel processing techniques of IIR filtering, critical path in the feedback part of the

design can be reduced. The large fan-out effect problem can also be minimized with

some hardware overhead by retiming around those particular nodes.

Further, a novel approach to derive the FFT architectures for a given algorithm. The

proposed approach can be used to derive partly parallel architectures of any arbitrary

parallelism level. Using this approach parallel architectures have been proposed for the

computation of complex FFT based on radix-2n algorithms. The power consumption

can be reduced by 37% and 50% in proposed 2-parallel and 4-parallel architectures

respectively. Future work will be directed towards design of FFT architectures for real-

valued signals with full hardware utilization.

58

References

[1] T. V. Ramabadran and S.S. Gaitonde, ”A Tutorial on CRC Computations,” IEEE

Micro., Aug. 1988.

[2] R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-

Wesley, 1984

[3] W. W. Peterson and D. T. Brown, ”Cyclic codes for errot detection”, Proc. IRE,

vol.49, pp. 228-235, Jan.1961

[4] N. Oh, R. Kapur, T. W. Williams, ”Fast seed computation for reseeding shift

register in test pattern compression,” IEEE ICCAD, 2002, pp. 76-81.

[5] M. Y. Hsiao and K. Y. Sih, ”Serial-to-parallel transformation of linear feedback

shift register circuits”, IEEE Trans. Electronic Computers, vol. EC-13, pp. 738-

740, Dec. 1964

[6] A. M. Patel, ”A multi-channel CRC register”, in AFIPS Conference Proceedings,

vol. 38, pp. 11-14, Spring 1971

[7] Tong-Bi Pei, Charles Zukowski, ”High-Speed Parallel CRC circuits in VLSI”, IEEE

Trans. on Communications, vol. 40, no. 4, April 1992 pp. 653-657.

[8] K. K. Parhi, ”Eliminating the fanout bottleneck in parallel long BCH encoders”,

IEEE Transactions on Circuits and Systems I, Reg. Papers, vol. 51, no. 3, pp.

512-516, Mar. 2004.

[9] C. Cheng, K. K. Parhi, ”High Speed Parallel CRC Implementation based on Unfold-

ing, Pipelining, Retiming,” IEEE Transaction on Circuits and Systems II, Express

Briefs, vol. 53, no. 10, pp. 1017-1021, Oct. 2006.

59

60

[10] C. Cheng, K. K. Parhi, ”High Speed VLSI Architecture for General Linear Feed-

back Shift Register (LFSR) Structures,” Proc. of 43rd Asilomar Conf. on Signals,

Systems, and Computers, Nov. 2009, Monterey, CA, pp. 713-717.

[11] X. Zhang and K. K. Parhi, ”High-speed architectures for parallel long BCH en-

coders,” in Proc. ACM Great Lakes Symp. VLSI, Boston, MA, April 2004, pp.

1-6

[12] R. J. Glaise, ”A two-step computation of cyclic redundancy code CRC-32 for ATM

networks”, IBM J. Res. Devel., vol. 41, pp. 705-709, Nov. 1997

[13] J. H. Derby, ”High Speed CRC computation using state-space transformation,” in

Proc. Global Telecomm. Conf. 2001, GLOBECOM’01, vol. 1, pp. 166-170

[14] K. K. Parhi, D. G. Messerschmitt, ”Static-rate optimal schedulinh of iterative data-

flow programs via optimum unfolding,” IEEE Trans. on Computers, vol. 40, no. 2,

pp. 178-195, Feb. 1991.

[15] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.

Hoboken, NJ: Wiley, 1999.

[16] G. Campobello, G. Patane, and M. Russo, ”Parallel CRC Realization,” IEEE

Trans. Computers, vol. 52, no. 10, pp. 1312 - 1319, Oct 2003

[17] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications.

Cambridge University Press, 1986.

[18] K. Hoffman and R. Kunze, Linear Algebra. Englewood Cliffs, NJ: Prentice Hall,

1971

[19] G. Albertengo and R. Sisto, ”Parallel CRC generation”, IEEE Micro, vol. 10, pp.

63-71, Oct. 1990

[20] S. L. Ng and B. Dewar, ”Parallel realization of the ATM cell header CRC”, Com-

puter Commun., vol. 19, pp. 257-263, March 1996

[21] Manohar Ayinala, K. K. Parhi, ”Efficient Parallel VLSI Architecture for Linear

Feedback Shift Registers”, IEEE Workshop on SiPS, pp. 52-57, Oct. 2010.

61

[22] Manohar Ayinala, K. K. Parhi, ”High Speed Parallel Architectures for Linear Feed-

back Shift Registers”, IEEE Trans. on Signal Processing, (under review)

[23] K. K. Parhi, D. G. Messerschmitt, ”Pipeline interleaving and parallelism in recur-

sive digital filters -part II: pipelined incremental block filtering,” IEEE Trans. on

Acoustics, Speech and Signal Processing, vol. 37, pp. 1118-1135, July 1989.

[24] M. Potkonjak, M. B. Srivastava, A. P. Chandraksan, ”Multiple constant multipli-

cations: efficient and versatile framework and algorithms for exploring common

subexpression elimination”, IEEE Trans on Computer-Aided Design for Integrated

Circuits and Systems, 15(2), pp. 151-165, 1996

[25] J. W Cooley and J. Tukey, ”An algorithm for machine calculation of complex fourier

series,” Math. Comput., vol. 19, pp. 297-301, Apr. 1965

[26] S. He and M. Torkelson, ”A new approach to pipeline FFT processor,” Proc. of

IPPS, 1996, pp. 766 - 770.

[27] S. He and M. Torkelson, ”Design and Implementation of 1024-point pipeline FFT

processor,” in Proc. Custom Integr. Circuits Conf., SantaClara, CA, May 1998, pp.

131-134.

[28] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Singal Processing,

2nd ed. Englewood Cliffs, NJ: Prentice Hall 1998.

[29] P. Duhamel, ”Implementation of split-radix FFT algorithms for complex, real, and

real-symmetric data,” IEEE Trans. on Acoust., Speech Signal Process., vol. 34, no.

2, pp. 285-295, Apr. 1986

[30] L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing. Pren-

tice Hall Inc., 1975.

[31] E. H. Wold and A. M. Despain, ”Pipeline and parallel-pipeline FFT processors for

VLSI implementation,” IEEE Trans. Computers, C-33(5): 414-426, May 1984.

[32] A. M. Despain, ”Fourier transfom using CORDIC iterations,” IEEE Trans. Com-

put., C-233(10): 993-1001, Oct. 1974.

62

[33] E. E. Swartzlander, W. K. W. Young, S.J. Joseph, ”A radix-4 delay commutator

for fast Fourier transform processor implementation,” IEEE Journal of Solid-state

Cir., SC-19(5): 702-709, Oct. 1984.

[34] E. E. Swartzlander, V.K. Jain, H. Hikawa, ”A radix-8 wafer scale FFT processor,”

Journal. VLSI Signal Process., 4(2,3): 165-176, May 1992.

[35] G. Bi, E.V. Jones, ”A pipelined FFT processor for word-sequential data,” IEEE

Trans. Acoust., Speech, Signal Process., 37(12):1982-1985, Dec. 1989.

[36] Y. W. Lin, H. Y. Liu, C. Y. Lee, ”A 1-GS/s FFT/IFFT processor for UWB appli-

cations,” IEEE Journal of Solid-state Circuits, vol. 40, no.8 pp. 1726-1735, Aug.

2005.

[37] J. Lee, H. Lee, S. I. Cho, S. S. Choi, ”A High-Speed two parallel radix-24 FFT/IFFT

processor for MB-OFDM UWB systems,” IEICE Trans. on Fundamentals of Elec-

tronics, Communications and Computer Sciences, pp. 1206-1211, April 2008.

[38] J. Palmer, B. Nelson, ”A parallel FFT architecture for FPGAs”, Lecture Notes in

Computer Science, vol. 3203, pp. 948-953, 2004.

[39] M. Shin, H. Lee, ”A high-speed four parallel radix-24 FFT/IFFT processor for

UWB applications”, IEEE ISCAS 2008, pp. 960 - 963, May 2008.

[40] K. K. Parhi, C. Y. Wang, A. P. Brown, ”Synthesis of control circuits in folded

pipelined DSP architectures,” IEEE Journal Solid State Circuits, vol. 27, no. 1,

pp. 29-43, 1992.

[41] K. K. Parhi, ”Systematic synthesis of DSP data format converters using lifetime

analysis and forward-backward register allocation,” IEEE Trans. on Circuits and

Systems - II, vol. 39, no. 7, pp. 423-440, July 1992.

[42] K. K. Parhi, ”Calculation of minimum number of registers in arbitrary life time

chart,” IEEE Trans. on Circuits and Systems - II, vol. 41, no. 6, pp. 434-436, June

1995.

