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Abstract 
 

A growing literature exists on the association of CHRM2 (the gene coding for 
cholinergic muscarinic receptor 2) with alcohol dependence (Wang et al., 2004), with the 
broader phenotype of substance dependence in general (Luo et al., 2005; Dick, Agrawal, 
et al., 2007), and with the still-broader phenotype of externalizing psychopathology (Dick 
et al., 2008).  Additionally, one study has found association between CHRM2 and the 
personality traits of Agreeableness and Conscientiousness; its authors suggest that 
personality may substantially mediate the heritability of substance dependence (Luo et 
al., 2007).  Guided by the relevant literature, which is reviewed at length, the present 
study investigates: (1) the association of CHRM2 and risk of substance use disorders; (2) 
the association of CHRM2 with personality characteristics; and, conditional on 
replication of these main effects, (3) the extent to which personality mediates CHRM2’s 
influence on substance use disorders.  We use data from genotyped participants in two 
longitudinal studies, one of twins and their families and one of adopted siblings and their 
families.  We use Raw Maximum Likelihood in Mx (see Neale et al., 2003) to examine 
the association of 4 CHRM2 SNPs with personality traits and with composite measures 
of disordered substance use, while taking into account the phenotypic covariance in 
different types of families.  Our results provide no clear evidence of association of 
CHRM2 polymorphisms with broad personality traits or substance-abuse pathology.  
However, the validity of our results is considerably limited by the non-multivariate-
normal distribution of the substance-use pathology variable, incompleteness of the 
available data, use of self-reported ethnicity instead of genomically-determined ancestry, 
and sparse coverage of the CHRM2 gene. 
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Background 

 Despite requiring environmental exposure to some substance of abuse or 

addiction, it is clear that substance-use pathology has an appreciable hereditary 

component (Rose, Broms, Korhonen, Dick, & Kaprio, 2009; Dick, Prescott, & McGue, 

2009).  Personality traits, like substance-use pathology, are also partly heritable—reviews 

(e.g., Jang & Yamagata, 2009; Bouchard & McGue, 2003) indicate that that heritability 

estimates range from 0.30 to 0.60, with most between 0.40 and 0.50.  Investigators are 

currently searching for specific genetic variants underlying individual variation in 

behavioral traits.  Some existing genetic and neurobiological evidence, to be reviewed 

subsequently, implicates the involvement of cholinergic pathways in both substance-use 

pathology and personality. 

 Genome-wide linkage studies have implicated a disease-risk locus for alcohol 

dependence on chromosome 7q (Reich et al., 1998; Foroud et al., 2000).  CHRM2, 

located on chromosome 7q, codes for the muscarinic acetylcholine receptor-2, a G-

protein-coupled receptor typically functioning as an inhibitory pre-synaptic autoreceptor 

(Peralta et al., 1987; Zhuo, Fryer, & Jacoby, 2001; Sofuoglu & Mooney, 2009).  CHRM2 

serves as a plausible candidate gene for substance-use disorders in light of emerging 

evidence of the role of cholinergic systems in connection with dependence on alcohol and 

other drugs.   CHRM2 codes the protein of one of the muscarinic receptors; it goes 

without saying that the other class of cholinergic receptor, the nicotinic receptors, is 

intimately involved in the abuse and dependence of its eponymous agonist (Markou, 

2008, provides a recent review of the neurobiology of nicotine dependence).  However, 
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recent literature suggests involvement of the nicotinic receptors in the addiction to other 

drugs, including alcohol, opiates, and stimulants (Rahman, Lopez-Hernandez, Corrigall, 

& Papke, 2008), and has characterized acetylcholine’s involvement in the addiction to 

stimulants (Sofuoglu & Mooney, 2009), particularly cocaine (Williams & Adinoff, 2008, 

provide a thorough review).  Striatal acetylcholine interacts with the dopaminergic 

systems underlying the reward mechanisms common to all drugs of abuse: activation of 

certain muscarinic subtypes modulates striatal dopamine release (Zhang, Yamada, 

Gomeza, Basile, & Wess, 2002), and in turn, striatal acetylcholine release is upregulated 

by activation of the D1 dopamine receptor and downregulated by activation of the D2 

receptor (reviewed in Williams & Adinoff).    In addition to the reinforcing effects of 

drug abuse, Hoebel and colleagues have reported that striatal acetylcholine is involved in 

the aversive effects of drug withdrawal, whereby it may be important for the development 

of drug addiction.  Specifically, they observed high striatal acetylcholine levels relative to 

dopamine levels during antagonist-induced withdrawal in rats treated with morphine 

(Rada, Pothos, Mark, & Hoebel, 1991), nicotine (Rada, Jensen, & Hoebel, 2001), ethanol 

(Rada, Jensen, Lewis, & Hoebel, 2004, inducing withdrawal via blockade of endogenous 

opioid receptors thought to mediate the reward response to ethanol), and benzodiazepine 

(Rada & Hoebel, 2005).  Hoebel, Avena, and Rada (2007) theorize that the balance of 

dopamine with acetylcholine is important to approach and avoidance motivation in 

general.  They propose that whereas dopamine largely produces approach-motivation, 

acetylcholine produces avoidance-motivation, in the form of satiety when dopamine 

levels are high, and in the form of an aversive state of anxiety, depression, or withdrawal 
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when dopamine levels are low1.  Finally, the involvement of cholinergic systems in 

learning and cognition helps to explain the more direct, genetic evidence connecting the 

CHRM2 gene with alcohol dependence, which we discuss in the subsequent paragraphs. 

 CHRM2 variants have exhibited allelic association with substance-use pathology 

in previous studies.  The first allelic association study of CHRM2 and substance-use 

pathology (Wang et al., 2004) was motivated by an earlier finding from a genome-wide 

linkage scan for the theta- and delta-band event-related oscillations underlying the P300 

event-related potential (ERP) from a visual oddball task, by Jones et al. (2004; also see 

Jones et al., 2006).  The P300 has been of interest in alcoholism research since the 

seminal study by Begleiter, Porjesz, Bihari, and Kissin (1984), wherein P300 amplitude 

reduction distinguished adolescent boys with a family history of alcoholism from 

controls.  The linkage scan by Jones et al. identified a significant (LOD = 3.5) linkage 

signal for frontal-electrode, target-case theta oscillation between the markers D7S1837 

and D7S509—the locus of CHRM2.  The observed linkage signal for the theta-band 

oscillation is especially interesting because of this oscillation’s cognitive correlates (e.g., 

Doppelmayr, Klimesch, Schwaiger, Auinger, & Winkler, 1998; Klimesch et al., 2001) 

and because of known involvement of cholinergic systems in cognition (Everitt & 

Robbins, 1997; Baxter & Chiba, 1999).  The M2 receptors, specifically, likely play a role 

in learning and memory by inhibiting long-term potentiation (Calabresi, Centonze, 

Gubellini, Pisani, & Bernardi, 1998).  Long-term potentiation, in turn, may be one of the 

mechanisms necessary for the development of addiction (Wolf, 2003). 

 
1The details of striatal dopamine-acetylcholine interaction are actually more complex, though 
they do not concern us here; see Williams and Adinoff (2008) and Cragg (2006) for review. 
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Using a sample of alcohol-dependent probands and their families from COGA 

(the Collaborative Study on the Genetics of Alcoholism), Wang et al. (2004) conducted a 

linkage analysis for alcohol dependence and observed a peak signal on chromosome 7 

some distance away from CHRM2.  However, they followed up with a Pedigree 

Disequilibrium Test using 11 CHRM2 single-nucleotide polymorphisms (SNPs) and 

observed highly significant association for three SNPs, two in the 5th intron and one in 

the 4th intron (all p ≤ 0.007), with a few nominally significant results for other SNPs.  

Haplotype analysis indicated that the most common haplotype of the three 4th-intron 

SNPs had a protective effect against risk of alcohol dependence.  Interestingly, the 

complement of this protective haplotype was over-transmitted to alcohol-dependence 

cases with comorbid major depression.  Also, a rare haplotype was over-transmitted to 

alcohol-dependence-only cases. 

An independent team of researchers (Luo et al., 2005) obtained results consistent 

with those of Wang et al. in a case-control association study of alcohol dependence and 

drug dependence (defined as dependence on either cocaine or opioids), observing 

nominally significant association of both alleles and genotypes, at six CHRM2 SNPs, 

with both of the substance-dependence phenotypes, but only in their African-American 

subsample.  Luo et al. conclude that their “regression analysis demonstrated that [certain] 

alleles, genotypes, haplotypes and diplotypes at the CHRM2 locus affected risk for 

[alcohol dependence and drug dependence]” (p. 2424).  Their results certainly provide 

suggestive, if not clear, evidence of an association between CHRM2 variation and 
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substance dependence (though their post-hoc stepwise regression analyses using 

haplotypes and diplotypes is not easy to interpret). 

COGA investigators re-examined CHRM2’s association with alcohol dependence 

in a study by Dick, Agrawal, et al. (2007), using a sample and genetic analyses 

comparable to those used by Wang et al. (2004).  However, Dick, Agrawal, et al. (2007) 

used more genetic markers (27 CHRM2 SNPs) and compared results for alcohol-

dependence cases with comorbid illicit-drug dependence to those for alcohol-dependence 

cases without comorbid illicit-drug dependence (drug dependence diagnoses in the 

sample included dependence on marijuana, cocaine, opioids, stimulants, and sedatives).  

Among cases with comorbid drug dependence, these authors observed nominally 

significant association for nine SNPs.  However, they did not correct for multiple 

significance testing.  Assuming 27 independent significance tests (which is overly 

conservative, as it ignores linkage disequilibrium among the SNPs) and a study-wide 

alpha of 0.05, a Bonferroni correction would leave only one of these nine results 

significant (PDT “sum” statistic for rs978437, p = 0.001).  The statistics for rs324640 and 

rs324650, which were implicated by Wang et al. (2004), were not nominally significant 

in this study, though they approached nominal significance (i.e., p < 0.10).  This 

discrepancy is presumably due to sampling error and the fact that different criteria for 

alcohol dependence were used in these two studies (DSM-IIIR and Feighner versus 

DSM-IV).  Nonetheless, the most interesting finding from this study is quite clear: all of 

the (nominally) significant results were obtained with alcohol-dependence cases with 

comorbid illicit-drug dependence, and no SNP showed significant association with 
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alcohol-dependence among cases without illicit-drug dependence.  Additionally, cases 

with comorbid illicit-drug dependence differed from cases without in severity of 

pathological alcohol consumption (e.g., age of onset, largest number of drinks in 24-hour 

period), level of novelty-seeking, and level of other comorbid psychopathology.  Notably, 

COGA investigators had previously discovered that the observed association of 

GABRA2 with alcohol dependence in their sample was entirely due to those alcohol-

dependence cases with comorbid drug dependence (Agrawal et al., 2006). Dick, Agrawal, 

et al. interpret their findings as evidence that alcohol dependence with comorbid drug 

dependence is a more severe manifestation of the disorder, under greater genetic 

influence. 

Different substance use disorders are comorbid with one another, and with 

conduct disorder and with antisocial behavior in adulthood (Krueger & Markon, 2006), 

which together fall under the general label of externalizing psychopathology.  Evidence 

from twin studies suggests that comorbid risk for substance use pathology is largely 

genetic (Young, Stallings, Corley, Krauter, & Hewitt, 2006), and that comorbid risk for 

substance use pathology and behavioral disinhibition is best modeled as stemming from a 

single, highly heritable externalizing factor (Krueger et al., 2002).  Dick et al. (2008) 

attempted to identify a gene associated with general risk for externalizing 

psychopathology, using a sample of COGA participants.  They used 27 SNPs in and 

around CHRM2 in an association analysis of the following phenotypes: DSM-IIIR 

symptom counts for antisocial personality disorder, conduct disorder (in childhood), and 

drug dependence; DSM-IV symptom counts for alcohol dependence; two personality 



   7 

 

traits, Novelty-Seeking and Sensation-Seeking; and scores on the first principal 

component (which accounted for over half the phenotypic variance) extracted from the 

foregoing.  All phenotypes were nominally associated with at least one SNP, with the 

principal-component scores exhibiting strongest association (p < 0.01 for six SNPs), 

though there was no correction for multiple significance testing.  The strongest evidence 

of association came from those SNPs in an LD block spanning portions of the 3rd and 4th 

introns.  Dick et al. also conducted a genome-wide linkage scan, hypothesizing that a 

gene associated with general risk for externalizing psychopathology would manifest a 

strong linkage signal for the principal-component scores at its locus, and modest linkage 

signals for the specific phenotypes in the same vicinity.  Such a locus was identified on 

the long arm of chromosome 7, with a peak lod value of 1.57, for principal-component 

scores.  Notably, analysis of phenotypes residualized for the first principal component 

yielded evidence neither of linkage nor association. 

First and foremost, the report by Dick et al. (2008) provides plausible evidence 

that CHRM2 is a gene contributing to general risk for externalizing psychopathology.  

Aside from this, it is suggestive of a contribution by CHRM2 to individual variation in 

personality—both Novelty Seeking and Sensation Seeking were significantly (p < 0.01) 

associated with two SNPs each.  Personality traits related to behavioral disinhibition—

such as Novelty Seeking (Young et al., 2000) and (reversed) Constraint (Conway, 

Swendsen, Rounsaville, & Merikangas, 2002; Elkins, King, McGue, & Iacono, 2006)—

are strongly correlated with externalizing psychopathology and form an integral part of 

the externalizing spectrum (Krueger et al., 2002).   
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The first report of association between CHRM2 and personality of which we are 

aware is due to Luo et al. (2007), which has largely motivated the present study.  These 

authors analyzed the association of five personality variables (as measured by the NEO-

FFI; Costa & McCrae, 1997) and six SNPs within and flanking CHRM2, using a mixed 

sample (N = 514) of both substance-dependence cases and healthy controls, and both 

European-Americans and African-Americans.  Age, disease (alcohol or drug dependence) 

affection, ancestry, and sex were entered into the analyses as covariates.   Again, the 

results of Luo et al. are not easily interpreted due to their use of stepwise MANCOVA 

and ANCOVA (conducted subsequent to exploratory t-tests and ANOVAs), and the fact 

that the five personality variables exhibited highly significant pairwise intercorrelation 

(all p < 0.001), but they report significant (p < 0.01) association results for the traits of 

Agreeableness and Conscientiousness.  Luo et al. speculate that “personality traits might 

substantially underlie the heritable component of [substance dependence]” (p. 1557). 

The dominant framework in trait-based theories of personality is the Five-Factor 

Model, which, as its name implies, posits that there exist five fundamental traits on which 

individuals differ with respect to personality.  One alternative framework is that of 

Tellegen, which posits a three-factor model of personality.  Tellegen’s model is 

particularly attractive due to the thorough, exploratory, iterative method by which 

evolved both the theory and its operationalization, the Multidimensional Personality 

Questionnaire (Tellegen, 1982; Tellegen & Waller, 2008).  The MPQ consists of eleven 

primary scales and three orthogonal factor scales—Positive Emotionality (PEM), 

Negative Emotionality (NEM), and Constraint (CON)—such that each factor scale is a 
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weighted linear composite of the primary scales.  Each primary scale has a clear major 

loading onto one of the factors (except for one primary scale, Absorption).  Replication of 

CHRM2’s association with personality variables measured with a different personality 

instrument would constitute “constructive replication” (Lykken, 1968) and provide robust 

evidence that CHRM2 polymorphisms truly account for variance in personality traits and 

not merely variance specific to a particular personality measure. 

Of course, “constructive replication” requires that the replication involve the same 

theoretical constructs as the original finding.  Evidence concerning the structural 

relationship between the scales of the MPQ and NEO reveals their considerable 

overlapping variance.  Data from two moderately large samples (Tellegen & Waller, 

2008; Church, 1994) reveal substantial correlations between MPQ and NEO scales.  

These data enable investigators to formulate reasonable predictions of what results would 

be obtained in an association study of CHRM2 with MPQ data, conditional on a true 

association with personality traits.  For example, NEO Conscientiousness and MPQ 

(factor) Constraint are substantially correlated (r = 0.46 in Church, 1994), so one might 

reasonably hypothesize that CHRM2 would have significant association with MPQ 

Constraint.  Still more compelling is the excellent paper by Markon, Krueger, and 

Watson (2005), in which was reported a hierarchical factor analysis applied both to a 

meta-analytic dataset and a new sample of undergraduates measured with four different 

personality questionnaires.  Markon et al. conclude from this analysis that there exists a 

hierarchical structure of personality traits, so that a five-, four-, three-, or two-factor 

solution is defensible, depending on the degree of abstraction from the observed data.  
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Because Markon et al. used orthogonal rotation in their exploratory factor analysis, the 

correlations between personality scales can be estimated by the summed products of their 

loadings on each factor. 

Somewhat complicating matters is the fact that Markon et al. (2005) and Tellegen 

and Waller (2008) do not report such correlations or common-factor loadings using MPQ 

factor scales, and that Church (1994), who does, found that the two NEO scales for which 

Luo et al. (2007) obtained significant allelic-association results have their strongest 

correlations with MPQ primary scales rather than factor scales.  NEO Agreeableness 

correlated -0.48 with MPQ Aggression, compared with -0.40 for MPQ NEM, the MPQ 

factor on which Aggression has its primary loading.  Similarly, NEO Conscientiousness 

correlated 0.56 with MPQ Control and 0.48 with MPQ Achievement, compared with 0.46 

with MPQ CON and 0.31 with MPQ PEM.  These correlations, combined with the 

relative lack of information concerning the structural relationships of MPQ factors with 

NEO Agreeableness and Conscientiousness, suggest that an attempt to replicate Luo et al. 

(2007) using MPQ data would best be accomplished via allelic association analysis using 

MPQ primary scales.  Using this approach, we would use MPQ Aggression as analog for 

NEO Agreeableness, and MPQ Control as analog for NEO Conscientiousness, because 

there is remarkable consistency between the reports by Church, Tellegen and Waller, and 

Markon et al. in identifying these as the strongest correlates of the NEO scales of interest.  

Church’s data are summarized above.  Tellegen and Waller (2008, p. 281) obtained a 

correlation of -0.50 between NEO Agreeableness and MPQ Aggression, whereas no other 

MPQ primary scales had a correlation greater than 0.30 in magnitude with 
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Agreeableness.  The two correlations between NEO Conscientiousness and MPQ scales 

that exceeded 0.30 in magnitude were with MPQ Achievement (0.42) and MPQ Control 

(0.52).  From the meta-analytic exploratory factor models reported by Markon et al. 

(2005, which used the MPQ, NEO, and three other personality instruments), MPQ 

Aggression was the MPQ primary scale exhibiting the highest correlation (as estimated 

from the reported factor loadings) with NEO Agreeableness, in three of the four such 

models.  The exception was the two-factor model, which by necessity accounted for less 

common variance than any the others, and which Markon et al. interpret to be at the 

greatest level of abstract remoteness from the observed data.  Here, MPQ Stress 

Reactivity had the highest such correlation.  On the other hand, the situation is less clear 

for NEO Conscientiousness, which had its largest estimated MPQ-scale correlation with 

Control in the four- and five-factor models, with Aggression in the three-factor model, 

and with Stress Reactivity in the two-factor model.  While not very helpful to our present 

purpose, this pattern neatly coincides with the hierarchical interpretation Markon et al (p. 

148) offer. 

However, we decided to analyze the three MPQ factor scales, for the following 

reasons. First, we decided to include all three MPQ factor scales in the analysis, because 

Church (1994) reports at least one correlation greater than 0.30 in magnitude between 

each of them and one of the NEO factors of interest (see preceding paragraph).  Church 

also reports that NEO Agreeableness and Conscientiousness both have non-trivial 

correlations with MPQ primary scales that have their primary loadings on different 

factors.  For example, NEO Conscientiousness correlated 0.48 with MPQ Achievement 
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(primary loading on PEM) and 0.56 with MPQ Control (primary loading on CON).  

Second, as opposed to an analysis of eleven intercorrelated primary scales, Type I error 

correction would be easier in an analysis of three scales that are mostly uncorrelated with 

each other (the factor scales were constructed with orthogonal rotation, and correlate 

pairwise approximately r = 0.1 in absolute magnitude in the present sample).  Third, the 

factor scales represent more general traits than the primary scales.  All MPQ items 

contribute to the factor scores, so the factors are measured with less measurement error 

than the primaries, and an analysis using the factors represents, at least indirectly, an 

analysis using all of the primaries.  Finally, significant or suggestive results for a factor 

can always be followed up with analysis of its primary scales, and we judged the results 

of such follow-ups to be easier to interpret than follow-ups of factors suggested by the 

primaries. 

Besides the observed CHRM2 association with Agreeableness and 

Conscientiousness due to Luo et al. (2007), Dick et al. (2008) found significant 

association between CHRM2 SNPs and the personality variables of Novelty-Seeking and 

Sensation-Seeking.  However, it is not completely clear what might constitute 

constructive replication of this result using MPQ data. In the meta-analytic exploratory 

factor analyses by Markon et al. (2005), Novelty-Seeking exhibits nontrivial loadings on 

more than one common factor in all four models examined, leaving its structural 

relationships with MPQ primary scales rather ambiguous, and suggesting that it is a 

somewhat heterogeneous construct.  From the Big-Five standpoint, reversed 

Conscientiousness appears to be its closest equivalent, but it has also shown association 
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with Extraversion, Openness, and reversed Agreeableness (DeYoung & Gray, 2009).  We 

are not aware of any studies examining the structural relationships between Sensation-

Seeking and MPQ variables, though some studies (e.g., Zuckerman, Kuhlman, Joireman, 

Teta, & Kraft, 1993) indicate that reversed Agreeableness and reversed 

Conscientiousness are its closest Big-Five equivalents.  Others (reviewed by DeYoung & 

Gray, 2009) observe nontrivial correlations between Sensation-Seeking and Extraversion, 

Openness, and reversed Agreeableness, highlighting the theoretical similarity between 

Sensation-Seeking and Novelty-Seeking. 

On the other hand, Dick et al. (2008) do not emphasize the specific personality 

traits of Novelty-Seeking and Sensation-Seeking, but upon the more general trait of 

externalizing psychopathology.  Their study highlights the strengths of using a composite 

and dimensional, rather than categorical, model of externalizing pathology, and likewise, 

we employ a dimensional, quasi-continuous model of substance-use pathology, 

representing variance common to multiple indicators thereof.  The present study 

investigates: (1) the association of CHRM2 and risk of substance-use pathology; (2) the 

association of CHRM2 with personality characteristics; and, conditional on replication of 

these main effects, (3) the extent to which personality mediates CHRM2’s influence on 

substance-use pathology. 

 

Method 

Sample 
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 Tissue samples were collected from participants from the Minnesota Twin Family 

Study (“MTFS;” Iacono, Carlson, Taylor, Elkins, & McGue, 1999; Iacono & McGue, 

2002), and the Sibling Interaction and Behavior Study (“SIBS;” McGue et al., 2007).  We 

(Kirkpatrick, McGue, & Iacono, 2009) have previously described MTFS as “a 

longitudinal study of a community-based sample of same-sex twins (N = 3779, including 

five sets of triplets), born between 1972 and 1994 in the State of Minnesota, and their 

parents,” and SIBS as “an adoption study of sibling pairs (N = 1232) and their parents 

[comprising a community-based sample of] families where both siblings are adopted, 

where both are biologically related to the parents, or where one is adopted and one is 

biologically related.”  Among these participants, 2257 families were represented in the 

present analysis, comprising six distinct “family types”:  

1) monozygotic-twin families (3970 individuals in 1033 families), 

2) dizygotic-twin families (2322 in 612),  

3) biological-sibling families (679 in 173),  

4) adopted-sibling families (682 in 239),  

5) “mixed” families (357 in 92), and  

6) “residual singletons” (108 individuals).   

The sixth type, “residual singletons,” comprises stepparents, the third members of sets of 

triplets, and individuals who were the only members of their families to provide a tissue 

sample. 

 The sample is overwhelmingly Caucasian (90.72%), but it includes a distinct 

East-Asian minority (4.58%), most of whom are SIBS offspring adopted from South 
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Korea.  The remainder of the sample (3.93%), whose ethnic background was coded as 

“Other,” consists of individuals who were neither Asian nor Caucasian, or were of mixed 

or unknown ancestry. 

SNP Selection & Genotyping 

 Participants were genotyped on seven SNPs in and around CHRM2 (out of 35 

SNPs and variable-number tandem repeats total).  These seven SNPs were selected using 

the Tagger feature of Haploview (version 3.xx; Barrett, Fry, Maller, & Daly, 2005) using 

release 21 data from www.hapmap.org , with the objectives of adequately representing 

the gene’s variation conditional on its linkage-disequilibrium structure, while also 

including SNPs showing association with phenotypes of interest in prior research.  The 

SNPs were genotyped with Sequenom MassArray [Sequenom, Inc., San Diego,  CA].  A 

total of thirty-five markers were typed, seven of which were in or near CHRM2. 

Some participants had provided multiple tissue samples that had all been 

genotyped; the genotypes for these individuals were combined during the quality-control 

procedure applied to the genotypic datafile.  Also, only one twin per MZ-twin pair was 

genotyped, so these genotypes were assigned to the co-twin of the pair.   The datafile was 

additionally screened for data-entry errors, poor-quality tissue samples, recalcitrant 

markers, and Mendelian errors, using a program written in the R programming language.   

Three CHRM2 SNPs were excluded from analysis due to excessive missing data 

(rs17496259 and rs11982108) or failure of Hardy-Weinberg equilibrium (rs2113545).  

The following four SNPs were entered into our analysis: (1) rs10228878, an upstream, 

flanking SNP; (2) rs2350780, located in the 3rd intron; (3) rs324640, located in the 3rd 

http://www.hapmap.org/
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intron; and (4) rs8191992, located in the downstream untranslated region (3’UTR) of 

CHRM2.  The alleles and minor allele frequencies for these SNPs are presented in Table 

II.  We identify the “minor allele” as the less-common allele in the sample when all 

available genotypes are considered, irrespective of ethnicity or founder status.  We also 

calculated allele frequencies separately for Asian and Caucasian founders.  This separate 

calculation by ethnic group is informative because allele frequencies can differ markedly 

in different populations, and calculating only from founders provides a better estimate of 

the allele frequencies in the respective populations because it can reasonably be assumed 

that founders are sampled independently. 

Phenotypes  

Substance-use pathology.  We used a composite measure of substance-use pathology that 

we (Kirkpatrick,  McGue, & Iacono, 2009) have described previously as: 

scores on the first principal component extracted from measures of nicotine 

dependence (e.g.,  symptom count, per-day frequency of use), heavy alcohol 

consumption (e.g., frequency of drinking, largest number of drinks in one day), 

alcohol abuse and dependence (e.g., withdrawal and tolerance, interference with 

social and occupational functioning), illicit drug abuse and dependence (e.g., 

symptom count, number of different drugs used), and frequency of illicit drug use. 

Because the frequency distribution of substance-use pathology scores deviated 

substantially from normality in our sample, we subjected these scores to a loge(x + 1) 

transformation, and re-standardized them with respect to the post-transformation mean 

and standard deviation of the sample. 
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Personality assessment.  Personality was measured using a 198-item version of the 

Multidimensional Personality Questionnaire (Tellegen, 1982; Tellegen & Waller, 2008), 

with items scored on a four-point Likert scale.  We analyzed the three higher-order MPQ 

factors—Positive Emotionality, Negative Emotionality, and Constraint—for association 

with CHRM2 SNPs.  Personality data for parents was obtained at the intake assessment 

of MTFS and SIBS.  We also analyzed intake personality data for those offspring who 

were sixteen years of age or older at the time, which includes the seventeen-year-old 

MTFS cohort and some of the older siblings from SIBS.  For the eleven-year-old-cohort 

twins, we used their personality data collected at the second MTFS follow-up assessment, 

when their average age was seventeen.  For SIBS offspring younger than sixteen at 

intake, we used their most recent personality assessment (the first SIBS follow-up), 

provided that they were sixteen or older at that time.  The full MPQ is not given to MTFS 

and SIBS participants younger than sixteen, because the item content of some of the 

scales lack face validity for use among children and young adolescents (for example, 

questions about one’s typical behavior in the workplace).  Prior to analysis, we rescaled 

the three factor scores to the T-score metric (M = 50, SD = 10). 

Type I error correction 

 Conventionally, when conducting multiple significance tests, researchers will 

correct the per-comparison Type I error rate (αpc) so that the study-wide Type I error (αsw) 

remains fixed at the desired level.  Because we are conducting an association study with 

four phenotypes and four genetic polymorphisms, we are conducting sixteen significance 

tests.  A standard Sidak correction of the Type I error (ߙ௣௖ ൌ 1 െ ሺ1 െ  ௦௪ሻଵ/ெ, for Mߙ
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statistical tests) would be straightforward but will be overly conservative in many cases, 

because it assumes that the significance tests are independent.  Both Nyholt (2004) and Li 

and Ji (2005) have attempted to tackle the multiple-testing problem for analyses using 

SNPs that are in linkage disequilibrium (LD).  Nyholt’s approach calculates a Sidak 

correction for the “effective” number of independent statistical tests (ܯ௘௙௙) as calculated 

from the eigen decomposition of the correlation matrix of the variables: ܯ௘௙௙ ൌ 1 ൅

ሺܯ െ 1ሻሺ1 െ ௩௔௥ሺఒ೚್ೞሻ
ெ

ሻ, where M is the number of variables and ݎܽݒሺߣ௢௕௦ሻ is the 

variance of the eigenvalues of the observed correlation matrix.  When the variables are 

SNPs, “correlation,” of course, refers to LD.  When ܯ௘௙௙ is calculated, Type I error is 

corrected with the formula ߙ௣௖ ൌ 1 െ ሺ1 െ  ௦௪ሻଵ/ெ೐೑೑.  The Li-Ji approach is similar toߙ

Nyholt’s, except that it always computes an integer value for ܯ௘௙௙. 

 The four SNPs entered into our analysis are not in tight LD (Nyholt ܯ௘௙௙  = 3.48; 

Li-Ji ܯ௘௙௙ = 3).  The intercorrelation of the four phenotypes is negligible (Nyholt ܯ௘௙௙= 

3.98; Li-Ji ܯ௘௙௙= 4).  Both methods yielded αPC = 0.004, within rounding error. 

Power Analysis 

 Prior to allelic association analysis, we conducted a power-analysis in Quanto 

(Gauderman & Morrison, 2006) for detecting an allele with an additive effect on a 

quantitative trait.  With 2000 independent observations (slightly fewer than the number of 

families in our sample), and a Type I error of 0.004, we would have 94.6% power to 

detect an allele that accounts for 1% of the variance in the trait. 

Association Analysis—Raw Maximum Likelihood in Mx 
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 The individuals in our sample are clustered within families, and therefore 

obviously do not provide independently sampled observations.  Our sample presents an 

unusual methodological challenge, in that the covariance of observations within each 

family will depend upon what type of family it is.  Our sample comprises six distinct 

types of family, described above.  Raw maximum likelihood in Mx (Neale, Boker, Xie, & 

Maes, 2003) enables estimation of SNP effects from an association analysis while 

accounting for the within-family covariance structure, conditional on family-type.  It also 

provides an attractive method of handling missing data (see below). 

 For each family i of family-type k, represent scores for a given phenotype as a 1 × 

v , 4 ector

ܑܠ ൌ ሾݔ ௜ଶݔ ௜ெݔ ௜ிሿ , where: ௜ଵݔ

 ௜ଵ = score for offspring 1, ݔ

 ௜ଶ = score for offspring 2, ݔ

 ௜ெ = score for mother, ݔ

 .௜ி = score for fatherݔ 

The joint distribution of phenotype scores for family-type k is modeled as the 

multivariate normal distribution of four variables with mean μk, a 1 × 4 vector, and 

 Σk, 4 × 4 symmvariance a  etric matrix, such that 

ܓૄ ൌ ሾߤଵ௞ ଶ௞ߤ ெ௞ߤ ி௞ሿߤ ൌ ሾܧሺݔଵ௞ሻ ଶ௞ሻݔሺܧ ெ௞ሻݔሺܧ   ி௞ሻሿݔሺܧ

and 
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઱ܓ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

ଵ௞ሻݔሺݎܽݒ ,ଵ௞ݔሺݒ݋ܿ ଶ௞ሻݔ ,ଵ௞ݔሺݒ݋ܿ ெ௞ሻݔ ,ଵ௞ݔሺݒ݋ܿ ி௞ሻݔ

,ଶ௞ݔሺݒ݋ܿ ଵ௞ሻݔ ଶ௞ሻݔሺݎܽݒ ,ଶ௞ݔሺݒ݋ܿ ெ௞ሻݔ ,ଶ௞ݔሺݒ݋ܿ ி௞ሻݔ

,ெ௞ݔሺݒ݋ܿ ଵ௞ሻݔ ,ெ௞ݔሺݒ݋ܿ ଶ௞ሻݔ ெ௞ሻݔሺݎܽݒ ,ெ௞ݔሺݒ݋ܿ ி௞ሻݔ

,ி௞ݔሺݒ݋ܿ ଵ௞ሻݔ ,ி௞ݔሺݒ݋ܿ ଶ௞ሻݔ ,ி௞ݔሺݒ݋ܿ ெ௞ሻݔ ி௞ሻݔሺݎܽݒ ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ ሺܓۺܓۺ
 , ሻ܂

where ܓۺ is a lower-triangular matrix and ܓۺ
܂  is its transpose. 

The maximum-likelihood estimates of the parameters within μk and Lk , given the data 

from all n vectors of family data in family-type k, will be those yielding the global 

maximum of the function, 

,ܓሺૄܮ ઱ܠ | ܓ૚ … ሻܖܠ ൌ ෑ
exp ሺെଵ

ଶሾܓૄି࢏ܠሿ ઱ܓ
ష૚ሾܓૄି࢏ܠሿ܂ሻ

ሺ2ߨሻଶ|઱ܓ|ଵ/ଶ

௡

௜ୀଵ
  , 

which function Mx numerically optimizes in the following alternate form, 

െ2logܮሺૄܓ, ઱ܠ | ܓ૚ … ሻܖܠ ൌ ෍ ሾെ4 logሺ2ߨሻ ൅ log|઱ܓ| ൅ ሺܑܠ െ ܓሻ ઱ܓૄ
ି૚ሺܑܠ െ ሿ܂ሻܓૄ

௡

௜ୀଵ
  . 

Note that the software actually optimizes the elements of ܓۺ, and thus indirectly estimates 

the parameters of Σk.  Defining Σk as the product of a lower-triangular matrix and its 

transpose ensures that Σk remain in the parameter space for covariance matrices during 

numerical optimization (i.e., that it remains positive definite).  Obviously, in the special 

case of family-type 6, the residual singletons, each family contains exactly one 

observation, so the distribution of phenotype scores is modeled as a (univariate) normal 

distribution with scalar mean and variance parameters. 

 Family data vectors with some missing observations on the phenotype variable 

nonetheless provide information about a subset of the parameters being estimated.  One 

of the attractive features of maximum-likelihood methods is that they do not require 

complete data for every unit of observation, and can “work around” missing values.  
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Conceptually, those data vectors which have missing values on a common set of variables 

are used by Mx in a function for a subspace of the likelihood hypersurface; it is as though 

the variables with missing values have been integrated out of the function for that 

particular subset of observations (see Schafer & Graham, 2002), which is straightforward 

under a multivariate-normal likelihood model.  For example, if family-type k consists of 

fifty families providing data for all four members, and ten families with missing data for 

s ollowing fit function, the mother, Mx optimize  the f

െ2logܮሺૄ , ઱ ܠ |  … ܠ ሻ ൌ ܓ ܓ ૚ ૟૙

෍ ൫െ4 logሺ2ߨሻ ൅  log|઱ܓ| ൅ ሺܑܠ െ ܓሻ઱ܓૄ
ି૚ሺܑܠ െ ൯܂ሻܓૄ   ൅

ହ଴
 

௜ୀଵ

෍ ቀെ3 l gሺ2ߨ ൅  logห઱ܓ′ห ൅ ൫ܑܠ െ ′ܓ൯઱′ܓૄ
ି૚൫ܑܠ െ ൯′ܓૄ

ቁ܂
଺଴

 o ሻ
௜ୀହଵ

where ૄܓ′ ൌ ሾߤଵ௞′ ′ଶ௞ߤ  ி௞′ሿ andߤ

઱ܓ′ ൌ ቎
ଵ௞′ሻݔሺݎܽݒ ′ଵ௞ݔሺݒ݋ܿ , ଶ௞′ሻݔ ′ଵ௞ݔሺݒ݋ܿ , ி௞′ሻݔ

′ଶ௞ݔሺݒ݋ܿ , ଵ௞′ሻݔ ଶ௞′ሻݔሺݎܽݒ ′ଶ௞ݔሺݒ݋ܿ , ி௞′ሻݔ
′ி௞ݔሺݒ݋ܿ , ଵ௞′ሻݔ ′ி௞ݔሺݒ݋ܿ , ଶ௞′ሻݔ ி௞′ሻݔሺݎܽݒ

቏ , and the parameters within 

 are equated to their counterparts in μk and Σk.  This “work-around” for ′ܓand ઱ ′ܓૄ

missing phenotypic data will result in parameter estimates that are not biased by the 

missing-data mechanism, provided that the data are missing at random (Schafer & 

Graham, 2002; Rubin, 1976). 

 In twin families (family-types 1 and 2), the assignment of the labels “Offspring 1” 

and “Offspring 2” mentioned above are basically arbitrary, though in actual practice, the 

labels are used to identify the first-delivered and second-delivered twin (during birth of 

the twin pair), respectively.  The labels “Offspring 1” and “Offspring 2” likewise serve to 
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identify the older sibling and younger sibling, respectively, in family-types 3 and 4.  In 

family-type 5, “Offspring 1” always denotes the adopted child, and “Offspring 2” 

identifies his or her sibling, who is the biological offspring of the family’s parents.  

 The phenotypic covariance matrix (Σk) for each family-type is estimated 

unconditionally and without constraints.  This serves to account for the within-family 

covariance of observations, the structure of which depends upon family-type.  The allelic 

association analysis is implemented by modeling the means of each family-type 

conditional on genotype and covariates.  By designating genotype and covariates as 

“definition variables” in Mx, the expected observation for each element of family data 

vector i m pe ef on lly on these variables, as follows: of fa ily-ty  k is d ined c ditiona

௜ଵ ௞ ௜ଵ ௜ଵ ଷ ௜ଵ ସ ௜ଵ  ܧሺݔ ሻ ൌ ଵܬ ൅ ܾଵܵ ൅ ܾଶܥ ൅ ܾ ܣ ൅ ܾ ܩ

௜ଶሻ ൌ ൅ ଶ ൅ ܣ ଶ ൅ ݔሺܧ   ଶ௞ܬ ܾଵ ௜ܵଶ ൅ ܾ ௜ଶܥ ܾଷ ௜ ܾସܩ௜ଶ

௜ெ ௜ெ ௜ெ ݔሺܧ  ௜ெܩ ሻ ൌ ெ௞ܬ       ൅        ܾଶܥ ൅ ܾଷܣ ൅ ܾହ

௜ிሻݔሺܧ ൌ ி௞ܬ       ൅        ܾଶܥ௜ி ൅ ܾଷܣ௜ி ൅ ܾହܩ௜ி  

where: 

௝ܬ ൌ

ܾଵ ൌ Effect of sex, ௜ܵ௝, among offspring (since sex of parent is implicit in being a 

mother or father), 

௞   Intercept for family-member type j in family-type k, 

ܾ ൌ

ଷ  Effect of Asian ancestry, ܣ௜௝ (dummy-coded), 

ଶ  Effect of Caucasian ancestry, ܥ௜௝ (dummy-coded), 

ܾ ൌ

ସ  Effect of minor allele, , for offspring, ܾ ൌ ௜௝ܩ

ܾହ ൌ Effect of minor allele, ܩ௜௝, for parents. 
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As will be seen from the above, we are regressing phenotype onto genotype and 

covariates.  Thus, four intercept terms are estimated for each family-type, whereas the 

regression slopes are estimated across the whole sample. 

 We implemented the model in Mx by way of a two-step process for each 

combination of SNP and phenotype.  First, we used one Mx script to estimate the 

unconditional phenotypic covariance matrices for each family-type and write each to a 

text file.  Then, we used a second Mx script that fit the means model described above, 

using the fixed, precomputed covariance matrices read from the text files.  This approach 

enabled us to estimate the covariance matrices from all available phenotypic data, 

irrespective of whether or not an individual had genotypic data.  Additionally, because 

any given SNP accounts for a very small portion of the phenotypic variance, the use of 

these precomputed covariance matrices can save a considerable amount of computation 

time, with negligible loss of power or increase in Type I error rate (Li et al., under 

review).   Missing genotypes were only a problem for the means model fitted in the 

second step, since the means model is defined conditional on genotype.  Consequently, 

we excluded individuals with missing genotype from the means model.  We used a 

program written in the R programming language for data-management and automation of 

the analysis for all sixteen SNP-phenotype combinations. 

 The following ad hoc modifications to our model had to be made when applying 

it to our sample.  First, the intercepts J1 and J2 were fixed to be equal in twin families, 

since the designation of the labels “Offspring 1” and “Offspring 2” to the twins is 

essentially arbitrary.  Second, we had to adjust the model in light of the fact that we 
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collected tissue samples from only one parent in each family of type 4, which made it 

impossible for any family of type 4 to have complete observations for all four of its 

members.  We did so by treating each family of this type as providing three observations: 

one from each offspring, and one from the parent who provided a tissue sample.  

Consequently, there was no distinction between mothers and fathers in family-type 4—

they were both simply treated as the family’s “parent,” and in effect, the intercept for 

mothers and fathers in family type 4 were constrained equal.  Finally, we treated all 

participants in family type 6 as though they were parents, since most of them were either 

step-parents, or parents from families where no other members provided tissue samples.  

Hence, the means model for family-type 6 used the minor-allele effect for the parents and 

did not include the offspring-sex effect. 

 For each of the sixteen SNP-phenotype combinations, we fitted five different 

models to the data, each representing a slight variation on the null hypothesis of no 

association with the phenotype in question.  The first model is the “full model,” described 

in the preceding, where the SNP effects for offspring (ܾସ) and for parents (ܾହ) are free 

parameters and are estimated separately.  In submodel 1, ܾସ and ܾହ are constrained to be 

equal, and thus, a single SNP effect is estimated for parents and offspring.  In submodel 

2, both SNP effects are fixed to zero.  We also fitted two additional models nested within 

the full model: one in which ܾସ is fixed to zero, with ܾହ remaining free to vary, and 

another in which ܾହ is fixed to zero, with ܾସ free to vary.  The purpose of these two 

models was to detect heterogeneity of SNP effects among parents versus offspring, as a 
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guide to selecting follow-up analyses; we report results only from the nested series of 

three models.   

We compared the fit of submodel 2 to that of the full model in a likelihood-ratio 

test, which in large samples is approximately distributed as chi-square, with degrees-of-

freedom equal to the number of parameters fixed in the submodel relative to the full 

model.  We draw our statistical inferences using both the p-values from this likelihood-

ratio test, and the likelihood-based confidence intervals (see Neale & Miller, 1997) for 

the free parameters from each model, which both support the same conclusion. 

 

Results 

 We present the results of the allelic association analysis in Table II.  None of the 

SNP effects for any phenotype were statistically distinguishable from zero at the adjusted 

Type I error (α = 0.004), either when estimated separately for parents and offspring, or 

when a single parameter was estimated from both.  None of the likelihood-ratio tests 

provided significant evidence of nonzero SNP effects. 

 The three largest likelihood-ratio test statistics from submodel 2 were from the 

association analysis of NEM, with rs2350780 (χ² = 6.446, p = 0.040), rs324640 (χ² = 

5.009, p = 0.082), and rs8191992 (χ² = 7.905, p = 0.019).  From the two additional 

models (results not shown in Table II) nested within the full model, in which the SNP 

effect was fixed to zero either for parents or offspring, we observed a pattern of 

nominally significant results for association of MPQ NEM with rs3250780, rs324640, 

and rs8191992, only among parents.  We therefore conducted a post-hoc association 
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analysis of the SNP most suggestive of association, rs8191992, with the MPQ primary 

scale that most closely approximates Big-Five Agreeableness, Aggression.  Even without 

further Type I error correction (i.e., α = 0.004), the SNP effect was not significantly 

different from zero, either estimated separately for offspring (ܾସ ൌ 0.152 [99.6% CI: -

0.856, 1.159]) and parents (ܾହ ൌ -0.295  [99.6% CI: -0.935, 0.345]), or as a “pooled” 

estimate (b = -0.170  [99.6% CI:  -0.719, 0.379]).  Likewise, the likelihood-ratio test from 

submodel 2 did not provide significant evidence against the null hypothesis of zero SNP 

effect in both parents and offspring (p = 0.369). 

  

Discussion 

 Analysis of our data did not provide any clear evidence of CHRM2’s association 

with personality traits or with substance-use pathology.  We additionally hypothesized 

that personality traits may mediate CHRM2’s influence on substance-use pathology, but 

the lack of evidence for a direct contribution of CHRM2 obviously precludes any kind of 

mediation analysis. 

 Conclusions from the present study are subject to several limitations, which 

should be explicitly acknowledged.  First, we used self-reported ethnicity as a covariate.  

Ideally, and if such data were available, we would have inferred each participant’s 

ancestry from a panel of ancestry-informative genetic markers.  Second, even after log 

transformation, the distribution of the substance-use pathology variable deviated 

substantially from multivariate normality.  Our results concerning this phenotype should 

therefore be interpreted cautiously, especially since the software did not reach its strictest 
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criterion for finding an optimal value of the fit function.  An alternate fit function, or the 

use of bootstrap confidence intervals, might be preferable for making inferences 

regarding substance-use pathology.  However, non-parametric bootstrapping with these 

data would be complicated by the need to take into account different patterns of missing 

data.  We attempted bootstrapping with a built-in procedure in Mx, which makes 

“missingness-naïve” random draws from the dataset; replications of our association 

analysis from these bootstrap samples rarely converged on a solution. 

 The presence of large amounts of missing data is another major limitation of our 

study.  Out of 8,123 participants who provided tissue samples, fewer than 4,100 had non-

missing data for both genotype and phenotype for any analyzed SNP-phenotype 

combination.  For missing phenotype data, the numerical maximum-likelihood procedure 

we used will “work around” the missing observations as described under Methods, and if 

phenotype data are missing at random, it will provide parameter estimates unbiased by 

the missing-data mechanism (Schafer & Graham, 2002; Rubin, 1976).  On the other 

hand, when a genotype is missing for a given individual, the Mx software will exclude 

that individual’s entire family-data vector from analysis.  To prevent the loss of the 

whole family, when an individual was missing the genotype for the SNP under analysis, 

we set that individual’s phenotype score also to missing.  This is equivalent to deletion of 

incomplete individual-participant cases, which will leave parameter estimates unbiased 

only if genotype data are missing completely at random (Schaefer & Graham, 2002; 

Rubin, 1976).  If genotype data are missing completely at random, the probability of 

missing a genotype does not depend upon the value of any observed variable.  We 
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conducted an analysis to see if participants’ amounts of missing SNP data predicted their 

phenotype scores.  This analysis, conducted in Mx, was mostly identical to our allelic 

association analysis.  The difference was that only one analysis was conducted for each 

phenotype, which analysis used as a predictor the number of missing SNPs an individual 

had (ranging zero through four), in place of minor-allele count.  None of the three 

personality variables was nominally significantly predicted by SNP missingness, but 

substance-use pathology was.  Interestingly, it was slightly negatively associated with 

SNP missingness: the point estimate for the regression coefficient was -0.018 (95% CI: -

0.029, -0.008).  This result indicates that it is untenable to assume that genotypes are 

missing completely at random, rendering our conclusions about CHRM2 and substance-

use pathology very tentative indeed.  It may have been preferable to impute the expected 

minor allele count for each missing genotype, conditional on the individual’s ethnicity, 

other genotypes (if any known), and the genotypes of his or her biological relatives (if 

any known).   Finally, there were only four SNPs employed in the analysis to begin with, 

and our sparse coverage of the CHRM2 gene limits the generalizability of our results. 
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SNP Minor 
Allele 

Major 
Allele 

MAF, 
Caucasian 
founders 

MAF, 
Asian 

founders 

MAF, 
All available 

genotypes 
rs10228878 T C 0.30 0.02 0.29 
rs2350780 G A 0.36 0.53 0.37 
rs324640 A G 0.51 0.08 0.49 
rs8191992 T A 0.46 0.89 0.48 

Table I.  Allele frequencies for analyzed SNPs.  MAF = minor allele frequency.  MAF 
is calculated separately for Caucasian founders and Asian founders.  MAF calculated for 
“all available genotypes” uses all non-missing genotypes in the sample, irrespective of 
ethnicity or founder status. 
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Phenotype SNP Full model 
df 

Full model: 
SNP effect in offspring 

(99.6% CI) 

Full model: 
SNP effect in parents 

(99.6% CI) 

Submodel 1: 
Pooled SNP effect 

(99.6% CI) 

Submodel 2: 
χ² (2 df) 

(p-value) 
Substance-Use 

Pathology 
rs10228878 3851 -0.016  (-0.109, 0.078) 0.032  (-0.054, 0.118) 0.010  (-0.056, 0.075) 1.441 (p = 0.486) 

 rs2350780 3937 0.023 (-0.063, 0.108) 0.018 (-0.064, 0.100) 0.020 (-0.041, 0.081) 0.924 (p = 0.630) 
 rs324640 3921 -0.009  (-0.097, 0.079) -0.020  (-0.099, 0.059) -0.015 (-0.076, 0.045) 0.598 (p = 0.741) 
 rs8191992 3903 -0.008  (-0.095, 0.080) 0.004  (-0.076, 0.084) -0.001  (-0.062, 0.060) 0.023 (p = 0.879) 

MPQ CON rs10228878 3783 0.244  (-0.738, 1.227) -0.235  (-1.141, 0.671) -0.016  (-0.698, 0.667) 1.129 (p = 0.569) 
 rs2350780 3870 0.170  (-0.729, 1.068) -0.177  (-1.034, 0.681) -0.012  (-0.648, 0.624) 0.681 (p = 0.711) 
 rs324640 3852 0.069  (-0.854, 0.992) 0.493  (-0.344, 1.133) 0.303  (-0.333, 0.939) 2.895 (p = 0.235) 
 rs8191992 3835 0.034  (-0.884, 0.952) -0.147  (-0.984, 0.691) -0.065  (-0.701, 0.571) 0.273 (p = 0.873) 

MPQ NEM rs10228878 3783 0.287  (-0.729, 1.302) -0.076  (-1.067, 0.915) 0.101  (-0.622, 0.824) 0.725 (p = 0.696) 
 rs2350780 3870 -0.013  (-0.943, 0.917) -0.828  (-1.766, 0.111) -0.416  (-1.090, 0.257) 6.446 (p = 0.040) 
 rs324640 3852 -0.223  (-1.178, 0.733) 0.671  (-0.247, 1.587) 0.243  (-0.432, 0.918) 5.009 (p = 0.082) 
 rs8191992 3835 0.012  (-0.938, 0.961) -0.894  (-1.812, 0.023) -0.458  (-1.132, 0.216) 7.905 (p = 0.019) 

MPQ PEM rs10228878 3783 0.210  (-0.830, 1.250) -0.267  (-1.346, 0.810) -0.020  (-0.786, 0.746) 0.889 (p = 0.641) 
 rs2350780 3870 0.692  (-0.256, 1.640) 0.284  (-0.732, 1.299) 0.503  (-0.207, 1.212) 4.913 (p = 0.086) 
 rs324640 3852 -0.029  (-1.004, 0.946) -0.145  (-1.139, 0.849) -0.086  (-0.799, 0.627) 0.181 (p = 0.913) 
 rs8191992 3835 -0.115  (-1.085, 0.855) 0.279  (-0.713, 1.272) 0.077  (-0.635, 0.790) 0.804 (p = 0.669) 

Table II.  Estimated SNP effects and likelihood-ratio test results. 
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