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A Variance Components Model
for Measurement Procedures
Associated with a Table of Specifications
David Jarjoura and Robert L. Brennan
American College Testing Program

Although many tests are developed according to a
table of specifications, the literature contains little
guidance to measurement specialists for considering
the measurement properties of tests developed in
this manner. Rather, most of the literature makes
the simplistic assumption that the entire set of
items are drawn from (or represent) a common un-
differentiated domain or universe. This paper pre-

sents a variance components model for many mea-
surement procedures that are associated with a
table of specifications. In addition, simple proce-
dures are provided for estimating the model pa-
rameters (variance components and category means)
and functions of them (e.g., composite universe
score variance and error variances).

The variance components model presented in this paper focuses on the many test forms that can
be generated from a table of specifications; and, thus, the components of interest are not associated
with a particular test form but with the overall measurement procedure. Consequently, consistency of
measurement among test forms is directly tied to the categories of a table of specifications, and these
categories are,fixed conditions for a measurement procedure. Typically, a specified number of items
are selected or generated for each of the categories, and since items differ among test forms, items
constitute a random dimension in a measurement procedure. From this perspective the proposed
model is within a purview of general izability theory (see ~r~nnax~9 in press; Cronbach, Gleser, Nanda,
& Rajaratnam, 1972).

The administration of a test form can be represented by a design in which some sample of persons
responds to a set of items that fall into separate categories. Usually, such a design is unbalanced in
the sense that the number of items associated with each of the categories is not the same. However,
the usual complications associated with estimating variance components from unbalanced designs
(see Searle, 1971, chaps. 10 & 11) do not pose a problem here (see Brennan, Jarjoura, & Deaton,
1980). The restricted nature of the unbalancing makes possible a straightforward estimation proce-
dure based on a simple set of mean square and mean product statistics.

Modeling tests that are developed according to a table of specifications certainly has precedents
but appears not to have received much attention in the measurement literature. Here, the model is de-
veloped from a multivariate perspective that is related to Scheff6’s (1959, chap. 8) balanced mixed.
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model and to multivariate general izability theory (Cronbach et al., 1972, chaps. 9 & 10). The problem
was first put into a ~ener~,li~~bility theory framework by Rajaratnam, Cronbach, and Gleser (1965),
but they focused on the derivation of a general izability coefficient and did not fully develop the vari-
ance components model.

Besides modeling and estimation, the following topics will also be discussed: (1) choice of weights
for defining a universe score of interest; (2) contributions that categories of the table of specifications
make to universe score variance and error variance; (3) options for estimating universe scores and
their error variances; (4) optirnal choices for the number of items to be used in each category to mini-
mize error variance; and (5) error variance when a test developer deviates from the table of specifica-
tions. First, these topics are introduced from a theoretical perspective, and then they are illustrated
using data from the Mathematics Subtest of the ACT Assessment Program.

The

The sampling model involves the potential observations that would result from the administration
of a potential test form. These observations correspond to the responses of P persons to 1+ items. The
items fall into C fixed categories or cells of a table of specifications with 1, items in category c, so that
I+ _ 3i 5=1 Ie. (Whether the table is considered unidimensional or multidimensional does not affect the
results discussed below.) ’The potential item-level observations are

where Y« represents the response of the p‘&dquo; person to the ith item in category c. ’The pc for the C cate-
gories are fixed effects or means associated with the population. The other effects are random and are
assumed to have expectations of zero. The Trpc represent universe score effects, the f3ic represent item
effects, and the ~(3a:~ represent residuals. The colon (i: c9 pi:c) is used to indicate that a is nested within
c.

The variance and covariance components of interest are defined as expectations (over the popula-
tion of persons and universes of items) of squares and products of the random effects. It is assumed
that whatever the sampling process associated with generating the observations, the expectations
taken over the sampling distribution are equal to the components of interest. For the universe score
effects,

With c = c’, this equation gives universe score variance for category c; and with c~c’9 it gives the co-
variance between universe scores for categories c and c’. Sometimes these variance and covariance
components will be referred to by the matrix 2:. For item effects,

and for the residual effects,

Finally, it is assumed that all effects, except for the pipe and 7T,,, in Equation 2, are ~an~&reg;rre~~ted.
Explicit definitions of effects, in terms of a random sampling process, are a distinguishing feature

of generalizability theory. Thus, the mean for category c (~) represents the expected value over ran-
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dom samples of both persons (from the population) and items (from the universe associated with cate-
gory c). Similarly, the universe score effect for person on category c is defined as the expectation
over item samples (random) from category c minus Jio i.e.,

and the effect for item i~ is defined as

The residual effects, n~., can be described as person-item interaction plus response error:

yf,i:~ represents an interaction effect that is strictly a function of the person and item selected, while
&euro;p,~ respresents response error. Thus, the ~,i,, effects are associated with the response process rather
than the random sampling process. The response errors are defined here to have expectations of zero
for any given person-item combination. It follows that the interaction for person p* and item i~° is

given as

Thus, to motivate the assumptions of the model, it is sufficient (though not necessary) to assume
that the observations are obtained from a simple random sample of persons and from c simple ran-
dom samples of items from the C categories (with the samples selected independently of one another).
Also, the response error effects, E~;.~, are assumed to be uncorrelated.

Estinxation of V~~~~~~ and Covariance Components

Presented below is a simple procedure for estimating 7- and the two sets of variance components
denoted by ~2( j3)~ and a2(~r(3)~. Attention is restricted here to data from a single administration of a
single test form. (In a subsequent example, data from multiple test forms are considered.) Beyond as-
suming that the data conform to the model and that I, >, 2 for all c, no further assumptions are made.
In particular, no distributional form assumptions are made. The statistics used for estimation are lin-
ear functions of mean squares and products of the observations, and the estimators are unbiased be-
cause they are derived from the expectations of the mean squares and products. (For details of the
derivations, see Jarjoura & Brennan, 1981.) With some additional very weak assumptions (e.g., finite
fourth moments), consistency of the estimators can be shown also.

For estimating the 02(rr[3)e and the o’(0),, each category of a table of specifications can be as-
sociated with a separate persons-crossed-with-items (p x i) design. Note that this results in C

balanced p x i designs.
The estimators for the set of ~2(rc(i)~ are the usual &dquo;residual&dquo; mean squares for these C p ~ i

designs: e

Similarly, the ~2(~)~ are estimated by using the mean squares for items from the Cp x ~’ designs:

To obtain estimates of the 0(71)~ the variance- covariance matrix of category mean scores (for
persons) is used. This matrix is denoted S, with typical element
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where ~;,.~ = ¿ 1&dquo; and K., = ~~~’ ~,,,./(P/,). Estimators of the covariance components in I
(the off -diagonals) are

and estimators of the variance components in 7- (the diagonals) are

Finally, for estimating the ~~.9 the observable means of the categories are used:

Defining a Composite Universe Score

As indicated by Equation 5, the variable /1c + rr,,~ is the expectation of observations for some per-
son p and category c. This universe score for category c is usually not of special interest for measure-
ment procedures associated with a table of specifications. Rather, a single score that takes the form of
a linear composite of the C universe scores is of primary interest.

Generally, it seems appropriate to define a composite universe score in terms of a set of a priori
weights that reflect the relative importance of each of the categories. Such a composite universe score
is

where the We (c = 1, ..., C) are the a priori and Lc denotes 3i£=1. For convenience set Lc C
y. = 1, and without too much loss of generality, We ~ 0 for all c. Thus, the We take the form of propor-
tional weights.

The mean of such composite universe scores is simply y, = 2~ We ¡An and the variance

(~( ~ ~ ~~ ~,~~~2~ is

Rather than being explicitly defined, the We are often implied by the numbers of items that are as-
sociated with the categories of a table of specifications. When the reported score is represented by the
simple sum of item scores across all ~+ items (divided, say, by 1+), it can be claimed that the implied
weights are w, = 1/1+. c = 1, ..., C. This popular practice is reasonable when a test developer samples
a relatively large number of items for a category that is judged more important than others. However,
this practice ignores the possibility of choosing the w,. and the Ic independently.

The w, are used here to define ~,,. and to reflect the relative importance of the categories in the
composite. This allows a free choice of the I,, and later it is shown that the 7,. can be chosen to
minimize error variance associated with estimating p~.. This approach also allows for changes in the
Ie from one test form to another while retaining the same definition of the composite universe score.
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Many issues are encountered in choosing the we. One which seems especially relevant to variance
components modeling is the issue of &dquo;effective&dquo; weights. This issue is related to the fact that the w, are
only partial determiners of the contributions that categories make to a2(r~).. The elements of Y- must
be considered, also. In their review on weighting, Wang and Stanley (1970) distinguish between the
&dquo;nominal&dquo; and the &dquo;effective&dquo; weight of a variable in a composite. The nominal weight of a variable
can be associated with the r~~.e They define the effective weight as the covariance between a weighted
variable and the composite variable and refer to it as the variable’s contribution to the variance of a
composite. Here the effective weight of the c’&dquo; category is

Note that 2c COVe = 02(11).. C’learly, the w~ and the coy will not, in general,, be the same.

Estimation of Composite Universe Scores

Choosing the We to define a composite universe score does not imply that these weights must be
used to estimate ,u,,° . Here, however, attention is restricted to the use of the We as estimation weights,
with the I, free to be chosen to minimize measurement error variance. The We appear to be a reason-
able choice because they can be used to specify a simple unbiased estimator of a given person’s com-
posite universe score:

The error associated with this estimator of ~,. is &reg;,, == ~,. - J-lp. ; and its variance, eA~, across samples
of persons and items for a given pattern of the 1, is

Since 02(A) depends on the 7e, the perspective might be taken that the best choice for the 1,, given a
fixed value of I+, is a choice that minimizes ol(A). Noting that the I, are positive integers, the
minimization can be approached by iteration, given sufficiently precise estimates of the variance com-
ponents. However, given precise estimates, with L fixed, a simpler solution can be obtained through
the following inequality:

The I, can be chosen so that these two terms are equal, which insures that 02(11) is a minimum. A
simple choice that makes them equal is
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Given that the I, must be integer valued, it is possible to iterate around the solution in Equation 21 to
find a reasonable solution for practical use.

When the We are not used as estimation weights, the form of the mean-squared error of measure-
ment changes dramatically. Suppose a different set of wei~hts9 ~~ (c = 1, ...9 0, is used for estimating
composite universe scores. Such estimates could take the form ¡Ãpo = Ze cr~ ~.c. The resulting mean-
squared error is

with ac = 0 if there are no items in category c. Thus, there is a non-negative contribution to Equation
22 from the elements of I and from the category means (j1J. For example, the estimation weights
could be a, = 7/Z,., that is, a simple average score could be taken across all 1, items. Equation 22
would then be useful if the7e/F+ fail to correspond precisely to the a priori it,,,

Equation 22 can also be used to gauge the degree to which a table of specifications serves to re-
duce measurement error. For example, suppose a table of specifications were ignored and all the
items for a test form were sampled from just a single category. The resulting increase in error variance
can be examined by comparing the mean-squared error, Equation 22, to a2(&reg;), Equation 19.

lflustrative Analysis for the Mathematics Subtest of the ACT Assessment Program

Generation of multiple forms of the Mathematics Subtest of the ACT Assessment Program
(MATH) involves the use of a table of specifications. Thus, MATH is an example of a measurement
procedure that might be described by the model. Though all categories in the actual table of speci-
fications are not included in the following analysis, a major classification of the items is represented.
Of course, this illustrative analysis is only an incomplete treatment of the measurement procedure

MATH &dquo;emphasizes the solution of practical quantitative problems which are encountered in
many post-secondary curricula and includes a sampling of mathematical techniques covered in high
school courses&dquo; (American College Testing Program, 1980, p. 3). Each of the 40 items of any form of
MATH can be classified into one of five categories: Arithmetic and Algebraic Operations (AAO),
Arithmetic and Algebraic Reasoning (AAR), Geometry (GEO), Intermediate Algebra (IA), and Num-
ber and Numeration Concepts and other Advanced Topics (NA). The numbers of items in these cate-
gories are 4, 14, 8, 8, and 6, respectively; and this pattern is constant across all recent forms. Because
a simple proportion-correct score is used to arrive at a scaled score, it is presumed here that the
7e = We d+9 th~t is, the choice of item numbers is viewed as a direct reflection of the weights that define
the composite universe score of interest. Thus, the w, are t09 .35, .20, .20, and .15, respectively.

The data analyzed here were from eight recent forms of MATH. These data are in the form of
right/wrong (1/0) responses. Note that such binary data do not violate assumptions of the model.
Each form was administered to independent random samples of approximately 4,500 persons. (Data
from such large samples are routinely collected for equating purposes.)

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



167

Estimates for MATH

Using the estimators in Equations 9, 10, 12, 13, and 14, estimates of the model components and
means were obtained for each of the forms. Then, these estimates were simply averaged over the eight
forms to obtain the final estimates for MATH. Other combinations of the multiple form data are pos-
sible, but taking a simple average proved convenient for obtaining estimates of the standard errors of
the component estimates and category means. These were obtained by calculating the standard devia-
tion of estimates across the eight forms and then dividing by the square root of eight.

Table 1 provides the estimates obtained from a s~ra~l~ form of MATH. These are presented solely
to illustrate the estimation procedure described above. The left section of Table 1 contains the S ma-
trix and the mean squares with their degrees of freedom. The resulting estimates are in the right sec-
tion of the table.

The averages of such estimates over the eight forms are provided in Table 2, along with estimates
of category means. Note that these average estimates, such as!, are denoted with a bar. Table 2 also

reports the estimated standard errors, which provide a basis for making inferences about the relative
size of components.

From ~, it is clear that the covariances are close in size to the variances, indicating high correla-
tions among universe scores of different categories. The average of the universe score correlations cal-
cldated from Z is .93; the highest correlation is .97 (IA with NA); and the lowest is .88 (AAO with
AAR). Generally, universe scores for NA have the highest correlations with other categories and those
for AAO have the lowest. Some implications of these high correlations are discussed later in the con-
text of potential deviations from the table of specifications. Note also that AAO appears to have a
larger universe score variance than the other categories.

From the ~ 2(~3)~, GEO, and NA appear to have item effect variances that are very close in
value, while AAO and AAR appear to have lower and higher values, respectively. From the ~ 2~~~3)~,
the residual effect variances of four of the categories are very close, while AAO appears to have lower
residual variance. From the iic, AAO appears to be an easier category than the others, while GEO and
IA appear more difficult.

Table 1

Estimates from a Single Form of MATH
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Table 2

Estimates of Variance and Covariance

- Components and Category Means

a-
a~ is used to denote the average of the

estimates (Z) across the eight forms. A

similar notation is used to denote the

other estimates. The corresponding esti-
mated standard errors are in italics.

Comparing the size of different types of components, it is clear that the residual variances are very
much larger than both universe score variances and item effect variances. The large residual vari-
ances suggest that many items are required for precise measurement.

Error variance of ~l’&dquo;
The error variance, ~2(&reg;), can be estimated by substituting the ~2(rej3)~ and the ~2((3)~ for the pa-

rameters in Equation 19. The resulting estimate is a2(&reg;) _ .005172. Recall that for this example the
1,. = w< I¢9 thus, o~(A) is the error variance of a proportion-correct score.
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To gauge the precision of j~. , 02(&reg;) can be compared to the estimate of composite universe score
variance. Substituting the elements of 1 into Equation 16, a2(rr). = .0380. Thus, universe score vari-
ance is approximately 7.3 times larger than error variance, indicating fairly precise measurement for
MATH. In other words, the covariance between ~,,. and p,,. is 7.3 times larger than the variance of the
difference ~,,. - ~,,..

Contributions to a 2(rr).

Estimates of the effective weights of the categories, denoted CO~., are .0042, .0129, .0077, .0078,
and .0055. These sum to 0 2(r~). , and dividing them by o Z(rr). gives estimates of proportional contribu-
tions to the composite universe score variance, which can be compared with the we. The CO’V,./a2(rr).
are .11, .34, .20, .20, .14, which are very close to the We: .10, .35, .20, .20, .15. Thus, in this case the We
reflect, not only the a priori relative importance of categories, but also (approximately) the contribu-
tions that categories make to composite universe score variance. Such a correspondence is of value
simply because it indicates that no category contributes too much or too little to composite universe
score variance as compared to its defined relative importance (oa~).

&reg;ni a~in~ error variance

The I, that minimize ~2(&reg;) are estimated by substituting ~ 2(~3)~ and ~ 2(~e(~)~ into Equation 21. These
are presented in the first row of ’rable 3. Recall that Equation 21 gives the I, on a continuous scale;
call these the &dquo;optimal&dquo; fe. The error variance ba.sed on the optimal 1, ~~2(&reg;)oPr] is also provided in
Table 3. Below the optimal I, are an obvious discrete choice for the h. These are in fact identical to the
Ie used for MATH, and ~2(~) is provided again for comparison. Note that there is almost no difference
between a2(&reg;) and ~z(&reg;)~,,r. This holds because the sums - (0), + 0~(71~). are close in value. In general,,
if these sums are equal, the optima! 7. are equal to the We I,. Furthermore, given equal sums and in-
teger values for the 7, = We 1+, a simple average score taken across all items minimizes ~2(&reg;).

Table 3

Choice of the I for Minimization of 02(~)
c

Decreasing error variance adjustments for relative difficulty

The actual score reported for MATH is derived through an equating process. Assuming that a by-
product of the process is a precise adjustment in scores for the relative difficulty of a particular test
form, an error variance can be defined which considers such an adjustment. From the model and the
definition of ~,,. , the relative difficulty of a form is 1, ii~~ I ~c/~c. Given a precise estimate of this
term, an adjustment in 01&dquo; can be made:
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where I’A,. is the adjusted estimate of f-lp’ andEst denotes an estimate.
When the error of estimating relative difficulty is small enough to ignore, error variance for ~,,. is

For MATH 0-1(6) = .00461, which is close to ~2(&reg;)9 indicating that different forms of MATH are simi-
lar in difficulty.

Error due to deviations from the table of specifications

With such high correlations among universe scores in the different categories of MATH, it is rea-
sonable to examine the importance of using the categorization for generating multiple forms. As sug-
gested above, Equation 22 can be used to address this issue.

For example, suppose a MATH form were generated with all 40 items falling into the second cate-
gory, AAR. This would be far from the worst case, since AAR items normally constitute 35% of the
test. An estimate of mean-squared error for such test forms can be obtained by setting all the a, and
the7e in Equation 22 to zero, except for those for AAR that are set to 1 and 40, respectively. Using the
estimates in Table 2, the estimated mean-squared error for 40-item tests with only AAR items is
.00729, which is 41°~0 larger than 02(A.) = .00517. Similarly, the estimated mean-squared error for tests
with only AAO items is .02459; for GEO it is .00882; for IA it is .01004; and for NA it is .00598. Clear-
ly, it is important to have at least some balance of items across the categories.

In contrast, a pattern of items that more closely resembles the actual I, produces a mean-squared
error quite close to 02(11). For example, taking all the 1,. = 8 and using a proportion-correct score to es-
timate ,u,,. (i.e., all a, = .2), the resulting estimate of mean-squared error is .00540. Thus, strict ad-
herence to the actual 1, does not seem too critical for MATH.

Signal-noise ratios and coefficients
It has been suggested above that ~2(r~).lo2(&reg;) = 7.3 indicates the relative precision of the measure-

ment procedure. As such, this statistic is an estimate of the signal-noise ratio for decisions about the
absolute value of examinee scores (see Brennan & Kane, 1977). If desired, this statistic can be trans-
formed to a reliability-like coefficient ~2(rc)./[~Z(~). + ~2(&reg;)] _ .88. Sirnilarly, the signal-noise ratio
c?(Tr)./cP(d) = 8.2 could be examined or transformed to ~2(rc).l[a2(rr). + a 2(6)] = .89, which has the
form of an estimated generalizability coefficient.

Conclusions

A set of a priori weights (the w~) has been used to define a composite universe score (~,,.). These
weights reflect the (judged) relative importance of the categories, which is an intentionally vague con-
cept. It depends on the context of the measurement procedure. However, the definition of the com-
posite universe score must accommodate the intended universe to which generalizations are made.
The modeling here stresses that this universe be defined a priori. By contrast, some discussions on
weighting in multivariate generalizability theory focus on the estimation of weights that serve to maxi-
mize a generalizability coefficient (cf. Joe & Woodward, 1976). In essence, such an approach implies
that the universe of generalization is defined a posteriori as the one giving the highest generalizability
coefficient.
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There certainly are alternatives to choosing a priori the We that will accommodate the intended
universe of generalization. For example, it may be desired to have the defined relative importance of a
category be directly reflected by the contribution the category makes to composite universe score vari-
ance. This contribution has been referred to as COVe. It is possible to choose a priori the COVe and
then to determine the We from them. An iterative solution to this problem, assuming I known, is pro-
vided by Dunnette and Hoggatt (1957) and was originally introduced by Wilks (1938).
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