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A Cautionary Note on Estimating
the Reliability of a Mastery Test
with the Beta-Binomial Model

Rand R. Wilcox

University of Southern California

Based on recently published papers, it might be
tempting to routinely apply the beta-binomial
model to obtain a single administration estimate of
the reliability of a mastery test. Using real data, the
paper illustrates two practical problems with esti-
mating reliability in this manner. The first is that

the model might give a poor fit to data, which can
seriously affect the reliability estimate, and the sec-
ond is that inadmissible estimates of the param-
eters in the beta-binomial model might be ob-
tained. Two possible solutions are described and il-
lustrated.

In recent years, efforts have been directed toward deriving ways of studying and characterizing
mastery and criterion-referenced tests. A summary of the statistical and psychometric techniques that
have evolved can be found in the 1980 special issue of Applied Psychological Measurement (see, also,
Hambleton, Swaminathan, Algina, & Coulson, 1978). One approach that has received considerable
attention can be described as follows: Suppose two randomly parallel test forms both consist of n
dichotomously scored items. For a randomly sampled examinee, let x and y be the observed scores on
the two test forms and let f(x, y) be the joint probability function of x and y for the population of ex-
aminees. If the same passing score, say xo, is used on both test forms, the proportion of agreement is
defined to be

Many other methods have been proposed for characterizing mastery tests, but at a minimum it is de-
sired that P be reasonably close to one (see, e.g., Traub & Rowley, 1980).

Frequently, it is difficult to administer two randomly parallel tests to a random sample of ex-
aminees. Accordingly, efforts have been made to derive an estimate of P based on the observed scores
of only one test form. A general approach to this problem is as follows: For a specific examinee, as-
sume that the probability of an observed score x is f(x 9), where 9 is some unknown parameter, pos-
sibly vector valued. For the randomly parallel test, let f(y 6) be the probability of an observed y;
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and suppose f (x ~ 0) and f (y ~ 6) are independent and that they have the same parametric form. If
g(9) is the density function of 0 over the population of examinees, then

Once a specific form for f(x ~ 0) andg(8) is assumed, it is frequently possible to estimate g (0), which
yields an estimate of f(x, y). This, in turn, yields an estimate of P via Equation 1.

In the statistical literature the single administration estimate of P described above is known as an
empirical Bayes approach to prediction analysis. (For general results on prediction analysis, see
Aitchison and Dunsmore, 1975.)

Huynh (1976) has given a detailed account of how to estimate P for the special case where f(x 0)
(and fey 0)) are assumed to be binomial, and where g(O) is assumed to belong to the beta family of
distributions. Note, however, that Huynh concentrates on estimating Cohen’s (1960) kappa rather
than P once the estimate of f(x, y) is available (cf. Divgi, 1980). Since Huynh’s paper, several investi-
gations of the beta-binomial model have been reported that are relevant to estimating reliability via
Equation 2. For example, Subkoviak (1978) compared it to three other estimates of P and concluded
that all four methods gave good results but that the beta-binomial model seemed to be the best for
general use.’

Based on the studies cited above, it might be tempting to routinely apply the beta-binomial model
when estimating the proportion of agreement or some related coefficient such as Cohen’s kappa. In
practice, though, there are at least two practical problems that might arise. First, the beta-binomial
model might give a poor fit to the data (Keats, 1964), which, as illustrated below, might affect the esti-
mate of P. Second, an estimate of the parameters in the beta-binomial model might not exist. That is,
all five estimation procedures described by Wilcox (1979), including the maximum likelihood esti-
mate proposed by Griffiths (1973), might yield negative values even though the model assumes they
are positive. Negative estimates can occur even when the model holds, or they might occur because
the model is completely inappropriate.

Using real test data, this paper illustrates that the beta-binomial model should not be automati-
cally assumed to give a good estimate of P. Instead, an investigator should first verify that the model
gives a reasonable fit to the data. Experience suggests that the beta-binomial model will frequently
give a good fit; but when it fails to do so, some other estimate of P should be used. The paper also de-
scribes and illustrates two alternative estimates that might be used when a poor fit with the beta-bi-
nomial model is obtained.

Two Alternatives to the Beta-Binomial Model

Temporarily consider a single examinee responding to n dichotomously scored items. The bi-
nomial error model assumes that

This assumption is theoretically justified when items are randomly sampled from an infinite item
pool (or a finite pool with replacement), when the examinee’s responses are independent from one
another, and when the probability of a correct response is 0 for every randomly sampled item. In

1Additional empirical support for the beta-binomial model can be found in Gross and Shulman (1980). For further results and
comments on P, see Algina and Noe (1978), Huynh (1979), Divgi (1980), Traub and Rowely (1980), and Subkoviak (1980). For a
recent review of the beta-binomial model, see Wilcox (in press).
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many instances items are not randomly sampled; and even when they are, it is customary for every ex-
aminee to respond to the same n items. Thus, it is not surprising to find situations where Equation 3
gives unsatisfactory results.

When trying to find a probability function that gives a good fit to data, probably three of the best
known and most frequently employed distributions are the binomial, Poisson, and negative-binomial
(Johnson & Kotz, 1969). Thus, when the beta-binomial model is unsatisfactory, it is reasonable to
consider replacing Equation 3 with a Poisson or negative-binomial distribution. Of course, the Pois-
son distribution is not new to psychometric theory (Lord & Novick, 1968, chap. 21), but it has not
been used in the manner outlined below. The important aspect of the Poisson distribution is that it
frequently gives a good approximation to an observed distribution associated with an infrequently oc-
curring event (e.g., Johnson & Kotz, 1969). This suggests that if observed test scores are skewed, and
if the beta-binomial does not give a good fit to data, then a Poisson model might be considered. This
is exactly what was done in Wilcox (in press) using real test data.

The Gamma-Poisson Model

Let w = n - x and z = n - y be the number of incorrect responses given by an examinee on the
first and second test forms, respectively. Begin by replacing Equation 3 with the assumption that the
probability function of w, as well as z, is Poisson with parameter ’1. Symbolically

The reason for working with w and z, rather than x and y, is that the data in the example is skewed to
the right. If the observed frequencies had been skewed to the left, x and y would have been used (see
Wilcox, in press).

Assume also that for the population of examinees, t7 has a gamma distribution. The motivation
for this assumption is that it is typically made for the Poisson case, it is mathematically convenient,
and it has given good results with mental test data (Wilcox, in press). If f(w ) q) and f(z ) q) are as-
sumed to be independent, results in Aitchison and Dunsmore (1975) indicate immediately that

i.e., the marginal probability function of w is negative binomial. The parameters a and {3 can be esti-
mated as follows: Let w and s2 be the sample mean and variance of w for a random sample of ex-
aminees. Then /? = (s2/w~-1 and a = w/~ estimate (3 and a, respectively. Three other estimates of a
and {3 are also available (Johnson & Kotz, 1969).

Again, referring to Aitchison and Dunsmore (1975),

Since f(w, z) =/(w)/(z j w), there is an estimate of P once a and {3 are determined.

The Gamma Product-Ratio Poisson Model

The other model considered also assumes Equation 4, but P7 is assumed to have a &dquo;gamma prod-
uct-ratio&dquo; distribution (Sibuya, 1979). In this case
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where a, {3, y > 0 are unknown parameters. Note that two alternative names for Equation 7 are gen-
eralized Waring and negative-binomial beta. Also, the parameters a and {3 in Equation 7 are different
from those in Equation 6.

To estimate a and {3, and y, first note that the first three factorial moments are

Itfo!!owsthat

and

Thus, if PI is the usual estimate of 1A, (i = 1, 2, 3), there is an estimate of y, say y. Substituting y and A,
and P2 into Equations 8 and 9 yields

Substituting the right-hand side of Equation 13 for a in Equation 14 yields a quadratic equation for
{3. In terms of the marginal density in Equation 7, either estimate of {3 can be used, since the other es-
timate of (3 will correspond to a and since Equation 7 is symmetric in a and {3.

Finally, to estimate P with Equation 1, note that

One way to establish this result is to assume f(w ) 0) is negative-binomial and thatg(8) is beta (which
is equivalent to assuming Equation 7) and then performing the integration in Equation 2.

Numerical Illustrations

This section uses real data to illustrate the practical advantages of estimating P with the two alter-
native estimates described above.

First, consider the data reported in Keats (1964). Keats has indicated that the beta-binomial
model gives a poor fit to the observed test scores, but as noted in Wilcox (in press), the gamma-Pois-

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



535

son model gives a reasonably good fit. The test had n = 30 items, and Keats has reported observed
test scores for 1,000 examinees. If P is estimated with the beta-binomial model, the result is .90. If the
gamma-Poisson model is used, the estimate is .81. The third estimate of P does not apply, since the
estimates of the parameters in Equation 15 are inadmissible. Note that the reliability estimates used
by Subkoviak (1976), as well as by Marshall and Haertel (1975), also assume that the binomial error
model holds. Since the beta-binomial model gives a poor fit to data, there is some doubt about
whether these estimates should even be considered.

As another illustration, suppose there is an n = 15 item test with a passing score of xo = 10. Fur-
ther, suppose there are test scores as reported in Table 1. These results are based on real data re-
ported in Irwin (1968), but they do not represent test scores. The point is that observed frequencies
that are skewed, as are the frequencies in Table 1, might be obtained, in which case it might be better,
or even necessary, to replace the beta-binomial model with something else.

Table 1
Observed Error on an n=15 Item Test

Note: The significance level I of the chi-square
---- 

goodness of fit test was .03.

For the data in Table 1, the estimates of the parameters in the beta-binomial model are negative,
and so an estimate of P cannot be made. Suppose instead Equation 7 holds. It follows that
a = 5.2162, ~3 = 1.297, and y = 7.7967. Thus, the estimate of P is .97. If, instead, the gamma-Poisson
model is used, the estimate of P is again .97.
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Conclusion

It is not being suggested that the gamma-Poisson or the gamma product-ratio Poisson should re-
place the beta-binomial model, or that it is more flexible than the beta-binomial model when trying to
find a model that gives a good fit to data. It is being argued that the beta-binomial model should not
be assumed to give a good fit to data. Moreover, if a poor fit is obtained, an attempt should be made
to find a model that gives a reasonable fit before the proportion of agreement is estimated.

It was suggested that the gamma-Poisson or the gamma product ratio Poisson be considered
when the beta-binomial model gives a poor fit to data, particularly when the observed sample distri-
bution is skewed. As was illustrated, this can lead to a substantially different estimate of P.

It would be convenient to have a more flexible model when trying to get a good fit to data which in
turn could be used to estimate P. There are models more flexible than the beta-binomial model in
terms of getting a good fit to data, for example, the generalized hypergeometric model (Keats, 1964),
but these models do not yield an estimate of P because they dn not provide an estimate of the true
score distribution that can be used in Equation 2.

It was mentioned that existing methods of estimating the parameters of the beta-binomial model
might yield inadmissible (negative) values, even when the model holds. If the model does hold, the
best way to avoid this problem is to use a reasonably large number of examinees. If the problem still
occurs, it might be because the beta-binomial model is inappropriate, in which case one of the alter-
native estimates outlined above might be used. However, if the model does indeed hold, the problem
of inadmissible estimates is still unresolved.

Finally, if dichotomously scored items are randomly selected and scored sequentially until the ex-
aminee gets, say, M items correct, the negative binomial is the appropriate distribution for a single
examinee. This particular distribution is not included in Aitchison and Dunsmore (1975); with the re-
sults reported here, however, an estimate of P can be obtained.
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