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Computer Programs for Performing Iterative
Partitioning Cluster Analysis
Roger K. Blashfield
University of Florida

Mark S. Aldenderfer

University of Missouri&mdash;St. Louis

Eight programs which perform iterative partition-
ing cluster analysis are analyzed; they are discussed
in terms of versatility of options, accuracy, and
cost. These eight programs contain very different
heuristic approaches to finding the optimal
partition of a data set; the different heuristic
approaches are shown to affect both accuracy and
cost of clustering solutions. It was not possible to
recommend any one program as generally being
preferable, however, because of the striking
variability in these programs and the lack of
knowledge about iterative partitioning methods.

Computer programs for performing hier-
archical agglomerative methods of cluster

analysis have been discussed in an earlier article
(Aldenderfer & Blashfield, 1978). The present
article is a companion piece designed to discuss
software which contain iterative partitioning
methods.
The reviews of iterative methods have been

few and, in general, have not been comprehen-
sive (Anderberg, 1973; Ball, 1970; Friedman &

Rubin, 1967; Lance & Williams, 1967). Most
reviews have been concerned with either pre-
senting a single viewpoint on iterative methods
or suggesting a new method to users. Thus, the
general comparison of the dimensions of
iterative methods, unlike the extensive com-
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parison of hierarchical methods, has not yet
appeared.

Although there has been little research use of
iterative methods, considerable computer
software has been developed to perform this type
of clustering. Eight popular programs and pack-
ages contain iterative methods. The popularity
of these programs has been determined by re-
sponses to a questionnaire, as summarized by
Blashfield (1976a). Of the eight, two are general
statistical packages which contain a number of
multivariate statistical methods (BCTRY and
CLUSTAN); two are from books on cluster

analysis (ANDER from Anderberg’s [1973]
Cluster Analysis for Applications and HART
from Hartigan’s [1975] Clustering Algorithms);
and the final four (CLUS, HOWD, ISODATA,
and MIKCA) are programs which perform only
iterative partitioning cluster analysis.
This software, like that for hierarchical

clustering, has not been extensively compared;
and thus potential users are likely to be unaware
of the strengths and weaknesses of each pro-
gram or package. This ignorance of the quality
of the software is intensified for iterative
methods because of the relative lack of knowl-

edge about the methods per se.
The purpose of the present article is to

provide a partial remedy for these problems.
Specifically, it will inform the user about critical
dimensions of variability in iterative partitioning
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methods and provide a consumer-oriented eval-
uation of popular computer programs, so that
interested users can choose the programs appro-

priate for their needs. Each of the eight pro-
grams listed above will be compared for stand-
ard options of clustering, accuracy of solution,
and cost.

Iterative Partitioning Methods of
Cluster Analysis

Because most researchers are unfamiliar with

iterative clustering methods, a brief description
of the logic and operation of these methods is
desirable. The outline of a method proposed by
Forgy (1965) illustrates the intent of the iterative
partitioning procedures:

1. Begin with an initial partition of the data set
into some specified number of clusters and
compute the centroid of each cluster.

2. Allocate each data point to the cluster

which has the nearest centroid.

3. Compute the new centroids of the clusters;
centroids are not updated until there has
been a complete pass through the data.

4. Alternate Steps 2 and 3 until no data points
change cluster membership (Anderberg,
1973, p. 161).

Unlike hierarchical agglomerative methods,
which require the calculation and storage of an
n x n matrix of similarities between cases,

iterative partitioning procedures usually only
require the storage of the raw data plus a few
relatively small additional matrices. Thus,
iterative partitioning programs have the po-
tential of handling distinctly larger data sets
than hierarchical agglomerative methods.
However, iterative partitioning programs are

subject to a different limitation. The most

straightforward way to discover the optimal
classification of a data set by means of an

iterative partitioning method is to form all pos-
sible partitions of that data set. Unfortunately,
the number of partitions which must be

examined by this simple approach can be
enormous. For 15 entities and 3 clusters, the ex-
haustive approach would require the examin-
ation of 217,945,728,000 partitions. Obviously,
even with high speed computers, this approach
to clustering is not feasible.

Since all possible partitions of even a

moderately sized data set cannot be exhaustively
analyzed, the authors of iterative partitioning
programs have created a wide range of pro-
cedures which attempt to sample a small subset
of the possible partitions. These heuristic pro-
cedures are based upon reasonably plausible no-
tions of how to sample those partitions which are
most likely to contain the optimal partition.
However, the &dquo;rules of thumb&dquo; (i.e., heuristic
procedures) which different authors have found
plausible are quite varied. Even within a pro-
gram, an author has often considered a number
of possible heuristic procedures for efficiently
finding the optimal partition and has included
these various procedures as options for the in-
terested user. As a result, the difference in

methodological procedures within and between
programs is large. Most of the following dimen-
sions of variability are concerned with different
approaches to creating the best possible parti-
tion of a data set.

Dimensions of Heuristic Iterative

Partitioning Procedures: Versatility
of Program Options

The eight programs vary with respect to the
choice of the initial partition, the type of pass,
the statistical criterion, and fixed versus variable
number of clusters.

Dimension 1 : Initial Partition

The first characteristic which can be used to
differentiate partitioning methods is the pro-
cedure by which the method is started. Some
methods use inital estimates of cluster centroids
(called &dquo;seed points&dquo; by Anderberg, 1973),
while other methods select a starting partition.
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If the former are used, the user specifies his/her
best estimate of the cluster centroids; and in the
first pass through the data, the entities are

assigned to the cluster with the nearest centroid.
On the other hand, if a starting partition pro-
cedure is used, the centroid of each cluster is
defined as the multivariate mean of the corres-

ponding partition; in the first pass through the
data, entities are assigned to the nearest mean.

Almost all programs use different methods to
select the starting partition. ANDER starts by
specifying the &dquo;seed points.&dquo; In ANDER the
initial cluster centroids can be user-specified or
can be some set of k data points which serve as
the &dquo;seed points&dquo; for each of the k clusters.

ANDER also allows the user to specify the
starting partition. MIKCA starts by analyzing
three different sets of randomly chosen seed

points for the set which seems most likely to lead
to an efficient solution.
For the programs which require the specifica-

tion of a starting partition, CLUSTAN must be
started by a user-specified partition or by
assigning every kth entity to the same cluster
(where k refers to the number of clusters).
ISODATA starts by using cluster centroids

which are relatively distant from the centroid of
the total data set. CLUS permits four starting
options: (1) randomly chosen partition; (2) user-
specified partition; (3) a partition in which the
first nlk entities are members of the first cluster,
the second nlk entities are members of the
second cluster, and so forth (where k = number
of clusters and n = number of entities); and (4)
an option in which the package chooses the
starting partition &dquo;by its own method.&dquo; Finally,
BCTRY permits the user to specify a starting
partition. However, the standard starting
partition in BCTRY is dividing the q dimen-
sional space into 2q equal segments, where q
refers to the number of factors found in multiple
group factor analysis. The centroids of these seg-
ments form the initial &dquo;seed points&dquo; for the

iterative clustering process.
Also, there are two programs which form clus-

ters over a range for the number of clusters.

HOWD, for example, superimposes a hier-
archical divisive algorithm onto a basic iterative
k-means method. HOWD initially partitions the
data set by finding the variable with the largest
variance and assigning all entities with a score
greater than the mean on that variable to one
cluster and all other entities to the remaining
cluster. The program uses an iterative k-means

procedure until a stable two-cluster solution is
found. It then searches for the variable in the
two clusters with the largest variance. It sub-
divides that cluster at the mean of that variable
and starts the next iterative k-means pass for a
three-cluster solution. The process is repeated
until an upper limit on the number of clusters is
reached.
CLUSTAN works in the opposite direction by

superimposing a hierarchical agglomerative pro-
cedure. In CLUSTAN a randomly chosen (or
user-specified) partition is set for k(max), where
k(max) is the upper limit on the number of clus-
ters as specified by the user. The program uses
an iterative k-means procedure to form the clus-
ters. The next step is to merge the two closest
clusters. Then, the iterative k-means passes are
used to find the k(max)-1 solution. This process
is repeated until stopped by the user or until a
two-cluster solution is found.

Dimension 2: Type of Pass

This second dimension has been the object of
frequent discussions; it involves the type of pass
used to assign entities to particular clusters.
ANDER, BCTRY, HOWD, and ISODATA ex-
clusively utilize k-means passes (also called
&dquo;nearest centroid&dquo; and &dquo;reassignment passes&dquo;).
CLUS and CLUSTAN emphasize the use of hill-
climbing passes. The latter type of pass, instead
of assigning an entity to the cluster with the
nearest centroid, moves an entity from one
cluster to another if a particular statistical cri-
terion is better optimized. One program,
MIKCA, uses an interaction of both reassign-
ment and hill-climbing passes in order to
achieve a solution. Finally, CLUS permits passes
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which &dquo;force&dquo; entities to join new clusters in
order to start a new partitioning sequence. With
the exception of one FORTRAN subroutine in
ANDER (EXEC 5) which follows the original k-
means algorithm of MacQueen (1967), all

packages iteratively repeat passes until either no
membership changes occur or until some

iteration termination parameter is reached.
Within k-means passes, there are other

distinctions which exist in these programs. For

instance, most iterative k-means procedures use
combinatorial passes in which cluster centroids
are updated after a membership move. However,
ANDER does contain two iterative k-means pro-
cedures in which the passes are non-combina-

torial; that is, the cluster centroids are not

updated until there has been a complete pass
through the entire data set. Another distinction
which is made by CLUSTAN concerns whether
or not an entity is removed from its parent clus-
ter when calculating the centroid of that cluster.
CLUSTAN standardly removes an object from
its parent cluster when calculating the distance
between the object and the centroid of its clus-
ter. Although removing the object guarantees
that the algorithm must converge, most pro-
grams do not omit the object when calculating
the value of the centroid. CLUSTAN thus per-
mits the user to choose this option if so desired.

Dimension 3: Statistical Criterion

The hill-climbing passes in CLUS,
CLUSTAN, and MIKCA are concerned with
membership changes which lead to better values
of a particular statistical criterion. CLUS and
MIKCA give the user a choice of four statistics
to optimize: trW, trW-’B, )W), and largest
eigenvalue of W-’B, where W refers to the

pooled within-cluster covariance matrix and B is
the pooled between-cluster covariance matrix.
All four statistics are measures often discussed
in multivariate analysis of variance (Olsen,
1976):
The user should note that an iterative k-

means pass implicitly is concerned with opti-

mizing the trW criterion. That is, a k-means
procedure attempts to minimize the variance
within each cluster. However, an iterative k-
means pass and a hill-climbing pass which

attempts to optimize trW are not identical. In
fact, these two different passes can yield dis-
tinctly varied solutions on the same data set.

Dimension 4: Fixed vs. Variable Number of
Clusters

In ANDER, CLUS, and MIKCA the number
of clusters must be specified by the user (fixed
number of clusters). The remaining packages
contain procedures which affect how many clus-
ters may be found in the final solution (variable
number of clusters). The manner in which these
packages determine the final number of clusters
is different. CLUSTAN agglomeratively col-

lapses clusters across a range specified by the
user, while HOWD uses a divisive procedure to
form a range of cluster solutions. BCTRY and
ISODATA provide procedures for &dquo;splitting&dquo;
and &dquo;merging&dquo; clusters. ISODATA is the most
flexible in this regard, as it permits the user to
specify the limits on the diameter of a cluster
and/or the limits on the size of the cluster. If
clusters are too close, ISODATA may merge
them: if a cluster is too heterogeneous, it may be
split. In the same way, if clusters have too many
members, they can be split; and if too small,
ISODATA may assign them to an outlier group.

Choosing the Program Which
Will Find the &dquo;Best&dquo; Partition

Little is known about the effects of these
various dimensions on the results from iterative

partitioning methods. In order to examine the
effects of different combinations of dimensions
on data sets, a pilot study was performed to
compare these programs.

Method

The data sets used in the study were 20 mix-
tures created using a procedure described by
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Blashfield (1976b). For each data set, k pop-
ulations were statistically defined. That is, each
population had a specified mean vector and
covariance matrix. Using monte carlo tech-

niques based upon the multivariate normal dis-
tribution, a sample of n(k) entities was drawn.
The same process was repeated for each of the k
populations. The samples were then scrambled
together to form a mixture. The resulting data
set had a known classification structure, and the

problem for a cluster analysis program was to
recover the actual classification structure of the
mixture.

Four programs were used in this pilot study:
ANDER, CLUS, CLUSTAN, and MIKCA. The
reason for choosing these programs was that
they are at least somewhat similar in terms of
their options. Each program was executed twice.
For both ANDER runs, the initial partition was
chosen by using the first k data points as &dquo;seed

points.&dquo; (The data had been scrambled before
clustering began.) The type of pass was an
iterative k-means pass, hence the trW statistic
was being optimized. The only difference be-
tween the runs was that for the first run Forgy’s
(1965) non-combinatorial procedure was used,
and for the second run a combinatorial proce-
dure was used.

Like ANDER, CLUSTAN was also run using
iterative k-mean passes. Within the types of k-
means passes, CLUSTAN used combinatorial

passes in which an entity was kept within its
cluster during the calculation of the centroid.
The only difference between the two CLUSTAN
runs was the starting partition. In the first, the
every kth entity starting partition was used.
Before the second run, a separate cluster

analysis was run using Ward’s hierarchical

agglomerative clustering method. The solution
for k clusters from Ward’s method was used as
the starting partition to the second iterative k-
means run of CLUSTAN. The second procedure
for choosing the initial partition is re-

commended by CLUSTAN because Ward’s
method is considered likely to give a solution

which is relatively similar to the optimal parti-
tion.
The third program, MIKCA, was run using

hill-climbing passes only. The starting partition
was chosen randomly. The two MIKCA runs
differed only in terms of the statistical criteria:
trW and ~W~. CLUS was operated in a similar
manner to MIKCA. Random starting partitions
were chosen. The two CLUS runs differed in
terms of the statistical criteria: trW and IWI.
However, CLUS differed from MIKCA in that
CLUS used hill-climbing passes which were
followed by occasional forcing passes.

In order to determine how well each program
performed, the statistic kappa was used to

measure the agreement between the final cluster
solution of the program and the actual clas-
sification structure of the mixture. Kappa is a
measure of the agreement between nominal
scales of the same data (Cohen, 1960; Fleiss,
1973). This statistic ranges in value from 0 to 1
with higher values reflecting higher agreement
rates (i.e., better solutions).

Results

The results from the pilot study are shown in
Table 1. In this table the median kappa values
are listed across the 20 mixtures and the number

of mixtures for which the particular program
had the highest value.

In discussing the results shown in Table 1, the
focus will be on making contrasts which are re-
levant to the dimensions along which iterative
partitioning programs vary. The first dimension
is the intitial partition. The contrast relevant to
this dimension is a comparison of ANDER,
when executed using combinatorial k-means
passes, with the two different CLUSTAN runs.
These three runs differ only in terms of the
starting partition. In all other ways, the method
used in clustering was exactly the same. How-
ever, the median kappa values for these three
different runs varied from .64 to .71. Thus,
varying the starting partition can have an effect
on the solution which is obtained. The most ex-
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Table 1
Pilot Study on Iterative Partitioning Programs:
Results Averaged over Twenty Monte-Carlo Mixtures

Number of data sets for which the program obtained the largest kappa
value.

Note. For each program, the options used are shown in parentheses.
Kappa is measure of the correlation of the cluster solution with
the actual classification structure of the mixture. The higher the
value of kappa, the better the solutions. The number of &dquo;best&dquo;
solutions refers to the number of solutions in which the program
had the highest kappa value for each data set.

treme example of this effect is one particular
data set on which ANDER, using the first k data
points as seed points, obtained a kappa value of
.29; CLUSTAN, when started using the cluster
solution from Ward’s method, had a kappa
value of .30; and CLUSTAN, when using its

every kth object assignment procedure, obtained
a kappa value of .94. Clearly, the results from an
iterative partitioning method can be affected by
the choice of the starting partition.
The second dimension concerns the type of

pass. A number of contrasts are relevant here.

First, consider the difference between MIKCA
and CLUS using the trW criterion and any of
the runs from ANDER and CLUSTAN which
were entirely iterative k-means passes. The sta-
tistical criterion in both of these instances was
the same, and only the type of pass differed. To
the extent that these results can be generalized,

it would seem that hill-climbing passes, at least
for the trW criterion, did not work as well as
iterative k-means passes. Another contrast con-
cerns the difference between MIKCA and CLUS
when using the ~W ~ criterion. The major dif-
ference in this contrast concerned the addition
of forcing passes to the standard hill-climbing k
passes. CLUS does contain forcing passes, while
MIKCA does not. Although the difference be-
tween these programs in terms of median kappa
values was not great, there seemed to be a dif-
ference in terms of which program more com-

monly found the better solution.
The third dimension to be contrasted con-

cerns the statistical criterion. CLUS and
MIKCA using the IWI criterion were generally
found to be the best solution (15 of 20 mixtures),
while runs involving iterative k-means and the
trW criterion did not perform as well. Some
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readers may be skeptical of this result and point
out that the mixtures were based upon pop-
ulations with distinct covariance structures.

Thus, it would seem that the data were created
in such a way that the )W ) criterion was likely to
perform well. In fact, this concern is not com-
pletely justified. The IWI criterion involves the
assumption that the covariance structure for the
different populations are identical. This

assumption was not met for these data sets; very
different covariance structures were randomly
selected when defining the populations within a
mixture.

Conclusions

To summarize the results from this pilot
study, the different dimensions which were dis-
cussed earlier can have an important effect on
the clustering solutions which are found using
iterative partitioning analysis. This study only
involved 20 mixtures and clearly was too limited
to provide an adequate basis for choosing
among these programs and their procedures.
This is an intriguing topic for future research
(cf. Anderberg, 1973). Without further research,
users will have a difficult time rationally
choosing which program is most likely to work
best for their data.

Thus, no particular programs or particular
procedures can be recommended as most likely
to find a &dquo;good&dquo; classification. A user should
remember that the iterative partitioning pro-
grams are based upon heuristics (i.e., rules of
thumb) which may or may not be helpful when
classifying the user’s data. As a result, the user
should be cautious when interpreting a cluster
analysis solution. In addition, the user should
test the adequacy of any cluster analysis solution
which was generated using these heuristic pro-
cedures.

Cost

Another important feature to users of cluster
analysis programs is the cost of performing an

analysis. Cost is an important dimension in the
iterative partitioning programs because it is an
explicit limitation on the heuristic approaches of
these methods. After all, the most obvious parti-
tioning strategy to determine the best cluster
structure would be to test the homogeneity of all
possible partitions of the data set and to choose
that partition which has the optimal char-
acteristics. As noted earlier, this strategy is not
used because it is extremely expensive.

Since the most obvious partitioning strategy is
not feasible, all practical iterative partitioning
methods contain procedures for selecting parti-
tions which seem relatively likely to yield the op-
timal value on the statistical criterion. The pro-
grams use iterative heuristic processes which are
intended to efficiently (i.e., with relatively little
cost) find the optimal solution. Hence, cost is an
important dimension when considering the
iterative partitioning methods.

Table 2 presents some general accounting in-
formation concerning five of the iterative parti-
tioning methods used to cluster the Fisher iris
data. This data set has 150 different entities
measured along 4 dimensions. In order to obtain
the data shown in Table 2, the options were set
in each program so that the program performed
using its standard options. Recorded after each
run was the CPU time to execute the analysis (to
the nearest .01 seconds), the total system time to
run the program including system and in-

put/output time (to the nearest 1 second), the
total number of lines of output printed, and the
actual cost at Pennsylvania State University on
the IBM 370 model 168 to perform the analysis.

In analyzing Table 2, it should be obvious that
the costs of the different programs do differ. The
most expensive program is CLUS. This program
standardly attempts to optimize the )W)
criterion. The iterative computation of this sta-
tistic is more expensive than the k-means option
of ANDER, which does not require the com-
putation of any statistical measure of homo-
geneity until the final partition has been

chosen. On the other hand, the user should

note that MIKCA also attempts to optimize IWI
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Table 2
Cost of Iterative Partitioning Programs: Fisther Iris Data

Note. CPU time is expressed to the nearest .01 seconds. Total

time includes CPU time, system time and I/0 time and is expressed to
the nearest integer. The number of printed lines refers to the
number of lines printed on output. Cost is in dollars for executing
the program at Penn State on an IBM 370/168 based at fi.ll per second
of total time and $.07 per 100 lines printed on output.

and at much less cost than CLUS. Two other re-

latively expensive features of CLUS are (1) the
hill-climbing passes, which require the com-
putation of the statistic being optimized with
each possible move, and (2) the fact that CLUS
restarts the partitioning analysis in order to
avoid the problem of &dquo;local maxima.&dquo; Nonethe-
less, CLUS consistently is an expensive program
to use when compared to the other programs.

Conclusions

As can be seen from the preceding discussion,
there is little concensus on how to best use

iterative partitioning methods of clustering. The
popular programs clearly reflect the confusion
of terminology, orientation, and logic which sur-
rounds the use of these methods. The most
notable feature of these programs has been the

diversity of their algorithms, logic, statistics,
output, and terminology. Comparing the various
types of iterative partitioning software is much
like trying to compare apples and oranges.

It is not possible to complete this report with a
rank ordering of the programs. CLUS is clearly
the most versatile of the packages, because it has
the widest range of options of type of pass,
starting partition, and so forth, for the user to
choose. Unfortunately, CLUS is the most ex-

pensive of the iterative partitioning programs.
Cost-efficient programs, such as CLUSTAN and

HART, do not have similar versatility. HOWD,
ISODATA, and BCTRY have distinctly unique
properties which have no direct analogues in the
other packages, thus making comparison of
them with other programs difficult. The per-
sonal preference of the authors is to use ANDER
and MIKCA; both are relatively efficient pro-
grams which represent the major options that
exist in current thinking about the iterative

partitioning methods.
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