
Qualitative Methods for Inverse Scattering

in Solid Mechanics

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Cedric Ernest Bellis

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Bojan B. Guzina
Marc Bonnet

December, 2010



c© Cedric Ernest Bellis 2010
ALL RIGHTS RESERVED



Acknowledgments

I would like to express my deep and sincere gratitude to my academic advisors Dr. Bojan Guzina

and Dr. Marc Bonnet for their great scientific and intellectual guidance during my research and their

friendships that helped me bring this thesis to completion. I also want to gratefully acknowledge

Dr. Fioralba Cakoni for our rewarding interactions.

I would like to thank all the faculty, students and friends in the Department of Civil Engineering

of the University of Minnesota and the wonderful people I met during my different stays in Min-

neapolis. Many thanks to all my colleagues and friends in the Solid Mechanics Laboratory of the

Ecole Polytechnique for their continuous friendship, help and support.

Warmest thanks must go to my family for their love, encouragement, and patience, and particu-

larly my spouse Cecile whose constant love and support made it possible to complete this project. I

can never thank her enough for all she has given during these years.

i



Dedication

To Cecile with love. . .

ii



Abstract

Inverse problems are widely studied today, and appear in a large range of applications: tomography

and imaging, material constitutive property identification, non destructive control...

The present subject comes within the scope of this last prospect. It concerns the research of new

methods, fast numerically, allowing qualitative object identification (inclusions, cavities, cracks...)

embedded in linear elastic solid medium, knowing (at least partially) the surface response to dy-

namical loadings.

Most of the classical methods implemented to solve this kind of problems are dealing with an

iterative minimization process, requiring high number of direct simulations. In the present context

(three-dimensional elastic waves propagation), these are very expensive. The recent emergence of

non-iterative probing methods allows to consider the study of this type of problems in a new light.

Earlier works have shown in particular, within the framework of the hypothesis adopted in this

subject, the interest of methods such as the Topological Sensitivity or the Linear Sampling for an

approximate but fast detection.

The present study comes within the scope of the development of the two methods mentioned

with application within the framework of the mechanics of deformable solids, i.e. inverse scattering

problems in acoustic and elastic media.

This work has been done within the framework of a joint Ph.D. program between the Department

of Civil Engineering at the University of Minnesota and the Laboratoire de Mécanique des Solides

at the Ecole Polytechnique (France).
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−
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t Cauchy stress vector

n Unit outward normal on surface

z Sampling point
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Introduction

Context

The investigation of inverse problems that arise in the context of the mechanics of deformable solids

[34], as well as in other areas of physics involving continuous media such as acoustics, electrostatics

and electromagnetism, are motivated by the necessity to overcome a lack of information concerning

the properties of the system (in this study a deformable solid body or structure). Inverse scattering

problems [161, 176], that focus on the reconstruction of objects or inhomogeneities hidden in a

solid using illuminating waves, have been the subject of numerous investigations and have lead to

the development of a variety of mathematical and numerical tools [78, 133, 4, 27, 89, 175] with

a broad spectrum of applications such as nondestructive material testing, underground object de-

tection, seismology and medical imaging. Such inverse problems generally require the knowledge

of boundary data (provided by the measurements) that are “overdetermined” relative to what is

normally necessary for solving a well-posed forward (i.e. direct) problem. Notwithstanding the

significant progress made on the subject over the last decades, however, the development of practi-

cal and robust algorithms that are also computationally effective remains a challenge in the context

of inverse scattering problems in solids owing in part to the fact that the latter are mathematically

ill-posed, i.e. that they entail non-uniqueness, ill-conditioning or lack of stability towards the input

data [see 108, 124]. In such situations, linearization techniques [26] are often too restrictive, either

in the context of physical configurations they can accommodate or the information they can provide.

Moreover, the minimization-based approaches that exploit the data through a misfit cost function

and have a potential of overcoming the latter restrictions unfortunately bear considerable computa-

tional cost associated with repeated solutions to the forward problem [162, 177, 157, 106, 36]. Such

high computational cost associated with the solution of an inverse problem is even more prominent

in the context of global optimization methods, which are, at present, impractical in the context of

xvii
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realistic three-dimensional configurations. More traditional gradient-based optimization is a com-

putationally reasonable alternative for solving the featured class of inverse problems, especially

when enhanced by adjoint-based shape sensitivity estimates [27, 36]. However, their performance

depends on choosing adequately the initial guess (location, topology and geometry) of a hidden

object or scatterer.

Over the past two decades, the above considerations led to the paradigm shift in mathematical

theories of inverse scattering that have, to a large degree, focused on the development of the so-

called qualitative methods [46] for non-iterative obstacle reconstruction from remote measurements

of the scattered field. These techniques, which provide a powerful alternative to the customary

minimization approaches and weak-scatterer approximations, are commonly centered around the

development of an indicator function, that varies with coordinates of the interior sampling point, and

projects remote observations of the scattered field onto a suitable functional space synthesizing the

“baseline” wave motion inside the background (i.e. obstacle-free) domain. Such indicator function

is normally designed to reach extreme values when the sampling point belongs to the support of

the hidden scatterer, thereby providing a computationally-effective platform for geometric obstacle

reconstruction. Among the diverse field of methods using approaches that can be classified as probe

or sampling techniques [80, 167], one may mention the so-called factorization method [125, 126,

129, 66], the probe method [90, 116, 117] and the point source method [165, 166] among the most

prominent examples, as well as the Topological Sensitivity Method and the Linear Sampling
Method which are the focus of this dissertation.

The concept of Topological Sensitivity (TS) – in the literature also referred to as the Topolog-

ical Gradient, revolves around the quantification of the perturbation of a given cost function due

to the creation of an object (e.g. a cavity) of vanishingly small characteristic size at a prescribed

location z inside the reference (i.e. defect-free) solid. This concept first appeared in [92] and [181]

in the context of topological optimization of mechanical structures, and has since been investigated

in various contexts as a method for defining a defect indicator function, see e.g. [98, 119] for 2D

elastostatics, [93] for 2D linear acoustics, [102] for frequency-domain 3D acoustics, [35, 101] for

frequency-domain 3D elastodynamics and [146] for 3D Maxwell equations. The particular appeal

of this approach to solving inverse scattering problems resides in the fact that the computational

cost required to evaluate a TS field is, in general, of the order of one forward solution, and therefore

minimal compared to that of standard minimization-based iterative techniques. Here it is also noted

that the concept of topological sensitivity is closely related to the broader class of asymptotic meth-

ods, where unknown defects, whose geometry involves a small parameter, are sought by means of
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an expansion of the forward solution (rather than the misfit function) with respect to that parameter,

see [7, 8].

The Linear Sampling Method (LSM) likewise represents a minimization-free, grid-based ap-

proach to the reconstruction of internal scatterers (e.g. material defects). This technique makes

use of a linear integral equation of the first kind, written with reference to the defect-free solid and

features a kernel constructed form the measurements of the scattered field. A particular property

of the latter equation, that makes it suitable for solving scattering problems, resides in the fact that

the norm of its solution, used as an obstacle indicator, remains bounded for sampling points lying

inside the support of the scatterers and “blows up” otherwise. This method, that does not require any

prior information on the geometries or physical properties of a hidden obstacles (or a set thereof),

was initially introduced in far-field acoustic inverse scattering [76, 125, 73] involving impenetrable

or penetrable obstacles, and then extended to electromagnetic [81, 75, 110, 45] and elastodynamic

problems [16, 65, 155, 105] in various configurations.

Overview of the thesis

The present study focuses on the advancement of the TS and LSM approaches to inverse scattering

within the framework of the mechanics of deformable solids, i.e. inverse scattering problems in

elastic (and elastic) media. The main lines for this research work are:

• Examination of the methods’ capabilities and performance especially when deployed in the

context of classical forward solvers such as finite element models.

• Application of the TS and LSM techniques toward combined (geometric and material) quali-

tative characterization of a variety of material defects (e.g. cracks, inclusions, cavities) “hid-

den” in a given reference solid.

• Extension of these methods toward time-domain or multi-frequency treatment of inverse scat-

tering problems.

• Investigation of the fundamental theoretical questions (e.g. those of uniqueness and existence)

raised by the development of the Linear Sampling Method.

• Investigation of the theoretical link between the Topological Sensitivity and Linear Sampling

Methods.
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In light of the above topics and issues, the present work resides at the interface of theoretical solid

mechanics and applied mathematics, while including a number of relevant numerical applications.

The research described in this dissertation has been performed within the framework of a joint

Ph.D. program between the Solid Mechanics Laboratory at Ecole Polytechnique (France) and the

Department of Civil Engineering of the University of Minnesota (USA). The work has roughly

been distributed as follows: the study of the Topological Sensitivity Method at Ecole Polytechnique

under the supervision of Marc Bonnet, and that of the Linear Sampling Method with Bojan Guzina

at the University of Minnesota. Both studies have progressed, to a large extent, independently

of one another. They, however, constitute two approaches towards a common goal, namely that

of advancing non-iterative, qualitative methods for inverse scattering. Moreover, a preliminary

comparative study is conducted in the last chapter.

This dissertation is divided into three parts. Parts I and II address the two featured qualitative

methods (TS and LSM), while Part III discusses and compares some of their common features

via selected analytical solutions. Each part includes chapters that are self-contained in the sense

that each chapter is either a published article or a journal paper in preparation. Where applicable,

appendices appearing in the referenced (“mother”) papers are also included in this thesis for clarity

and ease of reading.

Part I. The first part of this dissertation is dedicated to the Topological Sensitivity Method

for solving inverse scattering problems in solid bodies formulated in the time-domain. Chapter 1,

which essentially reproduces article [3], presents a comprehensive numerical investigation of the

method designed to evaluate its performance within the framework of a conventional finite-element

(FEM) computational platform, and employed to deal with three-dimensional identification and

reconstruction of internal cavities. Chapter 2 presents a novel topological sensitivity analysis for

the identification of three-dimensional cracks in homogeneous or bimaterial elastic bodies. The

theoretical developments presented are an extension of the method to this problem and the study

includes a set of numerical results. An early version of the work presented in this chapter appeared

in the short article [4], a full-length journal paper [5] being in the final stages of preparation.

Part II. The second part deals with the Linear Sampling Method. Chapter 3, corresponding to

the article [1], investigates a multi-frequency formulation of the method for the reconstruction of

obstacles illuminated by acoustic waves and conveniently provides a comprehensive presentation of
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how inverse scattering problems can be addressed by the linear sampling method. In the context of

penetrable scatterers, this method (as well as the factorization method) has exposed the need to study

and understand a non-traditional boundary value problem, termed the interior transmission problem.

Chapter 4, that corresponds to article [2], is dedicated to the study of existence and uniqueness of

a solution to this problem in elasticity, and highlights some of its particular features when dealing

with viscoelastic and piecewise-homogeneous materials. Chapter 5, ending Part II, represents a

generalization of the study of this problem – interpreted as an eigenvalue problem, and is currently

in its final stages of preparation as a journal article [6].

Part III. The third part of this dissertation is composed of a single chapter, Chapter 6, which

represents an attempt to deepen the understanding of the TS and LSM techniques, and to establish

a fundamental link between the two. This last investigation is based on an analytical example

of scattering by a spherical obstacle which permits both (TS and LSM) indicator functions to be

derived in an explicit form.

Summary of contributions. The main contributions of this work are:

• A comprehensive simulation campaign that aims at validating and highlighting the effective-

ness of the use of the Topological Sensitivity Method toward the elastodynamic reconstruc-

tion of material defects (cavities) from transient scattered waveforms within the framework

of finite element methods. To our best knowledge, it constitutes the first comprehensive nu-

merical study of TS-based defect identification methodology in time-dependent 3D settings

and implemented within general-purpose computational environments.

• Extension of the Topological Sensitivity Method to deal with 3D inverse scattering by cracks,

including the formulation of the required previously unavailable, polarization tensor and the

proposition of an original methodology for a qualitative reconstruction of cracks.

• Study of the interior transmission problem, a non-conventional boundary value problem un-

derpinning the Linear Sampling Method. The existence and uniqueness results, which are

fundamental for establishing the validity of the LSM, have been established and certain par-

ticular features of this problem in viscoelastic bodies have been emphasized. This study also

provides a theoretical framework that enables, for the first time, a qualitative identification of

the material properties of the elastic scatterers via the LSM.
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• Formulation of a multi-frequency approach of the Linear Sampling Method. The personal

contribution is concerned with validation, via analytical and numerical examples, of the pro-

posed methodology.

• Development of a platform that aims at exposing possible theoretical links between the TS

and LSM approaches to inverse scattering. The proposed study relies on a canonic example

allowing i) the analytical implementation of both indicator functions, and ii) the generation

of quantitative reconstruction results which, in of themselves, permit one-to-one comparison

between the two methods. The issue of comprehensive (geometric and material) characteriza-

tion of internal scatterers, i.e. defects, is also addressed there. This attempt to provide better

understanding of the methods led to interesting preliminary results, but an in-depth analysis

is still needed for significant advances on the subject.

Published referred papers.

[1] Guzina, B. B., Cakoni, F. and Bellis, C (2010). On the multi-frequency reconstruction of

Dirichlet and penetrable obstacles by the linear sampling method. Inverse Problems, 26:

125005.

[2] Bellis, C. and Guzina, B. B. (2010). On the existence and uniqueness of a solution to the inte-

rior transmission problem for piecewise-homogeneous solids. Journal of Elasticity, 101:29–

57.

[3] Bellis, C. and Bonnet, M. (2010). A FEM-based topological sensitivity approach for fast

qualitative identification of buried cavities from elastodynamic overdetermined boundary data.

Int. J. Solids and Struct., 47:1221–1242.

[4] Bellis, C. and Bonnet, M. (2009). Crack identification by 3D time-domain elastic or acoustic

topological sensitivity. Comptes Rendus Mécanique, 337:124–130.



INTRODUCTION xxiii

Papers in preparation.

[5] Bellis, C., Cakoni, F. and Guzina, B. B. Nature of the transmission eigenvalue spectrum for

elastic bodies. Submitted.

[6] Bellis, C. and Bonnet, M. Qualitative identification of cracks using 3D elastodynamic topo-

logical sensitivity.

[7] Bellis, C., Bonnet, M. and Guzina, B. B. Analytical and numerical studies of topological

sensitivity and linear sampling methods in acoustic inverse scattering.



Part I

Topological Sensitivity Method

1



Introduction and Overview

Identification of flaws embedded in three-dimensional elastic solids, in situations where overdeter-

mined boundary data are available, is a challenging problem arising in a number of applications.

Qualitative and non-iterative methods centered around the development of indicator functions of

hidden defects are of particular relevance in 3D configurations with dynamical measurements since

conventional identification methodologies, based on the minimization of a cost functional J(D)

which quantifies the misfit between a measured quantity and its counterpart for a trial defect con-

figuration D, entail high computational costs due to the need for repeated elastodynamic forward

solutions.

In this part, defect indicator functions are defined on the basis of the topological sensitivity (TS)

of the featured misfit function. Initially introduced for topology optimization [119], the TS concept

stems from the quantification of the perturbation induced to the misfit functional by the creation of a

flaw Dε,z of infinitesimal linear size ε at a prescribed sampling location z inside the reference solid.

The TS concept then naturally arises from the asymptotic analysis (in terms of the vanishingly small

size of the trial defect) of the misfit functional, which takes the general form

J(Dε,z) = J(∅) + η(ε)T(z) + o(η(ε))

where η(ε) quantifies the asymptotic behavior of J(Dε,z) as ε → 0 and is such that limε→0 η(ε) =

0, and the function T(z) is the TS (or topological gradient) of J. The asymptotic behavior η(ε)

and the precise form of the TS function T(z) depend on the assumed nature and shape of the

vanishing trial defect, with η(ε) = ε3 for traction-free cavities or cracks and for perfectly-bonded

penetrable inclusions. The most pronounced negative values of T(z) correspond to locations where

the nucleation of a small flaw would induce the most pronounced decrease of J, i.e. improve the fit

with the measurements. For this reason, the TS function T(z) is used as a defect indicator function.

Over the last few years the topological sensitivity method has been investigated in elasticity in

2
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problems involving different types of defects [99, 35, 101, 70].

In Chapter 1, a time-domain topological sensitivity (TS) approach is developed for elastic-wave

imaging of media of arbitrary geometry. The TS, which quantifies the sensitivity of the misfit

cost functional to the creation at a specified location of an infinitesimal hole, is expressed in terms

of the time convolution of the free field and a supplementary adjoint field as a function of that

specified location. Following previous studies performed under (mostly) static or time-harmonic

conditions, the TS field is here considered as a natural and computationally efficient approach for

defining a defect indicator function. This study emphasizes the implementation and exploitation

of TS fields using standard displacement-based FEM approaches, a straightforward task once the

correct sensitivity formulation is available. A comprehensive set of numerical experiments on 3D

and 2D elastodynamic and acoustic configurations is reported, allowing to assess and highlight

many features of the proposed TS-based fast qualitative identification such as its ability to identify

multiple defects and its robustness against data noise.

In Chapter 2, the topological sensitivity is derived for three-dimensional crack identification

exploiting over-determined transient elastodynamic boundary data. Simple and efficient adjoint-

state based formulations are proposed in elasticity and acoustics, enhanced by the recourse to closed-

form expressions of a polarization tensor arising in the featured asymptotic analysis when the trial

small crack is circular or elliptic. This approach, which allows a qualitative reconstruction of cracks

in terms of their location and orientation, is implemented within a conventional FEM platform.

Extensive 3D time-domain numerical experiments highlight its usefulness and performance.



Chapter 1

FEM-based topological sensitivity
method for cavity identification
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1.1 Introduction

Defect identification using TS under transient dynamical conditions have so far been the subject of

only a few investigations, notably [88] where the connection with time-reversal is explored, [29]

in which an adjoint-based form of the TS is derived for 3D elastodynamics and acoustics, [143]

and [70] where the case of penetrable inclusions in acoustic and elastic media (respectively) is

considered, and [21] which is devoted to a specialized formulation for crack identification problems.

This chapter addresses defect identification in elastic solids by means of the TS function defined for

small-cavity nucleation in the context of 3D time-domain elastodynamics. In a previous publication

[29], the TS function was obtained as a bilinear expression featuring the (time-forward) free field

and the (time-backward) adjoint solution by considering the asymptotic behavior of a system of

governing integral equations based on the transient full-space elastodynamic Green’s tensor, the

corresponding (analogous and simpler) formulation for scalar waves was derived as a by-product,

and a semi-analytical example based on transient 3D acoustic data was presented. As in many other

derivations of TS formulations published thus far, the integral-equation setting is convenient for

performing the mathematical asymptotic analysis but is then just one of several possible approaches

for doing numerical computations once the necessary formulae are established.

The intended contributions of this chapter are twofold. Firstly, on the theoretical side, the deriva-

tion of the TS field proposed in [29] is clarified and extended as follows: (a) the validity of the

previously-established asymptotic behavior of the time-domain governing integral equation (and

hence of the resulting TS formulation) is shown to depend on smoothness assumptions on the free

field, an issue not touched upon in [29]; (b) a simpler and more compact version of the derivation,

using Green’s tensors rather than full-space fundamental solutions, is presented; (c) proofs are also

given for two-dimensional problems. Secondly, a comprehensive set of numerical experiments, in-

cluding 3D elastodynamic examples, is reported and discussed. Unlike previous publications where

the time-domain TS is computed by means of specialized techniques based on Green’s tensors, this

study emphasizes the implementation and exploitation of TS fields using the standard displacement-

based FEM, and indeed the ease of doing so once the correct sensitivity formulation is available.

To the authors’ best knowledge, this chapter presents the first comprehensive numerical study of

TS-based defect identification methodology in time-dependent 3D settings and implemented within

general-purpose computational environments.

This chapter is organized as follows. The forward and inverse problems of interest are reviewed

in Section 1.2. Topological sensitivity is defined and established, in both direct and adjoint-based
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forms, in Section 1.3, the more technical parts of the derivations being deferred to 1.A for ease of

reading. Section 1.4 then discusses some important features of the methodology and introduces

additional concepts and notations pertaining to the FEM-based implementation and its exploitation

in subsequently presented numerical results. Then, the results of FEM-based numerical experi-

ments are presented and discussed in Sections 1.5 (2D scalar wave equation) and 1.6 (3D and 2D

elastodynamics).

1.2 Cavity identification model problem

Let Ω denote a finite elastic body in Rd (d = 3 or d = 2), bounded by the external surface S and

characterized by the shear modulus µ, Poisson’s ratio ν and mass density ρ, and referred in the

following as the reference body. A cavity (or a set thereof) B bounded by the closed traction-free

surface(s) Γ is embedded in Ω. The external surface S, which is identical for the reference domain

Ω and the cavitated domain Ω(B) = Ω\B, is split into a Neumann part SN and a Dirichlet part SD,

respectively associated with prescribed time-varying tractions tN and displacements uD. Under this

dynamical loading, an elastodynamic state uB arises in Ω(B), which satisfies the following set of

field equations, boundary and initial conditions (hereinafter referred to for generic B as P(B)):

P(B) :

[
LuB

]
(ξ, t) = 0 (ξ ∈Ω(B), t> 0)

t[uB](ξ, t) = 0 (ξ ∈Γ, t> 0)

t[uB](ξ, t) = tN(ξ, t) (ξ ∈SN, t> 0)

uB(ξ, t) = uD(ξ, t) (ξ ∈SD, t> 0)

uB(ξ, 0) = u̇B(ξ, 0) = 0 (ξ ∈Ω(B))

(1.2.1)

where ξ and t denotes the position vector and the time; L denotes the governing Navier space-time

partial differential operator defined by

Lw(ξ, t) = ∇ · σ[w](ξ, t)− ρẅ(ξ, t) (1.2.2)

where σ[w] = C : ∇w denotes the elastic stress tensor associated with a displacement w, the

fourth-order elasticity tensor C being given (for isotropic materials) by

C = 2µ
[
Isym +

ν

1− 2ν
I ⊗ I

]
(1.2.3)
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(with Isym and I respectively denoting the symmetric fourth-order and the second-order identity

tensors), t[w] = σ[w]·n is the traction vector associated withw (n being the unit normal on S∪Γ

oriented outward from Ω(B)), and ˙( ) and (̈ ) indicate first- and second-order time derivatives.

Cavity identification problem. The location, topology and geometry of an unknown cavity sys-

tem Btrue (or equivalently Γtrue) is sought by exploiting measured values of the response of the

flawed solid Ωtrue = Ω(Btrue) arising due to the probing excitation. Specifically, the displacement

uobs induced in Ωtrue by (uD, tN) is monitored over the measurement surface Sobs ⊂ SN and time

interval t ∈ [0, T ] (other possibilities, e.g. finite sets of measurement locations and/or times, being

also allowed by the ensuing treatment). Ideally, a defect configuration Btrue such that

utrue(ξ, t) = uobs(ξ, t) (ξ ∈Sobs, 0 6 t6 T ) (1.2.4)

is sought, where utrue solves problem P(Btrue) defined by (1.2.1). In practice, due to many factors

(e.g. incomplete and/or inexact measurements, modelling uncertainties), the cavity is sought so as

to minimize a misfit cost functional which is naturally (in the present context) expressed as a double

integral over the measurement surface and the experiment duration:

J(Ω(B), T ) =
∫ T

0

∫
Sobs

ϕ[uB(ξ, t), ξ, t] dSξ dt (1.2.5)

where Ω(B) is a trial cavitated solid defined by the trial cavity B, uB solves problem P(B) de-

fined by (1.2.1), and the misfit function ϕ is chosen so as to define a distance between uB and

uobs. Numerical experiments presented herein are based on the commonly-used least squares misfit

function:

ϕ[w, ξ, t] =
1
2
|w − uobs(ξ, t)|2 (1.2.6)

1.3 Topological sensitivity

1.3.1 Small-cavity asymptotics

The topological sensitivity of the cost functional (1.2.5) is defined as its sensitivity with respect to

the creation of an infinitesimal object of characteristic size ε at a given location z in Ω. Here, such

infinitesimal object is taken to be a trial cavity Bε(z), defined by Bε(z) = z + εB in terms of its

center z, its shape specified by the unit bounded set B ⊂ Rd (with boundary S and volume |B|)
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containing the origin, and its radius ε > 0. The corresponding trial cavitated solid is denoted Ωε(z).

Following [183] or [99], one seeks the asymptotic behavior of J(Ωε(z), T ) as ε → 0 through the

expansion:

J(Ωε(z), T ) = J(Ω, T ) + η(ε)|B|T(z, T ) + o(η(ε)) (ε→ 0) (1.3.1)

where the function η(ε), to be determined, vanishes in the limit ε→ 0 and the topological sensitivity

T(z, T ) is a function of the sampling point z and duration T .

To evaluate the expansion (1.3.1) and find the value of T(z, T ), it is necessary to consider the

asymptotic behavior of the displacement uε governed by problem P(Bε(z)). Towards that aim, it

is convenient to decompose uε as

uε(ξ, t) = u(ξ, t) + vε(ξ, t) (1.3.2)

where the free field u is the response of the cavity-free domain Ω to the prescribed excitation, i.e.

P(∅) :

[
Lu
]
(ξ, t) = 0 (ξ ∈Ω, t> 0)

t[u](ξ, t) = tN(ξ, t) (ξ ∈SN, t> 0)

u(ξ, t) = uD(ξ, t) (ξ ∈SD, t> 0)

u(ξ, 0) = u̇(ξ, 0) = 0 (ξ ∈Ω)

(1.3.3)

while the scattered field vε solves

[
Lvε

]
(ξ, t) = 0 (ξ ∈Ω, t> 0)

t[vε](ξ, t) = −t[u](ξ, t) (ξ ∈Γε(z), t> 0)

t[vε](ξ, t) = 0 (ξ ∈SN, t> 0)

vε(ξ, t) = 0 (ξ ∈SD, t> 0)

vε(ξ, 0) = v̇ε(ξ, 0) = 0 (ξ ∈Ω),

(1.3.4)

with Γε(z) denoting the boundary of Bε(z). Since the scattered field is expected to vanish for

infinitesimal cavities, i.e. ‖vε(ξ, t)‖ = o(ε), expansion (1.3.1) is sought by invoking the first-order

Taylor expansion of ϕ with respect to to its first argument. The topological sensitivity T(z, T ) and

the leading asymptotic behavior η(ε) are thus to be identified on the basis of:∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]vε(ξ, t) dSξ dt = η(ε)|B|T(z, T ) + o

(
η(ε)

)
(1.3.5)
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In what follows, emphasis will be given to the 3D case.

1.3.2 Leading contribution of vvvε as ε → 0

To address this issue, it is convenient to reformulate the governing boundary-initial problem (1.3.4)

in terms of an integral equation. Let U(x, t, ξ) and T (x, t, ξ;n) denote the time-impulsive elasto-

dynamic Green’s tensors, defined such that ek ·U(x, t, ξ) and ek ·T (x, t, ξ) are the displacement

and traction vectors at ξ ∈Ω resulting from a unit time-impulsive point force acting at x in the k-th

direction at time t= 0 and satisfying the boundary conditions

U(x, t, ξ) = 0 (ξ ∈SD, t> 0), T (x, t, ξ;n) = 0 (ξ ∈SN, t> 0), (1.3.6)

One also defines the elastodynamic full-space fundamental tensorsU∞(x, t, ξ) and T∞(x, t, ξ;n)

in a similar way, replacing boundary conditions (1.3.6) with decay and radiation conditions at in-

finity [91, see Section 1.A.2]. The governing integral equation for the scattered field vε then reads

(see Section 1.A.1)

1
2
vε(x, t) +−

∫
Γε(z)

T (x, t, ξ;n) ? vε(ξ, t) dSξ = −
∫

Γε(z)
U(x, t, ξ) ? t(ξ, t) dSξ

(x∈Γε(z), t> 0), (1.3.7)

in which −
∫

indicates a (strongly singular) integral defined in the Cauchy principal value (CPV) sense

and ? denotes the time convolution at instant t> 0 defined by

[a ? b](ξ, t) =
∫ t

0
a(ξ, τ)·b(ξ, t− τ) dτ. (1.3.8)

where the inner product appearing in the integral is such that a·b is a tensor of the lowest possible

order (e.g. U ? t has order 1, ∇u ? σ[v] is a scalar), and generic tensor fields a and b respectively

verify initial and final conditions

a(·, τ) = ȧ(·, τ) = 0 (τ 6 0), b(·, τ) = ḃ(·, τ) = 0 (τ > t) (1.3.9)

Equations governing the leading contribution of vε on Γε(z) as ε→ 0 are sought as the asymp-
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totic form of integral equation (1.3.7). For this purpose, scaled coordinates x̄ or ξ̄, defined by

x̄ = (x− z)/ε, ξ̄ = (ξ − z)/ε (x, ξ ∈Γε(z), x̄, ξ̄ ∈S) (1.3.10)

are introduced. Consequently, the volume and surface differential elements in ξ-space are rescaled

according to

(a) dVξ = ε3 dVξ̄, (b) dSξ = ε2 dSξ̄ (ξ ∈Γε(z), ξ̄ ∈S) (1.3.11)

where dVξ̄, dSξ̄ denote corresponding volume and surface differential elements onB and S, respec-

tively. The leading behavior as ε → 0 of the right- and left-hand sides of integral equation (1.3.7)

are then given by the following Lemmas 1 and 2, whose proof is given in Section 1.A.2.

Lemma 1. Assume that τ 7→ ∇u(ξ, τ) is Lipschitz-continuous (uniformly for ξ in a neighbourhood

of z) and differentiable in a neighbourhood of τ = t. Then, one has∫
Γε(z)

U(x, t, ξ) ? t(ξ, t) dSξ = ε

{∫
S
U∞(x̄, ξ̄)⊗n(ξ̄) dVξ̄

}
:σ[u](z, t) + o(ε) (x∈Γε(z))

(1.3.12)

whereU∞(x̄, ξ̄) is the elastostatic full-space (Kelvin) fundamental displacement, given by (1.A.12).

Lemma 2. Let the vector function v̄ε(ξ̄, t) be defined by v̄ε(ξ̄, t) = vε(ξ, t), with ξ̄ and ξ related

through (1.3.10). Then, one has

−
∫

Γε(z)
T (x, t, ξ;n)?vε(ξ, t) dSξ = −

∫
S
T∞,ε(x̄, t, ξ̄;n)?v̄ε(ξ̄, t) dSξ̄+o(‖v̄ε(·, t)‖) (x∈Γε(z))

(1.3.13)

where T∞,ε is the full-space elastodynamic fundamental traction tensor defined in terms of rescaled

wave velocities cL/ε, cT/ε and ‖v̄ε(·, t)‖ is a norm of ξ̄ 7→ v̄ε(ξ̄, t), e.g. its L2-norm on S.

Lemma 1 means that the leading contribution to the right-hand side of integral equation (1.3.7)

as ε → 0 has a special structure wherein the time variable t and the (normalized) space variable

x̄ are separated. Lemma 2 indicates that the left-hand side of integral equation (1.3.7) is of order

O(‖vε‖) as ε → 0. Lemmas 1 and 2 together thus suggest to seek the leading contribution to

v̄ε(ξ̄, τ) = vε(ξ, τ) as ε → 0 in the following form, in which the third-order tensor function

ξ̄ ∈S 7→ V(ξ̄) is to be determined:

v̄ε(ξ̄, t) = εV(ξ̄) :σ[u](z, t) + o(ε) (ξ ∈Γε(z), ξ̄ ∈S). (1.3.14)
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Lemma 3. Let v̄ε(ξ̄, t) be of form (1.3.14) for some V(ξ̄). Under the assumptions of Lemma 1, one

has

−
∫

Γε(z)
T (x, t, ξ;n)?vε(ξ, t) dSξ = ε

{
−
∫
S
T∞(x̄, ξ̄;n)·V(ξ̄) dSξ̄

}
:σ[u](z, t)+o(ε) (x∈Γε(z))

(1.3.15)

where T∞(x̄, ξ̄;n) is the traction associated with the elastostatic Kelvin solution, given by (1.A.22).

Proof. See Section 1.A.2.

Combining lemmas 1 and 3, one finds that representation (1.3.14) indeed holds provided that V
solves the integral equation

1
2
V(x̄) +−

∫
S
T∞(x̄, ξ̄;n)·V(ξ̄) dSξ̄ = −

∫
S
U∞(x̄, ξ̄)⊗n(ξ̄) dSξ̄ (x̄∈S) (1.3.16)

Upon inspection, (1.3.16) can in fact be interpreted as an integral equation formulation governing

the solutions Vk` = V`k = (ek⊗e`) :V to a set of six canonical elastostatic exterior problems

∇ξ̄ ·(C :∇ξ̄Vk`)(ξ̄) = 0 (ξ̄ ∈R3 \B),

(C :∇ξ̄Vk`)(ξ̄)·n(ξ̄) = −1
2
(nk(ξ̄)e` + n`(ξ̄)ek) (ξ̄ ∈S)

1 6 k6 `6 3 (1.3.17)

which are independent of z, ε and time. The tensor function V(ξ̄) is in fact completely defined,

through problems (1.3.17), by B.

The scattered field vε at any point of Sobs (and more generally at any point away from the trial

cavity Bε(z)) is given by the integral representation formula (see Section 1.A.1):

vε(x, t) =
∫

Bε(z)

{
ρU(x, t, ξ) ? ü(ξ, t) +E(x, t, ξ) ? σ(ξ, t)

}
dVξ

−
∫

Γε(z)
T k(x, t, ξ;n) ? vε(ξ, t) dSξ (x∈Sobs, t> 0), (1.3.18)

where E(x, t, ξ) denotes the strain associated with U(x, t, ξ). Expanding the first integral by

means of (1.3.11a) and a Taylor expansion of the densities about ξ = z, substituting (1.3.14) and

introducing scaled coordinates ξ̄ into the second integral, one obtains the leading contribution of vε

as ε→ 0 as:

vε(x, t) = ε3W (x, t;z) + o(ε3) (1.3.19)
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with

W (x, t;z) = |B|
{

[C :E(x, t,z)] ? [A :σ](z, t) + ρU̇(x, t,z) ? u̇(z, t)
}

(1.3.20)

and where the constant polarization tensor A depends only on B (through V) and is defined by

A = C−1 − 1
|B|

{∫
S
n(ξ̄)⊗V(ξ̄) dSξ̄

}
(1.3.21)

Inserting (1.3.19) into (1.3.5), the TS T(z, t) and leading behavior η(ε) are then found to be given

by

T(z, T ) =
∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]·W (ξ, t;z) dSξ dt, η(ε) = ε3 (1.3.22)

Expression (1.3.22) provides a useful basis for discussing some of the features of the time-

domain TS, see Section 1.4.1. It can also conceivably be used for the purpose of computing the

field T(z, T ), and is indeed so used in [70] wherein Ω is an elastic half-space with a traction-free

surface, a configuration for which the Green’s tensor is known. For arbitrary reference bodies Ω, an

implementation of (1.3.22) would require a numerical evaluation of the Green’s tensor for source

points located on Sobs (typically taken as Gauss quadrature points associated with the evaluation of

the integral over Sobs) and field points taken as sampling points z.

However, a computationally more efficient approach for evaluating the field T(z, T ), based

on an adjoint solution, is usually preferable and was used for all numerical examples presented

thereafter.

1.3.3 Adjoint field formulation

The adjoint formulation, previously presented in [29] and now summarized for completeness, stems

from treating the integral in (1.3.5) as one of the terms arising in the elastodynamic reciprocity iden-

tity. For any generic domainO and pair of elastodynamic states u1,u2 satisfying the homogeneous

elastodynamic field equations in O as well as homogenous initial conditions

u1(ξ, 0) = u̇1(ξ, 0) = 0 and u2(ξ, 0) = u̇2(ξ, 0) = 0 (ξ ∈O),

the following reciprocity identity holds [see e.g. 91, 2]:∫
∂O
{t[u1] ? u2 − t[u2] ? u1}(ξ, t) dSξ = 0 (1.3.23)
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Defining the adjoint state û as the solution of:

[
Lû
]
(ξ, t) = 0 (ξ ∈Ω, 0 6 t6 T )

t[û](ξ, t) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈Sobs, 0 6 t6 T )

t[û](ξ, t) = 0 (ξ ∈SN\Sobs, 0 6 t6 T )

û(ξ, t) = 0 (ξ ∈SD, 0 6 t6 T )

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈Ω)

(1.3.24)

using relation (1.3.23) withO = Ωε(z), u1 = û and u2 = vε and exploiting the relevant boundary

conditions in (1.3.4) and (1.3.24), equation (1.3.5) becomes:

η(ε)|B|T(z, T ) + o
(
η(ε)

)
= −

∫
Γε(z)

{t[û] ? vε}(ξ, t) dSξ −
∫

Γε(z)
{t[u] ? û}(ξ, t) dSξ (1.3.25)

On inserting the asymptotic behavior (1.3.14) in the first integral, recasting the second integral as a

volume integral over Bε(z) using the divergence identity, and working out the leading contribution

as ε→ 0 in the resulting equality, one arrives at

T(z, T ) = {σ[û] ? (A : σ[u]) + ρ ˙̂u ? u̇}(z, T ), η(ε) = ε3 (1.3.26)

where the polarization tensor A is again defined by (1.3.21).

Remark 1. The O(εd) asymptotic behavior (1.3.26) of J(Ωε(z), T ) relies on vε approaching (up

to a scaling factor) a static solution as ε → 0. This requires the free-field to be sufficiently regular

at (z, t), e.g. according to the sufficient condition given in Lemmas 1 and 2. To put this another

way, the TS (1.3.26) may (invoking the Fourier convolution theorem) be formulated as the inverse

Fourier transform of the [previously established in 35] frequency-domain expression

T(z, ω) = {σ[û] : (A : σ[u])− ρω2û·u}(z, ω)

The Fourier integral then converges if ω 7→ T(z, ω) ∈ L1(R), i.e. provided the high-frequency

content of the excitation is limited. Related considerations are developed in [6], where the order in

ε of the leading perturbation by a small inclusion of the fundamental solution of the transient wave

equation is shown to depend on the high-frequency content of the time-modulated point source.

Remark 2. In a previous article [29], the small-cavity asymptotics was conducted by relying on
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estimates

U(x, t, ξ) ? a(ξ, t) =
1
ε
U∞(x̄, ξ̄)·a(z, t) +O(1) (a)

T (x, t, ξ;n) ? b(ξ, t) =
1
ε2
T∞(x̄, ξ̄;n)·b(z, t) +O(1) (b)

(x, ξ ∈Γε(z))

(i.e. identities (27) therein) instead of Lemmas 1 and 2, yielding the same result (1.3.26) but in a not

entirely correct way: (i) these estimates hold under smoothness conditions on a, b, similar to the

sufficient conditions given in Lemmas 1 and 2, that were not mentioned, and (ii) estimate (b) above

is in fact not directly applicable here as it is needed for b(ξ, t) = vε(ξ, t), which is not defined at

ξ= z. Lemmas 1 and 2 were therefore needed to fix this flaw in the asymptotic analysis.

Remark 3. The cavity-identification setting of the model inverse problem formulated in Section 1.2

is consistent with, but does not constitute a mathematical prerequisite for, the small-cavity asymp-

totics developed in this section. In fact, the latter procedure may in principle be applied to any cost

function of format (1.2.5) whatsoever, regardless of its physical meaning or engineering motivation.

Remark 4. The same canonical problems (1.3.17) and subsequent polarization tensor (1.3.21) also

occur in [29] and in a previous frequency-domain formulation of the TS [101].

Remark 5. The foregoing analysis has been performed for the 3D case, deemed the most important,

but can be reproduced with the necessary adjustments for the 2D case (see 1.A.4), leading to similar

results where η(ε) = ε2 instead of η(ε) = ε3.

1.4 Discussion and implementation

1.4.1 Discussion

Topological sensitivity as a defect indicator function. T(z, T ) quantifies the sensitivity of the

featured cost functional J to a perturbation of the reference medium in the form of an infinitesi-

mal cavity at z. It is then natural to consider T(z, T ) as a possible defect indicator function, as

was previously done on several occasions (see Section 1.1), whereby actual defects are expected

to be located at sampling points z at which T(z, T ) attains its most pronounced negative values,

i.e. at which a sufficiently small defect would induce the most pronounced decrease of J. In other

words, infinitesimal trial cavities placed at such sampling points improve the fit between simulated

and actual measurements, and intuition then suggests that finite defects having the same location
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also induce a decrease of the cost function. It is important to emphasize that such exploitation of

the information provided by the field T(·, T ) is natural but not backed by a rigorous mathematical

proof, despite the fact that the analysis of the cost function leading to the definition and evaluation

of T(z, T ) is itself mathematically rigorous. It is however substantiated by various numerical exper-

iments performed for several classes of physical settings (see references given in Section 1.1). The

present study aims at contributing to this substantiation within the present context of time-domain

elastodynamics, seldom considered in this context, through the examples of Sections 1.5 and 1.6.

Topological sensitivity allows non-iterative approximate global search. Defect identification

based on the TS field T(·, T ) of a misfit function has the following important characteristics:

(a) The numerical procedure is non-iterative, as it just requires two solutions evaluated on the ref-

erence (defect-free) configuration, namely the free field (1.3.3) and the adjoint field (1.3.24).

It is thus computationally much faster than usual iterative optimization-based inversion meth-

ods. This non-iterative nature is also one of the main features of the linear sampling method

[16, 156].

(b) The approach is of a qualitative nature, as the underlying approximation (1.3.1) of J does not

lend itself to optimization with respect to ε.

(c) It is global in nature, as (i) it does not require an initial guess, and (ii) it allows simultaneous

identification of multiple defects without prior knowledge of their number (see last example of

Section 1.5 and the dual-cavity example in Section 1.6.2).

(d) The experimental information about sought defects entering T(·, T ) is entirely contained in the

adjoint solution (through the definition of the adjoint forces in terms of the density ϕ).

(e) A TS field may be defined and computed using the present approach for cost functions associ-

ated to any overdetermined data, no matter how scarce, which makes TS-based identification a

very flexible approach.

Transient versus time-harmonic data; time reversal. Compared to previous works based on

wave-based imaging under time-harmonic conditions [e.g. 35, 93, 102, 146], the time-domain ap-

proach to TS benefits from richer data as it exploits measurements taken over a duration T (the

mathematical framework allowing to exploit other ways to collect data over time). [88] have com-

pared this approach to imaging processes based on time reversal [62], since the adjoint field û

defined by (1.3.24) constitutes a time-reversed state related to the field vtrue scattered by the actual

defect Btrue.
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Influence of measurement noise. When observed values uobs differ from their true counterpart

utrue because of measurement noise or modelling uncertainties, the sensitivity of T(·, T ) to such

uncertainties is directly related to the sensitivity of the adjoint solution to the same uncertainties. In

the frequently-used case of least-squares cost functionals, based on (possibly weighted) L2 norms

of measurement residuals δ = u−uobs, the adjoint forces featured in (1.3.24) depend linearly on

δ. More generally, misfit functionals based on a Lα norm (with 1 < α <∞) lead to O(‖δ‖α−1)

adjoint forces (the cases α = 1, ∞ do not satisfy the required differentiability of misfit density

ϕ). As T(·, T ) also depends linearly on the adjoint solution (irrespective of the nature of the cost

functional), the perturbation undergone by the topological sensitivity of least-squares cost functions

is, when using L2 norms, linear in the measurement uncertainties. This suggests that identifica-

tion procedures based on the TS field are better-behaved with respect to measurement noise than

usual inversion procedures, known to be highly sensitive to the latter unless properly regularized.

Indeed, numerical results of Section 1.6.5, based on misfit functionals without regularization term,

corroborate this expectation.

Dynamical versus static measurements. Expression (1.3.22) shows the value of T(z, T ) to be

influenced by that of W (·, ·;z). The latter, defined by (1.3.20) in terms of the elastodynamic

Green’s displacement and strain tensors, is a decreasing function of the distance d(z, Sobs) of z

to Sobs. Hence, sampling points located close to Sobs are more apt to lead to high (negative) values

of T, increasing the risk of false identifications there when seeking a buried defect. Moreover, it

is instructive to compare the behavior of T for sampling points remote from the observation sur-

face according to whether T is evaluated under dynamic (i.e. time-dependent) or static (i.e. time-

independent) loading conditions. Indeed, W (·, ·;z) behaves like [d(z, Sobs)]−1 in the former case,

but like [d(z, Sobs)]−2 in the latter case: (i) this behavior is directly observed for E(·, ·;z) on the

full-space Green’s tensor, see equations (1.A.4ab) and remark 6, and is also explicit for scalar half-

space Green’s functions, constructed from their full-space counterpart using the method of images;

(ii) the second term in (1.3.19) vanishes in the time-independent case. The static TS is thus a priori

less sensitive than its dynamic counterpart to defects that are remote from the measurement surface.

Computational issues. Anticipating on the finite element implementation discussed next, all nu-

merical results of Secs. 1.5 and 1.6 are based on solving linear dynamical problems in the time

domain, using an unconditionally-stable version of the Newmark time-marching algorithm. Such

linear evolution problems have well-established convergence properties with respect to decreas-
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ing mesh size and time step, and hence do not raise mesh dependency issues. Note however that

discretization error affecting displacement solutions affect quadratically the TS due to the bilinear

structure of formula (1.3.26). The meshes and time steps used thereafter are chosen solely so as

to adequately model geometry and represent expected spatial and time variations in the computed

“true”, free and adjoint solutions. Also, no attempt to improve the accuracy of computed stresses

through refined postprocessing of displacement solutions has been made (although such procedures

might conceivably improve TS evaluation), so as to show the usefulness of the TS concept within a

standard FEM framework.

1.4.2 Implementation and numerical experiments

In spite of the previously-mentioned current lack of a mathematical proof to validate rigorously

the heuristic idea of a TS-based defect indicator function, it is nevertheless useful to evaluate its

practical efficiency through numerical experiments. This study aims at establishing the ability of

the time-domain TS to identify defects (here mostly taken as impenetrable objects such as cavities

in elastic solids), emphasizing the computational efficiency of the approach and its ease of imple-

mentation within a standard finite element framework, and discussing the main features of such

wave-based imaging approach. In the sections to follow, results from numerical experiments will

be presented for the 2D scalar wave equation (Section 1.5), then for 2D and 3D elastodynamics

(Section 1.6).

Discretization. Aiming at a FEM-based implementation of the time-domain topological sensitiv-

ity of J, let Ωh and Ωh(B) denote FEM discretizations of the reference domain Ω and any cavitated

trial domain Ω(B), whose meshes are assumed to coincide over the (discretized) observation surface

Sobs
h . Then, a discretized least-squares cost function is be set up in the form

Jh(Ωh(B), T ) =
nobs∑
i=1

nT∑
j=0

1
2
‖uB,h(ξi, tj)− uobs

h (ξi, tj)‖2 (1.4.1)

where nobs denote the number of nodes located on Sobs
h , {t0 = 0, . . . , tnT = T} is a sequence of

discrete time instants (a constant time step ∆t being assumed for simplicity), and uB,h, u
obs
h denote

the FE-computed trial displacement and the observed displacement sampled at the nodes of Sobs
h ,

respectively. For the purposes of computing the TS field, it is necessary to set up the discretized

reference domain Ωh, whereas the discretized trial domain Ωh(B) is introduced for the purpose of
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a consistent definition of Jh but is not actually needed.

In the numerical results to follow, the data uobs
h is generated synthetically, using a discretized

version Ωtrue
h of the “true” domain with the defects (or set thereof) to be identified. In that case, the

meshes of Ωtrue
h and Sobs

h are not required to coincide over Sobs
h .

All forward and adjoint solutions are performed using an unconditionally-stable Newmark time-

marching scheme with parameters β= 1/4, γ = 1/2 [115].

Discretized time convolution. A discrete version of the time convolution (1.3.8) is also adopted

as

[vh ?wh](ξi, tk) ≈ ∆t
k∑

j=0

vh(ξi, tj)wh(ξi, tk − tj) (0 6 k6nT ). (1.4.2)

Then the adjoint state ûh corresponding to the discretized cost function (1.4.1) is defined on Ωh and

results from time-dependent nodal forces F̂ h over Sobs
h defined by

F̂ h(ξi, tj) = uh(ξi, tT − tj)− uobs
h (ξi, tT − tj) (1 6 i6nobs, 0 6 k6nT ) (1.4.3)

Truncated topological sensitivity. To focus on areas of Ω where T attains sufficiently low (neg-

ative) values, a thresholded version Tα of T depending on a cut-off parameter α is used in some of

the following examples. It is defined by

Tα(z, T ) =

{
T(z, T ) (T 6αTmin),

0 (T>αTmin)
with Tmin = min

z
T(z, T ), α< 1, (1.4.4)

with the implicit assumption that Tmin < 0. Moreover, let Beq(α) denote the geometrical support of

Tα(z, T ), i.e. the region of Ω defined by

Beq(α) =
{
z ∈Ω

∣∣ Tα(z, T ) < 0
}
. (1.4.5)

Thus an estimation of the unknown cavity (or set thereof) suggested by the thresholded TS may be

defined in terms of Beq(α). The following additional definitions will also be useful: the character-

istic radius Req(α) of Beq(α), given by

Req =
(

1
π
|Beq|

)1/2

(2D) , Req =
(

3
4π
|Beq|

)1/3

(3D) , (1.4.6)
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where |Beq| stands for the volume ofBeq, and the distance d(α) between the centroid xeq ofBeq(α)

and the true cavity centroid xtrue ∈Ω, i.e.

d = |xtrue − xeq| with xeq =
1

|Beq|

∫
Beq

ξ dVξ (1.4.7)

1.5 Defect imaging using acoustic time-domain data

In this set of examples, the reference domain Ω is the unit square, i.e. Ω = {0 6 ξ1, ξ2 6 1}
(Fig. 1.1). The primary field is governed by the two-dimensional scalar wave equation of e.g. linear

acoustics. The identification of a setBtrue of impenetrable obstacles, such that a homogeneous Neu-

mann boundary condition describing a zero normal velocity is prescribed on the obstacle boundary

Γtrue, is considered, based on four (simulated) experiments of duration T . The free pressure field

u(k) associated to experiment number k is defined through the boundary-initial value problem

∆u(k)(ξ, t)− ü(k)(ξ, t) = 0 (ξ ∈Ω, 0 6 t6 T )

∇u(k)(ξ, t)·n(ξ) = 1 (ξ ∈Sk, 0 6 t6 T )

∇u(k)(ξ, t)·n(ξ) = 0 (ξ ∈S` (` 6= k), 0 6 t6 T )

u(k)(ξ, 0) = u̇(k)(ξ, 0) = 0 (ξ ∈Ω)

(1.5.1)

where each S` is one of the sides of the square boundary of Ω, numbered according to Fig. 1.1, and

∆ denotes the two-dimensional Laplacian operator. Note that the wave velocity is set to c = 1, so

that the travel time of waves propagating vertically from S1 to S3 or horizontally from S2 to S4 is

one unit of time. All simulations presented in this section were performed using a finite element

method based on a piecewise-linear interpolation, i.e. three-noded triangular elements. The cost

function

J (k)(B, T ) =
1
2

∫ T

0

∫
S1+S2+S3+S4

|u(k)
B (ξ, t)− u

(k)
obs(ξ, t)|

2 dsξ dt

is then introduced (in a discretized form similar to (1.4.1)), where u(k)
true denotes the pressure field

arising in Ωtrue = Ω\Btrue from the external excitation defined in (1.5.1), u(k)
obs is the corresponding

(possibly polluted) observation, and u(k)
Γ is the predicted measurement for an assumed configuration

B of the obstacle. The topological sensitivity T(z, T ) of J (k), such that

J (k)(Ωε(z), T ) = J (k)(Ω, T ) + ε2|B|T(z, T ) + o(ε2)
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Figure 1.1: Defect imaging using acoustic time-domain data: geometry and notations.

Figure 1.2: Identification of a single scatterer: meshes used for generating the synthetic data (left) and
computing the topological sensitivity (right).

is given (following an analysis similar to that of Section 1.3) by

T(z, T ) =
{

2π∇û(k) ?∇u(k) +
4π
3
û(k) ? u(k)

}
(z, t)

Identification of a single scatterer. Let Btrue denote the ellipse with parameters as given for

scatterer 1 in Table 1.1 (where “inclination” refers to the angle between the ξ1-direction and the

major principal axis). The meshes used for generating the synthetic data u(k)
true and for computing

u, û and T(·, T ) (Fig. 1.2) feature 16, 268 and 9, 841 DOFs, respectively.

Figure 1.3 shows the distribution of Tα(·, T ) obtained for the above-defined single-scatterer

identification problem (having used T = 2, α= 0.5 and ∆t= 2.5 10−2). The region Beq(α) clearly
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Scatterer # Semiaxes Centroid Inclination
1

√
26/100, 3

√
26/500 (0.30, 0.65) tan−1(1/5)

2
√

29/100, 3
√

26/400 (0.60, 0.35) tan−1(5/2)
3

√
17/100, 3

√
17/200 (0.25, 0.30) tan−1(1/5)

4
√

13/100, 3
√

13/200 (0.55, 0.75) tan−1(5/2)

Table 1.1: Identification of a multiple scatterer: geometrical parameters.

pinpoints correctly the location of the defect, while its size gives a reasonable estimation of the

actual defect size. Figure 1.4 moreover shows, by means of a sequence of blow-ups of the region

surrounding the actual defects for α ranging from 0.1 to 0.9, that Beq(α) is relatively insensitive to

the choice of α within a fairly wide range of values (approximately 0.2 6α6 0.6 for this example).

Figure 1.5 then illustrates how the choice of experiment configuration and duration affects the

results. Figure 1.6(a), which repeats Fig. 1.3, is based on the single experiment k= 1 and a duration

T = 2 large enough for a wave emanating from S1 to hit the defect and send scattered signals back

to various parts of the boundary. Hence, the cost function contains enough data about the object

to make an identification possible. In contrast, under the same conditions but with data collected

only until T = 1, the scattering of a wave emanating from S1 seldom has sufficient time to send

information to the boundary, and the defect is not identified (Fig. 1.6(b)). Using the same reduced

experiment duration T = 1 but with an incident wave emanating from surface S4, located closer to

the defect, some of the scattered signals reach the boundary before t= 1 resulting in an identification

(Fig. 1.6(c)) that is not as good as in Fig. 1.6(a) but still acceptable. Finally, maintaining T = 1 and

using a multiple experiment k = 1, 2, 3, 4 (with experiments k = 3, 4 contributing most of the

usable data due to the chosen duration) yields again a satisfactory identification (Fig. 1.6(d)). These

observations entirely conform with what one would expect based on physical intuition.

Simultaneous identification of a multiple scatterer. The simultaneous identification of a set

of four elliptical scatterers, whose characteristics are gathered in Table 1.1, is now considered.

The mesh used for generating the synthetic data u(k)
true now features 24, 098 DOFs. The resulting

distribution of Tα(·, T ) obtained for a multiple simulated experiment k = 1, 2, 3, 4 with duration

T = 2 and a cut-off α = 0.5 is shown in Fig. 1.6. The corresponding region Beq(α) is split into

four connected components, each one correctly located at one of the defects. The identification

is simultaneous in that the topological sensitivity is computed at once on the basis of the free and

adjoint solutions, with no prior information about the number of defects fed into the computation.
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1.6 Defect imaging using elastodynamic time-domain data

1.6.1 Methodology

Synthetic experiment configuration. The reference elastic domains considered are the unit cube

Ω = {0 6 ξ1, ξ2, ξ3 6 1} or the unit square Ω = {0 6 ξ1, ξ2 6 1}. The material parameters µ, ν, ρ

are set so that the longitudinal wave velocity (which is fastest) is unity:

cL =
√
µ/ρκ2 = 1 (1.6.1)

(with κ defined by (1.A.5)), so that T = 1 corresponds to the travel time of longitudinal waves prop-

agating between any two opposite faces of ∂Ω in a direction normal to them. For both 3D and 2D

cases, a single synthetic experiment is considered throughout this section, whereby a compressional

loading tN = −H(t)e2 (where H(t) denotes the Heaviside step function) is applied on the face

ξ2 = 1 of ∂Ω while a homogenous Dirichlet condition is prescribed on the face SD = {ξ2 = 0}. The

observation surface is taken as the whole Neumann surface: Sobs
h =SN = ∂Ωh \SD.

The reference mesh Ωh is based on an isoparametric piecewise-linear interpolation employing

three-noded triangular elements and 1, 988 nodes (2D case) or four-noded tetrahedral elements and

19, 683 nodes (3D case). Moreover, to guard against the “inverse crime” [78], the synthetic datauobs

is computed by means of a finer discretization, with Ωtrue
h discretized into isoparametric piecewise-

quadratic elements, i.e. six-noded triangular elements (2D case) or ten-noded tetrahedral elements

(3D case), arranged for convenience so that the elements of Ωh and Ωtrue
h coincide on Sobs. The

simulated displacements at the vertex nodes of Ωtrue
h on Sobs are then retained (and the values at the

midside nodes discarded), which provide the nodal values of uobs on Sobs
h used in the discrete cost

function (1.4.1).

1.6.2 Single or dual cavity identification

In this section, the effectiveness of the topological sensitivity indicator is assessed on 2D or 3D

single- or dual-cavity configurations, with the simulated experiment duration set to T = 1.

The thresholded TS Tα(·, T ) for a single unknown circular cavity and a set of two unknown

circular cavities are presented, for two configurations in each case, in Figs. 1.7 and 1.9, respectively

(with details on cavity geometry provided therein). In each figure, case (a) corresponds to unknown

cavities close enough to the excitation surface, so that the experiment duration T = 1 lets sufficient

amount of information reach the observation surface, leading to satisfactory identification for both
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the single- or dual-cavity cases. In contrast, case (b) for each figure features a cavity located in such a

way that little information about its presence can reach the observation surface within the time frame

T = 1, and these cavities are poorly located by the Tα(·, T ) distribution. In addition, a computation

on two finer meshes of the thresholded TS of Fig. 1.8(a), keeping the same measurement grid and

definition (1.4.3) of adjoint nodal forces, indicates that Tα(·, T ) is only moderately sensitive to

mesh size (Fig. 1.8).

Then, similar numerical experiments are conducted for the 3D case, with results for single- or

dual-cavity configurations shown in Figs. 1.10 and 1.11 (where details on cavity geometry are again

provided therein, and the correct cavity boundaries are depicted as blue spheres). Moreover, the

regions Beq(α) defined by (1.4.5), plotted respectively in Figs. 1.12 and 1.13 for the single- and

dual-cavity cases, are seen to indicate the correct location and number of sought cavities based on

the sole information uobs and do not predict other, spurious, defects.

1.6.3 Influence of experiment duration

The duration T over which data is collected will obviously have a major effect on the results,

an effect which is now investigated. For this purpose, in addition to the previously-defined unit

cube or square Ω, an elongated variant Ω′ of Ω such that −1 6 ξ2 6 1 is also considered, with

S′D = {ξ2 = −1} and all other dimensions and boundary conditions defined as before, and the

corresponding observation surface S′obs set as S′obs =S′N = ∂Ω′ \S′D.

Figures 1.14 and 1.15 plot d(0.75) and Req(0.75) as functions of the simulated experiment

duration T for the identification of a single cavity of radius R = 0.1 embedded in domain Ω or

Ω′. Both the 2D case (with xtrue
1 = (0.5, 0.5) in Ω or xtrue

2 = (−0.5, 0.5) in Ω′) and the 3D case

(with xtrue
1 = (0.5, 0.5, 0.5) in Ω or xtrue

2 = (0.5, −0.5, 0.5) in Ω′) are considered. These results

can be divided into three cases (indicated on Figs. 1.14 and 1.15 using circled ‘1’, ‘2’ and ‘3’

symbols) according to the value taken by T . For 0 < T 6 T1 (where T1 is typically the time for

the wave to reach the cavity), the identification is not satisfactory, as was to be expected since the

scattered waves do not have time to reach Sobs and be recorded in the cost function. Next, the case

T1 6 T 6 T2 (relatively narrow in terms of the range of T ) corresponds to d decreasing, and Req

increasing, with T i.e. estimations of defect location and size that are sensitive to the experiment

duration (figures 1.15(b), 1.15(c), 1.15(d)) and hence also not reliable. Finally, in the case T > T2

(with T2 large enough for a substantial amount of information to reach Sobs), d reaches small values

(indicating a correct identification of the cavity location) whileReq, the estimated cavity size, attains
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stable values.

1.6.4 Influence of observation surface configuration

All results so far were based on dense and full-aperture measurements (for a single experiment).

The effect of relaxing either the measurement grid density or the measurement aperture is now

considered.

Influence of measurement grid density. The influence of using coarser measurement grids fea-

turing N ×N points on each face of SN is now considered. Figure 1.16 illustrates the effect of a

decreasing measurement density (i.e. decreasingN ) on the computed field Tα(·, T ). The numerical

value of Tα(·, T ) is seen to decrease, reflecting the fact that the definition (1.4.1) of J and that of

the adjoint forces (1.4.3) is strongly influenced by the number of measurement points. This in itself

is of secondary importance, as (i) the support of Tα(·, T ), not its numerical value, is of primary

importance, and (ii) one could easily renormalize the definition of J. However, one also notices

that a decreasing measurement density induces a qualitative deterioration of the identification pro-

vided by Tα(·, T ). This observation is confirmed by Fig. 1.17, where the reconstructed cavity is

taken to be the support Beq(α) of Tα(·, T ) and which shows that α must decrease with N to have

Beq(α) reasonably estimating Btrue for all grid densities. Remarkably, the cavity location remains

correctly estimated even as the shape of Beq(α) becomes irregular due to the decreasing number of

observation points.

Influence of limited aperture. Here, the effect of restricting the observation surface to a portion

Sobs ( SN of the boundary is examined. Figure 1.18 shows the identification result in terms of

Beq(α) for two cases with limited aperture. For data collected on the top face ξ2 = 1 (Fig. 1.19(a)),

the observation surface is orthogonal to the propagation direction of the compressional wave in the

reference solid, and the horiozontal location of the sought cavity is correctly found while its vertical

estimated position is offset compared to the correct one. For data collected on the lateral face ξ3 = 0

(Fig. 1.19(b)), the TS field does not resolve correctly the unknown cavity. Moreover, plots ofBeq(α)

corresponding to observations surfaces Sobs = {ξ2 = 1} and Sobs = {ξ3 = 1} (chosen closest to

Btrue to yield sufficient usable data) indicate satisfactory reconstruction of Btrue (Fig. 1.19). For

the two cases shown, Btrue is better estimated along the direction orthogonal to Sobs, with the best

identification obtained in Fig. 1.19(c) corresponding to Sobs orthogonal to the propagation direction

of the incident wave.
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1.6.5 Influence of data noise

In this section the influence of data noise is studied by considering noisy simulated data of the form

uobs
h (·, tj) = utrue

h (·, tj) + σχumax
j , umax

j =
{

max
1≤i≤nobs

([
utrue

h (ξi, tj)− uh(ξi, tj)
]
·ek

)}
ek

(1.6.2)

where χ is a Gaussian random variable with zero mean and unit standard deviation. Figure 1.20

depicts the behavior of the imaging method for increasing noise level σ. Remarkably, the cavity

location is correctly estimated even for high noise levels (Figs. 1.21(c) and 1.21(d)). TS-based

identification thus still yields usable results if applied to noisy data, as anticipated in Section 1.4.1

based on the mathematical structure of the TS formula, even though no regularization is used in

the cost functional. This feature is very promising for applications. Note that the reference utrue
h

used in (1.6.2) is itself “noisy”, being a FEM-based approximation of utrue. The discretization

error level thus superimposed to the simulated data noise is expected not to exceed a few percent

in the examples presented here (and thus to be much lower than the noise levels of Figs. 1.21(c)

and 1.21(d)). For instance, synthetic data evaluations for the 2D elastodynamic examples presented

a 2.1 10−2 relative discrepancy (in L2-norm) when performed on meshes featuring 2420 and 5453

nodes.

1.6.6 Identification of non-cavity defects

To conclude this series of numerical experiments, the identification of a crack and an inclusion is

now considered, whose geometrical or material characteristics do not conform to those assumed in

deriving the topological sensitivity.

Crack identification. The identification of a penny-shaped crack (radius R = 0.1, unit normal

n = − sin θe1 + cos θe2) leads to results that are satisfactory in terms of crack location and size,

as shown in Fig. 1.21 for two choices θ = 0 and θ = π/4 of the crack inclination, while lacking

sensitivity to the crack inclination. A recently-proposed specific formulation for crack problems

[21] features a polarization tensor that depends explicitly on an assumed crack orientation, thus

offering (not yet investigated) possibilities for finding the crack orientation on that basis.

Inclusion identification. The identification of a penetrable spherical inclusion characterized by

the radius R = 0.1 and material parameters µ?, ν? = ν, ρ? = ρ is now considered. The TS de-
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fined for cavities is found to identify satisfactorily soft spherical inclusions (such that µ? 6 µ),

see Fig. 1.22. However, employing this method for stiff inclusions (such that µ? > µ) leads

to an contrast inversion in the TS field, the defect location now corresponding to a maximum of

T(·, T ). Moreover, the TS defined for spherical elastic inclusions with assumed material parameters

µ?, ν?, ρ?, given by

T?(z, T ) = {σ[û] ? (A? : σ[u]) + (ρ− ρ?) ˙̂u ? u̇}(z, T ) (1.6.3)

with the polarization tensor A? given by (1.B.2) and established in [70], has also been imple-

mented within the present FEM approach. Then, the TS field T? computed for the correct values of

µ?, ν?, ρ? is seen in Fig. 1.23 to allow a correct identification of a stiff inclusion.

1.7 Conclusion

In this study, the concept of topological sensitivity (TS) is developed for elastic and acoustic-wave

imaging of media of arbitrary geometry using data in the time domain. On seeking the limiting form

of the boundary integral equation governing the scattered field caused by a cavity with vanishing

size ε, the TS field is found to be expressed in terms of the time convolution of the free field and an

adjoint field. The εd asymptotic behavior of the cost function revealed by the analysis, identical to

that established earlier for identification in static of frequency-domain settings, requires a degree of

smoothness of the free field with respect to the time variable. The main analysis is devoted to 3D

configurations, but 2D time-domain formulations are addressed as well.

While its derivation and formulation results from a mathematically rigorous asymptotic analy-

sis, subsequent applications of the TS concept to the identification of finite-sized defects remains

heuristic. Here, a comprehensive set of numerical examples is presented so as to substantiate the

usefulness of the TS in applications and assess its performances. In contrast with the relatively

involved analysis required to arrive at the correct formulation of the TS field, subsequent numeri-

cal implementations are quite simple. To emphasize the ease of application of the TS concept, all

examples presented in this chapter rely on straightforward FEM formulations of the free and ad-

joint field, rather than more-specialized integral-equation techniques previously used by the same

group of authors. Several important features of the method are discussed through these examples,

including its ability to identify multiple defects or to withstand significant data noise, and the effect

of restrictions on the data through insufficient experiment duration or partial aperture. It is impor-
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tant to note that most examples consider identification based on a single (simulated) time-domain

experiment.

From this study, it can be concluded that computing and exploiting the TS field constitutes a

powerful and efficient tool for defect identification, as it is very simple to implement, computation-

ally much faster than minimization-based inversion methods, and allows multiple defect identifica-

tion without prior information. The present “one-shot” TS-based identification is qualitative rather

than quantitative in nature. In addition to the stand-alone one-shot TS-based procedure emphasized

in this chapter (of a qualitative rather than quantitative nature, and hence useful if speed or ease of

implementation is more important than accurate defect sizing), the TS may also be implemented

using an iterative matter removal strategy of the kind used in topology optimization [5, 99], or be

used in computing good initial guesses for subsequent refined inversion (perhaps based on exploit-

ing Beq(α) and Req(α) defined by (1.4.5) and (1.4.6)). Quantitative defect identification may also

be achieved on the basis of time-domain versions (to be developed) of higher-order topological

expansions along the lines of [30, 31].
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Figure 1.3: Identification of a single scatterer: distribution of thresholded topological sensitivity Tα,
with T = 2 and α= 0.5.

(a) α = 0.1 (b) α = 0.2 (c) α = 0.3

(d) α = 0.4 (e) α = 0.5 (f) α = 0.6

(g) α = 0.7 (h) α = 0.8 (i) α = 0.9

Figure 1.4: Identification of a single scatterer: influence of cut-off parameter α.
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(a) k = 1, T = 2 (b) k = 1, T = 1

(c) k = 4, T = 1 (d) k = 1, 2, 3, 4, T = 1

Figure 1.5: Identification of a single scatterer: influence of experiment configuration and duration.

Figure 1.6: Identification of a multiple scatterer, with k = 1, 2, 3, 4 and T = 2: TS field T (left) and its
thresholded version Tα with α= 0.5 (right).
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(a) R1 = 0.05, xtrue = (0.75, 0.75) (b) R1 = 0.1, xtrue = (0.4, 0.5)

Figure 1.7: Single cavity identification, 2D: thresholded TS field Tα with α= 0.75.

(a) Same mesh as Fig. 1.7 (1988 nodes) (b) Refined mesh 1 (3027 nodes) (c) Refined mesh 2 (4416 nodes)

Figure 1.8: Single cavity identification, 2D (R1 = 0.05, xtrue = (0.75, 0.75)): thresholded TS field Tα

with α= 0.75 for three different meshes.
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(a) α = 0.75, R1 = R2 = 0.05,
xtrue

1 = (0.25, 0.75), xtrue
2 = (0.75, 0.75)

(b) α = 0.65, R1 = 0.05, R2 = 0.1,
xtrue

1 = (0.2, 0.75), xtrue
2 = (0.75, 0.55)

Figure 1.9: Dual cavity identification, 2D: thresholded TS field Tα.

(a) R = 0.05, xtrue = (0.75, 0.75, 0.75) (b) R = 0.1, xtrue = (0.4, 0.4, 0.5)

Figure 1.10: Single cavity identification, 3D: thresholded TS field Tα with α= 0.
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(a) R1 = R2 = 0.05, xtrue
1 = (0.25, 0.25, 0.75),

xtrue
2 = (0.75, 0.75, 0.75)

(b) R1 = 0.05 R2 = 0.1, xtrue
1 = (0.25, 0.25, 0.75),

xtrue
2 = (0.75, 0.75, 0.5)

Figure 1.11: Dual cavity identification, 3D: thresholded TS field Tα with α= 0.
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(a) R = 0.05, α = 0.6 (b) R = 0.1, α = 0.6

Figure 1.12: Single cavity identification, 3D: Beq(α).

(c) R1 = R2 = 0.05, α = 0.6 (d) R1 = 0.05 R2 = 0.1, α = 0.7

Figure 1.13: Dual cavity identification, 3D: Beq(α).
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(a) R = 0.1, xtrue
1 = (0.5, 0.5) (b) R = 0.1, xtrue

2 = (0.5, −0.5)

Figure 1.14: Influence of experiment duration: identification under 2D conditions.

(c) R = 0.1, xtrue
1 = (0.5, 0.5, 0.5) (d) R = 0.1, xtrue

2 = (0.5, −0.5, 0.5)

Figure 1.15: Influence of experiment duration: identification under 3D conditions.
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(a) N = 27 (b) N = 14

(c) N = 9 (d) N = 7

Figure 1.16: Influence of measurement grid density on thresholded TS field Tα (α= 0, R= 0.1)
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(a) N = 27 α = 0.75 (b) N = 14 α = 0.75

(c) N = 9 α = 0.4 (d) N = 7 α = 0.35

Figure 1.17: Influence of measurement grid density: blurring effect on Beq(α).
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(a) Sobs = {ξ2 = 1}

(b) Sobs = {ξ3 = 0}

Figure 1.18: Influence of limited aperture: distribution of Tα for two choices of Sobs.

(c) Sobs = {ξ2 = 1} (d) Sobs = {ξ3 = 1}

Figure 1.19: Influence of limited aperture: Beq(α) for two choices of partial observation surface Sobs.
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(a) σ = 0.1, xtrue = (0.75, 0.75, 0.75), α = 0.75 (b) σ = 0.2, xtrue = (0.75, 0.75, 0.75), α = 0.75

(c) σ = 0.5, xtrue = (0.75, 0.75, 0.75), α = 0.75 (d) σ = 1, xtrue = (0.75, 0.75, 0.75), α = 0.6

Figure 1.20: Influence of data noise on T: Beq(α) for various levels of noise.
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(a) θ = 0 (horizontal), α = 0, xtrue = (0.75, 0.75, 0.75) (b) θ = π/4 (inclined), α = 0, xtrue = (0.75, 0.75, 0.75)

Figure 1.21: Penny-shaped crack identification: thresholded TS field Tα.
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(a) µ? = 0.1µ, α = 0, xtrue = (0.75, 0.75, 0.75) (b) µ? = 0.5µ, α = 0, xtrue = (0.75, 0.75, 0.75)

Figure 1.22: Identification of a soft spherical inclusion using cavity-related thresholded TS field Tα.

(c) µ? = 5µ, α = 0, xtrue = (0.75, 0.75, 0.75) (d) µ? = 10µ, α = 0, xtrue = (0.75, 0.75, 0.75)

Figure 1.23: Identification of a stiff spherical inclusion using inclusion-related thresholded TS field T?
α.
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1.A Asymptotic behavior of elastodynamic integral operators

1.A.1 Elastodynamic governing BIE

The integral representation formula for the scattered field vε reads [91]

vε(x, t) = −
∫

Γε(z)

{
T (x, t, ξ;n) ? vε(ξ, t) +U(x, t, ξ) ? t[u](ξ, t)

}
dSξ (1.A.1)

In the present situation, where the free field featured in the right-hand side of (1.A.1) is also defined

inside the cavity region Bε(z), one has

−
∫

Γε(z)
U(x, t, ξ) ? t[u](ξ, t) dSξ =

∫
Bε(z)

[
ρU(x, t, ξ) ? ü(ξ, t) +E(x, t, ξ) ? σ[u](ξ, t)

]
dVξ

by virtue of the divergence formula (note that −n in (1.A.1) is the outward unit normal to Bε(z))

and the field equation (1.3.3a) verified by u. Integral equation (1.3.7) then follows by invoking

the following property of time convolution (1.3.8), easily established using integration by parts and

conditions (1.3.9):

[a ? b̈](ξ, t) = [ȧ ? ḃ](ξ, t) = [ä ? b](ξ, t)

1.A.2 Elastodynamic fundamental solutions and proof of Lemmas 1 to 3

The time convolutions featured in integral equation (1.3.7) can be expressed as

U(x, t, ξ) ? t(ξ, t) = U [x, t, ξ|ei ·t(ξ, ·)]·ei (1.A.2a)

T (x, t, ξ;n) ? vε(ξ, t) = T [x, t, ξ;n|ei ·vε(ξ, ·)]·ei (1.A.2b)

where U [x, t, ξ|f ] and T [x, t, ξ;n|f ] are the time-modulated elastodynamic Green’s tensors, de-

fined such that ek ·U and ek ·T are the displacement and traction vectors at ξ ∈Ω resulting from a

point force acting at x in the k-direction with prescribed time-varying magnitude f(t). The latter
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solve the boundary-initial value problem

LξU [x, t, ξ|f ] + δ(ξ−x)f(t)I = 0 (ξ ∈Ω, t> 0) (1.A.3a)

T [x, t, ξ;n|f ] = 0 (ξ ∈SN, t> 0) (1.A.3b)

U [x, t, ξ|f ] = 0 (ξ ∈SD, t> 0) (1.A.3c)

U [x, 0, ξ|f ] = U̇ [x, 0, ξ|f ] = 0 (ξ ∈Ω) (1.A.3d)

Similarly, let U∞[x, t, ξ|f ] and T∞[x, t, ξ;n|f ] denote the time-modulated infinite-space funda-

mental solution, which satisfy equations (1.A.3a) and (1.A.3d) with Ω = R3 and radiation conditions

instead of boundary conditions (1.A.3b) and (1.A.3c), and is given by [91]

U∞[x, t, ξ|f ] =
1

4πµr

[
A[x, t, ξ|f ] I +B[x, t, ξ|f ] (r̂⊗ r̂)

]
(1.A.4a)

E[x, t, ξ|f ] =
1

8πµr2
[
B[x, t, ξ|f ](r̂⊗I) +D[x, t, ξ|f ](Isym ·r̂) + 2E[x, t, ξ|f ](r̂⊗ r̂⊗ r̂)

]
(1.A.4b)

T∞[x, t, ξ;n|f ] =
1

4πr2
[
C[x, t, ξ|f ] (r̂⊗n) +D[x, t, ξ|f ]

(
r̂⊗n+ (r̂ ·n)I

)
+ 2E[x, t, ξ|f ] (n·r̂)r̂⊗ r̂

]
(1.A.4c)

where r= (ξ−x), r= ‖r‖, r̂= r/r, κ is the ratio of bulk wave velocities as defined by

κ2 =
c2T
c2L

=
1− 2ν

2(1− ν)
=

µ

λ+ 2µ
(1.A.5)

and with A=A[x, t, ξ|f ], . . . defined by

A[x, t, ξ|f ] = f
(
t− r

cT

)
+
∫ κ

1
ηf
(
t− ηr

cT

)
dη

B[x, t, ξ|f ] = −3A[x, t, ξ|f ] + 2f
(
t− r

cT

)
+ κ2f

(
t− r

cL

)
C[x, t, ξ|f ] = 2B[x, t, ξ|f ]− (1− 2κ2)

{
f
(
t− r

cL

)
+

r

cL
ḟ
(
t− r

cL

)}
D[x, t, ξ|f ] = 2B[x, t, ξ|f ]− f

(
t− r

cT

)
− r

cT
ḟ
(
t− r

cT

)
E[x, t, ξ|f ] = −3B[x, t, ξ|f ]−D[x, t, ξ|f ]− κ2

{
f
(
t− r

cL

)
+

r

cL
ḟ
(
t− r

cL

)}
.

(1.A.6)
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Define now the time-modulated complementary elastodynamic Green’s tensor UC by

U [x, t, ξ|f ] = U∞[x, t, ξ|f ] +UC[x, t, ξ|f ] (1.A.7)

By virtue of superposition arguments, UC is governed by the boundary-initial value problem

LξUC[x, t, ξ|f ] = 0 (ξ ∈Ω, t> 0)

T C[x, t, ξ;n|f ] = −T∞[x, t, ξ;n|f ] (ξ ∈SN, t> 0)

UC[x, t, ξ|f ] = −U∞[x, t, ξ|f ] (ξ ∈SD, t> 0)

UC[x, 0, ξ|f ] = U̇C[x, 0, ξ|f ] = 0 (ξ ∈Ω)

(1.A.8)

One can then show (using e.g. an integral representation formula) that UC[x, t, ξ|f ] is bounded in

the limit ξ → x, i.e. that the singular behavior of U [x, t, ξ|f ] at ξ = x is identical to that of its

full-space counterpart U∞[x, t, ξ|f ]. Hence, one has

UC[z+εx̄, t,z+εξ̄|f ] = O(1) (ε→ 0) (1.A.9)

Proof of Lemma 1. With decomposition (1.A.7) of U [x, t, ξ|f ] in mind, consider first the evalu-

ation of the leading contribution to∫
Γε(z)

U∞(x, t, ξ) ? t(ξ, t) dSξ (1.A.10)

as ε → 0, where U∞(x, t, ξ) ? t(ξ, t) is, by virtue of (1.A.2a), given by (1.A.4a) with f(t) =

ei ·t(ξ, t). Setting f(τ) = f(t) + (f(τ)−f(t)) = f(t)+∆f(τ) in (1.A.6), one obtains

A[x, t, ξ|f ] =
1+κ2

2
f(t) +A[x, t, ξ|∆f ], B[x, t, ξ|f ] =

1−κ2

2
f(t) +B[x, t, ξ|∆f ].

(1.A.11)

The cofactors of f(t) in (1.A.11) correspond to a constant point force of unit magnitude, and hence

yield, through (1.A.4a), the elastostatic full-space Green’s tensor (i.e. Kelvin’s solution)U∞(x̄, ξ̄):

U∞(x̄, ξ̄) =
1

8πµr̄
[
(1+κ2)I + (1−κ2)ˆ̄r⊗ ˆ̄r

]
(1.A.12)
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Moreover, the Lipschitz-continuity assumption made on t 7→ σ[u](ξ, t) implies that

|f(t)−f(τ)| 6 K|t−τ |, |ḟ(τ)| 6 K 0 6 τ 6 t

(with K the Lipschitz continuity modulus of f ) and hence that

A[x, t, ξ|∆f ] 6 KCAr/cT, B[x, t, ξ|∆f ] 6 KCBr/cT (1.A.13)

with appropriate constants CA, CB. Combining (1.A.4a), (1.A.11) and (1.A.13), one thus obtains

U∞(x, t, ξ) ? t(ξ, t) = U∞(x, ξ)·t(ξ, t) +U∞(x, t, ξ) ?∆t(ξ, t),∥∥U∞(x, t, ξ) ?∆t(ξ, t)
∥∥ 6 CUK, (1.A.14)

where CU is a constant. Hence, upon introducing scaling (1.3.10), (1.3.11) into (1.A.10), noting

that U∞(ξ,x) is homogeneous of degree −1 in ξ̄− x̄, making use of the expansion σ[u](ξ, t) =

σ[u](z, t)+o(1), and invoking (1.A.14), one obtains∫
Γε(z)

U∞(x, t, ξ) ? t(ξ, t) dSξ = ε

{∫
S
U∞(x̄, ξ̄)⊗n(ξ̄) dSξ̄

}
:σ[u](z, t) + o(ε) (1.A.15)

Finally, Lemma 1 follows from (1.A.7) and (1.A.15) together with the following estimate stemming

from (1.A.9): ∫
Γε(z)

UC(x, t, ξ) ? t(ξ, t) dSξ = O(ε2). (1.A.16)

Remark 6. The presence of rḟ(t−r/cL,T) in expressions (1.A.6) of C,D,E implies that the funda-

mental strains E[x, t, ξ|f ] and stresses behave as O(r−1) in the time-modulated case (ḟ 6= 0) but

as as O(r−2) in the static case (ḟ = 0).

Proof of Lemma 2. The proof again exploits decomposition (1.A.7). First, upon introducing

scaled coordinates (1.3.10) into expression (1.A.4c) of T∞ and definitions (1.A.6) of C[x, t, ξ|f ],

D[x, t, ξ|f ] and E[x, t, ξ|f ] (wherein f(t) = ei ·vε(ξ, t) according to 1.A.2b), it is a simple matter

to show that

T∞(x, t, ξ;n) ? vε(ξ, t) =
1
ε2
T∞,ε(x̄, t, ξ̄;n) ? v̄ε(ξ̄, t) (1.A.17)
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where T∞,ε is defined by (1.A.4c) and (1.A.6) with wave velocities cL, cT replaced by rescaled

values cL/ε and cT/ε. Equation (1.A.17) and scaling (1.3.11) then imply

−
∫

Γε(z)
T∞(x, t, ξ;n) ? vε(ξ, t) dSξ = −

∫
S
T∞,ε(x̄, t, ξ̄;n) ? v̄ε(ξ̄, t) dSξ̄ (1.A.18)

Moreover, owing to the boundedness (1.A.9) of the complementary Green’a tensor UC, one has,

upon using again coordinate scaling (1.3.10):

−
∫

Γε(z)
T C(x, t, ξ;n) ? vε(ξ, t) dSξ = O(ε2)‖v̄ε(·, t)‖ (1.A.19)

where ‖v̄ε(·, t)‖ is a norm of ξ̄ 7→ v̄ε(ξ̄, t), e.g. its L2-norm over S. Lemma 2 then follows from

combining (1.A.18) and (1.A.19).

Proof of Lemma 3. The proposed ansatz (1.3.14) is, by assumption in Lemma 1, Lipschitz-

continuous with respect to t. It is therefore appropriate to investigate the behavior of T∞ as defined

by (1.A.4c) and (1.A.6) for a Lipschitz-continuous time-modulation f . Proceeding along the lines

of Lemma 1, and in particular invoking again the decomposition f(τ) = f(t) + (f(τ)− f(t)) =

f(t)+∆f(τ), one has

C[x̄, t, ξ̄|f ] = κ2f(t) + C[x̄, t, ξ̄|∆f ]

D[x̄, t, ξ̄|f ] = −κ2f(t) +D[x̄, t, ξ̄|∆f ]

E[x̄, t, ξ̄|f ] = −3
2
(1−κ2)f(t) + E[x̄, t, ξ̄|∆f ]

(1.A.20)

Substituting the above values into (1.A.4c) and (1.A.6), one obtains the decomposition

T∞[x̄, t, ξ̄|f ] = T∞(x̄, ξ̄;n)f(t) + T∞[x̄, t, ξ̄|∆f ] (1.A.21)

with T∞(x̄, ξ̄;n), the traction associated with the elastostatic Kelvin solution U∞(x̄, ξ̄), given by

T∞(x̄, ξ̄;n) =
1

4πr̄2
[
κ2
(
ˆ̄r⊗n− n⊗ ˆ̄r − (ˆ̄r ·n)I

)
+ 3(κ2−1)(ˆ̄r ·n)ˆ̄r⊗n

]
. (1.A.22)

Decomposition (1.A.21) is in particular applicable to T∞,ε[. . . |f ] defined by replacing velocities

cL, cT by the rescaled values cL/ε, cT/ε in T∞[. . . |f ]. Owing to the assumed Lipschitz continuity
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of f , one easily shows that

∥∥T∞,ε[x̄, t, ξ̄|∆f ]
∥∥ 6 CTKε (ε→ 0)

where K is the Lipschitz constant of f and CT is a constant. Consequently, using the fact that

T∞(x̄, ξ̄;n)f(t) is unaffected by the wave velocity rescaling, decomposition (1.A.21) implies

T∞,ε[x̄, t, ξ̄|f ] = T∞(x̄, ξ̄;n)f(t) + o(1) (ε→ 0)

Lemma 3 then follows from equating f(t) to the components of εV(ξ̄) : σ[u](z, t), according

to (1.A.2b), in the above estimate.

1.A.3 3D Scalar wave equation

The reference domain Ω⊂R3 is now filled by an acoustic fluid characterized by the wave velocity

c. The acoustic pressure field uB generated by given excitations p̄(ξ, t) (proportional to normal

wall acceleration) and ū(ξ, t) (applied pressure) in the presence of a (possibly multiply-connected)

sound-hard obstacle occupying a region B bounded by Γ is governed by the following set of equa-

tions:

P(B) :

[
LcuB

]
(ξ, t) = 0 (ξ ∈Ω, t> 0)

q[uB](ξ, t) = 0 (ξ ∈Γ, t> 0)

q[uB](ξ, t) = p̄(ξ, t) (ξ ∈SN, t> 0)

uB(ξ, t) = ū(ξ, t) (ξ ∈SD, t> 0)

uB(ξ, 0) = u̇B(ξ, 0) = 0 (ξ ∈Ω)

(1.A.23)

where w 7→ q[w] = ∇w·n is the normal derivative operator and Lc, defined by

[Lcw] (ξ, t) = ∆w(ξ, t)− 1
c2
ẅ(ξ, t) (1.A.24)

is the governing partial differential operator of linear acoustics. Objective functions of format (1.2.5),

with densities now having the form ϕ
[
uB(ξ, t), ξ, t

]
, are again considered. Define a small scatterer

Bε(z) of size ε as in Section 1.3, and let u denote the free field (which solves P(∅)) and vε the scat-

tered field (such that the total field uε = u+vε solves problem P(Bε(z))). The governing integral
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equation for the scattered field vε reads

1
2
vε(x, t) +−

∫
Γε(z)

H[x, t, ξ;n|vε(ξ, t)] dSξ = −
∫

Γε(z)
G[x, t, ξ;n|q[u](ξ, t)] dSξ

(x∈Γε(z), t> 0), (1.A.25)

where the time-modulated Green’s function G[x, t, ξ|f ] solves the boundary-initial value problem

Lc,ξG[x, t, ξ|f ] = 0 (ξ ∈Ω, t> 0)

G[x, t, ξ|f ] = 0 (ξ ∈SD, t> 0),

H[x, t, ξ|f ] = 0 (ξ ∈SN, t> 0),

G[x, 0, ξ|f ] = Ġ[x, 0, ξ|f ] = 0 (ξ ∈Ω)

(1.A.26)

and with H[x, t, ξ;n|f ] = ∇ξG[x, t, ξ|f ] ·n(ξ). Moreover, let G∞[x, t, ξ|f ] denote the time-

modulated full-space fundamental solution, given by [91]

G∞[x, t, ξ|f ] =
1

4πr
f
(
t− r

c

)
(1.A.27)

∇ξG∞[x, t, ξ|f ] = − 1
4πr2

[
f
(
ξ, t− r

c

)
+
r

c
ḟ
(
t− r

c

)]
r̂ (1.A.28)

and define the complementary Green’s functionGC, bounded in the limit ξ → x, byGC[x, t, ξ|f ] =

G[x, t, ξ|f ]−G∞[x, t, ξ|f ]. The counterparts of Lemmas 1 and 2 then correspond to estimate∫
Γε(z)

G(x, t, ξ) ? q[u] dSξ = ε

{∫
S
G∞(x̄, ξ̄)⊗n(ξ̄) dSξ̄

}
·∇u(z, t) + o(ε), (1.A.29)

assuming τ 7→ ∇u(x, τ) is Lipschitz-continuous and differentiable in a neighbourhood of τ = t,

and

−
∫

Γε(z)
H[x, t, ξ;n|vε(ξ, t)] dSξ =

∫
S
H∞,ε(x̄, ξ̄;n)v̄ε(ξ̄, t) dSξ̄ + o(‖v̄ε‖) (ε→ 0) (1.A.30)

(with H∞(x̄, ξ̄;n) = ∇ξ̄G∞(x̄, ξ̄)·n(ξ), H∞,ε defined by (1.A.28) with c replaced with c/ε, and

v̄ε(ξ̄, t) defined by v̄ε(ξ̄, t) = vε(ξ, t) with ξ̄ and ξ related through (1.3.10)). Estimates (1.A.29)

and (1.A.30), established following the steps used for Lemmas 1 and 2, suggest the following
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asymptotic behavior for vε(ξ, t):

v̄ε(ξ̄, t) = εV(ξ̄, t)·∇u(z, t) + o(ε) (ξ ∈Γε(z), ξ̄ ∈S) (1.A.31)

Upon substituting (1.A.31) into the right-hand side of (1.A.30), making use of the assumed Lipschitz

continuity of τ 7→ ∇u(x, τ), and retaining only the leading O(ε) contributions as ε→ 0 according

to (1.A.29) and (1.A.30), V is readily found to verify an integral equation that corresponds to the

following canonical exterior problem for the vector Laplace equation:

∆ξ̄V(ξ̄) = 0 (ξ̄ ∈R3 \B), ∇ξ̄V(ξ̄)·n(ξ̄) = −n(ξ̄) (ξ̄ ∈S) (1.A.32)

The scattered field vε at any point of Sobs is then found (inserting (1.A.31) into the integral repre-

sentation formula associated with integral equation (1.A.25)) to have the expansion

vε(x, t) = ε3|B|
{

∇ξG(x, t,z) ? [A·∇u](z, t) + ρU̇(x, t,z) ? u̇(z, t)
}

+ o(ε3) (1.A.33)

where the constant second-order polarization tensor A = A(B) depends only on B and is defined

by

A = I − 1
|B|

{∫
S
n(ξ̄)⊗V(ξ̄) dSξ̄

}
(1.A.34)

Finally, upon defining the adjoint solution û as the solution of the initial-boundary value problem

[
Lcû

]
(ξ, t) = 0 (ξ ∈Ω, 0 6 t6 T ),

q[û](ξ, t) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈Sobs, 0 6 t6 T ),

q[û](ξ, t) = 0 (ξ ∈SN\Sobs, 0 6 t6 T ),

û(ξ, t) = 0 (ξ ∈SD, 0 6 t6 T ),

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈Ω),

(1.A.35)

using reciprocity identity (1.3.23) suitably modified for linear acoustics, and exploiting the relevant
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boundary conditions, expansion (1.3.5) with u and vε respectively replaced with u and vε yields

η(ε)|B|T(z, T ) + o
(
η(ε)

)
=
∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]vε(ξ, t) dSξ dt

= −
∫

Γε(z)

{
q[û] ? vε + q[u] ? û

}
(ξ, t) dSξ

= ε3|B|
{

∇û ? (A·∇u) +
1
c2

˙̂u ? u̇
}
(z, t) + o(ε3) (1.A.36)

with the polarization tensorA still defined by (1.A.34). Hence, the TS T(z, t) and leading behavior

η(ε) are found to be given by

T(z, t) =
{

∇û ? (A·∇u) +
1
c2

˙̂u ? u̇
}
(z, t), η(ε) = ε3 (1.A.37)

1.A.4 Two-dimensional case

The time-modulated full-space fundamental solution is given by [91]

G∞[x, t, ξ|f ] =
1
2π

∫ η?(r,t)

0

1
[η2 +r2]1/2

f
(
t− [η2 +r2]1/2

c

)
dη (1.A.38)

∇ξG∞[x, t, ξ|f ] = − 1
2π
r

∫ η?(r,t)

0

{
1

[η2 +r2]3/2
f
(
t− [η2 +r2]1/2

c

)
+

1
c[η2 +r2]

ḟ
(
t− [η2 +r2]1/2

c

)}
dη (1.A.39)

where ξ, x now denote points in the two-dimensional space spanned by (e1, e2), and the upper

bound η?(r, t) of the above integrals stems from the causality condition f(τ) = 0, τ < 0 and is

given by

η?(r, t) = [(ct)2 − r2]1/2 (1.A.40)

Proof of lemma 1. Assume that τ 7→ ∇u̇(ξ, τ) is bounded for 0 6 τ 6 t uniformly in a neigh-

bourhood V (z) of z, which implies that τ 7→ ∇u(ξ, τ) is Lipschitz-continuous for 0 6 τ 6 t

uniformly in V (z). Hence, for some positive constant K, one has

‖∇u̇(ξ, τ)‖ 6 K, ‖∇u(ξ, τ)−∇u(ξ, τ ′)‖ 6 K|τ −τ ′| 0 6 τ, τ ′ 6 t, ξ ∈ V (z) (1.A.41)

Here, the tail effect, i.e. the fact (reflected in the integration bounds of (1.A.38) and (1.A.39), and

typical of 2D time-domain fundamental solutions) that a time-impulsive source generates at (ξ, t)
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a nonzero response over a continuous time interval, entails a proof method that is slightly more

involved than for the previously-addressed 3D cases. First, the main quantity of interest is recast

into a domain integral along the lines of Section 1.A.1:

−
∫

Γε(z)
G∞(x, t, ξ) ? q[u](ξ, t) dSξ

=
∫

Bε(z)

{
∇ξG∞(x, t, ξ) ?∇u(ξ, t) +

1
c2
G∞(x, t, ξ) ? ü(ξ, t)

}
dVξ (1.A.42)

Now, setting f(τ) = f(t)+∆f(τ) in (1.A.39) and equating f(τ) to the components of ∇u(ξ, τ)

in the resulting equality, one obtains

∇ξG∞(x, t, ξ) ?∇u(ξ, t) = G∞(x, ξ)·∇u(ξ, t) + ∇ξG∞(x, t, ξ) ?∇∆u(ξ, t), (1.A.43)

where G∞(x, ξ) is the static 2D full-space Laplace fundamental solution, given by

G∞(x, ξ) = − 1
2π
r

∫ η?(r,t)

0

1
[η2 +r2]3/2

dη = − 1
2π

ln r, ∇ξG∞(x, ξ) = − 1
2πr2

r

(1.A.44)

(with the second equality established via analytical integration). Moreover, utilizing the assumed

Lipschitz continuity of t 7→ ∇u(ξ, t) for bounding the last term in (1.A.43) yields (noting that

η?(r, t) 6 ct)

∣∣∇ξG∞(x, t, ξ) ?∇∆u(ξ, t)
∣∣ 6 r

2π
2K
c

∫ η?(r,t)

0

dη
η2 +r2

=
K

πc
tan−1

[(ct)2
r2

− 1
]1/2

6
K

2c
(1.A.45)

with the last inequality stemming from the fact that −π/2 6 tan−1x 6 π/2 for any x. Next, intro-

ducing the scaled coordinates (1.3.10), one obtains (by virtue of ∇ξG∞(x, ξ) being homogeneous

of degree −1 in x−ξ)

G∞(x, ξ)·∇u(ξ, t) =
1
ε
G∞(x̄, ξ̄)·[∇u(z, t) + o(1)] (1.A.46)

Finally, upon integrating decomposition (1.A.43) overBε, applying estimates (1.A.45) and (1.A.46),

and noting that dVξ = ε2 dVξ̄ for the present 2D case, one obtains (with the last equality stemming
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from applying the divergence formula):

∫
Bε(z)

∇ξG∞(x, t, ξ) ?∇u(ξ, t) dVξ = ε

{∫
B

∇ξ̄G∞(x̄, ξ̄) dVξ̄

}
·∇u(ξ, t) + o(ε)

= ε

{∫
S
G∞(x̄, ξ̄)⊗n(ξ̄) dSξ̄

}
·∇u(ξ, t) + o(ε) (1.A.47)

Finally, assuming in addition that ü(ξ, τ) is uniformly bounded, i.e. |ü(ξ, τ)|6M for some positive

constant M , for ξ ∈ V (z), 0 6 τ 6 t, one has

∣∣G∞(x, t, ξ) ? ü(ξ, t)
∣∣ = ∣∣G∞[x, t, ξ|ü(ξ, t)]

∣∣ 6 M

2πc2

∫ η?(r,t)

0

1
[η2 +r2]1/2

dη

=
M

2πc2
ln
[
ct+ η?(r, t)

]
− ln r (1.A.48)

which implies, for ε small enough to have Bε(z)⊂ V (z) and after effecting scaling (1.3.10):∣∣∣∫
Bε(z)

G∞(x, t, ξ) ? ü(ξ, t) dVξ

∣∣∣ 6 M

2πc2
εO(ε ln ε) = o(ε) (1.A.49)

Hence, combining (1.A.47) and (1.A.49), one arrives at an estimate formally identical to (1.A.29)

where of course B is now the unit disk and G∞ the 2D static fundamental solution.

Proof of lemma 2. Introducing the scaled coordinates (1.3.10) into (1.A.39), performing the

change of variable η = εη̄ in the resulting integral and noting that its upper bound η̄?(r̄, t) is given

by (1.A.40) with r and c respectively replaced by r̄ and c/ε. The 2D analog of Lemma 2 is then

readily obtained by invoking again the decomposition G[x, t, ξ|f ] = G∞[x, t, ξ|f ]+GC[x, t, ξ|f ]

and noting that∫
Γε(z)

HC[x, t, ξ|vε(ξ, t)] dSξ = ε

∫
S
HC[x̄, t, ξ̄|v̄ε(ξ, t)] dSξ̄ = O(ε‖v̄ε(·, t)‖).

Proof of lemma 3. The proposed ansatz (1.A.31) is, by assumption in Lemma 1, Lipschitz-

continuous with respect to t, which leads to investigating the behavior of H∞ as defined through

(1.A.39) for a Lipschitz-continuous time-modulation f . Proceeding along the lines of Lemma 1,

and in particular invoking yet again the decomposition f(τ) = f(t)+∆f(τ), one finds

H∞[x̄, t, ξ̄|f ] = H∞(x̄, ξ̄)f(t) +H∞[x̄, t, ξ̄|∆f ]
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where the cofactor H∞(x̄, ξ̄) of f(t), established via analytical integration, is the normal derivative

of the static fundamental solution (1.A.44). Moreover, exploiting the Lipschitz-continuity of f in

the now-familiar way leads to

∣∣H∞[x̄, t, ξ̄|∆f ]
∣∣ 6 r̄

2πc2
2K
c

∫ η?
ε (r̄,t)

0

dη̄
η̄2 + r̄2

=
K

πc
tan−1

[
1− (ct)2

r̄2

]1/2

Two-dimensional elastodynamics. The infinite-plane time-modulated fundamental solution for

two-dimensional elastodynamics is given by [91]:

U∞[x, t, ξ|f ] =
1
ρc2T

GT∞[x, t, ξ|f ]I

+
1

4πρ
∇ξ∇ξ

{∫ t−r/cL

0
τGL∞[x, t−τ, ξ|f ] dτ −

∫ t−r/cT

0
τGT∞[x, t−τ, ξ|f ] dτ

}
r (1.A.50)

where GL∞, GT∞ are defined by (1.A.38) with c= cL and c= cT, respectively. Lemmas 1 to 3 can

then be established by adapting the proof for the scalar case, a task left to the reader.

1.B Summary of explicit formulae for polarization tensors

Explicit formulae for polarization tensors A have been established in earlier works [e.g. 183, 99,

101] for many situations. Moreover, the recent book by [9] presents a comprehensive study of the

concept of polarization tensor in connection with small-defect asymptotics and homogenization.

For the case of spherical or (resp. circular) cavities nucleating in 3D (resp. 2D) isotropic elastic

bodies, one has |B|= 4π/3 (3D) or |B|= π (2D)

A =
3(1− ν)
2µ(7− ν)

[
5Isym − 1 + 5ν

2(1 + ν)
I ⊗ I

]
(3D) (1.B.1a)

A =
1

µ(1 + ν)

[
2Isym − 2ν2 − ν + 1

2(1 + ν)(1− ν)
I ⊗ I

]
(2D plane stress) (1.B.1b)

A =
1− ν

µ

[
2Isym − 1

2(1 + ν)
I ⊗ I

]
(2D plane strain) (1.B.1c)

The polarization tensor associated with the nucleation of a small spherical elastic inclusion with

assumed elastic constants µ?, ν? is given [see 70] by

A? = AdevIsym +
1
3
(Asph −Adev)I ⊗ I (1.B.2)
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having set
Asph = − 3(1− 2ν)

2µ(1 + ν)
(1− ν)(χ̄− 1)

(1 + ν)(χ̄− 1) + 3(1− ν)

Adev = − 1
2µ

15(1− ν)(µ̄− 1)
(8− 10ν)(µ̄− 1) + 15(1− ν)

with χ̄ =
µ?(1 + ν?)(1− 2ν)
µ(1 + ν)(1− 2ν?)

, µ̄ =
µ?

µ

The second-order polarization tensor associated with the nucleation of a small spherical sound-hard

obstacle in an acoustic medium is given by

(a)A =
3
2
I (3D), (b)A = 2I (2D) (1.B.3)
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2.1 Introduction

The reconstruction of cracks embedded in a solid using transient elastic waves is a classical inverse

problem that arises in a number of applications such as nondestructive material testing or seismic

imaging [38, 184]. Among the most prominent qualitative and non-iterative approaches, relevant

for the problem of crack identification in elastodynamics, stand the probe method [118], the linear

sampling method [78, 43, 155], the reciprocity gap principle [24, 15, 39], and the concept of topo-

logical sensitivity considered herein.

The topological sensitivity analysis has been broaden to identification problems under transient

dynamical conditions within time-domain formulations [29, 8, 14] showing analogies with time

reversal methods [88, 187]. A growing variety of inhomogeneities has been the subject of investiga-

tions, see [99, 104, 9] in elasticity, but in the context of crack identification only a few studies have

been done, notably [13] for 2D Laplace equation, [10] and [12] for 2D and 3D Helmholtz equation

respectively, and [98] in 2D elastostatics. This chapter is devoted to crack identification in three

dimensional elastic solids using time-domain topological sensitivity. The asymptotic behaviors of

functionals, characterizing their topological sensitivities, relatively to the nucleation of a crack of

infinitesimal size are addressed in elasticity and acoustics, using adjoint-based approach [27] to pro-

vide simple and efficient formulations. To the authors’ best knowledge, this study constitutes the

first analysis of the topological sensitivity method applied to the identification of cracks within a 3D

elastodynamic context.

The chapter is organized as follows. The analysis of the topological sensitivity is presented for

the elasticity case in Section 2.2, and in acoustics in Section 2.3 in adjoint-based formulations. In

each case, the asymptotic analysis is detailed, and closed-form is addressed featuring the nucleation

of infinitesimal circular plane crack while alternative proof or technical considerations are deferred

in 2.A.2. Finally, a set of FEM-based numerical examples are included Section 2.5 for illustration

and discussion.

Consider a crack identification problem where the reference homogeneous, linearly elastic, solid

Ω with boundary S, containing a crack Γtrue (or a set thereof), is interrogated by means of a dynamic

excitation. The reference medium is characterized by its mass density ρ and elasticity tensor C
which, for isotropic materials, is given in terms of the shear modulus µ and Poisson’s ratio ν by

C = 2µ
[
Isym +

ν

1− 2ν
I⊗I

]
, (2.1.1)
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I being the second-order identity tensor and Isym the symmetric fourth-order identity tensor. To

identify the hidden crack Γtrue, transient excitations are applied in the form of tractions applied over

SN ⊂ S and displacements prescribed on the complementary external surface SD = S \SN, with

initial rest conditions assumed at time t= 0. Letting Γ denote a trial crack, the prescribed excitation

gives rise to elastodynamic displacement fieldsu (the free field) in the reference (uncracked) domain

Ω and uΓ in the cracked domain ΩΓ = Ω\Γ.

The identification of the crack Γtrue is here based on the assumed availability of over-determined

data on the external boundary, in the form of the measured value uobs on the measurement surface

Sobs ⊂ SN and during the time interval [0, T ] of the displacement induced in the flawed solid

by the prescribed excitation (other possibilities can be considered with minimal changes to the

formulation). The discrepancy between a trial configuration ΩΓ and the correct configuration ΩΓtrue

is evaluated by means of a cost functional J defined in terms of a misfist density function ϕ:

J(ΩΓ, T ) =
∫ T

0

∫
Sobs

ϕ[uΓ(ξ, t), ξ, t] dSξ dt. (2.1.2)

The misfit function ϕ is chosen so as to measure the gap between measurements uobs and the

displacement uΓ arising in a trial cracked solid ΩΓ. Numerical experiments presented in this work

are based on the commonly-used least squares misfit function:

ϕ[w, ξ, t] =
1
2
‖w − uobs(ξ, t)‖2. (2.1.3)

2.2 Elastic topological sensitivity

2.2.1 Preliminaries

The topological sensitivity of the cost functional (2.1.2) is here defined as its sensitivity with respect

to the creation of an infinitesimal crack of characteristic size ε at a given location z ∈Ω, defined by

Γε(z) = z + εΓ̄ in terms of of a normalized open surface Γ̄ containing the origin and specifying a

chosen crack shape (e.g. Γ̄ is a unit disk for a nucleating penny-shaped crack) and its characteristic

radius ε > 0. The corresponding trial cracked solid is denoted Ωε,z. Following earlier works on

topological sensitivity, e.g. [183, 99, 35], one seeks the asymptotic behavior of J(Ωε,z, T ) as ε→ 0

through the expansion:

J(Ωε,z, T ) = J(Ω, T ) + η(ε)T(z, Γ̄, T ) + o(η(ε)) (ε→ 0) (2.2.1)
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where the function η(ε), to be determined, vanishes in the limit ε→ 0 and the topological sensitivity

T(z, Γ̄, T ) is a function of the sampling point z and experiment duration T .

The prescribed dynamical loading applied on Ωε,z gives rise to an elastodynamic state uε,z that

can be conveniently decomposed into uε,z = u+ vε,z, where the free-field u is the response of the

reference domain Ω while the scattered field vε,z is governed by the initial-boundary value problem

(IBVP)
∇ · [C :∇vε,z](ξ, t) = ρv̈ε,z(ξ, t) (ξ ∈ Ωε,z, t > 0)

t±[v±ε,z](ξ, t) = −t±[u](ξ, t) (ξ ∈ Γ±ε,z, t > 0)

t[vε,z](ξ, t) = 0 (ξ ∈ SN, t > 0)

vε,z(ξ, t) = 0 (ξ ∈ SD, t > 0)

vε,z(ξ, 0) = v̇ε,z(ξ, 0) = 0 (ξ ∈ Ωε,z),

(2.2.2)

where the two crack faces Γ±ε,z support scattered displacements v±ε,z, and the traction vector t[w] =

(C :∇w)·n = σ[w]·n (resp. t±[w±] = σ[w±]·n±) is associated with a displacement w and the

outward normal n on S (resp. n± on Γ±ε,z). In (2.2.2) and hereinafter, the symbols ’·’ and ’:’ denote

single and double tensor contractions, with the convention a :b= aijbij used in the latter case.

Expanding the cost functional (2.1.2) about uε,z = u to first order w.r.t. vε,z = uε,z−u, one

obtains

J(Ωε,z, T ) = J(Ω, T ) +
∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t] · vε,z(ξ, t) dSξ dt+ o(‖vε,z‖L2(Sobs)). (2.2.3)

Then, since the scattered field is expected to vanish for infinitesimal cracks, i.e. limε→0 ‖vε,z‖ = 0,

the topological sensitivity T(z, Γ̄, T ) and the leading asymptotic behavior η(ε) = o(‖vε,z‖L2(Sobs))

featured in (2.2.1) are to be found by identification from∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t] · vε,z(ξ, t) dSξ dt = η(ε)T(z, Γ̄, T ) + o(η(ε)). (2.2.4)

This requires finding the leading asymptotic behavior as ε → 0 of the left-hand side of (2.2.4).

One possible way, along the lines of the so-called direct differentiation approach of parameter or

shape sensitivity analysis [112], consists in seeking the asymptotic behavior of vε,z on Sobs and

plugging the result into (2.2.4). As previously discussed on several occasions [29, 22], however,

a more compact formulation for the actual evaluation of T(z, Γ̄, T ) can be set up using an adjoint

solution and is adopted here.
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The adjoint formulation stems from treating the integral in the left-hand side of (2.2.4) as one

of the terms arising in the reciprocity identity linking two elastodynamic states [188, 2], in which

one state is the scattered field vε,z while the other is, like in [29, 22], chosen as the adjoint state û

governed by the following IBVP

∇ · [C :∇û](ξ, t) = ρ¨̂u(ξ, t) (ξ ∈ Ω, 0 6 t 6 T )

t[û](ξ, t) =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈ Sobs, 0 6 t 6 T )

t[û](ξ, t) = 0 (ξ ∈ SN\Sobs, 0 6 t 6 T )

û(ξ, t) = 0 (ξ ∈ SD, 0 6 t 6 T )

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈ Ω).

(2.2.5)

Now, for any generic domainO and pair of elastodynamic states u1,u2 satisfying the homogeneous

elastodynamic field equations in O as well as initial-rest conditions

u1(ξ, 0) = u̇1(ξ, 0) = 0 and u2(ξ, 0) = u̇2(ξ, 0) = 0 (ξ ∈O),

the following reciprocity identity holds [188, 2]:∫
∂O
{t[u1] ? u2 − t[u2] ? u1}(ξ, t) dSξ = 0 (2.2.6)

in which ? denotes the time convolution at instant t > 0 defined, for generic tensor fields a and b

assumed to be at rest at all negative times, by

[a ? b](ξ, t) =
∫ t

0
a(ξ, τ)·b(ξ, t− τ) dτ, (2.2.7)

the inner product appearing in the integral being such that a ·b is a tensor of the lowest possible

order (e.g. u ? σ[v] has order 1, ∇u ? σ[v] is a scalar). On writing the reciprocity identity (2.2.6)

for the domain O = Ωε,z (with boundary ∂Ωε,z = S ∪ Γε,z) and elastodynamic states u1 = û and

u2 = vε,z, (2.2.4) is recast as

∫ T

0

∫
Γε,z

t[û](ξ, T − t) · [[vε,z]](ξ, t) dSξ dt = η(ε)T(z, Γ̄, T ) + o(η(ε)), (2.2.8)

where [[vε,z]] = v+
ε,z−v−ε,z denotes the crack opening displacement (COD), the traction vector t[û]
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is defined on Γε,z in terms of the unit normal n=n−, and having used the boundary conditions in

problems (2.2.2) and (2.2.5) and the continuity of the adjoint displacement û across Γε,z. Finding

T(z, Γ̄, T ) and η(ε) from (2.2.8) now requires determining the leading behavior of the COD [[vε,z]]

as ε→ 0.

2.2.2 Asymptotic analysis

Small-crack asymptotics of the COD

This issue is conveniently addressed by reformulating the governing IBVP (2.2.2) in terms of an

integral equation, as the geometrical support of the latter is the vanishing crack surface. Let

U(x, t, ξ) and Σ(x, t, ξ) denote the time-impulsive elastodynamic Green’s tensors, defined such

that ek ·U(x, t, ξ) and ek ·Σ(x, t, ξ) are the displacement and stress at ξ ∈ Ω and time t resulting

from a unit time-impulsive point force applied at x ∈ Ω in the k-th direction at time t = 0 and

satisfying the boundary conditions

U(x, t, ξ) = 0 (ξ ∈SD, t> 0), Σ(x, t, ξ)·n = 0 (ξ ∈SN, t> 0), (2.2.9)

One also defines the elastodynamic full-space fundamental tensorsU∞(x, t, ξ) and Σ∞(x, t, ξ) by

replacing boundary conditions (2.2.9) with radiation conditions at infinity [91], see 1.A.2. Taking

into account the homogeneous boundary conditions in (2.2.2), the COD verifies the singular integral

equation [28]

t[u](x, t) = −
∫

Γε,z

[
n(x)·C ·Σ(x, t, ξ)

]
?D[[vε,z]](ξ, t) dSξ

+ ρn(x)·C :
{∫

Γε,z

[
U(x, t, ξ) ? [[v̈ε,z]](ξ, t)

]
⊗n(ξ) dSξ

}
(x∈Γε,z, 0 6 t6 T ) (2.2.10)

where w 7→ Dw = ∇w⊗n−n⊗∇w defines a (tensorial) tangential differential operator (upon

splitting the gradients into sums of tangential and normal parts, all normal derivatives cancel out),

whose value hence depends only on the surface trace of w, and −
∫

indicates a strongly singular

integral defined in the Cauchy principal value sense.

The asymptotic form of integral equation (2.2.10) as ε → 0 is now sought. For this purpose,

and following customary practice for such asymptotic analyses, scaled coordinates ξ̄ are introduced
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so that

(a) ξ = z+εξ̄, (b) dSξ = ε2 dSξ̄ (ξ ∈Γε,z, ξ̄ ∈ Γ̄). (2.2.11)

Assuming that the free field is such that x 7→ σ[u](x, t) is continuous at x= z, one has

t[u](ξ, t) = σ[u](z, t)·n(ξ) + o(1) (ξ ∈Γε,z) (2.2.12)

Investigating the small-crack asymptotic behavior of the right-hand side of (2.2.10) is more in-

volved, and is helped by the following lemma, whose proof is given in 1.A.2:

Lemma 4. Let the vector function v̄ε,z(ξ̄, t) be defined by v̄ε,z(ξ̄, t) = vε,z(ξ, t), with ξ̄ and ξ

related through (2.2.11a). Then, one has

−
∫

Γε,z

[
n(x)·C ·Σ(x, t, ξ)

]
?D[[vε,z]](ξ, t) dSξ

=
1
ε

{
−
∫

Γ̄

[
n(x̄)·C ·Σ∞,ε(x̄, t, ξ̄)

]
?D[[v̄ε,z]](ξ̄, t) dSξ̄ + o(‖[[v̄ε,z]](·, t)‖L2(Γ̄))

}
(2.2.13)∫

Γε,z

[
U(x, t, ξ) ? [[v̈ε,z]](ξ, t)

]
⊗n(ξ) dSξ

= ε

{∫
Γ̄

[
U∞,ε(x̄, t, ξ̄) ? [[¨̄vε,z]](ξ̄, t)

]
⊗n(ξ̄) dSξ̄ + o(‖[[¨̄vε,z]](·, t)‖L2(Γ̄))

}
(2.2.14)

whereU∞,ε,Σ∞,ε is the full-space elastodynamic fundamental solution defined in terms of rescaled

wave velocities cL/ε, cT/ε.

The left-hand side of equation (2.2.10) is O(1) as ε→ 0, with its leading contribution linear in

σ[u](z, t) as seen in (2.2.12). The combination of this remark and Lemma 4 suggest to consider the

following ansatz for [[v̄ε,z]](ξ̄, τ), in terms of unknown vector fields V ij(ξ̄) (1 6 i, j 6 3) defined

on Γ̄:

v̄ε,z(ξ̄, t) = εσij [u](z, t)V ij(ξ̄) + o(ε) (ξ ∈Γε,z, ξ̄ ∈ Γ̄). (2.2.15)

This ansatz indeed causes the first and second integrals in the right-hand side of (2.2.10) to be O(1)

and o(1) as ε→ 0, respectively:

Lemma 5. Assume that τ 7→ ∇u(ξ, τ) is twice differentiable in a neighbourhood of τ = t, and let
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v̄ε,z(ξ̄, t) be of form (2.2.15) for some V ij . Then:

−
∫

Γε,z

[
n(x)·C ·Σ(x, t, ξ)

]
?D[[vε,z]](ξ, t)

]
dSξ

= σij [u](z, t)−
∫

Γ̄

[
n(x̄)·C ·Σ∞(ξ̄− x̄)

]
·:D[[V ]]ij(ξ̄) dSξ̄ + o(1), (2.2.16a)

where Σ∞(r̄) is the stress associated with the elastostatic Kelvin solution, given by (2.B.13), and∫
Γε,z

[
U(x, t, ξ) ? [[v̈ε,z]](ξ, t)

]
⊗n(ξ) dSξ = O(ε2) (2.2.16b)

Proof. See 1.A.2.

Combining (2.2.12) with lemma 5 allows to set up the asymptotic form of integral equation

(2.2.10) in the small-crack limit (it is in particular noted that the second integral of (2.2.10) does not

contribute to the limiting integral equation as its order in ε is higher than that of the first integral).

On enforcing the limiting integral equation for any choice of σij [u](z, t), the asymptotic behavior

of the COD is found to follow the representation (2.2.15), with the V ij solving the integral equation

1
2
(
ei⊗ej + ej⊗ei

)
·n(x̄) = −

∫
Γ̄

[
n(x̄)·C ·Σ∞(ξ̄− x̄)

]
·:D[[V ]]ij(ξ̄) dSξ̄ (x̄∈ Γ̄) (2.2.17)

which is readily recognised [28] as governing the exterior elastostatic problem for the crack Γ̄ em-

bedded in an infinite elastic medium and subjected on its faces to tractions t± = −1
2

(
ej ⊗ ek +

ek⊗ej

)
·n±(x̄). The left-hand side of (2.2.17) being symmetric in i, j, there are six distinct such

equations, governing six canonical solutions V ij(ξ̄) (1 6 i 6 j 6 3) which are time-independent.

Like for the previously-considered small-cavity asymptotics in the time domain [29, 22], the func-

tions V ij depend only on the chosen (crack) shape Γ̄; in particular, they depend neither on the shape

of the solid Ω being probed, nor on the location of the sampling point z. Finding the V ij(ξ̄) en-

tails in the worst case the numerical solution of the elastostatic integral equation (2.2.17), using e.g.

boundary elements, for six different sets of prescribed tractions, with analytical solutions known for

simple crack shapes (see Sec. 2.2.2).

Once the V ij(ξ̄) are known, and arranging for notational convenience the vector fields V ij(ξ̄)

into a third-order tensor field V(ξ̄) such that V ij = Vijkek, the asymptotic behavior of the COD

can be readily evaluated, using (2.2.15), at any sampling point z and for any given stress history
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σ[u](z, t), to obtain

[[v̄ε,z]](ξ̄, t) = εσ[u](z, t) : [[V ]](ξ̄) + o(ε) (2.2.18)

Topological sensitivity

Now, inserting expansion (2.2.18) into the left-hand side of (2.2.8) and invoking (2.2.11b), one

obtains∫ T

0

∫
Γε,z

t[û](ξ, T − t) · [[vε,z]](ξ, t) dSξ dt

= ε3
∫ T

0

∫
Γ̄
σ[u](ξ̄, t) :

(
[[V ]](ξ̄)⊗n(ξ̄)

)
:σ[û](ξ̄, T − t) dSξ̄ dt+ o(ε3). (2.2.19)

A comparison of (2.2.19) with (2.2.8) then readily allows to identify T(z, Γ̄, T ) and η(ε), leading

to the main result of this section:

Proposition 1. The topological sensitivity T(z, Γ̄, T ) of J and its small-crack asymptotic behavior

η(ε) are given by

(a) T(z, Γ̄, T ) = σ[u] ?
(
Aσ :σ[û]

)
(z, T ) (b) η(ε) = ε3, (2.2.20)

= ∇u ?
(
A :∇û

)
(z, T ),

in terms of the free and adjoint solutions u and û. Moreover, the fourth-order polarization tensors

Aσ and A are given, in terms of the third-order tensor function V(ξ̄) defined in Sec. 2.2.2, by

Aσ(Γ̄) =
∫

Γ̄
[[V ]](ξ̄)⊗n(ξ̄) dSξ̄, A = C :Aσ :C. (2.2.21)

Aσ and A are shown in 2.A.2 to have major symmetry, which implies

σ[u] ?
(
Aσ :σ[û]

)
= σ[û] ?

(
Aσ :σ[u]

)
, ∇u ?

(
A :∇û

)
= ∇û ?

(
A :∇u

)
.

The topological sensitivity (2.2.20a) depends on the canonical solutions V through A or Aσ,

and is therefore intrinsically related to the assumed crack shape Γ̄. As previously mentioned, the

tensor field V(ξ̄) can be computed (at least numerically) for any assumed shape Γ̄, with analytical

solutions available for simple shapes of Γ̄ as discussed next.
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Polarization tensor for a penny-shaped crack

Closed form solutions for V are available in the case of a penny-shaped crack [120, 68], i.e. a

circular plane crack for which Γ̄ is the unit disk with normal n. Selecting the orthonormal basis

(e1, e2, e3) such that e3 ≡ n, the [[V ]]ij are given by

[[V ]]ij(ξ̄) =
2(1− ν)
πµ(2− ν)

√
1− |ξ̄|2 n·(ei⊗ej + ej⊗ei)·

[
2I − νn⊗n

]
(ξ̄ ∈ Γ̄), (2.2.22)

Using that ∫
Γ̄

√
1− |ξ̄|2 dSξ̄ =

2π
3
, (2.2.23)

the tensor Aσ defined by (2.2.21) reduces to

Aσ =
8(1− ν)
3µ(2− ν)

n⊗
(
2I − νn⊗n

)
⊗n (2.2.24)

In view of the relationship (2.2.21) between A and Aσ, one may equivalently use the following

version of Aσ which, unlike (2.2.24), has the minor symmetries:

Aσ =
4(1− ν)
3µ(2− ν)

(
[n⊗eα + eα⊗n]⊗ [n⊗eα + eα⊗n] + 2(2− ν)n⊗n⊗n⊗n

)
, (2.2.25)

where α ∈ {1, 2}. This form corresponds to the result given in Proposition 2 of 2.A.2. Then,

using (2.1.1), (2.2.21) and (2.2.25), one finds

A =
8µ(1− ν)

3

[( 2ν
1− 2ν

)2
I⊗I +

4ν
1− 2ν

[n⊗n⊗I + I⊗n⊗n] + 4n⊗n⊗n⊗n

+
2

(2− ν)
[n⊗eα + eα⊗n]⊗ [n⊗eα + eα⊗n]

]
.

Polarization tensor for an elliptic crack

The case of an elliptic crack is also amenable to analytical treatment, based on using the exact

solution for an ellipsoidal cavity (which is itself a special case of Eshelby solution for an ellipsoidal

inclusion [152]) and considering the limiting case where the cavity becomes infinitely thin. The

details of this approach, being somewhat lengthy, are deferred to 2.A.3 and lead to the following

result:

Proposition 2. The polarization tensor for a normalized elliptical crack whose major semiaxis `1
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and minor semiaxis `2 = (1−m2)1/2`1 (with 0 6m< 1) are respectively aligned with the e1 and

e2 directions of a Cartesian frame is given (see Eq. (2.2.21)) by A = C : Aσ : C, where the only

nonzero entries of Aσ are given (using the functions α(m), β(m) defined by (2.A.12)) by

Aσ
1313 = Aσ

3113 = Aσ
1331 = Aσ

3131 = `31(1−m2)1/2 π(1−ν)
3µ(να(m)+(1−ν)β(m))

(2.2.26a)

Aσ
2323 = Aσ

3223 = Aσ
2332 = Aσ

3232 = `31(1−m2)1/2 π(1−ν)
3µ(β(m)−να(m))

(2.2.26b)

Aσ
3333 = `31(1−m2)1/2 4π(1−ν)

3µβ(m)
. (2.2.26c)

As explained in 2.A.3, this result reduces as expected to (2.2.25) for the special case of a circular

crack of unit radius, corresponding to m= 0 and `1 = 1.

2.3 Acoustic topological sensitivity

For completeness, the case where the reference medium is an acoustic fluid characterized by the

wave velocity c is now treated. In this context, a “crack” supporting homogeneous Neumann con-

ditions models a thin rigid screen across which the acoustic pressure may be discontinuous. The

scattered acoustic pressure field vε,z arising in Ωε,z due to the presence of a screen of small size ε

and shape Γ̄ located at z is governed by the following IBVP:

∆vε,z(ξ, t) = c−2v̈ε,z(ξ, t) (ξ ∈ Ωε,z, t > 0)

q±[v±ε,z] = −q±[u](ξ, t) (ξ ∈ Γ±ε,z, t > 0)

q[vε,z] = 0 (ξ ∈ SN, t > 0)

vε,z(ξ, t) = 0 (ξ ∈ SD, t > 0)

vε,z(ξ, 0) = v̇ε,z(ξ, 0) = 0 (ξ ∈ Ωε,z),

(2.3.1)

where u is the free field, w 7→ q[w] = ∇w·n is the normal derivative operator (with the superscript

± referring where necessary to the relevant crack face and its unit normal). Then is the same fashion

as in equation (2.2.3) the topological sensitivity is defined for scalar wave through∫ T

0

∫
Sobs

∂ϕ

∂u
[u(ξ, t), ξ, t]vε,z(ξ, t) dSξ dt = η(ε)T(z, Γ̄, T ) + o(η(ε)). (2.3.2)
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Introducing the adjoint field û solution of the IBVP

∆û(ξ, t) = c−2 ¨̂u(ξ, t) (ξ ∈ Ω, 0 6 t 6 T )

q[û] =
∂ϕ

∂u
[u(ξ, T − t), ξ, T − t] (ξ ∈ Sobs, 0 6 t 6 T )

q[û] = 0 (ξ ∈ SN\Sobs, 0 6 t 6 T )

û(ξ, t) = 0 (ξ ∈ SD, 0 6 t 6 T )

û(ξ, 0) = ˙̂u(ξ, 0) = 0 (ξ ∈ Ω),

(2.3.3)

and invoking the scalar dynamical reciprocity identity, equation (2.3.2) reduces to

η(ε)T(z, Γ̄, T ) + o(η(ε)) =
∫ T

0

∫
Γε,z

q[û](ξ, T − t)[[vε,z]](ξ, t) dSξ dt, (2.3.4)

where [[vε,z]] = v+
ε,z − v−ε,z denotes the acoustic pressure jump through the screen and the flux q[û]

is defined on Γε,z in terms of the unit normal n=n−

Leading contributions as ε → 0. To determine the leading contributions of vε,z in the limit

ε → 0, it is convenient to reformulate the scattering IBVP (2.3.1) as a singular boundary integral

equation [28]:

q[u](x, t) = n(x)·
{
−
∫

Γε,z

∇G(x, t, ξ) ?D[[vε,z]](ξ, t) dSξ

+
1
c2

∫
Γε,z

n(ξ)G(x, t, ξ) ? [[v̈ε,z]](ξ, t) dSξ

}
(x∈Γε,z, 0 6 t6 T ) (2.3.5)

with the tangential differential operator D defined by w 7→ Dw = ∇w⊗n−n⊗∇w and where

G(x, t, ξ) is the acoustic Green’s function, i.e. the pressure at ξ and time t created in Ω by a

time-impulsive point source acting at x∈Ω and t = 0 and satisfying the boundary conditions

G(x, t, ξ) = 0 (ξ=SD, t> 0), q[G](x, t, ξ) = 0 (ξ=SN, t> 0) (2.3.6)

Proceeding along the same lines as in Sec. 2.2.2, one arrives at a representation of vε,z of the

form

[[vε,z]](ξ, t) = ε
∂u

∂zi
(z, t)·[[V ]]i(ξ̄) + o(ε) (2.3.7)
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and at the following expansions, which are the acoustic counterparts of (2.2.16a,b):

−
∫

Γε,z

∇G(x, t, ξ) ?D[[vε,z]](ξ, t) dSξ =
∂u

∂zi
(z, t)

{
−
∫

Γ̄
∇G∞(ξ̄− x̄)·D[[V ]]i(ξ̄) dSξ̄ + o(1)

}
(2.3.8a)∫

Γε,z

n(ξ)G(x, t, ξ) ? [[v̈ε,z]](ξ, t) dSξ = O(ε2) (2.3.8b)

(with G∞(r) = 1/4π‖r‖ denoting the full-space Laplace fundamental solution). Thus, deriving

the limiting form of integral equation (2.3.5) as ε → 0 and enforcing the result for any value of

∂u/∂zi(z, t) yields governing integral equations for the [[V ]]i:

n(x̄)·ei = n(x̄)·−
∫

Γ̄
∇G∞(ξ̄− x̄)·D[[V ]]i(ξ̄) dSξ̄ (x̄∈ Γ̄) (2.3.9)

which correspond to exterior Laplace problems for the normalized screen Γ̄ whose faces are sub-

jected to fluxes q±(x̄) =−n±(x̄)·ei.

Topological sensitivity. Inserting (2.2.18) into the right-hand side of (2.3.4), one finally obtains

(a) T(z, Γ̄, T ) =
∫ T

0
∇û(z, T − t) ·B ·∇u(z, t) dt, (b) η(ε) = ε3, (2.3.10)

with the second-order polarization tensor B defined, upon arranging the V i into a vector field V =

V iei, by

B =
∫

Γ̄
[[V ]](ξ̄)⊗n(ξ̄) dSξ̄. (2.3.11)

An argument similar to that of 2.A.2 shows that the tensor B is symmetric.

Polarization tensor for the elliptic screen. The polarization tensor for an elliptic sound-hard

plane screen has the following closed-form expression (see 2.A.4 for details):

B =
4π
3

(1−m2)
E(m)

`31n⊗n, (2.3.12)



CHAPTER 2. QUALITATIVE IDENTIFICATION OF CRACKS 67

with `1,m as defined in Proposition 2 and E(m) defined by (2.A.13). The case of the circular plane

screen of unit radius then corresponds to m = 0, `1 = 1 and E(m) = π/2, i.e.:

B =
8
3
n⊗n. (2.3.13)

2.4 TS-based crack identification: heuristics and implementation

Topological sensitivity as a crack indicator function. Since T(z, Γ̄, T ) quantifies the sensitivity

of the featured cost functional J to the appearance at z of an infinitesimal crack in the reference

medium, it is natural to consider z 7→ T(z, Γ̄, T ) as a possible crack indicator function. This

heuristic approach consists in seeking actual crack(s) at locations z at which T(z, Γ̄, T ) attains its

most pronounced negative values (i.e. such that infinitesimal trial cracks placed there improve the

fit between predicted and actual measurements). A simple shape (usually circular) will be assumed

for Γ̄, with its orientation chosen so as to minimize T(z, Γ̄, T ) as explained later in this section.

While intuition (and previous studies on the same approach carried out for other types of defects)

suggests that finite defects having the same location also induce a decrease of the cost function,

this proposed exploitation of the TS field T(·, Γ̄, T ) is not backed by a rigorous mathematical proof

(whereas the analysis of the cost function leading to the definition and evaluation of T(z, Γ̄, T )

is itself mathematically rigorous). This proposed heuristic identification approach, whose main

features are discussed in the remainder of this section, will be tested against numerical experiments

in Sec. 2.5.

Evaluation of the topological sensitivity field. Computing the field T(·, Γ̄, T ) using (2.2.20) en-

tails the evaluation of a time-convolution integral. Performing the latter operation requires storage

of the entire histories for the free and adjoint fields (which may be discarded once the convolu-

tion is computed). To hold this memory space over the shortest possible time in the course of the

computation, it is useful to recast T(z, Γ̄, T ) into the equivalent form

T(z, Γ̄, T ) = Π(z, T ) ::Aσ(Γ̄) (2.4.1)

where the fourth-order tensor field Π(z, T ) is defined by

Π(z, T ) =
∫ T

0

1
2
{σ[û](z, T − t)⊗σ[u](z, t) + σ[u](z, t)⊗σ[û](z, T − t)} dt. (2.4.2)
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The computational advantage of (2.4.1) over (2.2.20a) is materialized by evaluating Π(z, T ) im-

mediately after solving the free and adjoint IBVPs, after which the discretized free and adjoint

solutions are no longer needed and may be discarded from the memory. This treatment has at least

two advantages. First, when the featured cost function additively aggregates several experiments, in

which case the Πm(z, T ) associated with the m-th experiment can be computed sequentially and

the topological sensitivity for the whole set of experiments is given by

T(z, Γ̄, T ) =
{∑

m

Πm(z, T )
}

::Aσ(Γ̄). (2.4.3)

Second, Π(z, T ) does not depend on the shape or orientation of Γ̄, which affect only the constant

polarization tensor Aσ(Γ̄). This makes it easier, and computationally inexpensive, to evaluate the

influence of the choice of Γ̄ on the value of T at a given sampling location z.

In the scalar (acoustic) case, similar remarks apply, with T(z, Γ̄, T ) recast in the form

T(z, Γ̄, T ) = Π(z, T ) :B(Γ̄) (2.4.4)

in terms of the second-order tensor Π(z, T ) defined by

Π(z, T ) =
1
2

∫ T

0
[∇û(z, T − t)⊗∇u(z, t) + ∇u(z, t)⊗∇û(z, T − t)] dt. (2.4.5)

In practice, a local orientation ntrue corresponding to the crack Γtrue can be known beforehand,

so that the methodology suggested is to seek the crack at point z where T(z,ntrue, T ) attains its

most pronounced negative values.

Crack orientation. An important feature of the sought crack is its orientation, which is normally

not known a priori. Let R denote an affine rotation that leaves the origin in ξ̄-space (i.e. z in the

physical space) invariant and is otherwise characterized by the orthogonal matrixR∈ SO(3). Then,

for a fixed shape of the trial infinitesimal crack Γ̄, T(z, Γ̄, T ) depends on the chosen orientation of

Γ̄ via A (or Aσ) through

Aijk`(R(Γ̄)) = RiIRjJRkKR`LAIJKL(Γ̄), (2.4.6)

by virtue of the fact that evaluating (say) ∇u : A(R(Γ̄)) : ∇û can be achieved by expressing

∇u,∇û in the rotated frame (E1,E2,E3) such that Ei = R−1ei and employing the original
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polarization tensor A(Γ̄). Then, in keeping with the previously-presented heuristic, it is natural to

seek the orientation such that, for a given sampling point z and crack shape, T(z, Γ̄, T ) is lowest.

Acordingly, define

Topt(z, T ) = min
R∈SO(3)

T(z,R(Γ̄), T )

nopt(z, T ) = arg min
R∈SO(3)

T(z,R(Γ̄), T )
(z ∈ Ω). (2.4.7)

If the trial crack Γ̄ is penny-shaped, the minimization (2.4.7) reduces to a minimization w.r.t.

the unit normal n ∈ S (where S is the unit sphere); the topological sensitivity will in this case be

denoted T(z,n, T ) for emphasis. Furthermore, since A (or Aσ) is in this case an even function

of n, the search space for n may be limited to one-half of S. In the acoustic case, where the

polarization tensor is of second-order, the minimization problem w.r.t. n is solvable exactly using

an algebraic argument similar to that of [13]. On noting πmin(z, T ) the eigenvector corresponding

to the smallest (real) eigenvalue of the symmetric tensor Π(z, T ), the solution to (2.4.7) is

Topt(z, T ) = T(z,πmin(z, T ), T ), nopt(z, T ) = πmin(z, T ) (z ∈ Ω). (2.4.8)

Thus, using indicators Tλ (2.4.9) and Γλ (2.4.10) that focus on the spatial reconstruction of the

crack Γtrue, the identification of the optimal normals in the sense of the local minimization of the

topological sensitivity (2.3.10) are obtain by diagonalization of (2.4.5) varying z ∈ Ω.

The argument leading to (2.4.8) cannot be easily carried over to the elastic case, involving

fourth-order polarization tensors, so that the minimization w.r.t. n is at the moment carried out

numerically. As a side remark, the similar (but not identical) problem of finding directions of

anisotropy that yield a pointwise optimal strain energy density is addressed in [179].

Thresholded topological sensitivity. To focus on sampling points z ∈ Ω where the topological

sensitivity Topt(z, T ) reaches sufficiently low (negative) values, a thresholded version Tλ of Topt is

defined as

Tλ(z, T ) =

Topt(z, T ) if Topt(z, T ) 6 λTmin

0 if Topt(z, T ) > λTmin
with Tmin = min

z∈Ω
Topt(z, T ), (2.4.9)
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(where λ> 0 is a cut-off parameter and with the implicit assumption that Tmin < 0). Moreover, let

Γλ ∈Ω denote the support of Tλ(·, T ), i.e.

Γλ = {z ∈ Ω | Tλ(z, T ) < 0} . (2.4.10)

Thus an estimation of the unknown crack (or set of cracks) suggested by the thresholded topological

sensitivity may be defined in terms of Γλ.

Moreover, assuming that Γ̄ is the unit circular crack, let Sopt(z, T )⊂ S denote the half-sphere

oriented by nopt(z, T ), i.e.

Sopt(z, T ) =
{
n∈S, nopt(z, T )·n> 0

}
(z ∈ Ω). (2.4.11)

and, with reference to the thresholded topological sensitivity (2.4.9), let the subset Sopt
λ (z, T ) of

Sopt(z, T ) be defined by

Sopt
λ (z, T ) =

{
n ∈ Sopt(z, T ) | T(z,n, T ) < λTmin

}
, (2.4.12)

Then, the average optimal normal nopt
λ is defined at sampling points z ∈Γλ by

n
opt
λ (z, T ) =

∫
Sopt

λ (z,T )
n dSξ̄ (z ∈Γλ), (2.4.13)

with the condition z ∈ Γλ ensuring that Sopt
λ (z, T ) is not empty. Although this is not a priori

required, the cut-off parameter λ entering the definitions of Γλ and nopt
λ will for simplicity be

asssumed to coincide.

2.5 Numerical examples

In this section, numerical experiments are presented to evaluate the topological sensitivity method

efficiency. Using a generic FEM code, synthetic data will be produced for different meshes contain-

ing a crack and topological sensitivities corresponding to cost functionals (2.1.2) with least-square

misfit function of format

ϕ[u(ξ, t), ξ, t] =
1
2
‖u(ξ, t)− uobs(ξ, t)‖2 (2.5.1)
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will be computed.

The evaluation of the field T requires the knowledge of the tensor field Π resulting from the

computation of just two solutions, namely free and adjoint fields, that are both defined on crack-free

configuration. Elastodynamic solutions are computed using isoparametric piecewise-linear inter-

polation in four-noded tetrahedral elements and unconditionally-stable Newmark algorithm with

parameters β = 1/4, γ = 1/2 [115]. Related space and time discretized version of (2.1.2), (2.2.20)

and (2.3.10) are implemented using analytical formulations of the polarization tensors correspond-

ing to the nucleation of infinitesimal penny-shaped crack, i.e. (2.2.24) and (2.3.13) respectively.

Finally, the computations are time-adimensionalized by a parameter c̄, to be adjusted in each exam-

ple, implying that, in a unit time, the length traveled by waves propagating at velocity c̄ is unity.

2.5.1 Cubic domain

The reference domain Ω considered in this section is a unit cubic mesh containing 27840 nodes.

A penny-shaped crack Γtrue of radius R = 0.1, centered at xtrue = (0.65, 0.65, 0.7) in a cartesian

coordinate system (x1, x2, x3) and oriented by the normalntrue = − sin θe1+cos θe3 (see Fig. 2.1)

constitutes the crack to be identified. The surface SN with imposed Neumann conditions is given by

SN = {x3 = 1}, and no Dirichlet condition is imposed during the simulations so that SD = ∅. The

observation surface Sobs considered coincides with the whole discretized external boundary of the

domain Ω and the duration of the experiment is set to T = 2.

Figure 2.1: Cracked cubic domain
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Acoustics. In the numerical experiment considered, a uniform normal gradient ∇uΓ?(ξ, t) · n =

−H(t) (where H(t) denotes the Heaviside step function) is applied on SN and the computation

time adimensionalization parameter correspond to the sound speed c, i.e. the velocity of isotropic

compressibility elastic waves

c̄ = c =

√
2µ(1− ν)
3ρ(1− 2ν)

. (2.5.2)

(a) θ = 0 (b) θ = π
10

(c) θ = π
4

Figure 2.2: Acoustic field T0

(a) θ = 0, λ = 0.9 (b) θ = π
10

, λ = 0.85 (c) θ = π
4
, λ = 0.8

Figure 2.3: Acoustic domain Γλ

Elasticity. A uniform constant compressional loading t[uΓ? ](ξ, t) = −H(t)e3 is imposed on SN

and the computation is adimensionalized by the longitudinal wave velocity

c̄ = cL =

√
2µ(1− ν)
ρ(1− 2ν)

. (2.5.3)
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(a) θ = 0, λ = 0.9 (b) θ = π
10

, λ = 0.85

(c) θ = π
4
, λ = 0.8

Figure 2.4: Acoustic normals nmin
λ

2.5.2 Cylindrical shell

The reference domain Ω considered is an elongated thin cylindrical shell with radii interior Ri =

0.9, exterior Re = 1 and length H = 4 which mesh involves 40650 nodes. A cracked configu-

ration contains a helicoidal crack centered at xtrue in a cylindrical coordinate system (r, θ, z) and

parametrized by fixed lengths h and l, and a varying oriented angle α as indicated on Fig. 2.8.

Geometrical parameters are such that possible crack breaks through the interior surface of the shell

but not its exterior. Finally, the observation surface is given by Sobs = {r = 1, 0 < z < 4}.

Single experiment

A first set of results is presented in this section for a configuration involving a single crack centered

at xtrue = (0.945, 0, 1.75) and characterized by h = 0.5 and l = 0.09. Synthetic data are produced

using a unique experiment during which Neumann conditions have been imposed on SN = {r =

1, (θ, z) ∈ [0, 2π]× [3.9, 4]} while SD = ∅, and using an experiment duration set to T = 8.

For further references, let g(t,m, d) denote the Gaussian function of parameter t with mean m
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(a) θ = 0 (b) θ = π
10

(c) θ = π
4

Figure 2.5: Elastic field T0

(a) θ = 0, λ = 0.7 (b) θ = π
10

, λ = 0.75 (c) θ = π
4
, λ = 0.75

Figure 2.6: Elastic domain Γλ

and standard deviation d such that

g(t,m, d) = e−
(t−m)2

2d2 , (2.5.4)

and verifying g(0,m, d) = 0.

Acoustics. In the acoustic case, synthetic measurements are produced by applying a normal gra-

dient ∇uΓ?(ξ, t) · n = −g(t, 1, 0.3) at points of SN, and again it is chosen that c̄ = c.

Elasticity. A loading corresponding to a combined traction and torsion is applied on SN as t[uΓ? ]

(ξ, t) = (− sin θe1 + cos θe2 + e3)g(t, 1, 0.3). In the elastic case, the choice of a relevant adi-

mensionalization velocity c̄ for the present geometry of a thin cylindrical shell impose to take into

consideration geometrical effects on the wave propagation. It is known from [100] that if transverse
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(a) θ = 0 (b) θ = π
10

, λ = 0.

(c) θ = π
4
, λ = 0.

Figure 2.7: Elastic normals nmin
λ

shear forces and bending and twisting moments can be assumed to be negligibly small then longi-

tudinal and flexural (i.e. radial) elastic waves at frequency ω propagate at a velocity c verifying the

dispersion relation

c = cP

√
R2ω2 − c2B
R2ω2 − c2P

(2.5.5)

where R is the mean radius of the cylindrical membrane, cB =
√

2µ(1 + ν)/ρ the longitudinal bar

velocity and cP =
√

2µ/ρ(1− ν) the thin-plate longitudinal wave velocity. Moreover, torsional

(i.e. tangential) waves propagate at the shear wave velocity

cS =
√
µ

ρ
. (2.5.6)

Thus, owing to assumption of the positiveness of the Poisson’s ratio ν, one has cP > cB > cS which

leads to the choice of an adimensionalization using c̄ = cS the lowest reference wave velocity.
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Figure 2.8: Cracked cylindrical shell

Cumulated experiments

In this section, four different experiments are considered and combined to image a single crack

characterized by xtrue = (0.945, 0, 1.75), h = 0.5, l = 0.09 and a fixed angle α = π/4. Dur-

ing the experiment number k, the excitation is applied on a squared patch SN,k of area equals to

1.6 · 10−3|Sobs| (where |Sobs| denotes the area of the observation surface) and containing 25 nodes

centered at a point Pk with parameters given in Table 2.1. The duration experiment is set to T = 4.

Moreover, if K denotes the number of experiments combined in the identification procedure,

then the corresponding acoustic (2.4.5) and elastic (2.4.2) tensors Π(x, T ) are computed as

Π(x, T ) =
K∑

k=1

Πk(x, T ), (2.5.7)

where each Πk is synthesized using quantities relative to the experiment number k. Thus the com-

putational cost of the topological sensitivity itself is independent of the number of experiments.

Table 2.1: Multiple excitation: Geometrical parameters

Excitation point P1 P2 P3 P4

r 1 1 1 1
θ π/3 −π/3 2π/3 −2π/3
z 3.5 0.5 1.25 2.75
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(a) α = π
20

(b) α = π
4

(c) α = π
2

Figure 2.9: Single experiment: Acoustic field T0

Acoustics. Synthetic measurements are produced by a prescribed ∇uΓ?(ξ, t) · n = −g(t, 1, 0.3)

on SN,k, with c̄ = c.

Elasticity. In elasticity, the applied boundary condition on the patch SN,k is again given by ∇uΓ?

(ξ, t) ·n = (− sin θe1 +cos θe2 +e3)g(t, 1, 0.3) and the adimensionalization parameter is c̄ = cS .

Dual crack identification

In this section, a unique experiment is used to image a configuration containing two cracks centered

at xtrue
1 = (0.945, 0, 1.25) and xtrue

2 = (0.945, 7π/9, 3), respectively characterized by the angles

α1 = π/2 and α1 = −π/4, and lengths h = 0.5, l = 0.09. The loading and time parameters are

then identical to those described in Section 2.5.2.

Acoustic.

Elasticity.

Elliptical crack in the elastic case

In previous elastic examples, the crack identification analysis has exploited the topological sen-

sitivity employing a polarization tensor corresponding to the nucleation of a circular planar (or
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(a) α = π
20

, λ = 0.85 (b) α = π
4
, λ = 0.8 (c) α = π

2
, λ = 0.75

Figure 2.10: Single experiment: Acoustic domain Γλ

penny-shaped) crack. In order to highlight the influence of the choice of the shape Γ̄, the elastic

polarization tensor for an elliptical crack (see Sec. 2.2.2) has been used in the single experiment

described in Section 2.5.2 in a configuration where the crack is characterized by an angle α = π/4.

In the results presented Figure 2.25, the topological sensitivity (2.4.1) is computed employing

the correct normal ntrue = (0,−h/L, αR/L), and tangential vectors τ true
1 = (1, 0, 0) and τ true

2 =

(0, αR/L, h/L) in cartesian coordinates and where R = (Ri +Re)/2 and L =
√
h2 + α2R2. The

polarization tensor (2.2.26) associated with an elliptical crack with its principal axes lying in a plane

(τ true
1 , τ true

2 ) and a varying ratio of major and minor semiaxes is then employed.

2.5.3 Discussion

The results that are presented in this section are in accordance with the heuristic of the topological

sensitivity method. The maps of topological sensitivity in acoustics (Figs. 2.2, 2.9, 2.15, 2.22(a))

and in elasticity (Figs. 2.5, 2.12, 2.18, 2.24(a)) reveal global negative minima in the areas of the

cracks sought. The use of a truncation parameter λ to reveal possible cracks geometries gives satis-

factorily results in that the domains Γλ are correctly located (Figs. 2.3, 2.6, 2.10, 2.13, 2.16, 2.19,

2.22(b), 2.24(b)), and the field nmin
λ of normal vectors coincides reasonably well with the orienta-

tion of the cracks (Figs. 2.4, 2.7, 2.11, 2.14, 2.17, 2.20, 2.22, 2.24). Also, as illustrated by Figures

2.21-2.24, the topological sensitivity method is of global nature since it enables a simultaneous

identification of multiple cracks without prior knowledge of their number.
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(a) α = π
20

, λ = 0.85 (b) α = π
4
, λ = 0.8

(c) α = π
2
, λ = 0.75

Figure 2.11: Single experiment: Acoustic normals nmin
λ

Analysing the cracked cylindrical shell configuration, the examples shown suggest that the pro-

nounced negative values of the acoustic topological sensitivity describe the geometry of the crack

more accurately than its elastic counterpart: Compare couple of Figures 2.10-2.13, 2.16-2.19 and

2.22(b)-2.24(b). Nevertheless, it appears also that the reconstruction of the normal vector field is

more sensitive in elasticity than in acoustics: Compare couple of Figures 2.11-2.14, 2.17-2.20 and

2.22-2.24.

It is noticeable that the computation of the topological sensitivity field may lead to signifi-

cant negative values spread out around a direction nearly orthogonal to the cracks’ planes (See

Figs. 2.3(c), 2.9, 2.13(a), 2.13(b)) possibly due to waves reflecting on these planes. If these values

can possibly lead to an inaccurate identification of the cracks geometries (see e.g. Figs. 2.14(a),
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(a) α = π
20

(b) α = π
4

(c) α = π
2

Figure 2.12: Single experiment: Elastic field T0

2.14(b)), the reconstruction of their local orientations through the computation of the field nmin
λ

allows to resolve the ambiguity (see corresponding Figures 2.15(a), 2.15(b)). It appears also in

practice that the indicator function T computed in the elastic case is relatively sensitive to the nature

of the illuminating waves and thus to the loading applied to generate the measurements.

The method proposed leads to a qualitatively correct identification of cracks even in situations

where a single experiment is used (Figs. 2.2-2.14). The exploitation of a growing number of

experiments, that are combined linearly to compute the topological sensitivity as in equation (2.5.7),

significantly improves the quality of the reconstruction (Figs. 2.15-2.20). In this later examples, the

pronounced negative values of the topological sensitivity that can appear away from the crack are

in reality located around the loading application points, and can thus be clearly set aside in the

identification procedure.

Finally, owing to the examples in elasticity illustrated by Figures 2.25, the use of a polarization

tensor associated with an infinitesimal elliptical plane crack to compute the topological sensitivity

does not lead to significant difference if the featured major semiaxis of the infinitesimal crack coin-

cides with the direction of privileged elongation of the crack Γtrue (Fig. 2.26(b)) or orthogonal to it

(Fig. 2.26(c)) compare with the reference circular case (Fig. 2.26(a)).
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(a) α = π
20

, λ = 0.85 (b) α = π
4
, λ = 0.8

(c) α = π
2
, λ = 0.75

Figure 2.13: Single experiment: Elastic domain Γλ

2.6 Extension to interface cracks

In this section, the previous analysis is extended to the identification of interface cracks in a bima-

terial domain. Interface cracks appear in a number of applications and can be seen as delamination

cracks in composite materials, due for example to fatigue behaviors of laminates, but also as matrix-

matrix and fibre-matrix interface debonding zones. In this context, the reference domain Ω consid-

ered is constituted by two homogeneous linear elastic subdomains Ω± such that Ω = Ω+∪ Ω−

and characterized by the corresponding mass densities ρ±, shear moduli µ± and Poisson’s ratios

ν±. Moreover, let Sint = ∂Ω+∩ ∂Ω− denote the interface of the two subdomains, which location
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and orientation is generally known beforehand in applications, and which contains a crack (or a set)

Γtrue to be sought.

The topological sensitivity analysis can be reproduced in this situation and previous reasoning and

developments of Section 2.2 still hold by employing the elastodynamic Green’s and fundamental

tensors of the relevant composite full-space. Thus, the topological sensitivity is given by the re-

lation (2.2.20) and the corresponding polarization tensor Aσ
± is defined by the counterpart for the

bimaterial domain of the integral (2.2.21).

2.6.1 Polarization tensor for a penny-shaped crack

As it has been shown previously, the polarization tensor Aσ
± can be found analytically for the simple

case where Γ̄ is a circular plane crack. This can be achieved by employing the analytical form of the

canonical crack opening displacement [[V ]] corresponding to a penny-shaped crack on the interface

of two linear elastic half-space as given in [189] and which developments, employing the Radon

transform, are partially reproduced hereafter for the ease of reading.

For a given (i, j) ∈ {1, 2, 3} the COD related to the corresponding canonical solution is noted

Φ ≡ [[V ]]ij for brevity, and from definition (2.C.1) and notation of the unit circle as Ĉ = {η ∈
R2 and |η| = 1}, its Radon transform is given by

Φ̌(r,η) =
∫

Γ̄
Φ(ξ̄)δ(r − η · ξ̄) dSξ̄ (r ∈ [−1, 1],η ∈ Ĉ) (2.6.1)

since Φ(ξ̄) = 0 if ξ̄ /∈ Γ̄.

Then the integral (2.2.21), can be advantageously recast in terms of the Radon transform Φ̌ using

property (2.C.2), i.e. that

∫
Γ̄
Φ(ξ̄) dSξ̄ =

∫ 1

−1
Φ̌(r,η) dr (2.6.2)

where the right-hand side term turns out to be independent of η.

The Radon transform of the COD corresponding to a penny-shaped crack at the interface between

the two elastic half-spaces R3
+ and R3

− with respective shear moduli µ+ and µ−, and Poisson’s

ratios ν+ and ν− can be found in [189] in the form of the expansion

Φ̌(r,η) = (1− r2)
3∑

n=1

Φ̌nΨn(r,η) (r ∈ [−1, 1],η ∈ Ĉ) (2.6.3)
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where for all r ∈ [−1, 1] and η = (η1, η2) ∈ R2 such that |η| = 1

Ψ1(r,η) =


−η2

η1

0

 Ψ2(r,η) =


−η1c(r)

−η2c(r)

s(r)

 Ψ3(r,η) =


η1s(r)

η2s(r)

c(r)

 (2.6.4)

with the real-valued function c and s defined by

c(r) + is(r) =
(
eπκ − e−πκ

)(1− r

1 + r

)iκ

(2.6.5)

which depend on the following material parameters

α =
1− ν+

2πµ+
+

1− ν−

2πµ−
β =

1− 2ν+

4πµ+
− 1− 2ν−

4πµ−
κ =

1
2π

log
(
α+ β

α− β

)
(2.6.6)

Thus with reference to integral (2.6.2), expansion (2.6.3), and equation (2.6.5) one has

∫ 1

−1
(1− r2)c(r) dr =

8
3
πκ(1 + κ2)∫ 1

−1
(1− r2)s(r) dr = 0

(2.6.7)

Moreover, in the case of a uniform loading applied on the crack Γ̄, which corresponds to the def-

inition (2.2.17) of the canonical problems, the coefficients in the series (2.6.3) are given analytically

by

Φ̌1 =
4π2κ(1 + κ2)(α2 − β2)
(α− δ)πκ(1 + κ2) + β

(η2t
ij
1 − η1t

ij
2 )

Φ̌2 =
2π(α2 − β2)

(α− δ)πκ(1 + κ2) + β
(η1t

ij
1 + η2t

ij
2 )

Φ̌3 = −π
β

(α2 − β2)tij3

(2.6.8)

using notation

tij = −1
2
(
ei⊗ej + ej⊗ei

)
·n (2.6.9)
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and material parameters

γ =
ν+

2πµ+
+

ν−
2πµ−

δ =
αγ + β2

α+ γ
(2.6.10)

Then using property (2.6.7), parameters (2.6.8) and the fact that |η| = 1, the integral (2.6.2)

reduces to

∫
Γ̄
Φ(ξ̄) dSξ̄ = −8

3
π2κ(1 + κ2)(α2 − β2)


2

(α− δ)πκ(1 + κ2) + β


tij1

tij2

0

+
1
β


0

0

tij3




(2.6.11)

With reference to the applied loading (2.2.17) defining canonical solutions, the polarization

tensor Aσ
± can finally be deduced from (2.2.21) and (2.6.11) in the form

Aσ
± =

8
3
π2κ(1 + κ2)(α2 − β2)
(α− δ)πκ(1 + κ2) + β

n⊗
{

2I +
(α− δ)πκ(1 + κ2)− β

β
n⊗n

}
⊗n (2.6.12)

Again, the following version of Aσ
± which has the minor symmetries can equivalently be used:

Aσ
± =

4
3
π2κ(1 + κ2)(α2 − β2)

{
[n⊗eα + eα⊗n]⊗ [n⊗eα + eα⊗n]

(α− δ)πκ(1 + κ2) + β
+

2
β
n⊗n⊗n⊗n

}
,

(2.6.13)

where α ∈ {1, 2}.

Remark 7. Polarization tensors (2.2.24) and (2.2.25) corresponding to the case of a homogenous

domain containing a penny-shaped crack, can be respectively recovered from previous expressions

(2.6.12) and (2.6.13) with µ+ = µ− = µ and ν+ = ν− = ν, i.e. in the limit β → 0.

2.6.2 Numerical examples

This section provides the illustration of the ability of the topological sensitivity to identify inter-

face cracks. Within the framework described in Section 2.5 of FEM-based simulations, dynamical

measurements corresponding to one or two circular cracks in a parallelepipedic bimaterial domain

Ω = {ξ ∈ [0, 1]× [0, 2]× [0, 0.4]} with the interface lying in the plane ξ3 = 0.2 as described on

Figure 2.26 and characterized by material parameters ν+ = ν− = ν = 0.3, µ+ = 2µ− = 7.7

and ρ+ = 2ρ− = 10 are synthesized. The domain is loaded by a uniform compressional traction
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t[uΓ? ](ξ, t) = −g(t, 0.5, 0.3)e3 imposed on its top face and the computation is adimensionalized

by the longitudinal wave velocity.

In this application, it is considered that the geometry of the interface is known, in particular in this

example, the topological sensitivity field defined by (2.4.8) is employed with nopt(z, T ) = e3, then

its thresholded version (2.4.9) at the interface, where the crack is a-priori supposed to be located, is

plotted on Figure 2.27.

2.7 Conclusion

The topological sensitivity method proposed constitutes a non-iterative global qualitative approach

to the problem of elastodynamic crack identification. The adjoint-based formulation employed,

which entails the cost of only two direct problems with the computation of free and adjoint fields

defined on crack-free configuration, are computationally efficient compared to minimization-based

inversion methods. The indicator function proposed is of global nature is that it evaluates possible

location of crack at every point independently without requiring any initial guess. On the basis of

the heuristic that motivates the method, the use of closed-form solutions corresponding to circular-

plane cracks featured in the asymptotic analysis, allow qualitative evaluations of cracks in terms of

locations and orientations. Finally, implementation within a classical FEM platform, assesses for

the simplicity and efficiency of the method.

2.A Polarization tensors

2.A.1 Matrix representation of fourth-order tensors

Consider a tensor relationship of the form

B = Q :A, (2.A.1)

where A,B are second-order symmetric tensors and Q is a fourth-order tensor having minor sym-

metry but not necessarily major symmetry, e.g. Q = S (Eshelby tensor, which does not have major

symmetry) or Q = C (elasticity tensor, which has major symmetry). Tensor A (and also B, of

course) has six independent components, which can be arranged into a 6-vector Â according to the
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convention:

Â =

[
Â1

Â2

]
, Â1 = [A11 A22 A33]T, Â2 =

√
2[A12 A13 A23]T.

Then, relation (2.A.1) can be recast into the following equivalent matrix relation between Â and B̂

B̂ = Q̂Â, (2.A.2)

where the (6×6)-matrix Q̂ representing the tensor Q is given in block-matrix form by

Q̂ =

[
Q̂11 Q̂12

Q̂21 Q̂22

]
with

{
Q̂11

ij = Qiijj , Q̂12
i(k`) =

√
2Qiik`,

Q̂21
(ij)k =

√
2Qijkk, Q̂22

(ij)(k`) = 2Qijkl,

(1 6 i6 j 6 3, 1 6 k6 `6 3) having used the indexing convention (12) = 1, (13) = 2, (23) = 3.

Note in particular that this convention (and particularly the
√

2 and 2 factors that enter the definition

of Â and Q̂) ensure consistency between quadratic forms written in tensor and matrix forms, i.e.

A :Q :A = ÂTQ̂Â,

Using this convention, the matrix representation of the symmetric fourth-order identity Isym is

simply the 6-dimensional identity matrix, i.e.(
Îsym

)11
=
(
Îsym

)22
= I,

(
Îsym

)12
=
(
Îsym

)21
= 0,

while the elastic compliance tensor D = C−1 for an isotropic material is such that

D̂11 =
1

2µ(1+ν)


1 −ν −ν
−ν 1 −ν
−ν −ν 1

 , D̂22 =
1
2µ
I , D̂12 = D̂21 = 0. (2.A.3)
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Finally, for the Eshelby tensor associated with an ellipsoidal cavity whose principal axes coincide

with those of the Cartesian frame, one has [152]

Ŝ11 =


S1111 S1122 S1133

S2211 S2222 S2233

S3311 S3322 S3333

 , Ŝ22 =


2S1212 0 0

0 2S1313 0

0 0 2S2233

 , Ŝ12 = Ŝ21 = 0,

(2.A.4)

in terms of the nonzero entries of S.

2.A.2 Major symmetry of polarization tensor

Lemma 6. The polarization tensor A has major symmetry: for any second-order symmetric tensors

B,B′, one has

B :A :B′ = B′ :A :B. (2.A.5)

Proof. The proof rests upon exploiting a governing weak formulation for the third-order tensor

function V(ξ̄), which is such that for any given second-order symmetric tensor σ the vector field σ :

V(ξ̄) solves the elastostatic exterior problem for the normalized crack Γ̄ whose faces are subjected

to applied tractions t± =−σ ·n±. As a result, σ :V(ξ̄) obeys for any σ the weak formulation∫
R3\Γ̄

[σ :∇V(ξ̄)] :C :∇w(ξ̄) dVξ̄ =
∫

Γ̄
σ :
(
[[w]](ξ̄)⊗n(ξ̄)

)
dSξ̄ ∀w ∈H1(R3 \ Γ̄), (2.A.6)

where [[w]] denotes the jump of the trial function w through Γ̄.

Now, recalling expression (2.2.21) of Aσ and taking the inner product of Eq. (2.2.21) by σ (on

the left) and σ′ (on the right), one obtains

σ :
{∫

Γ̄
[[V ]](ξ̄)⊗n dSξ̄

}
:σ′ = σ :Aσ :σ′. (2.A.7)

Then, using variational formulation (2.A.6) with w=σ′ :V , noting that

σ :C : (σ′ :∇V) = (σ′ :∇V) :C :σ,

by virtue of the major symmetry of C, and exploiting the known symmetry of the bilinear form in
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the left-hand side of (2.A.6), one obtains

σ′ :
{∫

Γ̄
[[V ]](ξ̄)⊗n dSξ̄

}
:σ =

∫
R3\Γ̄

[σ :∇V(ξ̄)] :C : [σ′ :∇V(ξ̄)] dVξ̄

=
∫

R3\Γ̄
[σ′ :∇V(ξ̄)] :C : [σ :∇V(ξ̄)] dVξ̄ = σ :

{∫
Γ̄
[[V ]](ξ̄)⊗n dSξ̄

}
:σ′. (2.A.8)

The major symmetry of Aσ then follows from (2.A.7) and (2.A.8). Finally, the major symmetry of

A stems directly from that of Aσ through A = C :Aσ :C.

Remark 8. The symmetry property (2.A.5) is also established in [11], following a more involved

proof which assumes isotropic elastic properties for both reference and inclusion materials.

Remark 9. The major symmetry of A or Aσ defined for cracks instead of cavities follows from

Lemma 6 by considering a crack as the limiting case of an infinitely thin cavity.

2.A.3 Elliptical crack

Polarization tensor of an ellipsoidal cavity. For an ellipsoidal cavity, an equivalent-inclusion

argument allows to express Aσ(B) in terms of the Eshelby tensor S of B [152], resulting in [35]

Aσ(B) = |B|C−1 : [Isym − ST]−1 (2.A.9)

where, for any fourth-order tensor Q having minor symmetry, the transposed tensor QT is defined

so that Q :B=B :QT for any second-order tensorB, and is represented by the matrix Q̂T.

Elliptic crack as limiting case of ellipsoidal cavity. Consider an elliptic crack embedded in an

infinite isotropic elastic body. By defining appropriately the Cartesian frame, the crack can be

assumed to lie in the x1,2-plane, with its principal axes aligned with e1, e2 and its semiaxes such

that `1 > `2, and hence to have its unit normal given by n = e3. The polarization tensor for such

crack may be derived by considering the limiting case as η → 0 of a thin ellipsoidal cavity with

`3 = η`1, η� 1. The Eshelby tensor for such thin ellipsoid is given by [152]

S(η) = S0 + S1η + o(η), (2.A.10)
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with S0 and S1 given in block-matrix form, following the conventions of 2.A.1 for the matrix

representation of fourth-order tensors, by

Ŝ11
0 =


0 0 0

0 0 0
ν

1−ν
ν

1−ν
1

 ,

Ŝ11
1 =

1
2(1−ν)


γ+2(1−ν)α+β −γ+(1+2ν)α−β (2ν−1)α

−γ+(1−2ν)(α−β) γ+2(2−ν)(β−α) (1−2ν)(α−β)

−α−2νβ α− (1+2ν)β (2ν−1)β

 ,

Ŝ22
0 = Diag[0, 1, 1] , Ŝ22

1 =
1

1−ν
Diag

[
−γ+α−νβ, −να− (1−ν)β, να−β

]
,

Ŝ12
0 = Ŝ21

0 = Ŝ12
1 = Ŝ21

1 = 0, (2.A.11)

with Diag[a, b, c] denoting the (3×3) diagonal matrix whose diagonal entries are a, b, c. Moreover,

the constants α, β, γ appearing in (2.A.11) are given by

α =
(1−m2)1/2

m2

(
F (m)−E(m)

)
, β =

E(m)
(1−m2)1/2

, γ =
2α−β
m2

, (2.A.12)

where F (m) and E(m) are the complete elliptic integrals of the first and second kind, respec-

tively [1]:

F (m) =
∫ π/2

0

(
1−m2 sin2 φ

)−1/2 dφ, E(m) =
∫ π/2

0

(
1−m2 sin2 φ

)1/2 dφ, (2.A.13)

and the modulus m is given by

m =
(
1− a2

2/a
2
1

)1/2
, (0<m6 1).

Noting that the volume of the thin ellipsoid is |B| = (4π/3)`31(1−m2)1/2η, formula (2.A.9)

becomes

Aσ(η) =
4π
3
`31(1−m2)1/2η C−1 :

[
Isym − ST(η)

]−1
. (2.A.14)

The task at hand is to find the limit as η → 0 of the polarization tensor A(η) = C : Aσ(η) : C by

exploiting (2.A.14). A natural approach consists in expanding η
[
Isym − ST(η)

]−1 in powers of η
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about η = 0. However, care must be exercised as Isym − ST
0 is not invertible. Owing to the block-

diagonal structure of Ŝ and the major symmetry of Isym, inverting
[
Isym−ST(η)

]−1 is reduced to

separately inverting I − Ŝ11(η) and I − Ŝ22(η) (where I is the (3×3) identity matrix). As neither

I − Ŝ11
0 nor I − Ŝ22

0 are invertible, some care must be exercised. First, using formulae (2.A.11),

one obtains

I − Ŝ22(η)=Diag
[
1+
(γ−α+νβ

1−ν

)
η,1,1

]
Diag

[
1,
(να+(1−ν)β

1−ν

)
η,
(β−να

1−ν

)
η
](
I + o(1)

)
.

Each diagonal matrix in the above formula is invertible for nonzero η, which ensures invertibility of

the expansion for sufficiently small η > 0. Upon performing this inversion, one obtains

η
[
I − Ŝ22(η)

]−1 = Diag
[

0,
1−ν

να+(1−ν)β
,

1−ν
β−να

]
+ o(1).

Similarly, using again formulae (2.A.11), one finds

I − Ŝ11(η) = [R0 −R1η]Diag
[

1, 1,
1−2ν

2(1−ν)
η
]
,

where the matricesR0 andR1 are given by

R0 =


1 0 α

0 1 β−α
−ν

1−ν
−ν

1−ν
β

 ,

R1 =
1

2(1−ν)


γ+2(1−ν)α+β −γ+(1+2ν)α−β 0

−γ+(1−2ν)(α−β) γ+2(2−ν)(β−α) 0

−α−2νβ α− (1+2ν)β 0

 .
The matrix R0 is invertible (one readily finds Det(R0) = β/(1 − ν); then, as β is given

by (2.A.12) and E(m) 6= 0 for any 0 6 m < 1, Det(R0) 6= 0), which implies that R0 − R1η
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is invertible for sufficient small η. One therefore finds

η
[
I − Ŝ11(η)

]−1 = Diag
[
η, η,

2(1−ν)
1−2ν

]
[R−1

0 + o(1)] + o(1)

=
2(1−ν)
1−2ν

Diag
[

0, 0, 1
]
R−1

0 + o(1)

=
2(1−ν)
(1−2ν)β


0 0 0

0 0 0

ν ν 1−ν

+ o(1).

Finally, using matrix representation (2.A.2) for the inverse elasticity tensor C−1, one obtains

η
[
I − Ŝ22(η)

]−1
D̂22 =

1
2µ

Diag
[

0,
1−ν

να+(1−ν)β
,

1−ν
β−να

]
+ o(1),

η
[
I − Ŝ11(η)

]−1
D̂11 =

(1−ν)
µβ


0 0 0

0 0 0

0 0 1

+ o(1),

and expressions (2.2.26a-c) follow by taking the transpose of the above result, applying the matrix-

tensor equivalence of 2.A.1, inserting the obtained value of η
[
Isym − ST(η)

]−1 into (2.A.14) and

taking the limit η → 0 (i.e. removing the o(1) remainder).

Penny-shaped crack as a special case of elliptic crack. To find the value of (2.2.26a-c) for the

special case of a penny-shaped crack (for which `1 = `2, i.e. m = 0), one invokes the following

expansions [1]

F (m) =
π

2

[
1 +

m2

4
+

9m4

64

]
+ o(m4), E(m) =

π

2

[
1− m2

4
− 3m4

64

]
+ o(m4),

which, inserted into (2.A.12), readily yield

α(m) =
π

4
+ o(1), β(m) =

π

2
+ o(1), γ(m) = −π

4
+ o(1).

On inserting these values into (2.2.26a-c), one easily verifies that expression (2.2.25) for the penny-

shaped crack is recovered.
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2.A.4 Elliptical sound-hard screen

The polarization tensor B for the elliptic sound-hard thin screen can also be derived as a limiting

case of that for the ellipsoidal sound-hard scatterer. The latter is given, using the present notations,

by [102]

Bellipsoid = |B|
3∑

q=1

1
1−Iq/4π

eq⊗eq (2.A.15)

with the Iq defined as in [152], Eq. (11.14). In the flat-scatterer limit η = `3/`1 → 0, the Iq are

given [152] by

I1 = 4πηα(m) + o(η), I2 = 4πη(β(m)−α(m)) + o(η), I3 = 4π(1−ηβ(m)) + o(η)

with the functions α(m), β(m) again defined by (2.A.12). Hence, the sought polarization tensor B
is obtained (recalling that |B|= (4π/3)`31(1−m2)1/2η) as

B = lim
η→0

Bellipsoid(η) =
4π
3

(1−m2)1/2

β(m)
`31e3⊗e3, (2.A.16)

Expression (2.3.12) finally follows from substituting the definition (2.A.12) of β(m) into the above

formula.

2.B Elastodynamic fundamental solutions and proof of Lemmas 4,5

The time convolutions featured in integral equation (2.2.10) can be expressed as

U(x, t, ξ) ? [[v̈ε,z]](ξ, t) = U [x, t, ξ|ei ·[[v̈ε,z]](ξ, ·)]·ei (2.B.1a)(
n(x)·C ·Σ(x, t, ξ)

)
?D[[vε,z]](ξ, t) =

(
n(x)·C ·Σ[x, t, ξ|(eq⊗ei⊗ej)·:D[[vε,z]](ξ, ·)]

)
(2.B.1b)

·:(eq⊗ei⊗ej) (2.B.1c)

where U [x, t, ξ|f ] and Σ[x, t, ξ|f ] are the time-modulated elastodynamic Green’s tensors, defined

such that ek ·U and ek ·Σ are the displacement vector and stress tensor at ξ ∈ Ω resulting from

a point force applied at x in the k-direction with prescribed time-varying magnitude f(t) and sat-

isfying boundary conditions (2.2.9). Homogeneous initial conditions at t = 0 and vanishing time

modulation f(t) for t < 0 are assumed, so that U [x, t, ξ|f ] and Σ[x, t, ξ|f ] have quiescent past.
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Similarly, let U∞[x, t, ξ|f ] and Σ∞[x, t, ξ;n|f ] denote the time-modulated full-space fundamen-

tal solution, which satisfy radiation conditions instead of boundary conditions (2.2.9), and is given

by [91]

U∞[x, t, ξ|f ] =
1

4πµr

[
A[x, t, ξ|f ] I +B[x, t, ξ|f ] (r̂⊗ r̂)

]
(2.B.2a)

Σ∞[x, t, ξ|f ] =
1

4πr2
[
C[x, t, ξ|f ](r̂⊗I) + 2D[x, t, ξ|f ](r̂ ·Isym) + 2E[x, t, ξ|f ](r̂⊗ r̂⊗ r̂)

]
(2.B.2b)

where r= (ξ−x), r= ‖r‖, r̂= r/r, κ is the ratio of bulk wave velocities as defined by

κ2 =
c2T
c2L

=
1− 2ν

2(1− ν)
=

µ

λ+ 2µ
(2.B.3)

and with A=A[x, t, ξ|f ], . . . defined by

A[x, t, ξ|f ] = f
(
t− r

cT

)
+
∫ κ

1
ηf
(
t− ηr

cT

)
dη

B[x, t, ξ|f ] = −3A[x, t, ξ|f ] + 2f
(
t− r

cT

)
+ κ2f

(
t− r

cL

)
C[x, t, ξ|f ] = 2B[x, t, ξ|f ]− (1− 2κ2)

{
f
(
t− r

cL

)
+

r

cL
ḟ
(
t− r

cL

)}
D[x, t, ξ|f ] = 2B[x, t, ξ|f ]− f

(
t− r

cT

)
− r

cT
ḟ
(
t− r

cT

)
E[x, t, ξ|f ] = −3B[x, t, ξ|f ]−D[x, t, ξ|f ]− κ2

{
f
(
t− r

cL

)
+

r

cL
ḟ
(
t− r

cL

)}
.

(2.B.4)

Next, define the time-modulated complementary elastodynamic Green’s tensor UC by

U [x, t, ξ|f ] = U∞[x, t, ξ|f ] +UC[x, t, ξ|f ] (2.B.5)

By virtue of superposition arguments, UC is governed by an IBVP with vanishing body forces and

initial conditions, and (when x 6∈S) smooth boundary data involving boundary tracesU∞[x, t, ξ|f ]

(ξ̄ ∈ SD) and Σ∞[x, t, ξ|f ] ·n(ξ̄) (ξ̄ ∈ SN). Thus, UC[x, t, ξ|f ] is bounded in the limit ξ → x,

i.e. the singular behavior of U [x, t, ξ|f ] at ξ = x is identical to that of its full-space counterpart

U∞[x, t, ξ|f ], and one has

UC[z+εx̄, t,z+εξ̄|f ] = O(1), ΣC[z+εx̄, t,z+εξ̄|f ] = O(1) (ε→ 0) (2.B.6)
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Proof of Lemma 4. The proof exploits decomposition (2.B.5). First, upon introducing scaled

coordinates (2.2.11a) into expression (2.B.2a) of Σ∞ and definitions (2.B.4) of A[x, t, ξ|f ] and

B[x, t, ξ|f ] (wherein f(t) = [[v̈ε,z]](ξ, t) according to 2.B.1c), it is a simple matter to show that

U∞(x, t, ξ) ? [[v̈ε,z]](ξ, t) =
1
ε
U∞,ε(x̄, t, ξ̄) ? [[¨̄vε,z]](ξ̄, t) (2.B.7)

where U∞,ε is defined by (2.B.2a) and (2.B.4) with wave velocities cL, cT replaced by rescaled

values cL/ε and cT/ε. Equation (2.B.7) and scaling (2.2.11b) then imply∫
Γε,z

U∞(x, t, ξ) ? [[v̈ε,z]](ξ, t) dSξ = ε

∫
Γ̄
U∞,ε(x̄, t, ξ̄) ? [[¨̄vε,z]](ξ̄, t) dSξ̄ (2.B.8)

Moreover, owing to the boundedness (2.B.6) of the complementary Green’s tensor UC, one has,

upon using again coordinate scaling (2.2.11b):∫
Γε,z

UC(x, t, ξ) ? [[v̈ε,z]](ξ, t) dSξ = O(ε2)‖[[¨̄vε,z]](·, t)‖L2(Γ̄) (2.B.9)

The desired identity (2.2.14) then follows from combining (2.B.8) and (2.B.9). Identity (2.2.14) is

establish in a similar way, noting that

[
n(x)·C ·Σ∞(x, t, ξ)

]
?D[[vε,z]](ξ, t) =

1
ε3
[
n(x)·C ·Σ∞,ε(x̄, t, ξ̄)

]
?D[[v̄ε,z]](ξ̄, t)

with the ε−3 behavior resulting from the combined effect of the ‖ξ−x‖−2 singularity of Σ∞ and

the following behavior of the operator D under the scaling (2.2.11a):

Dw(ξ, t) =
1
ε
Dw̄(ξ̄, t) (2.B.10)

Proof of Lemma 5. Since the proposed ansatz (2.2.15) is, by assumption, differentiable w.r.t. t, it

is appropriate to investigate the behavior ofU∞ defined by (2.B.2a) and (2.B.4) for a differentiable

time modulation f . Introducing the decomposition f(τ) = f(t) + (f(τ)−f(t)) = f(t)+∆f(τ),

one has
C[x̄, t, ξ̄|f ] = κ2f(t) + C[x̄, t, ξ̄|∆f ]

D[x̄, t, ξ̄|f ] = −κ2f(t) +D[x̄, t, ξ̄|∆f ]

E[x̄, t, ξ̄|f ] = −3
2
(1−κ2)f(t) + E[x̄, t, ξ̄|∆f ]

(2.B.11)
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Substituting the above values into (2.B.2b) yields the decomposition

Σ∞[x̄, t, ξ̄|f ] = Σ∞(ξ̄− x̄)f(t) + Σ∞[x̄, t, ξ̄|∆f ] (2.B.12)

where Σ∞(r̄) is the elastostatic Kelvin fundamental stress, given by

Σ∞(r̄) =
1

4πr̄2
[
κ2
(
ˆ̄r⊗I − 2ˆ̄r ·Isym)+ 3(κ2−1)ˆ̄r⊗ ˆ̄r⊗ ˆ̄r

]
(2.B.13)

Decomposition (2.B.12) in particular holds for Σ∞,ε[. . . |f ] defined by replacing velocities cL, cT

with the rescaled values ε−1cL, ε
−1cT in Σ∞[. . . |f ]. Owing to the assumed differentiability of f ,

one easily shows that ∥∥Σ∞,ε[x̄, t, ξ̄|∆f ]
∥∥ = O(ε) (ε→ 0)

Since Σ∞(r̄)f(t) is unaffected by the wave velocity rescaling, decomposition (2.B.12) implies

Σ∞,ε[x̄, t, ξ̄|f ] = Σ∞(x̄, ξ̄)f(t) + o(1) (ε→ 0) (2.B.14)

Consequently, noting that combining ansatz (2.2.15) with (2.B.10) implies

D[[v̄ε,z]](ξ̄, t) = σ[u](z, t) :D[[V ]](ξ̄) + o(1), (ε→ 0)

equating f(t) to the components of the above expansion of D[[v̄ε,z]](ξ̄, t) according to (2.B.1c), and

using (2.B.14) one finds that

−
∫

Γ̄

[
n(x̄)·C ·Σ∞,ε(x̄, t, ξ̄)

]
?D[[v̄ε,z]](ξ̄, t) dSξ̄

= σij [u](z, t)−
∫

Γ̄

[
n(x̄)·C ·Σ∞(ξ̄− x̄)

]
·:D[[V ]]ij(ξ̄) dSξ̄ + o(1)

The desired expansion (2.2.16a) finally follows from combining the above estimate with iden-

tity (2.2.14).

The estimate (2.2.16b) stems directly from plugging ansatz (2.2.15) into (2.2.14) and the as-

sumed twice-differentiability of f .
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2.C Radon transform

On introducing the unit circle as Ĉ = {η ∈ R2 and |η| = 1}, the Radon transform (r,η) ∈ R×Ĉ 7→
f̌(r,η) of the tensorial function ξ ∈ R2 7→ f(ξ) is given by

Φ̌(r,η) =
∫

R2

f(ξ)δ(r − η · ξ) dSξ (r ∈ R,η ∈ Ĉ) (2.C.1)

where δ is Dirac delta function.

For any m ∈ N, the following property holds

∫
R2

(η · ξ)mf(ξ) dSξ =
∫

R
rmf̌(r,η) dr (2.C.2)

which has as a consequence that
∫

R
rmf̌(r,η) dr is a polynomial of degree m in η.
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(a) α = π
20

, λ = 0.85

(b) α = π
4
, λ = 0.8

(c) α = π
2
, λ = 0.75

Figure 2.14: Single experiment: Elastic normals nmin
λ
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(a) Experiment {1} (b) Experiments {1, 2} (c) Experiments {1, 2, 3, 4}

Figure 2.15: Cumulated experiments: Acoustic field T0

(a) Experiment {1}, λ = 0.5 (b) Experiments {1, 2}, λ = 0.6 (c) Experiments {1, 2, 3, 4}, λ =
0.5

Figure 2.16: Cumulated experiments: Acoustic domain Γλ



CHAPTER 2. QUALITATIVE IDENTIFICATION OF CRACKS 99

(a) Experiment {1}, λ = 0.5 (b) Experiments {1, 2}, λ = 0.6

(c) Experiments {1, 2, 3, 4}, λ = 0.5

Figure 2.17: Cumulated experiments: Acoustic normals nmin
λ
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(a) Experiment {1} (b) Experiments {1, 2} (c) Experiments {1, 2, 3, 4}

Figure 2.18: Cumulated experiments: Elastic field T0

(a) Experiment {1}, λ = 0.5 (b) Experiments {1, 2}, λ = 0.75 (c) Experiments {1, 2, 3, 4}, λ =
0.6

Figure 2.19: Cumulated experiments: Elastic domain Γλ
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(a) Experiment {1}, λ = 0.5 (b) Experiments {1, 2}, λ = 0.75

(c) Experiments {1, 2, 3, 4}, λ = 0.6

Figure 2.20: Cumulated experiments: Elastic normals nmin
λ
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(a) T0 field (b) Domain Γ0.6

Figure 2.21: Dual crack acoustic identification
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(a) Crack 1

(b) Crack 2

Figure 2.22: Dual crack identification: Acoustic normals nmin
0.6
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(a) T0 field (b) Domain Γ0.65

Figure 2.23: Dual crack elastic identification

(a) Crack 1 (b) Crack 2

Figure 2.24: Dual crack identification: Elastic normals nmin
0.65
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(a) a1
a2

= 1 (b) Major axis: τ 2, a1
a2

= 4

(c) Major axis: τ 1, a1
a2

= 4

Figure 2.25: Infinitesimal elliptical crack: Elastic domain Γ0.8

Figure 2.26: Cracked bimaterial domain
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(a) R = 0.1, xtrue = (0.5, 0.5, 0.2) (b) R1 = 0.1, xtrue
1 = (0.3, 0.5, 0.2),

R2 = 0.125, xtrue
2 = (0.7, 1.7, 0.2)

Figure 2.27: Thresholded TS field Tλ at the interface with λ = 0.
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Introduction and Overview

In the context of inverse scattering theories that have, over the past two decades, witnessed the

inception and growth of a range of non-iterative techniques for obstacle reconstruction, Part II of

this dissertation is concerned with the study of the Linear Sampling Method (LSM) whose principles

and fundamental results are (in the context of the Helmholtz equation) summarized in Chapter 3.

On introducing the basic notions and theorems, this chapter investigates, for the first time, the

possibility of multi-frequency reconstruction of sound-soft and penetrable obstacles via this method

involving either far-field or near-field observations of the scattered field. On establishing a suitable

approximate solution to the linear sampling equation and making an assumption of continuous fre-

quency sweep (in terms of experimental measurements of the scattered field), two possible choices

for a cumulative multi-frequency indicator function of the scatterer’s support are proposed. The

first alternative, termed the “serial” indicator, is taken as a natural extension of its monochromatic

companion in the sense that its computation entails space-frequency (as opposed to space) L2-norm

of a solution to the linear sampling equation. Under a set of assumptions that include experimental

observations down to zero frequency and compact frequency support of the wavelet used to illu-

minate the obstacle, this indicator function is further related to its time-domain counterpart. As a

second possibility, the so-called “parallel” indicator is alternatively proposed as an L2-norm, in the

frequency domain, of the monochromatic indicator function. On the basis of a perturbation analysis

which demonstrates that the monochromatic solution of the linear sampling equation behaves as

O(|k2−k2
∗|−m), m>1 in the neighborhood of an isolated eigenvalue, k2

∗ , of the associated interior

(Dirichlet or transmission) problem, it is found that the “serial” indicator is unable to distinguish the

interior from the exterior of a scatterer in situations when the prescribed frequency band traverses

at least one such eigenvalue. In contrast the “parallel” indicator is, due to its particular structure,

shown to be insensitive to the presence of pertinent interior eigenvalues (unknown beforehand and

typically belonging to a countable set), and thus to be robust in a generic scattering configuration.
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A set of numerical results, including both “fine” and “coarse” frequency sampling, is included to

illustrate the performance of the competing (multi-frequency) indicator functions, demonstrating

behavior that is consistent with the theoretical results.

The interior transmission problem (ITP), which plays a fundamental role in the LSM and re-

lated studies involving penetrable defects, is investigated in Chapter 4 within the framework of me-

chanical waves scattered by piecewise-homogeneous, elastic or viscoelastic obstacles in a likewise

heterogeneous background solid. For generality, the obstacle is allowed to be multiply connected,

having both penetrable components (inclusions) and impenetrable parts (cavities). A variational for-

mulation is employed to establish sufficient conditions for the existence and uniqueness of a solution

to the ITP, provided that the excitation frequency does not belong to (at most) countable spectrum

of transmission eigenvalues characterizing the “obstacle-background” pair. The featured sufficient

conditions, expressed in terms of the mass density and elasticity parameters of the problem, rep-

resent an advancement over earlier works on the subject in that i) they pose a precise, previously

unavailable provision for the well-posedness of the ITP in situations when both the obstacle and the

background solid are heterogeneous, and ii) they are dimensionally consistent i.e. invariant under

the choice of physical units. For the case of a viscoelastic scatterer in an elastic solid it is further

shown, consistent with earlier studies in acoustics, electromagnetism, and elasticity that the unique-

ness of a solution to the ITP is maintained irrespective of the vibration frequency. When applied to

the situation where both the scatterer and the background medium are viscoelastic i.e. dissipative,

on the other hand, the same type of analysis shows that the analogous claim of uniqueness does not

hold. Physically, such anomalous behavior of the “viscoelastic-viscoelastic” case (that has eluded

previous studies) has its origins in a lesser known fact that the homogeneous ITP is not mechani-

cally insulated from its surroundings – a feature that is particularly cloaked in situations when either

the background medium or the scatterer are dissipative. A set of numerical results, computed for

ITP configurations that meet the sufficient conditions for the existence of a solution, is included to

illustrate the problem. Consistent with the preceding analysis, the results indicate that the set of

transmission values is indeed empty in the “elastic-viscoelastic” case, and countable for “elastic-

elastic” and “viscoelastic-viscoelastic” configurations. The analysis of the conditions of existence

and uniqueness of a solution to the ITP is then generalized in Chapter 5 to account for a wider

class of elastic material configurations. In the latter study, interior transmission problem is seen as

an eigenvalue problem and an extensive study of the material (and excitation frequency) conditions,

under which the ITP maintains its well-posedness, is exposed. Further, the existence of transmission

eigenvalues and their corresponding lower bounds are established for the first time in elasticity.
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3.1 Introduction

Among the range of non-iterative point-probing algorithms for obstacle reconstruction, techniques

such as linear sampling, factorization or point source methods, commonly operate within the frame-

work of monochromatic i.e. single-frequency obstacle illumination which postulates that the squared

wave number, computed with reference to the background medium, is not an eigenvalue of the as-

sociated interior (e.g. Dirichlet or transmission) problem. For common scattering configurations

such eigenvalues form an at most countable set, with no accumulation points other than infinity

[163, 180, 48, 159, 128, 59, 54], which makes the featured restriction manageable if not desirable

in the context of practical applications.

Besides (and before) the choice of an appropriate reconstruction technique, the critical issue for

most inverse scattering problems is the richness of the observed data set. In general the latter can

be extended either spatially, in terms of the aperture of experimental observations, or temporally, by

considering multi-frequency or time-domain scattered waveforms. Notwithstanding the fact that the

latter alternative is often far more tractable in terms of experimental implementation, the literature

dealing with point-probing algorithms that transcend the customary monochromatic framework is

relatively scarce. In particular, one may mention the multi-frequency and time-domain treatments

of the point source method in [139, 137, 140] as well as the time-domain formulation of the linear

sampling method [67] which, by making reference to the space-time Sobolev spaces of order four,

voids the need to use the Fourier transform and thus to deal with associated causality issues. What

largely remains unclear, however, is the role of the eigenvalues of the germane interior problem

(defined over the support of a hidden scatterer) toward the performance of point-probing methods

in situations where the former are traversed by a given frequency sweep or the Fourier spectrum of

a prescribed transient signal. So far, the only light in this direction was shed in [140] who demon-

strated that the regularized solution density, affiliated with the point source method, is uniformly

bounded with respect to the wavenumber over compact subsets of the real axis.

To help bridge the gap, this study focuses on the multi-frequency reconstruction of Dirichlet and

penetrable obstacles via the linear sampling method entailing either far-field or near-field observa-

tions of the scattered field. On assuming that the (monochromatic) sampling equation is solved

over a compact connected set of real-valued excitation frequencies ω, two possible choices for a

cumulative, multi-frequency indicator function of the scatterer’s support are considered. In the first

proposition, the indicator function is taken as a reciprocal space-frequency L2-norm of the featured

solution density. Upon subtle modification this “serial” construct is shown, via the use of Plancherel
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identity and hypothesis that the observations of the scattered field extend toward zero frequency, to

be identifiable with the corresponding time-domain indicator function. To furnish an alternative,

a “parallel” indicator function is also proposed as an L2-norm, in the frequency domain, of its

monochromatic counterpart. For a close examination of the utility of the proposed indicators in a

generic multi-frequency environment, the developments are complemented by a perturbation analy-

sis of the relevant interior problem, which demonstrates that the featured (linear sampling) solution

density behaves as O(|ω − ω∗|−m), m> 1 in the neighborhood of a characteristic frequency ω∗
which corresponds to an isolated eigenvalue of the interior problem. This result in turn exposes the

robustness of the “parallel” indicator, and futility of its “serial” companion in situations when the

prescribed frequency sweep traverses at least one such ω∗ – a finding that is highlighted by the fact

that the support of an obstacle, and thus its (Dirichlet or transmission) eigenvalues, are unknown

beforehand. A set of numerical results, assuming far-field scattering by Dirichlet and penetrable

obstacles, is included to illustrate the analytical findings.

3.2 Preliminaries

Scattering by Dirichlet obstacle. Consider the time-harmonic scattering of scalar waves by a

sound-soft obstacle D in an otherwise homogeneous unbounded medium R3, endowed with sound

speed co (not necessarily real-valued), due to either set of incident fields

u =

{
eikξ·δ, δ ∈ Σ (plane waves),

G(ξ, ζ, k), ζ ∈ Ss (point sources).
(3.2.1)

Here k = ω/co is the wavenumber; ω denotes the frequency of excitation;

G(ξ, ζ, k) =
1
4π

eik|ξ−ζ|

|ξ − ζ|
, ξ 6= ζ

is the radiating fundamental solution of the Helmholtz equation; Σ is the unit sphere centered at the

origin; Ss is a suitable surface containing the point sources used to illuminate the obstacle, and co is

such that its real and imaginary parts are respectively R(co)>0 and I(co)60. The support of D is

assumed to be such that R3 \D is connected, and that ∂D is of Lipschitz type. With such premises
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the direct scattering problem can be written as

∆v + k2v = 0 in R3 \D,

v = −u on ∂D,

lim
|ξ|→∞

|ξ|
(
∂v

∂|ξ|
− ikv

)
= 0,

(3.2.2)

where the Sommerfeld radiation condition holds uniformly with respect to ξ̂ = ξ/|ξ|. It is well

known [78] that (3.2.2) permits a unique solution v ∈ H1
loc(R3\D), see [149] for Lipschitz domains,

where the field equation and the boundary condition are interpreted respectively in the sense of

distributions and the sense of the trace.

Scattering by penetrable obstacle. As a canonical example of the scattering by a penetrable

obstacle, consider next the case where D is characterized by a spatially-varying sound speed c(ξ)

and associated index of refraction, n(ξ) = (co/c)2, such that i) R(c)>cD>0 and I(c)60 where

cD is a constant; ii) n∈L∞(D), and iii) ∇n is sufficiently small so that it can be omitted from the

field equation. For simplicity of exposition, an additional hypothesis is made that the mass density

of the system, ρ, is constant throughout (this restriction can however be relaxed, see Remark 12).

On retaining the hypotheses on the geometry of D as in the sound-soft case, the relevant scattering

problem can be written as

∆v + k2v = 0 in R3 \D,

∆w + k2nw = 0 in D,

w − v = u, w,n − v,n = u,n on ∂D,

lim
|ξ|→∞

|ξ|
(
∂v

∂|ξ|
− ikv

)
= 0,

(3.2.3)

where v,n = ∇v ·n, and n is the normal on ∂D (defined almost everywhere) oriented toward the

exterior of D. Similar to the case of scattering by a Dirichlet obstacle, it is known [78] that (3.2.3)

permits a unique solution (v, w)∈ H1
loc(R3\D)×H1(D).

By way of Green’s theorem, it can be shown [78, 149] that the scattered field v solving ei-



CHAPTER 3. MULTI-FREQUENCY OBSTACLE RECONSTRUCTION 114

ther (3.2.2) or (3.2.3) permits integral representation

v(x, •) =
∫

∂D

(
v(ξ, •)G,n(x, ξ, k)− v,n(ξ, •)G(x, ξ, k)

)
dSξ,

{
• = δ ∈ Σ (plane waves),

• = ζ ∈ Ss (point sources)
(3.2.4)

which, assuming illumination by plane waves, exposes its asymptotic behavior

v(ξ, δ) =
eik|ξ|

|ξ|
v∞(ξ̂, δ) + O

(
|ξ|−2

)
as |ξ| → ∞, (3.2.5)

where

v∞(x̂, δ) =
∫

∂D

(
v(ξ, δ)(e−ikx̂·ξ),n − v,n(ξ, δ)e−ikx̂·ξ

)
dSξ (3.2.6)

is the so-called far-field pattern of the scattered field [78].

3.3 Inverse scattering via the linear sampling method

With reference to the direct scattering framework established earlier, the goal is to reconstruct the

support D of a hidden obstacle on the basis of available information on the scattered field, synthe-

sized via v∞ or v, for multiple incident fields. Depending on the character and nature of such data,

however, it is useful to distinguish between the “far-field” and “near-field” inverse scattering prob-

lems as described in the sequel. For the remainder of this section it is assumed, following the usual

treatment [78, 73], that the data are available at a single excitation frequency, ω, such that k2 is not

a Dirichlet eigenvalue [78] for the bounded domain D when dealing with sound-soft obstacles, nor

a transmission eigenvalue [180, 82] for D when dealing with penetrable scatterers.

Far-field observations. For this configuration, it is for simplicity assumed that the far-field pattern

v∞ is known for every direction of observation and every direction of plane-wave incidence, i.e. that

the data are given by v∞(ξ̂, δ) for ξ̂, δ ∈ Σ (the reader is referred to [42] for an account of the

limited-aperture case). In this setting, the linear sampling method revolves around the equation of

the first kind

(Fgz)(ξ̂) = G∞(ξ̂,z, k), ξ̂ ∈ Σ, (3.3.1)

where F : L2(Σ) → L2(Σ) is the so-called far-field operator given by

(Fg)(ξ̂) :=
∫

Σ
v∞(ξ̂, δ) g(δ) dSδ; (3.3.2)
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gz is the solution density used to construct an indicator function; z denotes the sampling point, and

G∞ is the far-field pattern of G, namely

G∞(ξ̂,z, k) = 1
4πe

−ikξ̂·z, G(ξ,z, k) =
eik|ξ|

|ξ|
G∞(ξ̂,z, k) +O

(
|ξ|−2

)
as |ξ| → ∞.

(3.3.3)

With such premises, it can be shown [44, 129] that

• If z∈D then for every ε>0, there exists a solution gε
z∈L2(Σ) of (3.3.1) such that

‖Fgε
z(·)−G∞(·,z, k)‖L2(Σ) < ε; (3.3.4)

• When z∈D, one further has

lim
z→∂D

‖gε
z ‖L2(Σ)→∞, lim

z→∂D
‖ugε

z
‖X→∞,

where

ug(ξ) :=
∫

Σ
eikξ·δ g(δ) dSδ (3.3.5)

is the Herglotz wave function with kernel g, and

• When z∈ R3\D, then for every ε>0 there exists a solution gε
z∈L2(Σ) such that

‖Fgε
z(·)−G∞(·,z, k)‖L2(Σ) < ε

and

lim
ε→0

‖gε
z ‖L2(Σ)→∞, lim

ε→0
‖ugε

z
‖X→∞

where X := H1(D) when considering (3.2.2), and X := L2(D) when considering (3.2.3).

With the above result in place, D can be reconstructed by employing a suitable regularization tech-

nique to solve the far-field equation Fgz=G∞(·,z, k) over an appropriate grid of sampling points,

and using Π(z) :=1/‖gz ‖L2(Σ) as a characteristic function of the support of the scatterer.

Near-field observations. In this case it is assumed that the obstacle is illuminated using point

sources located on the source surface Ss, while the scattered field is monitored over a (union of)

closed C1 surface(s) Sr, see Fig. 3.1. Accordingly the data is given by v(ξ, ζ) for ξ ∈ Sr and

ζ ∈ Ss. Hereon it is assumed that Ss ∩D=∅ and Sr ∩D=∅, with no restrictions imposed on the
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Ss

D

Srui

u

R3\D

Vr

SR = ∂BR

Figure 3.1: Near-field scattering configuration.

intersection between Ss and Sr. For further reference, let Vr denote the finite domain bounded by

Sr whereby ∂Vr = Sr. Assuming further that k2 is not a Dirichlet eigenvalue for Vr (see Remark

10), the near-field counterpart of (3.3.1), see e.g. [73], can be written as

(Ngz)(ξ) = G(ξ,z, k), ξ ∈ Sr, (3.3.6)

where N : L2(Ss) → L2(Sr) is the so-called near-field operator given by

(Ng)(ξ) :=
∫

Ss

v(ξ, ζ) g(ζ) dSζ . (3.3.7)

With the aforementioned restriction on k, the existence of a unique solution to the interior Dirichlet

problem over Vr guarantees that, when (3.3.6) is met, sound fields Ngz(·) and G(·,z, k) share the

Cauchy data on Sr. By way of Holmgren’s uniqueness theorem [160], this result in turn helps en-

sure that the solution of the near-field equation (3.3.6) possesses approximation and unboundedness

properties that mirror those of its far-field counterpart (see e.g. [105] in the context of elastodynam-

ics), namely

• If z∈D then for every ε>0, there exists a solution gε
z∈L2(Ss) of (3.3.6) such that

‖Ngε
z(·)−G(·,z, k)‖L2(Sr) < ε; (3.3.8)



CHAPTER 3. MULTI-FREQUENCY OBSTACLE RECONSTRUCTION 117

• When z∈D, one additionally has

lim
z→∂D

‖gε
z ‖L2(Ss)→∞, lim

z→∂D
‖Ugε

z
‖X→∞,

where

Ug(ξ) :=
∫

Ss

G(ξ, ζ, k) g(ζ) dSζ (3.3.9)

is a single-layer potential with density g, and

• When z∈R3 \ (D ∪ Ss ∪ Sr), then for every ε> 0 there exists a solution gε
z ∈L2(Ss) such

that

‖Ngε
z(·)−G(·,z, k)‖L2(Sr) < ε

and

lim
ε→0

‖gε
z ‖L2(Ss)→∞, lim

ε→0
‖Ugε

z
‖X→∞,

where X := H1(D) when considering (3.2.2), and X := L2(D) when considering (3.2.3).

Similar to the case of far-field observations, the support of D can in this case be exposed by

computing a regularized solution of the near-field equation Ngz = G(·,z, k) over an appropriate

grid of sampling points, and deploying Π(z) := 1/ ‖ gz ‖L2(Ss) as a characteristic function of the

support of the scatterer.

3.3.1 Relationship with the solution to the interior problem

To shed light on the denseness claims (3.3.4) and (3.3.8), let H = {u∈H1(D) : ∆u + k2u = 0}
and L = {u ∈ L2(D) : ∆u + k2u = 0} denote respectively the closures of the space of C2(D)

solutions to the Helmholtz equation in D with respect to the H1(D)-norm and the L2(D)-norm.

In what follows, the sought relationship between an approximate solution to the linear sampling

equation and that of the companion interior problem will be exposed for situations featuring either

Dirichlet or penetrable scatterers, and testing configurations involving either far-field or near-field

observations. Owing to the fact that this relationship has so far been investigated solely on a case-

specific basis (see e.g. [46] and references therein), the study proceeds with a unifying treatment of

the problem, starting with inverse scattering by a Dirichlet obstacle in a near-field setting. Here it is

particularly important to note that the ensuing estimates, while established in a time-harmonic set-

ting, hold uniformly with respect to k over any closed region in the complex plane (hereon denoted
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by C) – a result that provides a linchpin for the extension of the linear sampling to multi-frequency

scattering configurations.

Dirichlet obstacle. First, consider the scattering by a sound-soft obstacle (3.2.2) and associated

(interior) Dirichlet problem

∆uz + k2uz = 0 in D,

uz +G(·,z, k) = 0 on ∂D
(3.3.10)

at vibration frequency ω such that k2 is not a Dirichlet eigenvalue for D. Under the latter assump-

tion, it is known that (3.3.10) admits a unique solution uz ∈ H1(D).

As shown in [83], the set FF = {ug|D : g ∈ L2(Σ)} of Herglotz wave functions (3.3.5) with

square-integrable kernel g is dense in H with respect to theH1(D) norm. In the context of near-field

observations, the same approximation property in H can be established for the set of single-layer

potentials (3.3.9) with square-integrable kernel FN = {Ug|D : g∈L2(Ss)}. Indeed, the proof of this

claim follows along the lines of Section 2.3 in [42] where, for the purpose of this study, quantity

“Vg” should be superseded by single-layer potential (3.3.9).

Lemma 7. Assume that z∈D, and let k be such that |k−k0| 6 r for some r>0 and k0∈ C. Under

such hypotheses there is a constant c0 independent of k (but dependent on k0 and r), such that any

density gε
z∈L2(Ss) for which the associated single-layer potential (3.3.9) approximates the unique

solution of (3.3.10) as ‖Ugε
z
− uz ‖H1(D)< c0ε, also satisfies the near-field inequality (3.3.8). In

addition, for any ε>0 there exists density gε
z∈L2(Ss) such that Ugε

z
satisfies the prescribedH1(D)

inequality.

Proof. Let B : H1/2(∂D) → L2(Sr) denote the linear operator that maps functions f ∈H1/2(∂D)

to v|Sr , where v ∈H1
loc(R3\D) is the unique radiating solution to the exterior Dirichlet problem

with boundary data f , i.e. v satisfies (3.2.2) with −u replaced by f . By virtue of the embedding

of H1/2(Sr) in L2(Sr), the well-posedness of the exterior Dirichlet problem, Green’s represen-

tation formula (3.2.4) for v, and the boundedness of the Dirichlet-to-Neumann mapping whereby

‖v,n‖H−1/2(∂D) 6 C‖v‖H1/2(∂D) for some C>0, one finds that

‖Bf‖L2(Sr) = ‖v‖L2(Sr) 6 ‖v‖H1/2(Sr) 6 c1‖f‖H1/2(∂D) (3.3.11)

for some c1 > 0. Owing to the fact that the solution to the exterior Dirichlet problem depends
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continuously on k, constant c1 can be further chosen independent of k such that (3.3.11) holds

everywhere within the ball |k − k0| 6 r, whereby B is uniformly bounded from H1/2(∂D) to

L2(Sr) with respect to k in |k − k0| 6 r. Since (∆ + k2)G(·,z, k) = 0 in R3\D for z ∈ D, one

obviously has BG(·,z, k) = G(·,z, k)|Sr . With reference to (3.3.7), on the other hand, it follows

by the linearity of the problem that the near-field operator can be decomposed as N =BP , where

Pg :=−Ug|∂D. Next, let gε
z ∈L2(Ss) be such that ‖Ugε

z
− uz ‖H1(D)< c0ε. By virtue of the trace

theorem and the fact that uz solves (3.3.10), one has

‖Pgε
z −G(·,z, k)‖H1/2(∂D) 6 c2‖Ugε

z
− uz‖H1(D),

where c2 is independent of k. Thus

‖Ngε
z(·)−G(·,z, k)‖L2(Sr) = ‖BPgε

z − BG(·,z, k)‖L2(Sr)

= ‖B(Pgε
z −G(·,z, k))‖L2(Sr) 6 c1‖Pgε

z −G(·,z, k)‖H1/2(∂D) 6 c1c2c0 ε (3.3.12)

and, by taking 0<c0<(c1c2)−1,

‖Ngε
z(·)−G(·,z, k)‖L2(Sr) < ε.

By the denseness property of FN in H stipulated earlier, for any c0ε > 0 and uz ∈ H there is a

single-layer potential (3.3.9) with density gε
z ∈ L2(Ss) such that

‖Ugε
z
− uz ‖H1(D)< c0ε,

which establishes the claim of the lemma.

Lemma 8. Let z ∈D, and let k be such that |k − k0| 6 r for some r > 0 and k0 ∈ C. With such

premises there exists constant c0 independent of k (but dependent on k0 and r), such that any density

gε
z∈L2(Σ) for which the affiliated Herglotz wave function (3.3.5) approximates the unique solution

of (3.3.10) as ‖ugε
z
− uz ‖H1(D)< c0ε, also satisfies the far-field inequality (3.3.4). Further, for any

c0ε>0 there is density gε
z∈L2(Σ) such that ugε

z
satisfies the postulated H1(D) inequality.

Proof. Here the proof mirrors that of Lemma 7, provided that i) B : H1/2(∂D) → L2(Σ) maps

any f ∈H1/2(∂D) to the far-field pattern (v∞) of the radiating solution v to the exterior Dirichlet

problem with boundary data f , ii) the near-field operatorN is superseded by its far-field counterpart
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F : L2(Σ) → L2(Σ), and iii) linear operator Pg :=−Ug|∂D is replaced by Hg :=−ug|∂D where

ug is given by (3.3.5).

Penetrable obstacle. In the case of scattering by a penetrable obstacle, the relevant interior prob-

lem is the so-called interior transmission problem [82]

∆uz + k2uz = 0 in D,

∆wz + k2nwz = 0 in D,

wz − uz = G(·,z, k) on ∂D,

(wz),n − (uz),n = G,n(·,z, k) on ∂D

(3.3.13)

which is, following earlier hypothesis, considered under the restriction that k2 is not a transmission

eigenvalue forD [54] – defined as the value of k2 for which the homogeneous counterpart of (3.3.13)

permits non-trivial solution. Under such limitation, (3.3.13) permits a unique solution (uz, wz)

understood in the sense of distributions, such that uz∈ L2(D), wz∈ L2(D), andwz−uz ∈ H2(D),

see [180].

Owing to the L2(D)-regularity of the solution to (3.3.13), it is next useful to make an appeal to

the denseness of the set of Herglotz wave functions (3.3.5) with square-integrable kernel, namely

FF = {ug|D : g ∈L2(Σ)}, in L with respect to the L2(D) norm [78]. In the context of near-field

observations, the same approximation property in L holds true for the set FN = {Ug|D : g∈L2(Ss)}
of single-layer potentials (3.3.9) with square-integrable kernel.

To facilitate the ensuing discussion, one may recall that (∆ + k2)G(·,z, k) = 0 in R3 \D
for z ∈ D which, assuming that (uz, wz) solves (3.3.13), demonstrates that the “difference” field

defined as vz := wz − uz in D and vz := G(·,z, k) in R3\D solves the source problem

∆vz + k2n vz = k2(1− n)uz in R3,

lim
|ξ|→∞

|ξ|
(
∂vz
∂|ξ|

− ikvz

)
= 0

(3.3.14)

assuming the continuity of vz and (vz),n across ∂D (note that n=1 outsideD). By writing (3.3.14)

in the form of a Lippmann-Schwinger equation and slightly modifying the argument in [78], p. 215,

to accommodate for the L∞(D) index of refraction n(ξ), one easily sees that the unique solution vz
of (3.3.14) satisfies the a priori estimate ‖vz‖H2(BR) 6 c‖uz‖L2(D), where BR is a ball of radius R
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containing D.

Lemma 9. Assume that z ∈D, and let k be such that |k − k0| 6 r for some r > 0 and k0 ∈ C.

Under such restrictions there is a constant c0 independent of k (but dependent on k0 and r), such

that any density gε
z ∈ L2(Σ) for which the affiliated Herglotz wave function (3.3.5) approximates

component uz of the unique solution (uz, wz) to (3.3.13) as ‖ugε
z
− uz ‖L2(D)< c0ε, also satisfies

the far-field inequality (3.3.4). Further, for any c0ε > 0 there exists density gε
z ∈ L2(Σ) such that

ugε
z

meets the postulated L2(D) inequality.

Proof. Consider the space of solutions to the Helmholtz equation L={u∈L2(D) : ∆u+ k2u=0}
equipped with the L2(D) norm, and define the linear operator B : L → L2(Σ) which maps uz∈L to

the far-field pattern of the radiating field vz solving (3.3.14). From the well-posedness of the source

problem (3.3.14), one concludes that B is uniformly bounded with respect to k in |k − k0| 6 r,

i.e. that there exists constant c1 such that ‖Buz‖L2(Σ) 6 c1‖uz‖L2(D). By the linearity of the

problem it further follows that Bug = Fg, where F is the far-field operator given by (3.3.2) and

ug is the Herglotz wave function with kernel g. On the basis of this result, (3.3.1) and (3.3.14),

it can be shown that Buz = G∞(·,z, k) whenever uz is such that the pair (uz, wz) uniquely

solves (3.3.13). Now let gε
z∈L2(Σ) for which the affiliated Herglotz wave function (3.3.5) satisfies

‖ ugε
z
− uz ‖L2(D)< c0ε. As a result, one finds by taking 0 < c0 < 1/c1 (independent of k in

|k − k0| 6 r) that

‖Fgε
z −G∞(·,z, k)‖L2(Σ) = ‖B(ugε

z
− uz)‖L2(Σ) 6 c1‖ugε

z
− uz‖L2(D) 6 c1c0 ε < ε.

(3.3.15)

With this result in place, the claim of the lemma is established by recalling the denseness in L of

the set of Herglotz wave functions (3.3.5) with density gε
z ∈ L2(Σ).

Lemma 10. Let z∈D, and let k be such that |k − k0| 6 r for some r>0 and k0∈ C. With such

hypotheses there exists constant c0 independent of k (but dependent on k0 and r), such that any

density gε
z ∈L2(Ss) for which the affiliated single-layer potential (3.3.9) approximates component

uz of the unique solution (uz, wz) to (3.3.13) as ‖Ugε
z
− uz ‖L2(D)< c0ε, also satisfies the near-field

inequality (3.3.8). Further, for any c0ε>0 there exists density gε
z ∈L2(Ss) such that Ugε

z
meets the

featured L2(D) inequality.

Proof. Let B : L → L2(Sr) denote the linear operator which maps uz ∈ L to vz|Sr , where vz
solves (3.3.14). By virtue of the trace theorem and the well-posedness of (3.3.14), it is easy to see
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that

‖Buz‖L2(Sr) 6 c1‖vz‖H3/2(Sr) 6 c1c2‖vz‖H2(BR) 6 c1c2c3‖uz‖L2(D)

where c1, c2 and c3 can be chosen to be independent of k in |k − k0| 6 r due to the fact that the

solution of (3.3.14) depends continuously on k. The rest of the proof follows that accompanying

Lemma 9, and is omitted for brevity.

3.3.2 Regularized solution

It is well known that both the far-field equation (3.3.1) and its near-field companion (3.3.6) are ill-

posed, a feature that is attributed to the compactness of the respective linear operators F : L2(Σ) →
L2(Σ) and N : L2(Ss) → L2(Sr). Moreover, these linear sampling equations generally do not

have a solution for any sampling point z. As a result, the characteristic function of the support

of a scatterer is constructed on the basis of the behavior of the Herglotz wave function (3.3.5) or

single-layer potential (3.3.9), affiliated with a suitable approximate solution to these equations. In

realistic situations, the kernel of F or N is further polluted by noise in the measurements which

necessitates the use of regularization techniques. In the context of the linear sampling method, the

key question associated with the use of any regularization scheme (e.g. Tikhonov regularization),

is whether such computed solution exhibits the desired properties that make the affiliated Herglotz

wave function (3.3.5) or single-layer potential (3.3.9) useful toward constructing a characteristic

function of the support of a scatterer. This question was affirmatively answered in [16, 17] for the

situations involving far-field scattering by both Dirichlet and penetrable obstacles. To date, however,

the question remains open in the context of near-field scattering.

To affix specificity to the discussion, consider next the far-field equation (3.3.1) corresponding

to either direct scattering problem (3.2.2) or (3.2.3). Denoting by F δ the far-field operator corre-

sponding to noise-polluted measurements of the scattered field where δ>0 is a measure of the noise

level, one seeks a Tikhonov-regularized solution gε
z,δ of (3.3.1), defined as a unique minimizer of

the Tikhonov functional

‖F δgε
z,δ −G∞(·,z, k)‖2L2(S2) + ε ‖gε

z,δ‖2L2(S2), (3.3.16)

where ε>0 is known as the Tikhonov regularization parameter [78]. In the context of (3.3.16), it is

important to know whether such regularized solution adheres to the claim of Lemma 8 or Lemma
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9, depending on the nature of the scatterer. To this end, let ε(δ) be a sequence of regularization

parameters such that ε(δ)→ 0 as δ→ 0, and let gε
z,δ be the minimizer of (3.3.16) with ε= ε(δ).

In [16], it was shown assuming scattering by sound-soft obstacle (3.2.2) at wavenumber k such

that k2 is not a Dirichlet eigenvalue for D, that ugε
z,δ

, z ∈D converges in the H1(D)-norm to the

unique solution uz of (3.3.10) as δ → 0. This argument can be carried over, verbatim, to obstacle

reconstruction involving scattering by penetrable obstacles (3.2.3) provided that n(ξ) and k are both

real-valued. If the latter condition is met and k2 is not a transmission eigenvalue for D, then ugε
z,δ

,

z ∈ D converges in the L2(D)-norm to uz as δ → 0, where uz is such that pair (uz, wz) uniquely

solves (3.3.13).

In concluding this section it is noted that, even though no commensurate analysis is available

for a Tikhonov-regularized solution to the near-field equation (3.3.6), all numerical experiments

indicate that such computed solution, gε
z,δ, exhibits the same properties as the “mother” approximate

solution gε
z examined in Lemma 7 and Lemma 10.

3.4 Multi-frequency reconstruction

As examined earlier, the linear sampling method considers inverse scattering at a single excitation

frequency, ω, such that k2 =ω2/c2o is not an eigenvalue of the germane interior (Dirichlet or trans-

mission) problem for D. In the case of near-field observations, an additional restriction is made that

k2 is not a Dirichlet eigenvalue of region Vr bounded by the closed observation surface(s) Sr; how-

ever, this restriction can be removed through a suitable adjustment of the experimental setup, see

Remark 10. Assuming that ∂D is of Lipschitz type, it can be shown [163, 180, 48, 159, 128, 59, 54]

that the eigenspectrum of either Dirichlet or interior transmission problem over D is at most count-

able with no finite accumulation points. In particular, the results show that

• The Dirichlet eigenvalues form a countable set located on the positive real axis, Λ⊂R+ with

+∞ as the only accumulation point. From this fact and relationship k2 = ω2/c2o, it further

follows that if the background medium is sound-absorbing, i.e. I(co) < 0, there are no

(real-valued) excitation frequencies ω that give rise to the Dirichlet eigenvalues.

• The investigation of transmission eigenvalues is at present incomplete. To date, it is known

that the transmission eigenvalues k2 > 0 form a real-valued, countable set with +∞ as the

only accumulation point, provided that both I(co) = 0 and I(c) = 0 and either co < c(ξ)

or co > c(ξ) almost everywhere in D [54]. The set of transmission eigenvalues degenerates
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to an empty set, Λ = ∅, when either the background medium or the obstacle are dissipative,

i.e. when either I(co) < 0 and I(c) = 0, or I(co) = 0 and I(c) < 0. If both I(co) < 0

and I(c)< 0, however, particular examples indicate the existence of (real-valued) excitation

frequencies ω that give rise to (complex) transmission eigenvalues k2 [23, 47].

Remark 10. The Dirichlet eigenvalues corresponding to region Vr, bounded by the closed obser-

vation surface(s) Sr in the case of near-field observations, can be considered as being artificially

injected into the problem. At a given testing frequency, these eigenvalues are not necessarily detri-

mental to the linear sampling method since it is possible to adjust Sr, and thus Vr, such that the

prescribed frequency of excitation does not correspond to an eigenvalue for Vr. In the context

of multi-frequency obstacle reconstruction that is of interest in this study, there are two possible

ways to avoid these extraneous eigenvalues. In the first approach which assumes band-limited il-

lumination in the frequency domain, one finds by virtue of the Faber-Krahn inequality for the first

Dirichlet eigenvalue of Vr (the latter is greater than πk2
01/|Vr|, where k01 is the first zero of the

spherical Bessel function j0), that it is possible to reduce Vr so that none of its (Dirichlet) eigenval-

ues are triggered by the frequencies from the prescribed bandwitdh. Alternatively, one may modify

the near-field testing configuration by considering an array of receivers located on an open surface

taken as a part of an analytic surface Sc enclosing bothD and Sr. On invoking the regularity of a so-

lution to the homogeneous Helmholtz equation and the principle of analytic continuation, one finds

that if the radiating fields Ng given by (3.3.7) and G(·,z, k) coincide on Sr, they will also coincide

on a closed surface Sc ⊃ Sr. By making an appeal to the uniqueness of the exterior Dirichlet prob-

lem outside Sc and the analytic continuation principle, one finally concludes that Ng = G(·,z, k)
wherever both are defined, which in turn implies all the results established in Section 3.3.

In light of Remark 10, the eigenvalues of Vr will hereon be ignored, whereby Λ should be understood

as a countable set containing the relevant eigenvalues of D.

To examine the possibility and effectiveness of multi-frequency obstacle reconstruction, the

ensuing study focuses on a generic situation where the scattered field due to multiple incident wave-

fields, synthesized via v∞ or v, is monitored over a frequency band, ω ∈ zω := [ω1, ω2] ⊂ R+,

ω2 < ∞. For clarity of exposition, all frequency-dependent quantities referred to in the sequel

will have ω added to their list of arguments whereby v(ξ, ζ) is superseded by v(ξ, ζ, ω), gz(ζ) by

gz(ζ, ω), and so on. In this setting, the multi-frequency counterparts of (3.3.1) and (3.3.6) can be
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postulated as
(Fgz)(ξ̂, ω) = G∞(ξ̂,z, ω/co), ξ̂ ∈ Σ, ω ∈ zω

(Ngz)(ξ, ω) = G(ξ,z, ω/co), ξ ∈ Sr, ω ∈ zω

(3.4.1)

where F :L2(Σ)×L2(zω) → L2(Σ)×L2(zω) and N :L2(Ss)×L2(zω) → L2(Sr)×L2(zω) are

bounded linear operators such that

(Fg)(ξ̂, ω) :=
∫

Σ
v∞(ξ̂, δ, ω) g(δ, ω) dSδ,

(Ng)(ξ, ω) :=
∫

Ss

v(ξ, ζ, ω) g(ζ, ω) dSζ .
(3.4.2)

For a systematic treatment of such extended inverse scattering problem, the key issues to be

addressed pertain to: i) the choice of a “cumulative” indicator function that reflects the extended data

set, and ii) the situation where the chosen frequency band traverses at least one interior eigenvalue,

i.e. when

Λ ∩zk2 6= ∅, zk2 :=
{
k2 : k = c−1

o
(
ω1 + η(ω2 − ω1)

)
, η∈ [0, 1]

}
.

3.4.1 “Serial” indicator function

Perhaps the most obvious extension of the monochromatic indicator function, Π(z)=1/‖gz ‖L2(•),

can be written as

Π(1)
z (z) :=

1
‖gz ‖L2(•)×L2(zω)

=
(∫ ω2

ω1

||gz(·, ω)||2L2(•) dω
)−1/2

,

{
• = Σ (plane waves),

• = Ss (point sources).
(3.4.3)

Assuming that Λ ∩ zk2 = ∅, one finds on the basis of the results highlighted in Section 3.3 that

distribution (3.4.3), similar to its monochromatic companion, becomes vanishingly small for z ∈
R3\D which justifies its candidacy for a characteristic function of the support of the scatterer.

Relevance to inverse scattering in the time domain. An intriguing feature of (3.4.3) resides in

its appeal, upon subtle modification, to the time-domain treatment of inverse scattering via linear

sampling – a proposition that is currently in its early stages [67]. To investigate this possibility, it

is instructive to consider an auxiliary frequency function W ∈ C1(R), compactly supported over

interval [−ω2, ω2], and to modify (3.4.3) by setting ω1 = 0 and weighting the integrand on the
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right-hand side by 2|W|. Such modified indicator function can be written as

Π(1)
z,W(z) =

(∫ ω2

0
2|W(ω)| ||gz(·, ω)||2L2(•) dω

)−1/2

. (3.4.4)

To maintain physical relevance, it is further assumed thatW(−ω) = W(ω), where overbar signifies

complex conjugation. As a result, the restriction of 2|W| to zω = [0, ω2] can be interpreted as the

one-sided, compactly-supported Fourier amplitude spectrum of a given wavelet, e.g. the raised

cosine function [164].

Here it is useful to note that the scattered field v(ξ, ζ, ω) and fundamental solutionG(ξ,z, ω/co),

together with their far-field patterns v∞(ξ̂, δ, ω) and G∞(ξ̂,z, ω/co) in (3.4.1) and (3.4.2) per-

mit physical interpretation as the Fourier transforms of their respective time-domain companions,

ṽ(ξ, ζ, t), G̃(ξ,z, t), ṽ∞(ξ̂, δ, t) and G̃∞(ξ̂,z, t). Owing to the fact that the latter four quantities,

which all signify relevant solutions to the wave equation, are necessarily real-valued, it follows that

h(·, ·,−ω) = h(·, ·, ω), h ∈ {v∞, v},

Φ(·, ·,−ω/co) = Φ(·, ·, ω/co), Φ ∈ {G∞, G}.
(3.4.5)

On the basis of (3.4.5), the consideration and solution of (3.4.1) can, for a given data set (v∞ or

v) specified over zω = [0, ω2], be formally extended to the frequency range [−ω2, ω2] such that

gz(·,−ω)=gz(·, ω).

In this setting, either of (3.4.1) can be conveniently modified by extending its frequency support

to [−ω2, ω2], and weighting its right-hand side by W , namely

(FgWz )(ξ̂, ω) = W(ω)G∞(ξ̂,z, ω/co), ξ̂ ∈ Σ, ω ∈ [−ω2, ω2],

(NgWz )(ξ, ω) = W(ω)G(ξ,z, ω/co), ξ ∈ Sr, ω ∈ [−ω2, ω2].
(3.4.6)

In situations where Λ∩R=∅ i.e. when there are no interior eigenvalues on the real axis, the modified

indicator function (3.4.4) accordingly carries the physical meaning of

Π(1)
z,W(z) =

1
2 ‖gWz ‖L2(•)×L2(zω)

=
1

‖gWz ‖L2(•)×L2([−ω2,ω2])
=

1
‖gWz ‖L2(•)×L2(R)

, (3.4.7)

owing to the compact support of W and injectivity of F and N [73, 48].

With the above results in place, one may take the inverse Fourier transform of (3.4.6) with
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respect to ω to formally arrive at a time-domain variant of the linear sampling method, namely

(F̃ g̃Wz )(ξ̂, t) = G̃W
∞(ξ̂,z, t), ξ̂ ∈ Σ, t ∈ R,

(Ñ g̃Wz )(ξ, t) = G̃W(ξ,z, t), ξ ∈ Sr, t ∈ R.
(3.4.8)

Here g̃Wz denotes the inverse Fourier transform of gWz ; G̃W(·,z, t) and G̃W
∞(·,z, t) are respectively

the radiating Green’s function for the wave equation in R3 due to “wavelet” point source δ(ξ −
z)W̃(t) and its far-field pattern, while F̃ : L2(Σ)×L2(R) → L2(Σ)×L2(R) and Ñ : L2(Ss)×
L2(R) → L2(Sr)×L2(R) are the linear operators given by

(F̃ g̃)(ξ̂, t) :=
∫

Σ

∫ t

−∞
ṽ∞(ξ̂, δ, t− τ) g̃(δ, τ) dτ dSδ,

(Ñ g̃)(ξ, t) :=
∫

Ss

∫ t

−∞
ṽ(ξ, ζ, t− τ) g̃(ζ, τ) dτ dSζ ,

(3.4.9)

where e.g. ṽ(ξ, ζ, t) is the scattered field due to u generated by an impulsive point source δ(ξ −
ζ)δ(t). To justify the claim of the domain and the range of F̃ and Ñ , it is noted by way of the

Plancherel identity and the compact frequency support of gWz , see (3.4.7), that

‖Q̃g̃Wz ‖L2(•)×L2(R) = 2 ‖QgWz ‖L2(•)×L2(zω), • ∈ {Σ, Sr}, Q ∈ {F,N}

‖ g̃Wz ‖L2(•)×L2(R) = 2 ‖gWz ‖L2(•)×L2(zω), • ∈ {Σ, Ss}
(3.4.10)

where the norms on the right-hand sides are implicit to postulated frequency-domain mapping,

see (3.4.9). By virtue of (3.4.7) and the second of (3.4.10), it is clear that the (weighted) multi-

frequency indicator function (3.4.4) can be interpreted as that stemming from either of the time-

domain linear sampling equations (3.4.8), i.e. that

Π(1)
z,W(z) =

1
‖ g̃Wz ‖L2(•)×L2(R)

.

It is recalled, however, that the above analogy is established under a severe limitation that ω1 = 0,

i.e. that the observations of the time-harmonic scattered field are available down to zero frequency

which is in practice never the case. Nonetheless, the featured example may help shed light on the

relationship between the time- and frequency-domain treatments and, in situations where the fea-

tured quantities do not vary significantly over the “bottom” frequency range [−ω1, ω1], augmented

by suitable interpolation to establish the actual link.
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3.4.2 “Parallel” indicator function

Another possible choice of a cumulative indicator function can be written as an L2-norm of the

“monochromatic” indicator over the featured frequency band, i.e.

Π(2)
z (z) :=

∥∥∥∥∥ 1
‖gz ‖L2(•)

∥∥∥∥∥
L2(zω)

=
(∫ ω2

ω1

‖ gz(·, ω) ‖−2
L2(•) dω

)1/2

,

{
• = Σ (plane waves),

• = Ss (point sources).
(3.4.11)

The reasoning behind proposition (3.4.11) is that of “constructive interference” where, again as-

suming that Λ∩zk2 = ∅, distributions 1/‖gz(·, ω)‖L2(Ss), ω∈zω reinforce each other in exposing

the support of the scatterer by jointly vanishing when z ∈ R3\D.

To ensure the robustness of the multi-frequency reconstruction scheme, however, the critical

issue with both (3.4.3) and (3.4.11) is their behavior and performance in situations when Λ∩zk2 6= ∅
– a possibility that cannot be discarded beforehand for the logical value of the latter inequality is,

for given zk2 , dependent on the geometry and nature of a hidden scatterer. Given the fact that both

Π(1)
z and Π(2)

z vanish when z /∈ D and Λ ∩ zk2 = ∅, of particular concern here is the situation when

z ∈ D and zk2 contains at least one eigenvalue of the relevant interior problem. Indeed, if either

candidate for a cumulative indicator function necessarily vanishes in this case, such behavior would

preclude its utility as a characteristic function of the support of the obstacle in a generic scattering

environment.

3.4.3 Behavior of the solution in a neighborhood of an eigenvalue

To expose the utility of (band-limited) cumulative indicator functions proposed in Sections 3.4.1

and 3.4.2, it is critical to understand the behavior an approximate solution, gε
z, to the far-field equa-

tion (3.3.1) or its near-field counterpart (3.3.6) in the neighborhood of a “resonant” frequency ω∗,

such that ω2
∗/c

2
o = k2

∗ ∈Λ. In the context of far-field scattering, the first result in this direction was

provided in [50] where it was shown that for k2 = k2
∗ ∈Λ and almost every z ∈ D, Herglotz wave

function uε
gz,δ

(where ε= ε(δ) and gε
z,δ is the Tikhonov-regularized solution of (3.3.16)) becomes

unbounded, when δ→0, in the H1(D)-norm considering (3.2.2), and in the L2(D)-norm consider-

ing (3.2.3). A similar result can be established for the unboundedness of the near-field potential Ugε
z

as ε→ 0, where gε
z satisfies (3.3.8). In the context of multi-frequency indicator functions (3.4.3)

and (3.4.11), however, it is necessary to examine the blow-up rate of the relevant solution gz,ε in the

neighborhood of an eigenvalue k2
∗ ∈Λ. Specifically, one needs to know whether ‖gz(·, ω)‖L2(•) is
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square-integrable with respect to ω over a given interval [ω1, ω2], containing “resonant” frequency

ω∗ that corresponds to an eigenvalue of the germane interior problem.

Dirichlet obstacle. Starting with the case of a sound-soft obstacle, consider the interior Dirichlet

problem of finding uz ∈ H1(D) that satisfies (3.3.10), and let θ := G(·,z, k)χ where χ is a C∞

cutoff function equaling unity in a neighborhood of ∂D and zero in a neighborhood of z. In a weak

form, (3.3.10) can be written for ϕ := uz − θ ∈ H1
0 (D) as

Aϕ − k2Bϕ = − `z,k, (3.4.12)

see e.g. [46], Section 5.3, where H1
0 (D) denotes the Hilbert space of all u ∈ H1(D) such that

u = 0 on ∂D; invertible bounded operator A :H1
0 (D) → H1

0 (D) and compact bounded operator

B :H1
0 (D) → H1

0 (D) are defined, with help of the Riesz representation theorem, as

(Aϕ,ψ)H1(D) =
∫

D
∇ϕ ·∇ψ dV, (Bϕ,ψ)H1(D) =

∫
D
ϕψ dV, ∀ψ ∈ H1

0 (D),

and

(`z,k, ψ)H1(D) =
∫

D

(
∇θ ·∇ψ − k2θ ψ

)
dV ∀ψ ∈ H1

0 (D). (3.4.13)

For further reference, it is noted by virtue of (3.4.13) and the analyticity of G(·,z, k) with respect

to k that `z,k is continuous in k over any compact region in the complex plane.

Theorem 1. Let k2
∗ be an isolated Dirichlet eigenvalue for −∆ in D, and consider α > 0 such that

the ball Bk2
∗,α := {k2 : |k2− k2

∗|< α, k2 6= k2
∗} does not contain any eigenvalues other than k2

∗ .

Next, let gε
z be an approximate solution of either the far-field or the near-field equation, specified

respectively in Lemma 8 and Lemma 7. Then for sufficiently small ε > 0 and α > 0, and almost

every z ∈ D one has

‖ugε
z
‖H1(D) >

C1

|k2 − k2
∗|

and ‖gε
z‖L2(Σ) >

C2

|k2 − k2
∗|

(far-field observations), (3.4.14)

and

‖Ugε
z
‖H1(D) >

C1

|k2 − k2
∗|

and ‖gε
z‖L2(Ss) >

C2

|k2 − k2
∗|

(near-field observations) (3.4.15)

for all k2∈ Bk2
∗,α, where ug and Ug are given respectively by (3.3.5) and (3.3.9), while C1 and C2
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are positive constants depending on z, k∗ and α, but not on k and ε.

Proof. Consider the compact self-adjoint operator T := A−1/2BA−1/2 : H1
0 (D) → H1

0 (D), and

set ξ := 1/k2 (note that A1/2 is defined via spectral decomposition since A is self-adjoint and

positive definite). Obviously, λ∗ := 1/k2
∗ is an isolated eigenvalue for T . To facilitate the ensuing

discussion, let Eλ∗ denote the eigenspace of T corresponding to λ∗, and let Mλ∗ ⊇Eλ∗ denote the

generalized eigenspace of T associated with λ∗ that is spanned by the functions w∗ ∈H1
0 (D) for

which (T−λ∗I)pw∗ = 0, p > 1. In this setting it can be shown (see [121], p. 180), that the resolvent

R(ξ) := (T − ξI)−1 of compact operator T admits the Laurent series expansion

R(ξ) = − P

(ξ − λ∗)
−

∞∑
p=1

Qp

(ξ − λ∗)p+1
+

∞∑
p=0

(ξ − λ∗)pSp+1 (3.4.16)

in a neighborhood of λ∗, where P : H1
0 (D) →Mλ∗ is the orthogonal projection onto the generalized

eigenspace of T corresponding to λ∗, bounded operator Q = (T −λ∗I)P is the so-called eigen-

nilpotent projection satisfying Q = PQ = QP , and S is a bounded operator satisfying (T −
λ∗I)S = I − P such that SP = PS = 0. By virtue of the compactness of T , Qp = 0 for

p>m∗ > 1 where (finite integer) m∗ = dimMλ∗ , which reduces the principal part of the Laurent

series to a finite sum. Thus, without loss of generality one can choose an orthonormal basis in

Mλ∗ . One may also note that the range of Qm∗−1 is contained in the eigenspace Eλ∗ of T since

(T −λ∗I)Qm∗−1 = Qm∗ = 0. If k2 is not a Dirichlet eigenvalue for D, (3.4.12) requires that

ϕ := uz− θ satisfies k2(T − ξI)A1/2ϕ = A−1/2`z,k whereby k2A1/2ϕ = R(ξ)A−1/2`z,k i.e.

k2A1/2ϕ = −
PA−1/2`z,k

(ξ − λ∗)
−

m∗−1∑
p=1

QpA−1/2`z,k

(ξ − λ∗)p+1
+

∞∑
p=0

(ξ − λ∗)pSp+1A−1/2`z,k.

Thus

‖k2A1/2ϕ‖ =
1

(ξ − λ∗)m∗

∥∥∥∥∥∥Qm∗−1A−1/2`z,k +
m∗−2∑
p=1

(ξ − λ∗)m∗−p−1QpA−1/2`z,k

+ (ξ − λ∗)m∗−1PA−1/2`z,k −
∞∑

p=0

(ξ − λ∗)p+m∗Sp+1A−1/2`z,k

∥∥∥∥∥∥ (3.4.17)

Substituting ξ := 1/k2 (k2 ∈ Bk2
∗,α) and λ∗ := 1/k2

∗ in (1), it further follows from i) the reverse

triangle inequality, ii) the facts that A, Q and S are bounded operators and iii) the fact that `z,k is
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uniformly bounded, that for α sufficiently small

‖k2A1/2ϕ‖H1(D) >
|k2k2

∗|m∗

|k2 − k2
∗|m∗

‖Qm∗−1A−1/2`z,k‖H1(D) − Cp, (3.4.18)

where Cp > 0 depends on z and k∗, but not on k. With this result in place, it suffices to show that

Qm∗−1A−1/2`z,k∗ 6= 0 for almost all z∈D. Indeed, if this is the case then by the continuity argu-

ment one finds that ‖Qm∗−1A−1/2`z,k‖ > 1
2‖Q

m∗−1A−1/2`z,k∗‖ for k2 ∈ Bk2
∗,α and sufficiently

small α > 0, whereby

‖k2A1/2ϕ‖H1(D) >
|k2k2

∗|m∗

2|k2 − k2
∗|m∗

‖Qm∗−1A−1/2`z,k∗‖H1(D) − Cp, m∗ > 1. (3.4.19)

Now assuming the contrary i.e. that Qm∗−1A−1/2`z,k∗ = 0, one finds that A−1/2`z,k∗ is orthogonal

to at least one eigenvector, hereon denoted by u∗, in Eλ∗ . Owing to the fact that operator A−1/2 is

self-adjoint, this implies

(`z,k∗ , A
−1/2u∗) = 0, where (I − k2

∗ A
−1/2BA−1/2)u∗ = 0,

i.e. A−1/2(A− k2
∗B)A−1/2u∗ = 0.

By the bijectivity of A−1/2, this result in turn requires that `z,k∗ be orthogonal to an element in

the kernel of A − k2
∗B, i.e. that `z,k∗ is orthogonal to an eigenfunction corresponding to Dirichlet

eigenvalue k2
∗ . Letting φ∗ denote this Dirichlet eigenfunction, the use of (3.4.13) and the first

Green’s identity demonstrates that

0 = (`z,k∗ , φ∗)H1(D) =
∫

D

(
∇θ ·∇φ∗ − k2

∗ θ φ∗
)

dV =
∫

∂D
(φ∗(ξ)),nG(ξ,z, k∗) dSξ,

for z ∈ D. By virtue of the the symmetry of G with respect to its first two arguments, one conse-

quently finds that

w(z) :=
∫

∂D
(φ∗(ξ)),nG(z, ξ, k∗) dSξ = 0,

Since w(z) = 0 for z ∈ Z ⊂ D such that Z has nonzero measure it follows, by virtue of unique

continuation applied to w(z) which solves the Helmholtz equation, that w(z) = 0 in D and thus

w(z) = 0 on ∂D by the continuity of single-layer potentials. The latter result implies that w = 0

in R3 \D as a radiating solution to the exterior Dirichlet problem with zero boundary data, which

in turn requires that ∂φ∗/∂n = 0 on ∂D since w = 0 everywhere. In light of the Holmgren’s
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uniqueness theorem and the fact that φ∗ = 0 on ∂D, one concludes that φ∗ = 0 in D which

contradicts the premise that φ∗ is an eigenfunction.

Since Cp in (3.4.18) behaves as O(1) with diminishing α, (3.4.19) implies that

‖A1/2ϕ‖H1(D) >
C

|k2 − k2
∗|
‖Qm∗−1A−1/2`z,k∗‖H1(D)

for k2 ∈ Bk2
∗,α and sufficiently small α, where C is a positive constant independent of k such that

0 < C < 1
2 |k

2k2
∗|m∗ ∀k2 ∈ Bk2

∗,α. Since i) A−1/2 and Q are both bounded operators; ii) `z,k∗ is

finite; iii) χ vanishes in a neighborhood of z; and iv) Qm∗−1A−1/2`z,k∗ 6= 0, q>0 for almost all

z∈D, the above inequality implies that

‖uz‖H1(D) >
∣∣‖ϕ‖H1(D) − ‖G(·,z, k)χ(·)‖H1(D)

∣∣ > C ′

|k2 − k2
∗|
− C ′′ >

C ′′′

|k2 − k2
∗|

for suitably chosen constant C ′′′ > 0 dependent on z, k∗ and α, but not on k. Next, let gε
z be

the approximate solution to either the far-field or the near-field equation provided, respectively, by

Lemma 8 and Lemma 7. These lemmas stipulate that the Herglotz wave function ugε
z

given by

(3.3.5) and the single-layer potential Ugε
z

given by (3.3.9) converge to uz in the H1(D) norm as

ε→ 0 uniformly for k2∈Bk2
∗,α. Thus, for sufficiently small ε > 0, ugε

z
and Ugε

z
inherit the behavior

of uz i.e

‖ugε
z
‖H1(D) >

C ′
1

|k2 − k2
∗|

and ‖Ugε
z
‖H1(D) >

C ′
2

|k2 − k2
∗|

where C ′
1 and C ′

2 are positive constants independent of k and ε. With this result in place, the claim

of the theorem is established by way of estimates

‖gε
z‖L2(Σ) > C ′′

1 ‖ugε
z
‖H1(D) >

C1

|k2 − k2
∗|

and ‖gε
z‖L2(Sc) > C ′′

2 ‖ϕgε
z
‖H1(D) >

C2

|k2 − k2
∗|
,

where C1 =C ′
1C

′′
1 and C2 =C ′

2C
′′
2 are positive constants dependent on z, k∗ and α, but not on k

and ε.

Penetrable obstacle. Next, consider the interior transmission problem of finding uz∈L2(D) and

wz ∈ L2(D) solving (3.3.13) so that vz = wz−uz ∈H2(D). Analogous to the treatment of the

Dirichlet problem, let θ := G(·,z, k)χ where χ is a C∞ cut-off function equaling unity in a neigh-

borhood of ∂D, and vanishing in a neighborhood of z ∈D. To facilitate the analysis, it is hereon

assumed that n(ξ) is real-valued such that n > 1 + δn in D for some constant δn > 0 (the case
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of when n < 1 − δn can be handled in exactly the same way). The reason for this restriction re-

sides in the fact that the analytical framework for dealing with the transmission eigenvalue problem

corresponding to complex-valued n, which entails complex eigenvalues k2, is not yet completely

developed, see e.g. [23, 47].

Following [180, 51], one can show that (3.3.13) can be written as a fourth-order equation in

terms of vz ∈ H2(D), namely

(
∆ + k2

) 1
n− 1

(
∆ + k2n

)
vz = 0 in D, (3.4.20)

that is accompanied by the boundary conditions vz = G(·,z, k) and (vz),n = G,n(·,z, k) on ∂D. In

what follows, let H2
0 (D) denote the Hilbert space of all u∈H2(D) such that u = 0 and u,n = 0 on

∂D. In this setting, the variational form of (3.4.20) can be written in terms of υ := vz− θ ∈ H2
0 (D)

as∫
D

1
n− 1

(∆υ+k2nυ)(∆ψ+k2ψ) dV = −
∫

D

1
n− 1

(∆θ+k2n θ)(∆ψ+k2ψ) dV ∀ψ ∈H2
0 (D),

i.e.

Aυ − k2B1υ + k4B2υ = −`z,k. (3.4.21)

Here A :H2
0 (D) → H2

0 (D) is a bounded, positive definite self-adjoint operator given by

(Aϕ,ψ)H2(D) =
∫

D

1
n− 1

∆ϕ∆ψ dV,

(note that the H2(D) norm of a field with zero Cauchy data on ∂D is equivalent to the L2(D)

norm of its Laplacian); B1 :H2
0 (D) → H2

0 (D) and B2 :H2
0 (D) → H2

0 (D) are compact bounded

operators such that

(B1ϕ,ψ)H2(D) = −
∫

D

1
n− 1

(
∆ϕψ + ϕ ∆ψ

)
dV −

∫
D
ϕ ∆ψ dV,

(B2ϕ,ψ)H2(D) =
∫

D

n

n− 1
ϕψ dV,

and

(`z,k, ψ)H2(D) =
∫

D

1
n− 1

(∆θ + k2n θ)(∆ψ + k2ψ) dV, ∀ψ ∈ H2
0 (D).

Theorem 2. Let k2
∗ be an isolated transmission eigenvalue, and consider α > 0 such that the ball
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Bk2
∗,α := {k2 : |k2− k2

∗|<α, k2 6=k2
∗} does not contain any eigenvalues other than k2

∗ . Further, let

gε
z be the approximate solution of either the far-field or the near-field equation, specified respectively

in Lemma 9 and Lemma 10. Then for sufficiently small ε > 0 and α > 0, and almost every z ∈ D
one has

‖ugε
z
‖L2(D) >

C1

|k2 − k2
∗|

and ‖gε
z‖L2(Σ) >

C2

|k2 − k2
∗|

(far-field observations), (3.4.22)

and

‖Ugε
z
‖L2(D) >

C1

|k2 − k2
∗|

and ‖gε
z‖L2(Ss) >

C2

|k2 − k2
∗|

(near-field observations) (3.4.23)

for all k2∈ Bk2
∗,α, where ug and Ug are given respectively by (3.3.5) and (3.3.9), while C1 and C2

are positive constants depending on z, k∗ and α, but not on k and ε.

Proof. Let υB := k2B
1/2
2 υ (note that B1/2

2 is defined via spectral decomposition for B2 is positive

semi-definite), and let T : H2
0 (D)×H2

0 (D) → H2
0 (D)×H2

0 (D) be a compact operator given by

T :=

(
A−1/2B1A

−1/2 −A−1/2B
1/2
2 A−1/2

A−1/2B
1/2
2 A−1/2 0

)
. (3.4.24)

In light of the relationship

A1/2
(
I − k2A−1/2B1A

−1/2 + k4A−1/2B2A
−1/2

)
A1/2υ = −`z,k,

(3.4.24) permits (5.4.29) to be rewritten as

k2
(
T − ξI

)
A1/2ϕ = A−1/2lz,k, ϕ =

( υ

υB

)
, lz,k =

( `z,k

0

)
,

where ξ :=1/k2. This transformation allows the resolvent of (3.4.24), namely R(ξ) = (T − ξI)−1,

to be treated in the way analogous to that in Theorem 1. As a result, one finds that

‖A1/2ϕ‖H2(D) >
C

|k2 − k2
∗|
‖Qm∗−1A−1/2lz,k∗‖H2(D)

for k2 ∈ Bk2
∗,α, where 0 < C < 1 is independent of k, and Qm∗−1 : H2

0 (D)×H2
0 (D) → Eλ∗

is the projection to the eigenspace of (3.4.24) corresponding to λ∗ := 1/k2
∗ . Now it remains to
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show that Qm∗−1A−1/2lz,k∗ 6= 0 for almost all z ∈ D. Again, assuming the contrary i.e. that

Qm∗−1A−1/2lz,k∗ =0 over Z⊂D with non-zero measure for k2∈Bk2
∗,α, it follows as in Theorem 1

that lz,k∗ ∈ H2
0 (D) is orthogonal to an element in the kernel of A − k2

∗B1 + k4
∗B2 which is a

transmission eigenfunction corresponding to λ∗. On letting φ∗ denote this eigenfunction, one has

0 = (lz,k∗ , φ∗)H2(D) =
∫

D

1
n− 1

(∆θ + k2
∗n θ)(∆φ∗ + k2

∗φ∗) dV. (3.4.25)

Integration of (3.4.25) by parts yields∫
∂D

1
n− 1

(∆+k2
∗n)φ∗(ξ) G,n(ξ,z, k∗) dSξ−

∫
∂D

( 1
n− 1

(∆+k2
∗n)φ∗(ξ)

)
,n
G(ξ,z, k∗) dSξ = 0,

(3.4.26)

by virtue of the definition of φ∗ and the boundary conditions imposed on θ :=Gχ, where the two

integrals are understood in the sense of H∓1/2 resp. H∓3/2 duality pairing. On setting

w :=
1

n− 1
(∆ + k2

∗n)φ∗ (3.4.27)

which satisfies the Helmholtz equation in D (recall that n is real-valued), one finds via the Green’s

representation theorem that

w(z) =
∫

∂D

(
w(ξ)G,n(z, ξ, k∗) − w,n(ξ)G(z, ξ, k∗)

)
dSξ for z ∈ D. (3.4.28)

On the basis of (3.4.26) which applies over Z⊂D, (3.4.28), the symmetry of G with respect to its

first two arguments, and the unique continuation principle, it follows that w = 0 in D. By virtue

of (3.4.27), φ∗ solves the Helmholtz equation in D with zero Cauchy data since φ∗ ∈ H2
0 (D). As

a result one finds, again exercising unique continuation, that φ∗ = 0 in D which contradicts the

premise that φ∗ is an eigenfunction. Proceeding with the proof as in the case of a Dirichlet obstacle

and employing the fact that B2 is bounded, one finds that for almost all z ∈ D and |k2
∗ − k2| < α

‖wz − uz‖H2(D) = ‖vz‖H2(D) >
C ′

|k2 − k2
∗|
,

for sufficiently small α>0 and some C ′>0 dependent on z, k∗ and α, but not on k. By making an

appeal to the well-posedness of (3.3.14) as in Lemma 7, one finally obtains the estimate

‖uz‖L2(D) > C ′′‖vz‖H2(D) >
C ′′′

|k2 − k2
∗|
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for suitably chosen C ′′ > 0 and C ′′′ > 0 dependent on z, k∗ and α, but not on k. With this result

in place, the convergence of ugε
z

(in the case of far-field observations) and Ugε
z

(in the case of near-

field observations) to uz in the L2(D)-norm as ε → 0, stipulated respectively in Lemma 9 and

Lemma 10, completes the proof of (3.4.22) and (3.4.23) as in Theorem 1.

Remark 11. As a follow-up to the discussion in Section 3.3.2 it is noted that, in the case of far-

field measurements, it is possible to extend the results of Theorem 1 and Theorem 2 to Tikhonov-

regularized solution (3.3.16) of the far-field equation.

Remark 12. For penetrable obstacles, it is further feasible to remove the assumption that the mass

density ρ is constant throughout the system and to consider a generalization of (3.2.3), where ρ=

ρ(ξ) inside the obstacle while maintaining ρ = ρo = const. in R3 \D. For this configuration, the

relevant scattering problem can be written as

∆v + k2v = 0 in R3 \D,

∆w + k2nw = 0 in D,

w − v = u, βw,n − v,n = u,n on ∂D,

lim
|ξ|→∞

|ξ|
(
∂v

∂|ξ|
− ikv

)
= 0,

(3.4.29)

where β = ρo/ρ and ρ(ξ) is, similar to the hypothesis on n(ξ), assumed to be “slowly” varying

so that the term containing ∇ρ can be omitted from the field equation. By making reference to

the existing studies of the affiliated interior transmission problem [48, 59], the claims of Section

3.3.1 can be extended verbatim to this more general configuration. A commensurate extension of

the results obtained in Section 3.4.3 is, however, fairly involved and entails additional assumptions

on β and n employed by the analysis of the featured interior transmission problem.

Remark 13. From Theorem 1 and Theorem 2, it is clear that ‖gε
z‖L2(•), • = Σ, Ss behaves as

O(|ω − ω∗|−m), m > 1 when ω → ω∗ = co k∗. As a result, the multi-frequency solution density

gε
z featured in (3.4.3) and (3.4.11) does not belong to L2(•)×L2(zω) when the relevant interior

problem over D is characterized by eigenvalues k2
∗ such that ω∗ = co k∗∈zω. In light of this result

it is noted that “serial” indicator function (3.4.3), in contrast to its “parallel” companion (3.4.11), is

not applicable to such configurations – a finding that is illustrated in the sequel.
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3.5 Results

In what follows, an attempt at multi-frequency obstacle reconstruction via the linear sampling

method is made for two sample configurations, namely that entailing far-field scattering by a unit

ball in R3 – a problem investigated analytically, and an affiliated far-field problem for a square

scatterer in R2 [52] which exposes the performance of the method in a generic computational set-

ting. With regard to the latter example, it is noted that both the claim and the structure of the proof

of Theorem 1 and Theorem 2 is independent of the dimensionality of the problem, and could be

extended to scattering in R2 by invoking the two-dimensional counterparts of Lemmas 7-10 (see,

e.g. [46]). For the brevity of exposition, however, the treatment of the two-dimensional case is in

this study limited to a numerical example.

3.5.1 Analytical study: spherical scaterer in R3

To shed light on the foregoing developments, consider the scattering of plane waves by a unit ball

D, centered at the origin so that ∂D = {ξ ∈ R3 : |ξ| = 1}. Assuming both the obstacle and the

background to be non-dissipative, the remainder of this study focuses on the existence of real-valued

eigenvalues characterizing the associated interior (Dirichlet or transmission) problem, and their

effect on indicator functions (3.4.3) and (3.4.11), in the context of the far-field formulation (3.3.1)

of the linear sampling method. For a unified analytical and computational treatment, the reference is

hereon made to the generalized scattering problem (3.4.29) which permits the Dirichlet case (3.2.2)

and penetrable case (3.2.3) to be recovered by setting respectively β →∞ and β = 1.

Far-field pattern. Assuming the incident field u to be in the form of a plane wave as in (3.2.1a), v

and w solving (3.4.29) can be expanded over the set of spherical harmonics, (Y m
p )p∈N0,m∈{−p,...,p},

as

v(ξ, δ) =
∞∑

p=0

p∑
m=−p

λm
p (δ)hp(k|ξ|)Y m

p (ξ̂), ξ ∈ R3\D, δ ∈ Σ,

w(ξ, δ) =
∞∑

p=0

p∑
m=−p

µm
p (δ) jp(γk|ξ|)Y m

p (ξ̂), ξ ∈ D, δ ∈ Σ,

(3.5.1)

where N0 is the set of all non-negative integers; γ=
√
n= co/c; λm

p and µm
p are, for fixed k and d,

constants dependent only on their indexes, and jp and hp denote respectively the pth-order spherical

Bessel and Hankel functions of the first kind. On employing the boundary conditions over the unit

sphere ∂D and the orthonormality of spherical harmonics, the solution for the scattered field in



CHAPTER 3. MULTI-FREQUENCY OBSTACLE RECONSTRUCTION 138

R3\D can be found as

v(ξ, δ) =
∞∑

p=0

ip(2p+ 1) Θp(k) hp(k|ξ|)Pp(ξ̂ ·δ), Θp(k) =
j′p(k)− αpjp(k)
αphp(k)− h′p(k)

, (3.5.2)

where Pp denotes the pth-order Legendre polynomial; f ′ is the derivative of f with respect to its

argument, and

αp(k) = β γ
j′p(γk)
jp(γk)

(3.5.3)

signifies an effective admittance of surface ∂D at wavenumber k and pth spherical harmonic. Here

it is noted that (3.5.2) is well behaved since the denominator αphp−h′p does not vanish when k∈R+

and p ∈ N0, see also [71] for a similar argument in electromagnetism. Indeed, by assuming the

contrary one finds via Nicholson’s formula that

αp(k)|hp(k)|2 − h′p(k)hp(k) = 0, (3.5.4)

which guarantees that hp(k) 6= 0 for k ∈ R+. The imaginary part of (3.5.4) requires that the

Wronskian W (jp(k), yp(k)) = jp(k)y′p(k) − j′p(k)yp(k), involving spherical Bessel functions of

the first and second kind, vanishes when k∈R+. But this cannot hold owing to the identity

W (jp(k), yp(k)) =
1
k2
, (3.5.5)

see e.g. [78].

By way of (3.5.2) and Theorem 2.15 in [78], the scattered far-field pattern generated by the

plane waves impinging on a unit ball centered at the origin can be computed as

v∞(ξ̂, δ) =
∞∑

p=0

(2p+ 1)
ik

Θp(k)Pp(ξ̂ ·δ), (3.5.6)

which can be used to compute the far-field variation of a solution to both (3.2.2), by setting β →∞,

and (3.2.3) by taking β = 1. In the former case, one in particular finds that

Θp(k) = − jp(k)
hp(k)

. (3.5.7)
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Interior problem. As examined in Section 3.3.1, the solvability of integral equation (3.3.1) in

the far-field formulation of the method hinges on the uniqueness of a solution to the corresponding

interior problem. With reference to the “unifying” scattering problem (3.4.29), one can in particular

show following the approach exercised earlier that the associated far-field operator F : L2(Σ) →
L2(Σ), given by (3.3.2), is injective with dense range if and only if there does not exist a Herglotz

wave function ug of form (3.3.5) with non-zero density g ∈ L2(Σ) such that pair (ug, w) solves the

homogeneous interior transmission problem

∆ug + k2ug = 0 in D,

∆w + k2nw = 0 in D,

ug = w, (ug),n = β w,n on ∂D.

(3.5.8)

On seeking the solution to (3.5.8) in terms of spherical harmonics

ug(ξ) =
∞∑

p=0

p∑
m=−p

um
p jp(k|ξ|)Y m

p (ξ̂), ξ ∈ D,

w(ξ) =
∞∑

p=0

p∑
m=−p

wm
p jp(γk|ξ|)Y m

p (ξ̂), ξ ∈ D,
(3.5.9)

and employing the Funk-Hecke formula∫
Σ
e−ikξ·δ Y m

p (δ) dSδ =
4π
ip
jp(k|ξ|)Y m

p (ξ̂), ∀ξ ∈ R3, p ∈ N0, m ∈ {−p, . . . , p},

one finds that ug, as given by (3.5.9a), is indeed a Herglotz wave function in the sense of (3.3.5).

With such result in place, it can next be shown by exercising the homogeneous boundary conditions

over ∂D in terms of (3.5.9) that a non-trivial solution to (3.5.8) exists if and only if there are values

k ∈ R such that

j′p?
(k)− αp?(k) jp?(k) = 0, p?∈ N0, (3.5.10)

where αp? is defined via (3.5.3). From (3.5.10), it is in particular useful to note that Θp?(k) = 0 in

the context of the scattered-field solution (3.5.2). As a result, the set of transmission eigenvalues

characterizing (3.5.8) can be written as

Λ =
{
k2: Θp?(k)=0, p?∈ N0

}
. (3.5.11)



CHAPTER 3. MULTI-FREQUENCY OBSTACLE RECONSTRUCTION 140

In the case of a Dirichlet obstacle (β →∞), (3.5.11) reduces to

Λ =
{
k2 : jp?(k)=0, p?∈ N0

}
. (3.5.12)

Indicator functions. With reference to (3.3.1) and spherical-harmonics expansion (3.5.6) of v∞,

the far-field pattern of the fundamental solution G can be computed as

G∞(ξ̂,z, k) =
1
4π
e−ikξ̂·z =

∞∑
p=0

p∑
m=−p

i−p jp(k|z|)Y m
p (ẑ)Y m

p (ξ̂). (3.5.13)

As a result the source density gz, solving (3.3.1) at a given sampling point z ∈ R3, is sought in the

form

gz(δ) =
∞∑

p=0

p∑
m=−p

gm
p Y m

p (δ), δ ∈ Σ (3.5.14)

which, on substitution, yields

gz(δ) =
k

(4π)2

∞∑
p=0

(2p+ 1)
ip−1Θp(k)

jp(k|z|)Pp(ẑ ·δ), δ ∈ Σ, (3.5.15)

provided that the condition

Θp(k) 6= 0, p∈ N0

is met, i.e.that k2 is not an eigenvalue of the interior problem (3.5.8). Unfortunately, series (3.5.15)

does not belong to L2(Σ) for any k∈ R+ owing to the fact that its norm is given by

‖gz‖2L2(Σ) =
k2

(4π)3

∞∑
p=0

(2p+ 1)
|Θp(k)|2

jp(k|z|)2, (3.5.16)

where the featured spherical (Bessel and Hankel) functions behave asymptotically such that

(2p+ 1)
|Θp(k)|2

jp(k|z|)2 =
4
k2

(
1+β
1−β

)2(2|z|
e k

)2p

p2p+1
(
1+O(p−1)

)
as p→∞, (3.5.17)

see e.g. [78]. Indeed from (3.5.16) and (3.5.17), it is clear that

‖gz‖L2(Σ) = ∞, z ∈ R3\{0}.
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This result is not surprising since the far-field operator F is known to be compact with eigenvalues

σp =
4π
ik

Θp(k), p ∈ N0, (3.5.18)

that have the asymptotic behavior

σp = π

(
1−β
1+β

)(
e k

2

)2p 1
p2p+1

(
1 +O(p−1)

)
as p→∞, (3.5.19)

and thus accumulate at zero. The blow-off feature of ‖gz‖L2(Σ) in R3\{0} can therefore be at-

tributed to the smallest eigenvalues of the far-field operator. For practical purposes, however, this

behavior can be regularized by truncating the spectrum of F “from below” at sufficiently small

eigenvalues [71], i.e. by seeking a solution to the far-field equation (3.3.1) within a manifold

span
(
Y m

p , p ∈ {0, . . . , Nt}, m ∈ {−p, . . . , p}
)
, Nt <∞.

With the above results in place, indicator functions (3.4.3) and (3.4.11), cumulative over zω =

[ω1, ω2], can now be approximated by evaluating (3.5.16) up to truncation level Nt and employing

piecewise-constant approximation of gz(·, ω) over a discrete set of sampling frequencies

zh
ω =

{
ωs

1, ω
s
2, . . . ω

s
Nh

}
⊂ zω, ωs

1 =ω1, ωs
Nh

= ω2, ωs
m+1 − ωs

m = O(h)>0,

where m ∈ {1, . . . Nh} and h is the chosen level of discretization. Accordingly, one finds that

Π̌(1)
z (z) = (4π)3/2

∑
k∈zh

k

Nt∑
p=0

(2p+ 1)k2

|Θp(k)|2
jp(k|z|)2

−1/2

(3.5.20)

and

Π̌(2)
z (z) = (4π)3/2

∑
k∈zh

k

 Nt∑
p=0

(2p+ 1)k2

|Θp(k)|2
jp(k|z|)2

−11/2

, (3.5.21)

where Π̌ is a regularized approximation of Π, and zh
k = c−1

o zh
ω . To facilitate the ensuing discussion,
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one may also introduce an auxiliary indicator function

λNt(k) =
Nt∑
p=0

1
j′p(k)− αp(k)jp(k)

(3.5.22)

which, in light of (3.5.10), has the property that λNt(k) → ∞ as k approaches a transmission

eigenvalue associated with p∗ 6 Nt.

Examples. In what follows the featured obstacle configuration, D = {x ∈ R3 : |ξ| < 1}, is

exercised numerically to highlight the existence of interior (Dirichlet or transmission) eigenvalues,

and to assess their effect on the behavior of (3.5.20) and (3.5.21). As an illustration, the results

are computed assuming frequency band zω = [10co, 15co] i.e. zk = [10, 15] and truncation level

Nt = 10, chosen such that |σp|< 10−3, p > Nt for all configurations examined, see (3.5.18). For

completeness, obstacle reconstruction is effected assuming both “fine” discretization of zk, namely

zh1
k :=

{
k : k=10 +mh1, h1 =10−3, m∈{0, 1, . . . , 5 · 103}

}
, (3.5.23)

and four “coarse” discretizations

zh2
k =

{
10, 11, 12, 13, 14, 15

}
,

zh3
k =

{
10, 11, 12, 13, 14.0662, 15

}
,

zh4
k =

{
10, 11.25, 12.5, 13.75, 15

}
,

zh5
k =

{
10, 11.25, 12.5664, 13.75, 15

}
.

Fig. 3.2a shows the variation of auxiliary indicator function (3.5.22) for a Dirichlet obstacle

(β →∞), which clearly indicates the existence of Dirichlet eigenvalues within first Nt spherical

harmonic modes of the truncated solution. The spatial distribution of Π̌(1)
z and Π̌(2)

z in the z3 = 0

plane, as computed from (3.5.20) and (3.5.21) assuming zh1
k as a discrete set of wavenumbers

over which the far-field observations v∞(ξ̂, δ), ξ̂, δ ∈ Σ are available, is plotted on a normalized

scale [0, 1] in Fig. 3.2b and 3.2c. The featured indicator distributions, spherically symmetric due to

assumed geometry of the problem, show that the “serial” indicator (3.5.20) is strongly affected by

traversing the Dirichlet eigenvalues owing to its particular structure which requires that Π̌(1)
z → 0

uniformly in R3 as Θp(k) → 0, p ∈ {0, . . . , Nt}. From (3.5.21) and Fig. 3.2c, on the other

hand, it is also apparent that the far-field observations v∞ taken at “resonant” frequencies make
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only a trivial contribution to Π̌(2)
z , and thus do not degrade the quality of multi-frequency obstacle

reconstruction when executed in terms of the latter indicator function. The above conclusions are

further substantiated by the results in Fig. 3.3 which plots λNt(k), Π̌(1)
z (z) and Π̌(2)

z (z) for a sample

penetrable-obstacle configuration, characterized by β=1 and γ=2. In particular, it is noted that the

spatial distribution of Π̌(1)
z plotted in Fig. 3.3b provides no visible clues as to the support of a hidden

ball.

For completeness, the above Dirichlet and penetrable obstacle are each reconstructed anew us-

ing the far-field data from two “coarse” wavenumber sets. In particular, the Dirichlet obstacle is

reconstructed in Figs. 3.4 and 3.5 from the data taken respectively over zh2
k and zh3

k , designed such

that zh2

k2 ∩ Λ = ∅ and zh3

k2 ∩ Λ 6= ∅, where Λ signifies the set of Dirichlet eigenvalues for a unit ball

with sound speed co. As can be seen from the display, both Π̌(1)
z and Π̌(2)

z (this time plotted versus

|z|) appear to effectively reconstruct the obstacle on the basis of zh2
k while, commensurate with the

earlier result, only Π̌(1)
z succeeds when using zh3

k as the sampled set of wavenumbers. The same

conclusion can be drawn from Figs. 3.6 and 3.7 which illustrate the reconstruction of a penetrable

defect (β=1, γ=2) on the basis of zh4
k and zh5

k , chosen such that zh4

k2 ∩ Λ = ∅ and zh5

k2 ∩ Λ 6= ∅,

where Λ denotes the germane (countable) set of transmission eigenvalues.

3.5.2 Numerical study: square obstacle in R2

In this section the “multitonal” indicator functions (3.4.3) and (3.4.11) are applied to the inverse

scattering of planes waves by a unit square, D={ξ∈R2 : ξ∈ [−0.5, 0.5]×[−0.5, 0.5]}, assuming

penetrable obstacle as in (3.4.29) with n = 4 and β = 1/4. To this end, a discrete set of directions

of plane-wave incidence and observation is assumed as

Σh :=
{
x̂=

(
cos(2πmh), sin(2πmh)

)
, h =

1
M
, m∈{0, 1, . . . ,M−1}

}
, M=61.

By analogy to (3.5.23), a “fine” discretization of the example wavenumber band [3, 8] is taken as

zh6
k :=

{
k : k=3 +mh6, h6 =5 · 10−2, m∈{0, 1, . . . , 102}

}
.

Here it is noted that the featured interval k2 ∈ [9, 64] ⊂ R contains, at least numerically, several

transmission eigenvalues associated with the assumed scattering configuration in terms of D (see

[52] for details).

For any fixed frequency k ∈ zh6
k and sampling point z ∈ R2, a discretized version of the far-
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field formulation (3.3.1) of the linear sampling method corresponding to (x̂, δ) ∈ Σh is written in

the form

Fh gz,h = fz,h, (3.5.24)

where Fh is a discretized far-field operator, and fz,h = (G∞(x̂,z, k))x̂∈Σh
. To solve (3.5.24), the

singular value decomposition of Fh is computed as Fh = U S V ∗, where U, V ∈ CM×M are unitary

matrices, V ∗ is the Hermitian transpose of V , and S ∈ RM×M a diagonal matrix such that Sjj = σj

is the jth singular value of Fh. With reference to (3.3.16), the norm of a Tikhonov-regularized

solution gε
z,h to (3.5.24), with regularization parameter ε, is accordingly computed as

‖gε
z,h‖2L2(Σh) =

M∑
j=1

σ2
j

(σ2
j + ε)2

|(U∗fz,h)j |2. (3.5.25)

Fig. 3.8 plots the normalized distribution of indicator functions (3.4.3) and (3.4.11), on a scale [0, 1],

computed by way of (3.5.25) with ε=10−4. Consisent with the earlier results, the two-dimensional

reconstruction of a square scatterer via the “serial” indicator Π̌(1)
z is inferior to that obtained using

its “parallel” companion Π̌(2)
z , not only in tems of the contrast of an image, but also in terms of the

reconstructed shape.

3.6 Conclusions

In this study, multi-frequency reconstruction of sound-soft and penetrable obstacles is examined in

the context of the linear sampling method entailing either far-field or near-field measurements. On

establishing a suitable approximate solution to the linear sampling equation under the premise of

continuous frequency sweep, two possible choices for a cumulative multi-frequency indicator func-

tion of the scatterer’s support are proposed. The first alternative, termed the “serial” indicator, is

taken as a natural extension of its customary monochromatic counterpart in the sense that its com-

putation entails space-frequency (as opposed to space) L2-norm of a solution to the linear sampling

equation. Under certain assumptions which include experimental observations down to zero fre-

quency and compact frequency support of the wavelet used to illuminate the obstacle, this indicator

function is further related to its time-domain companion. As a second possibility, the so-called “par-

allel” indicator is proposed as anL2-norm, in the frequency domain, of the monochromatic indicator

function. On the basis of the perturbation analysis which demonstrates that the monochromatic so-

lution of the linear sampling equation behaves as O(|k2− k2
∗|−m), m > 1 in the neighborhood
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of an isolated eigenvalue, k2
∗ , of the associated interior (Dirichlet or transmission) problem, it is

found that the “serial” indicator is unable to distinguish the interior from the exterior of a scatterer

in situations when the prescribed frequency band traverses at least one such eigenvalue. In contrast

the “parallel” indicator is, due to its particular structure, shown to be insensitive to the presence of

pertinent interior eigenvalues (which typically form a countable set – unknown beforehand), and

thus to be robust in a generic scattering environment. A set of numerical results, including both

“fine” and “coarse” frequency sampling, is included to illustrate the performance of the competing

(multi-frequency) indicator functions, demonstrating behavior that is consistent with the theoretical

results.
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(a) λNt

(b) Π̌(1)
z (c) Π̌(2)

z

Figure 3.2: Reconstruction of a Dirichlet obstacle (β→∞) from the far-field data taken over a “fine”
wavenumber set zh1

k .
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(a) λNt

(b) Π̌(1)
z (c) Π̌(2)

z

Figure 3.3: Reconstruction of a penetrable obstacle (β = 1, γ = 2) from the far-field data taken over a
“fine” wavenumber set zh1

k .
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Figure 3.4: Reconstruction of a Dirichlet obstacle (β→∞) from the far-field data taken over a “coarse”
wavenumber set zh2

k (indicated by markers), taken such that Λ ∩zh2
k2 =∅
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Figure 3.5: Reconstruction of a Dirichlet obstacle (β→∞) from the far-field data taken over a “coarse”
wavenumber set zh3

k (indicated by markers), chosen such that Λ ∩zh3
k2 6=∅
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Figure 3.6: Reconstruction of a penetrable obstacle (β = 1, γ = 2) from the far-field data taken over a
“coarse” wavenumber set zh4

k (indicated by markers), taken such that Λ ∩zh4
k2 =∅.
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Figure 3.7: Reconstruction of a penetrable obstacle (β = 1, γ = 2) from the far-field data taken over a
“coarse” wavenumber set zh5

k (indicated by markers), selected such that Λ ∩zh5
k2 6=∅.
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(a) Normalized Π̌(1)
z (b) Normalized Π̌(2)

z

Figure 3.8: Reconstruction of a Dirichlet obstacle from the far-field data taken over a “fine” wavenumber
set zh6

k .
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4.1 Introduction

In the context of penetrable scatterers (e.g. elastic inclusions within the framework of mechanical

waves), the linear sampling method and the factorization method have exposed the need to study

and understand a non-traditional boundary value problem, termed the interior transmission problem

(ITP), where two bodies with common support are subjected to a prescribed jump in Cauchy data

between their boundaries. Covered by no classical theory, this problem has been the subject of early

investigations since late 1980’s [77, 180]. The critical step in studying the ITP involves determi-

nation of conditions (in terms of input parameters) under which the problem is well-posed in the

sense of Hadamard. Invariably, this leads to the analysis of the interior transmission eigenvalues,

i.e. frequencies for which the homogeneous ITP permits a non-trivial solution. In particular, the

characterization of such eigenvalue set has become of key importance in recent studies [159, 128].

So far, two distinct methodologies have been pursued to investigate the well-posedness of the

ITP, mainly within the context of Helmholtz and Maxwell equations. On the one hand, integral

equation-type formulations have been developed in [77, 180] for scalar-wave problems, and later

adapted to deal with electromagnetic waves [109, 127]. One the other hand, starting from the semi-

nal work in [111], an alternative treatment of the ITP has been developed in [48] that involves a cus-

tomized variational formulation combined with the compact perturbation argument. This approach

has since been successfully applied in a series of papers to a variety of acoustic and electromagnetic

scattering problems, see e.g. [56, 57].

In the context of elastic waves, investigation of the ITP has been spurred by the introduction of

the linear sampling method for far-field [16, 65] and near-field [155, 19, 155, 105] inverse scattering

problems, as well as the development of the factorization method for elastodynamics [66]. To

date, the elastodynamic ITP has been investigated mainly within the framework established for the

Helmholtz and Maxwell equations, notably via integral equation approach [65] for homogeneous

dissipative scatterers, and the variational treatment [63] for heterogeneous, anisotropic, and elastic

scatterers in a homogeneous elastic background. Recently, a method combining integral equation

approach and compact perturbation argument has been proposed in [64] for homogeneous-isotropic

elasticity to obtain sufficient conditions for the well-posedness of the ITP.

To extend the validity of the linear sampling and factorization methods to a wider and more

realistic class of inverse scattering problems, the focus of this study is the ITP for situations where

both the obstacle and the background solid are piecewise-homogeneous, anisotropic, and either

elastic or viscoelastic. This type of heterogeneity concerning the background solid has particular
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relevance to e.g. seismic imaging and non-destructive material testing where layered configurations

are common, as created either via natural deposition or the manufacturing process. For generality,

the obstacle is allowed to be multiply connected, having both penetrable components (inclusions)

and impenetrable parts (cavities). In this setting, emphasis is made on the well-posendess of the

visco-elastodynamic ITP, and in particular on the sufficient conditions under which the set of inte-

rior transmission eigenvalues is either countable or empty. For an in-depth study of the problem,

a variational approach that generalizes upon the results in [48] and [63] is developed, including a

treatment of the less-understood “viscoelastic-viscoelastic” case where both the obstacle and the

background solid are dissipative. The key result of the proposed developments are the sufficient

conditions under which the ITP involving piecewise-homogeneous, anisotropic, and viscoelastic

solids is well-posed provided that the excitation frequency does not belong to (at most) countable

spectrum of transmission eigenvalues. These conditions aim to overcome some of the limitations of

the earlier treatments in (visco-) elastodynamics in that: i) they pose a precise, previously unavail-

able provision for the well-posedness of the ITP in situations when the obstacle and the background

solid are both heterogeneous, and ii) they are dimensionally consistent i.e. invariant under the choice

of physical units.

4.2 Preliminaries

Consider a piecewise-homogeneous, “background” viscoelastic solid Ω⊂R3 (not necessarily bounded

and isotropic) composed of N homogeneous regular regions Ωn. Assuming time-harmonic motion

with implicit factor eiωt and making reference to the correspondence principle [96], let ρ>0 and C
denote respectively the piecewise-constant mass density and (complex-valued) viscoelasticity tensor

characterizing Ω. For clarity, all quantities appearing in this study are interpreted as dimensionless

following the scaling scheme in Table 4.1 where d0 is the characteristic length, K0 is the reference

elastic modulus, and ρ0 is the reference mass density. Without loss of generality, ρ0 can be taken

such that inf{ρ(ξ) : ξ∈Ω} = 1, leaving the choice of K0 at this point arbitrary.

Next, let Ω be perturbed by a bounded obstacleD⊂Ω composed ofM∗ homogeneous viscoelas-

tic inclusions Dm
∗ and Mo disconnected cavities Dj

o. In this setting one may write D = D∗∪Do,

where D∗ =
⋃M∗

m=1D
m
∗ and Do =

⋃Mo
j=1D

j
o. Here it is assumed that the cavities are separated

from inclusions i.e. D∗ ∩ Do = ∅, and that Ω\Do is connected. Similar to the case of the back-

ground solid, the viscoelasticity tensor C∗ and mass density ρ∗>0 characterizingD∗ are understood

in a piecewise-constant sense. For the purpose of this study, the reference length d0 appearing in
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Table 4.1: Scaling scheme

Dimensionless quantity Scale
Mass density ρ ρ0

Viscoelasticity tensor, traction vector C, t K0

Displacement and position vectors u, ξ d0

Vibration frequency ω d−1
0

√
K0/ρ0

Table 4.1 can be taken as d0 = |D|1/3, i.e. as the characteristic obstacle size.

To facilitate the ensuing discussion, consider next N∗ subsets Θp
∗ of D∗ where both (C, ρ) and

(C∗, ρ∗) are constant, i.e.

∀(n,m)∈ {1, . . . , N}×{1, . . . ,M∗} Ωn ∩Dm
∗ 6= ∅ ⇒ ∃p∈{1, . . . , N∗} : Θp

∗ = Ωn ∩Dm
∗ .

Since D∗⊂ Ω, one has M∗ 6 N∗ and geometrically D∗ =
⋃N∗

p=1 Θp
∗. Likewise, one may identify

the No subsets, Θq
o, of Do where (C, ρ) is constant

∀(n, j)∈ {1, . . . , N}×{1, . . . ,Mo} Ωn ∩Dj
o 6= ∅ ⇒ ∃q∈{1, . . . , No} : Θq

o = Ωn ∩Dj
o,

see also Fig. 4.2. In each Θp
∗, the mass density of the inclusion and the background medium will

be denoted respectively by ρp
∗ and ρp; the background mass density in each Θq

o will be similarly

denoted by ρq
o.

Figure 4.1: ITP configuration: scatterer composed of inclusions D∗ and cavities Do (left) and scatterer
support, D, occupied by the background material (right).

In what follows it is assumed that C∗ and C, synthesizing respectively the anisotropic viscoelas-

tic behavior of the obstacle and the background, have the following properties.
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Definition 1. Let <[·] and =[·] denote respectively the real and imaginary part of a complex-

valued quantity. The fourth-order tensors C and C∗ are bounded by piecewise-constant, real-valued,

strictly positive functions c, c∗,C and C∗ and non-negative functions v, v∗,V and V∗ such that

c|ϕ|2 6 <[ϕ :C :ϕ̄] 6 C|ϕ|2 in Ω,

c∗|ϕ|2 6 <[ϕ :C∗ :ϕ̄] 6 C∗|ϕ|2 in D∗,
(4.2.1)

and
v|ϕ|2 6 =[ϕ :C :ϕ̄] 6 V|ϕ|2 in Ω,

v∗|ϕ|2 6 =[ϕ :C∗ :ϕ̄] 6 V∗|ϕ|2 in D∗
(4.2.2)

for all complex-valued, second-order tensor fields ϕ in Ω ⊃D∗. For further reference, let cp, cp
∗,

Cp,Cp
∗, vp, vp

∗ ,Vp and Vp
∗ signify the respective (constant) values of c, c∗,C,C∗, v, v∗,V and V∗ in

each Θp
∗, p ∈ {1, . . . , N∗}, and let cq

o,C
q
o, v

q
o and Vq

o denote the respective values of c,C, v and V

in each Θq
o, q ∈ {1, . . . , No}. With such definitions, Vp = vp ≡ 0 and Vp > vp > 0 respectively

when C is elastic and viscoelastic (i.e. complex-valued) in Θp, with analogous restrictions applying

to the bounds on C∗ and Co. In this setting, (5.2.1) and (4.2.2) de facto require that both real and

imaginary parts of a viscoelastic tensor be positive definite and bounded.

Comment. With reference to the result in [148] which establishes the major symmetry of a (ten-

sor) relaxation function by virtue of the Onsager’s reciprocity principle [182] , it follows that C∗
and C have the usual major and minor symmetries whereby

<[ϕ :C :ϕ̄] = ϕ : <[C] : ϕ̄, <[ϕ :C∗ :ϕ̄] = ϕ : <[C∗] : ϕ̄,

=[ϕ :C :ϕ̄] = ϕ : =[C] : ϕ̄, =[ϕ :C∗ :ϕ̄] = ϕ : =[C∗] : ϕ̄.
(4.2.3)

One may also note that the imposition of the upper bounds, C,C∗,V and V∗ in (5.2.1) and (4.2.2)

is justified by the boundedness of the moduli comprising C and C∗, whereas c, c∗, v and v∗ ensure

thermomechanical stability of the system [150, 94]. These upper and lower bounds can be shown

to signify the extreme eigenvalues of (the real and imaginary parts of) a fourth-order viscoelasticity

tensor, defined with respect to a second-order eigentensor. Explicit treatment of such eigenvalue

problems is difficult in a general anisotropic case, which may feature up to six distinct eigenvalues

per real and imaginary part. In the isotropic case, however, tensors C and C∗ can be synthesized in

terms of the respective (complex) shear moduli µ and µ∗, and bulk moduli κ and κ∗. Under such
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restriction, C and C∗ have only two distinct eigenvalues [131], given respectively by {2µ, 3κ} and

{2µ∗, 3κ∗}. Depending on the sign of the real parts of the underlying Poisson’s ratios ν and ν∗
[172], these moduli satisfy the relationships

0 < <[ν] < 1
2 ⇒ C = 3<[κ] > 2<[µ] = c,

− 1 < <[ν] < 0 ⇒ C = 2<[µ] > 3<[κ] = c,

0 < <[ν∗] < 1
2 ⇒ C∗ = 3<[κ∗] > 2<[µ∗] = c∗,

− 1 < <[ν∗] < 0 ⇒ C∗ = 2<[µ∗] > 3<[κ∗] = c∗.

(4.2.4)

Figure 4.2: Schematics of the “intersection” domains Θp
∗ and Θq

o wherein the scatterer and the back-
ground solid both maintain constant material properties (see also Fig. 4.1).

For further reference it can be shown on the basis of (5.2.1), (4.2.2), the aforementioned eigen-

representations of the viscoelasticity tensor, the triangle inequality, and the Cauchy-Schwarz in-

equality that ∣∣∣∣∫
Θp
∗

ϕ : C∗ : ψ̄ dV
∣∣∣∣ 6 (C∗+ V∗) ||ϕ||L2(Θp

∗)
||ψ||L2(Θp

∗)
,∣∣∣∣∫

Θp
∗

ϕ : C : ψ̄ dV
∣∣∣∣ 6 (C + V) ||ϕ||L2(Θp

∗)
||ψ||L2(Θp

∗)
,∣∣∣∣∫

Θq
o

ϕ : C : ψ̄ dV
∣∣∣∣ 6 (C + V) ||ϕ||L2(Θq

o ) ||ψ||L2(Θq
o ),

(4.2.5)

where ϕ and ψ are square-integrable, complex-valued, second-order tensor fields in Θp
∗ and Θq

o,

p∈{1, . . . , N∗}, q∈{1, . . . , No}.
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4.3 Interior transmission problem

Consider the time-harmonic scattering of viscoelastic waves at frequency ω where the so-called

free field u, namely the displacement field that would have existed in the obstacle-free domain Ω,

is perturbed (scattered) by a bounded obstacle D=D∗∪Do ⊂Ω described earlier. This boundary

value problem can be conveniently written as

∇·[C∗ :∇w] + ρ∗ω
2w = 0 in D∗, (4.3.1a)

∇·[C :∇v] + ρω2v = 0 in Ω\D, (4.3.1b)

w = v + u on ∂D∗, (4.3.1c)

t∗[w] = t[v] + t[u] on ∂D∗, (4.3.1d)

t[v] + t[u] = 0 on ∂Do (4.3.1e)

where w is the (total) displacement field within piecewise-homogeneous inclusion D∗; v is the

so-called scattered field signifying the perturbation of u in Ω\D due to the presence of the scat-

terer; t∗[ϕ] = C∗ :∇ϕ ·n and t[ϕ] = C :∇ϕ ·n refer to the surface tractions on ∂D; ∇ implies

differentiation “to the left” [144], and n is the unit normal on the boundary of D oriented toward

its exterior. Here (4.3.1a) is to be interpreted as a short-hand notation for the set of M∗ governing

equations applying over the respective homogeneous regionsDm
∗ (m=1, . . .M∗), supplemented by

the continuity of displacements and tractions across ∂Dm
∗ where applicable. Analogous convention

holds in terms of (4.3.1b) strictly applying over open homogeneous regions Ωn\D.

In what follows, it is assumed that the boundary of Ω (if any) is subject to Robin-type conditions

whereby (4.3.1) are complemented by

λ(I2−N)·v +N ·t[v] = 0 on ∂Ω, (4.3.2)

where λ>0 is a constant; n, implicit in the definition of t[v], is oriented outward from Ω; andN is

a suitable second-order tensor that varies continuously along smooth pieces of ∂Ω. Note that (4.3.2)

include homogeneous Dirichlet (N ≡ 0) and Neumann (N ≡ I2) boundary conditions as special

cases. In situations where Ω is unbounded (e.g. a half-space), (4.3.1) and (4.3.2) are completed by

the generalized radiation condition [142], namely

lim
R→∞

∫
ΓR

[
t[v](ξ) ·U(ξ, ζ)− v(ξ) · T (ξ, ζ)

]
dSξ = 0, ∀ζ ∈ Ω, (4.3.3)
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where ΓR =SR ∩Ω; SR is a sphere of radius R centered at the origin; U denotes the displacement

Green’s tensor for the obstacle-free solid Ω, and T is the traction Green’s tensor associated withU .

Interior transmission problem. With reference to the direct scattering framework (4.3.1)–(4.3.3),

henceforth referred to as the transmission problem (TP), investigation of the associated inverse scat-

tering problem in terms of the linear sampling and factorization methods [76, 65, 105, 129, 66] leads

to the analysis of the so-called interior transmission problem (ITP) [46]. In the context of the present

study, the ITP can be stated as the task of finding an elastodynamic field that solves the counter-

part of (4.3.1) where the support of (4.3.1b), namely Ω\D, is replaced by D. Previous studies

have, however, shown that the analysis of an ITP is complicated by the loss of ellipticity relative

to its “mother” TP that is well known to be elliptic. An in-depth study of this phenomenon can be

found in [82] who showed, making reference to acoustic waves, that the ITP is not elliptic at any

frequency. Here it is also useful to recall that the TP (4.3.1)–(4.3.3) and the associated ITP can both

be represented by a common set of boundary integral equations (written over ∂D), which leads to

the well-known phenomenon of fictitious frequencies [40, 138, 173] plaguing the boundary integral

treatment of direct scattering problems.

For a comprehensive treatment of the problem, the ITP associated with (4.3.1)–(4.3.3) is next

formulated in a general setting which i) allows for the presence of body forces, and ii) interprets the

interfacial conditions over ∂D∗ as a prescribed jump in Cauchy data between u and u∗. Making

reference to Fig. 4.1 and the basic concepts of functional analysis [149], such generalized ITP can

be conveniently stated as a task of finding (u∗,u,uo) ∈ H1(D∗)×H1(D∗)×H1(Do) satisfying

∇·[C∗ :∇u∗] + ρ∗ω
2u∗ = f∗ in D∗, (4.3.4a)

∇·[C :∇u] + ρω2u = f in D∗, (4.3.4b)

∇·[C :∇uo] + ρω2uo = f in Do, (4.3.4c)

u∗ = u+ g on ∂D∗, (4.3.4d)

t∗[u∗] = t[u] + h∗ on ∂D∗, (4.3.4e)

t[uo] = ho on ∂Do, (4.3.4f)

where Hk≡W k,2 denotes the usual Sobolev space; (f∗,f) ∈ L2(D∗)×L2(D); g ∈ H
1
2 (∂D∗);
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(h∗,ho)∈ H− 1
2 (∂D∗)×H− 1

2 (∂Do), and

t∗[u∗] = C∗ :∇u∗ ·n ∈ H− 1
2 (∂D∗),

t[u] = C :∇u·n ∈ H− 1
2 (∂D∗), (4.3.5)

t[uo] = C :∇uo ·n ∈ H− 1
2 (∂Do).

For completeness, it is noted that (4.3.4a)–(4.3.4c) and (4.3.4d)–(4.3.5) are interpreted respectively

in the sense of distributions and the trace operator while f∗ and f , signifying the negatives of body

forces, are placed on the right-hand side to facilitate the discussion.

Definition 2. Values of ω for which the homogeneous ITP, defined by setting (f∗,f , g,h∗,ho) =

(0,0,0,0,0) in (4.3.4), has a non-trivial solution are called transmission eigenvalues.

Modified interior transmission problem. To deal with anticipated non-ellipticity of the featured

ITP, it is next useful to consider the compact perturbation of (4.3.4) as

∇·[C∗ :∇u∗]− ρ∗u∗ = f∗ in D∗ (4.3.6a)

∇·[C :∇u]− ρu = f in D∗ (4.3.6b)

∇·[C :∇uo]− ρuo = f in Do (4.3.6c)

u∗ = u+ g on ∂D∗ (4.3.6d)

t∗[u∗] = t[u] + h∗ on ∂D∗ (4.3.6e)

t[uo] = ho on ∂Do, (4.3.6f)

see also [48] in the context of the acoustic waves. To demonstrate the compact nature of such

perturbation, one may introduce the auxiliary space

Ξ(D) :=
{
(u∗,u,uo) ∈ H1(D∗)×H1(D∗)×H1(Do) :

∇·[C∗ :∇u∗] ∈ L2(D∗), ∇·[C :∇u] ∈ L2(D∗), ∇·[C :∇uo] ∈ L2(Do)
}
, (4.3.7)
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and a differential-trace operatorM representing (4.3.6) from Ξ(D) intoL2(D∗)×L2(D∗)×L2(Do)×
H

1
2 (∂D∗)×H− 1

2 (∂D∗)×H− 1
2 (∂Do) such that

M(u∗,u,uo) :=
(
∇·[C∗ :∇u∗]−ρ∗u∗, ∇·[C :∇u]−ρu, ∇·[C :∇uo]−ρuo,

(u∗−u)|∂D∗ , (t∗[u∗]−t[u])|∂D∗ , t[uo]|∂Do

)
(4.3.8)

where t and t∗ are defined as in (4.3.5). On the basis of (4.3.6) and (4.3.8), interior transmission

problem (4.3.4) can be identified with operator O ≡ M + (1+ ω2)P from Ξ(D) into L2(D∗)×
L2(D∗)×L2(Do)×H

1
2 (∂D∗)×H− 1

2 (∂D∗)×H− 1
2 (∂Do), where the featured perturbation operator

P(u∗,u,uo) :=
(
ρ∗u∗, ρu, ρuo, 0, 0, 0

)
(4.3.9)

is clearly compact by virtue of compact embedding of H1(D∗) into L2(D∗) and H1(Do) into

L2(Do).

Definition 3. Triplet (u∗,u,uo) ∈ H1(D∗) × H1(D∗) × H1(Do) solving (4.3.6a)–(4.3.6c) in

the sense of distributions and (4.3.6d)–(4.3.6f) in the sense of the trace operator is called a strong

solution of the modified ITP.

4.3.1 Weak formulation of the modified ITP

The next step is to examine the ellipticity of the modified ITP (4.3.6) through a variational formu-

lation, following the methodology originally introduced in [111] and later deployed in [48, 63]. To

this end, recall the definition of the “background” viscoelasticity tensor and consider the space of

symmetric second-order tensor fields

W (D∗) :=
{
Φ ∈ L2(D∗) : Φ = ΦT, ∇·Φ ∈ L2(D∗) and ∇× [C−1 :Φ] = 0

}
, (4.3.10)

equipped with the inner product

(Φ1,Φ2)W (D∗) := (Φ1,Φ2)L2(D∗) + (∇·Φ1,∇·Φ2)L2(D∗), (4.3.11)

and implied norm

‖Φ‖2W (D∗)
:= ‖Φ‖2L2(D∗)

+ ‖∇·Φ‖2L2(D∗)
. (4.3.12)
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For clarity it is noted that the curl operator in (4.3.10), defined as that “to the left” [144], is to be

interpreted in the weak sense. With reference to (4.3.6) and (4.3.10), let further E := H1(D∗) ×
W (D∗)×H1(Do) and define the sesquilinear form A : E× E → C as

A(U, V ) :=
∫

D∗

[∇u∗ : C∗ :∇ϕ̄∗ + ρ∗u∗ · ϕ̄∗] dV +
∫

D∗

[
1
ρ
(∇·U)·(∇·Φ̄) + U : C−1 :Φ̄

]
dV

+
∫

Do

[∇uo : C :∇ϕ̄+ ρuo · ϕ̄] dV −
∫

∂D∗

[
u∗ · Φ̄ · n+ (U · n) · ϕ̄∗

]
dS,

(4.3.13)

together with the antilinear form L : E → C

L(V ) :=
∫

D∗

1
ρ
f · (∇·Φ̄) dV −

∫
Do

f · ϕ̄ dV −
∫

D∗

f∗ · ϕ̄∗ dV

+
∫

∂D∗

[
h∗ · ϕ̄∗ − g · Φ̄ · n

]
dS +

∫
∂Do

ho · ϕ̄ dS,
(4.3.14)

where C denotes the complex plane, U=(u∗,U ,uo) ∈ E, and V =(ϕ∗,Φ,ϕ) ∈ E.

With such definitions, one may recast (4.3.6) in a variational setting as a task of finding U =

(u∗,U ,uo) ∈ E such that

A(U, V ) = L(V ) ∀V =(ϕ∗,Φ,ϕ) ∈ E. (4.3.15)

Theorem 3. If problem (4.3.6) has unique strong solution (u∗,u,uo) ∈ H1(D∗) × H1(D∗) ×
H1(Do), then the variational problem (4.3.15) has unique weak solution U = (u∗,C :∇u,uo) ∈
E. Equally, if problem (4.3.15) has unique weak solution U = (u∗,U ,uo) ∈ E, then modified

ITP (4.3.6) has unique strong solution (u∗,u,uo) ∈ H1(D∗) × H1(D∗) × H1(Do) such that

(∇u+∇Tu)/2 = C−1 :U .

Proof. The proof of this theorem has two parts. The first part establishes that (u∗,u,uo) solves (4.3.6)

if and only if (u∗,U ,uo) solves (4.3.15), while the second part demonstrates the equivalence be-

tween the existence of unique solutions.

Parity between the existence of solutions.

• Suppose that (u∗,u,uo) solves (4.3.6), and define U = C :∇u whereby U ∈ W (D∗). By

taking the L2(D∗) scalar product of (4.3.6a) with ϕ∗∈H1(D∗) and applying the divergence
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theorem, one finds that∫
D∗

[∇u∗ : C∗ :∇ϕ̄∗ + ρ∗u∗ · ϕ̄∗] dV −
∫

∂D∗

(U · n) · ϕ̄∗ dS =∫
∂D∗

h∗ · ϕ̄∗ dS −
∫

D∗

f∗ · ϕ̄∗ dV, (4.3.16)

by virtue of the boundary condition (4.3.6e). Similarly, application of the divergence theorem

to the L2(Do)-scalar product of (4.3.6c) with ϕ∈H1(Do) yields

∫
Do

[∇uo : C :∇ϕ̄+ ρuo · ϕ̄] dV =
∫

∂Do

ho · ϕ̄ dS −
∫

Do

f · ϕ̄ dV. (4.3.17)

Finally, by taking the L2(D∗)-scalar product of (4.3.6b) with ρ−1 ∇·Φ for some Φ∈W (D∗)

and making use of (4.3.6d), one obtains∫
D∗

[
1
ρ
(∇·U) · (∇·Φ̄) + U : C−1 : Φ̄

]
dV −

∫
∂D∗

u∗ · Φ̄ · n dS

=
∫

D∗

1
ρ
f · (∇·Φ̄) dV −

∫
∂D∗

g · Φ̄ · n dS.
(4.3.18)

The weak statement (4.3.15) is now recovered by summing (4.3.16)–(4.3.18), which demon-

strates that U = (u∗,U ,uo) ∈ E is indeed a solution of the variational problem.

• Conversely, let U = (u∗,U ,uo) ∈ E be a weak solution to (4.3.15). Since the hypothesis

∇ × [C−1: U ] = 0 guarantees that C−1: U meets the strain compatibility conditions [144],

there exists a function u ∈H1(D∗) such that (∇u+∇Tu)/2 = C−1 :U in the sense of a dis-

tribution, defined up to a rigid-body motion. By virtue of the fact that U solves the variational

problem (4.3.15) for all (ϕ∗,Φ,ϕ) ∈ E, it follows by setting the triplet of weighting fields

respectively to (ϕ∗,0,0), (0,0,ϕ), and (0,Φ,0) that (u∗,u,uo) must be such that (4.3.16),

(4.3.17) and (4.3.18) are satisfied independently.
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By way of the divergence theorem, (4.3.16) yields∫
D∗

(∇·[C∗ :∇u∗]− ρ∗u∗ − f∗) · ϕ̄∗ dV

+
∫

∂D∗

(h∗ + (C :∇u) · n− (C∗ :∇u∗) · n) · ϕ̄∗ dS = 0, ∀ϕ∗∈ H1(D∗)

whereby (u∗,u) satisfies

∇·[C∗ :∇u∗]− ρ∗u∗ = f∗ in D∗,

t∗[u∗] = t[u] + h∗ on ∂D∗.
(4.3.19)

Similarly, equality (4.3.17) leads to∫
Do

(∇·[C :∇uo]− ρuo− f)·ϕ̄ dV +
∫

∂Do

(ho − C :∇uo · n)·ϕ̄ dS = 0, ∀ϕ∈H1(Do)

which requires (u,uo) to satisfy

∇·[C :∇uo]− ρuo = f in Do,

t[uo] = ho on ∂Do.
(4.3.20)

On substituting U = C :∇u in (4.3.18), on the other hand, it follows that for all Φ ∈W (D∗)∫
D∗

(
1
ρ
∇·[C :∇u]− u− 1

ρ
f

)
·(∇·Φ̄) dV +

∫
∂D∗

(g + u− u∗)·Φ̄·n dS = 0. (4.3.21)

To deal with (4.3.21), it is convenient to introduce the “zero-mean and zero-first-order-moment”

space of vector fields

L2
0(D∗) =

{
ϕ ∈ L2(D∗) :

∫
D∗

ϕ dV = 0,
∫

D∗

ξ ×ϕ dV = 0
}
,

and to consider solution χ ∈ H1(D∗) of the elastostatic problem

∇·[C :∇χ] = Λ in D∗, Λ ∈ L2
0(D∗),

C :∇χ · n = 0 on ∂D∗.

By taking Φ = C :∇χ in (4.3.21) whereby Φ ∈ W (D∗), ∇·Φ = Λ in D∗, and Φ · n = 0
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on ∂D∗, one finds that∫
D∗

(
1
ρ
∇·[C :∇u]− u− 1

ρ
f

)
· Λ̄ dV = 0 ∀Λ∈ L2

0(D∗),

and consequently, using identity (ω × ξ)·Λ̄ = ω ·(ξ × Λ̄), that

1
ρ
∇·[C :∇u]− u− 1

ρ
f = c + ω × ξ in D∗, (4.3.22)

which specifies u up to a rigid-body motion given by the translation vector c and (infinitesi-

mal) rotation vector ω.

Consider next solution χ ∈ H1(D∗) to the problem

∇·[C :∇χ] = 0 in D∗

C :∇χ · n = Λ on ∂D∗, Λ∈ L2
0(∂D∗).

(4.3.23)

Again taking Φ = C :∇χ in (4.3.21), which this time implies Φ ∈ W (D∗), ∇·Φ = 0 in

D∗ and Φ · n = Λ on ∂D∗, leads to∫
∂D∗

(g + u− u∗) · Λ̄ dS = 0 ∀Λ ∈ L2
0(∂D∗), (4.3.24)

so that

g + u− u∗ = c′ + ω′ × ξ on ∂D∗, (4.3.25)

where c′ and ω′ are vector constants.

On substituting (4.3.22) and (4.3.25) into (4.3.21), one finds by virtue of the divergence the-

orem and identity ω × ξ = Ω · ξ where Ω≡ω × I that∫
∂D∗

[
(c+c′)+(ω+ω′)×ξ

]
·Φ̄·n dS +

∫
D∗

Ω : Φ dV = 0 ∀Φ ∈W (D∗). (4.3.26)

Since the second integral vanishes due to the symmetry of Φ and antisymmetry of Ω, (4.3.26) re-

quires that c′ = −c and ω = −ω′. From (4.3.19), (4.3.20), (4.3.22) and (4.3.25), it now

immediately follows that (u∗,u+ c + ω × ξ) is a solution to (4.3.6).

Parity between the existence of unique solutions.

• Assume that problem (4.3.6) has a unique strong solution, and let U1 = (u1
∗,U1,u1

o) and

U2 = (u2
∗,U2,u2

o) denote two weak solutions to (4.3.15). By the equivalence between



CHAPTER 4. WELL-POSEDNESS OF THE INTERIOR TRANSMISSION PROBLEM 167

solutions to the two problems, one has that (u1
∗,u

1,u1
o) and (u2

∗,u
2,u2

o), with (∇u1 +

∇Tu1)/2 = C−1 : U1 and (∇u2 +∇Tu2)/2 = C−1 : U2, are consequently solutions

to (4.3.6). Since the latter two triplets must coincide by premise, it follows that that u1
∗= u2

∗,

U1 = U2 and u1
o = u2

o, i.e. that the solution to the variational problem (4.3.15) is likewise

unique.

• Conversely, assume that (4.3.15) has a unique weak solution, and let (u1
∗,u

1,u1
o) and (u2

∗,u
2,u2

o)

denote two strong solutions to (4.3.6). Since (u1
∗,C : ∇u1,u1

o) and (u2
∗,C : ∇u2,u2

o) are

consequently solutions to (4.3.15), one must have u1
∗ = u2

∗, ∇u1+∇Tu1 = ∇u2+∇Tu2

and u1
o = u2

o by premise. The proof is completed by noting that u1 and u2 are equal up to a

rigid body motion, which must vanish thanks to the boundary condition (4.3.6d).

4.4 Existence and uniqueness of a solution to the modified ITP

Having reduced the study of the modified ITP (4.3.6) to that of its variational statement (4.3.15),

the question arises as to the conditions under which the latter problem is well-posed. For clarity

of exposition, the focus is made on the sufficient conditions that compare the elastic parameters

of the inclusion, comprising <[C∗], to those of the background in terms of <[C]. In general, it is

possible that the consideration of material dissipation (synthesized via =[C∗] and =[C]) may relax

the “elasticity” conditions under which (4.3.6) and (4.3.15) are elliptic, and thus help establish the

sufficient and necessary conditions. The latter subject is, however, beyond the scope of this study.

With such restraint, the following lemma helps establish the sufficient “elasticity” conditions.

Lemma 11. With reference to Definition 1 specifying the bounds on the viscoelastic tensors C and

C∗, the sesquilinear form A is elliptic if the inequalities ρp < ρp
∗ and Cp < cp

∗ hold in each

“intersection” domain Θp
∗, p ∈ {1, . . . , N∗}.

Proof. For U=(u∗,U ,uo) ∈ E, one finds from (4.3.13) that

A(U,U) =
∫

D∗

[∇u∗ : C∗ :∇ū∗ + ρ∗u∗ · ū∗] dV +
∫

D∗

[
1
ρ
(∇·U) · (∇·Ū) + U : C−1 : Ū

]
dV

+
∫

Do

[∇uo : C :∇ūo + ρuo · ūo] dV −
∫

∂D∗

[
u∗ · Ū · n+ (U · n) · ū∗

]
dS.

(4.4.1)
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On employing the divergence theorem, the triangle inequality, the Cauchy-Schwarz inequality, and

definition of the “intersection” domains Θp
∗, one finds

∣∣∣∣∫
∂D∗

ϕ∗ · Φ̄ · n dS
∣∣∣∣ 6 N∗∑

p=1

[
‖ϕ∗‖L2(Θp

∗)
‖∇·Φ‖L2(Θp

∗)
+ ‖∇ϕ∗‖L2(Θp

∗)
‖Φ‖L2(Θp

∗)

]
. (4.4.2)

By virtue of the fact that |A(U,U)| > < [A(U,U)], (5.4.30), and bounds (5.2.1) on (the real parts

of) the viscoelasticity tensors C∗ and C in each Θp
∗, it can be further shown that

|A(U,U)| >
N∗∑
p=1

[
cp
∗‖∇u∗‖2L2(Θp

∗)
+ ρp

∗‖u∗‖2L2(Θp
∗)

+
1
ρp
‖∇· U‖2L2(Θp

∗)
+

1
Cp
‖U‖2L2(Θp

∗)

]

− 2
N∗∑
p=1

[
‖u∗‖L2(Θp

∗)
‖∇· U‖L2(Θp

∗)
+ ‖∇u∗‖L2(Θp

∗)
‖U‖L2(Θp

∗)

]

+
No∑
q=1

[
cq

o‖∇uo‖2L2(Θq
o ) + ρq

o‖uo‖2L2(Θq
o )

]
.

(4.4.3)

Since for every (x, y) ∈ R2, α > 0, and β > 0 one has

αx2 +
1
β
y2 − 2xy =

α+ β

2

(
x− 2

α+ β
y

)2

+ (α− β)
(

1
2
x2 +

1/β
α+ β

y2

)
, (4.4.4)

inequality (4.4.3) can be rewritten as

|A(U,U)| >
N∗∑
p=1

[
cp
∗ + Cp

2

(
‖∇u∗‖L2(Θp

∗)
− 2

cp
∗ + Cp

‖U‖L2(Θp
∗)

)2

+ (cp
∗ − Cp)

(
1
2
‖∇u∗‖2L2(Θp

∗)
+

1/Cp

cp
∗ + Cp

‖U‖2L2(Θp
∗)

)
+
ρp
∗ + ρp

2

(
‖u∗‖L2(Θp

∗)
− 2
ρp
∗ + ρp

‖∇· U‖L2(Θp
∗)

)2

+ (ρp
∗ − ρp)

(
1
2
‖u∗‖2L2(Θp

∗)
+

1/ρp

ρp
∗ + ρp

‖∇· U‖2L2(Θp
∗)

)]
+

No∑
q=1

[
cq

o‖∇uo‖2L2(Θq
o ) + ρq

o‖uo‖2L2(Θq
o )

]
.

(4.4.5)
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On introducing the lower-bound parameter

γ = min
p=1,...,N∗
q=1,...,No

(
cp
∗ − Cp

2
,

cp
∗ − Cp

Cp(cp
∗ + Cp)

,
ρp
∗ − ρp

2
,

ρp
∗ − ρp

ρp(ρp
∗ + ρp)

, cq
o, ρ

q
o

)
, (4.4.6)

one finds that γ > 0 since ρp < ρp
∗ and Cp < cp

∗ in each Θp
∗ by premise. On the basis of this result

one finds, by dropping the “squared-difference” terms in (4.4.5), that

|A(U,U)| > γ

 N∗∑
p=1

(
‖u∗‖2H1(Θp

∗)
+ ‖U‖2W (Θp

∗)

)
+

No∑
q=1

‖uo‖2H1(Θq
o )

 . (4.4.7)

Recalling that U=(u∗,U ,uo) ∈ E, the sesquilinear form A is consequently elliptic with

|A(U,U)| > γ
(
‖u∗‖2H1(D∗)

+ ‖U‖2W (D∗)
+ ‖uo‖2H1(Do)

)
, (4.4.8)

which completes the proof.

One is now in position to investigate the variational formulation of the modified ITP.

Theorem 4. Under the assumptions of Lemma 11, variational problem (4.3.15) has a unique weak

solution U = (u∗,U ,uo) ∈ E with an a priori estimate

‖u∗‖H1(D∗) + ‖U‖W (D∗) + ‖uo‖H1(Do) 6

3C
γ

(
‖f∗‖L2(D) + ‖f‖L2(D∗) + ‖g‖

H
1
2 (∂D∗)

+ ‖h∗‖
H− 1

2 (∂D∗)
+ ‖ho‖

H− 1
2 (∂Do)

)
, (4.4.9)

where γ > 0 is given by (4.4.6), and C > 0 is a constant independent of f∗, f , g, h∗ and ho.

Proof. The norm of the antilinear operator L in (4.3.14) can be shown, by exercising the triangle

inequality, the Cauchy-Schwarz inequality, the divergence theorem (applied to Φ̄) and the trace

theorem, to be continuous i.e. bounded with constant C > 0 independent of f∗, f , g, h∗ and ho

such that

||L||E? 6 C
(
‖f∗‖L2(D) + ‖f‖L2(D∗)

+ ‖g‖
H

1
2 (∂D∗)

+ ‖h∗‖
H− 1

2 (∂D∗)
+ ‖ho‖

H− 1
2 (∂Do)

)
, (4.4.10)

where E? denotes the dual of E.
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To establish the boundedness of the sesquilinear form A(U, V ), on the other hand, one may

introduce the notation

||U ||2E := ‖u∗‖2H1(D∗)
+ ‖U‖2W (D∗)

+ ‖uo‖2H1(Do)
,

||V ||2E := ‖ϕ∗‖2H1(D∗)
+ ‖Φ‖2W (D∗)

+ ‖ϕ‖2H1(Do)
,

(4.4.11)

for U, V ∈E defined as in (4.3.15). In this setting, it follows from (4.3.15), the triangle inequality,

(4.2.5), the Cauchy-Schwarz inequality, (5.4.30), (4.4.11), and bounds such as ||∇u∗||L2(D∗) 6

||U ||E that there is a constant C ′>0 such that

|A(U, V )| 6 C ′ ||U ||E ||V ||E. (4.4.12)

Using the notation introduced in (4.4.11), (4.4.8) can also be rewritten more compactly as

|A(U,U)| > γ ||U ||2E. (4.4.13)

With the boundedness (4.4.12) and coercivity (4.4.13) of A now verified, the existence of a unique

solution to the variational problem (4.3.15) follows directly from the Lax-Milgram theorem [149]

which ensures that ||U ||E 6 γ−1||L||E? . In this setting, a priori estimate (4.4.9) is derived as a

consequence of (4.4.10), (4.4.11a), and upper bounds such as ‖u∗‖H1(D∗) 6 ||U ||E.

Theorem 5. Under the hypotheses of Lemma 11, modified ITP (4.3.6) has a unique strong solution

(u∗,u,uo) ∈ H1(D∗)×H1(D∗)×H1(Do) with an a priori estimate

‖u∗‖H1(D∗) + ‖u‖H1(D∗) + ‖uo‖H1(Do) 6

c
(
‖f∗‖L2(D) + ‖f‖L2(D∗) + ‖g‖

H
1
2 (∂D∗)

+ ‖h∗‖
H− 1

2 (∂D∗)
+ ‖ho‖

H− 1
2 (∂Do)

)
, (4.4.14)

where c > 0 is a constant independent of f∗, f , g, h∗ and ho.

Proof. The first part of the claim, namely the existence and uniqueness of a strong solution to (4.3.6)

follow directly from Theorems 3 and 4, while inequality (4.4.14) can be obtained on the basis

of (4.3.6) and (4.4.9). In particular, from the relationship U = C : ∇u and the fact that u satis-
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fies (4.3.6b), it follows via triangle inequality that

‖u‖L2(D∗) 6 α
(
‖U‖W (D∗) + ‖f‖L2(D∗)

)
, (4.4.15)

for some constant α > 0. By virtue of the bounds on the viscoelasticity tensor C in (5.2.1)

and (4.2.2), on the other hand, one finds

‖∇u‖L2(D∗) = ‖C−1 : U‖L2(D∗) 6 β ‖U‖W (D∗), (4.4.16)

for some β > 0. On combining (4.4.15) and (4.4.16) to obtain the H1(D∗) norm of u, esti-

mate (4.4.14) follows directly as a consequence of (4.4.9) with

c 6
(
2 +

√
α2(1+γ)2 + β2

) C
γ
.

4.5 Well-posedness of the ITP

Having established the conditions under which the modified problem (4.3.6) is uniquely solv-

able, one is now in position to study the existence and uniqueness of a solution to the (original)

ITP (4.3.4).

Theorem 6. Under the hypothesis that ρp< ρp
∗ and Cp< cp

∗ in each “intersection” domain Θp
∗,

p ∈ {1, . . . , N∗} as in Lemma 11, the set of transmission eigenvalues ω ∈ C for which the interior

transmission problem (4.3.4) does not have a unique solution is either empty or forms a discrete set

with infinity as the only possible accumulation point.

Proof. With reference to the space Ξ(D) introduced in (4.3.7), it is recalled that the modified

ITP (4.3.6) is represented by the differential-trace operatorM as in (4.3.8), while the original prob-

lem (4.3.4) is identified with operator O= M + (1+ω2)P, where P is the compact perturbation

given by (4.3.9). In Theorem 5 it is shown that M−1 exists, and furthermore that it is bounded i.e.

continuous under the assumptions of Lemma 11. Theorem 6 claims that the operatorM+(1+ω2)P
is invertible for all ω ∈ C\S, where S is either an empty set or a discrete set of points in the complex

plane C. Since M−1 is continuous, this claim can be established by showing the analogous result
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for the operator

I + (1+ω2)M−1P,

where I is the identity operator from Ξ(D) into Ξ(D). As shown in Section 4.3, operator P is

compact owing to the compact embedding of H1(D) into L2(D), and so isM−1P by virtue of the

continuity of M−1 [149]. For this situation, the Fredholm alternative applies [191] whereby

(
I + (1+ω2)M−1P

)−1

exists and is bounded except for, at most, a discrete set of transmission eigenvalues ω ∈ S ⊂ C (see

also Definition 2). Finally, since the countable spectrum of (compact) operator M−1P can only

accumulate at zero [190], S is further characterized by infinity as the only possible accumulation

point.

4.5.1 Relaxed solvability criterion

With reference to Theorem 6, it is noted that the eigenvalues of ITP (4.3.4) may form a countable

set even in situations that violate the aforestated restriction: ρp < ρp
∗ and Cp < cp

∗ in each Θp
∗,

p ∈ {1, . . . , N∗}. Indeed, the latter condition can be relaxed in a way similar to that proposed

in [63], albeit without introducing additional complexities. To this end, recall (4.3.4) and let w

denote the “combined” elastodynamic field in D=D∗∪Do so that u and uo are the restrictions of

w on D∗ and Do, respectively. Given (f∗,f)∈L2(D∗) × L2(D), g∈H
1
2 (∂D∗), and (h∗,ho)∈

H− 1
2 (∂D∗) × H− 1

2 (∂Do), the focus is then made on finding (u∗,w) ∈ H1(D∗) × H1(D) that

satisfies
∇·[C∗ :∇u∗] + ρ∗ω

2u∗ = f∗ in D∗,

∇·[C :∇w] + ρω2w = f in D,

u∗ = w + g on ∂D∗,

t∗[u∗] = t[w] + h∗ on ∂D∗,

t[w] = ho on ∂Do,

(4.5.1)
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which is simply a restatement of (4.3.4). Following the developments in Section 4.3, the modified

i.e. “regularized” counterpart of ITP (4.5.1) can be written as

∇·[C∗ :∇u∗]− ρ∗u∗ = f∗ in D∗, (4.5.2a)

∇·[C :∇w]− ρw = f in D, (4.5.2b)

u∗ = w + g on ∂D∗, (4.5.2c)

t∗[u∗] = t[w] + h∗ on ∂D∗, (4.5.2d)

t[w] = ho on ∂Do, (4.5.2e)

where (u∗,w) ∈ H1(D∗) ×H1(D). In this setting, the conditions under which the transmission

eigenvalues of (4.3.4) i.e. (4.5.1) form a countable set (see Theorem 6) can be extended through the

following theorem.

Theorem 7. Under the hypothesis that ρp> ρp
∗ and cp> Cp

∗ in each “intersection” domain Θp
∗,

p ∈ {1, . . . , N∗}, the set of transmission eigenvalues ω ∈ C for which the interior transmission

problem (4.5.1) i.e. (4.3.4) does not have a unique solution is either empty or forms a discrete set

with infinity as the only possible accumulation point.

Proof. The proof of the theorem follows directly from the foregoing developments provided that the

variational formulation is slightly modified. To this end, define the space of second-order tensors

W∗(D∗) :=
{
Φ∗∈ L2(D∗) : Φ∗ = ΦT

∗, ∇·Φ∗∈ L2(D∗) and ∇× [C−1
∗ :Φ∗] = 0

}
, (4.5.3)

equipped with the norm

‖Φ∗‖2W∗(D∗)
:= ‖Φ∗‖2L2(D∗)

+ ‖∇·Φ∗‖2L2(D∗)
. (4.5.4)

Note that the only difference between (4.3.10) and (4.5.3) is that C has been replaced by C∗. Next,

let E∗ = W∗(D∗)×H1(D) and define the sesquilinear form A∗ : E∗× E∗ → C as

A∗(U, V ) :=
∫

D∗

[
1
ρ∗

(∇·U∗) · (∇·Φ̄∗) + U∗ : C−1
∗ :Φ̄∗

]
dV

+
∫

D
[∇w : C :∇ϕ̄+ ρw · ϕ̄] dV −

∫
∂D∗

[
(U∗ ·n) · ϕ̄+w · Φ̄∗ ·n

]
dS, (4.5.5)
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together with the antilinear form L∗ : E∗ → C

L∗(V ) :=
∫

D∗

1
ρ∗
f∗ · (∇·Φ̄∗) dV −

∫
D
f · ϕ̄ dV

+
∫

∂D∗

[
g · Φ̄∗ ·n− h∗ · ϕ̄

]
dS +

∫
∂Do

ho · ϕ̄ dS, (4.5.6)

where U = (U∗,w) ∈ E∗ and V = (Φ∗,ϕ) ∈ E∗.
With reference to the developments in Section (4.3), it can be next shown that (u∗,w) ∈

H1(D∗) × H1(D) uniquely solves ITP (4.5.2) if and only if (U∗,w) ∈ E∗, such that (∇u∗+

∇Tu∗)/2 = C−1 :U∗, uniquely solves the variational problem

A∗(U, V ) = L∗(V ) ∀V = (Φ∗,ϕ) ∈ E∗. (4.5.7)

With such equivalence, one may again make use of the fact that |A(U,U)| > < [A(U,U)], (5.4.30),

and bounds in (5.2.1) on the real parts of the viscoelasticity tensors C∗ and C in each Θp
∗, to show

that

|A∗(U,U)| >
N∗∑
p=1

[
1
ρp
∗
‖∇·U∗‖2L2(Θp

∗)
+

1
Cp
∗
‖U∗‖2L2(Θp

∗)
+ cp‖∇w‖2L2(Θp

∗)
+ ρp‖w‖2L2(Θp

∗)

]

− 2
N∗∑
p=1

[
‖w‖L2(Θp

∗)
‖∇·U∗‖L2(Θp

∗)
+ ‖∇w‖L2(Θp

∗)
‖U∗‖L2(Θp

∗)

]

+
No∑
q=1

[
cq

o‖∇w‖2L2(Θq
o ) + ρq

o‖w‖2L2(Θq
o )

]
.

(4.5.8)

On introducing the auxiliary parameter

γ∗ = min
p=1,...,N∗
q=1,...,No

(
cp − Cp

∗
2

,
cp − Cp

∗
Cp
∗(cp + Cp

∗)
,
ρp − ρp

∗
2

,
ρp − ρp

∗
ρp
∗(ρp + ρp

∗)
, cq

o, ρ
q
o

)
, (4.5.9)

which is strictly positive (γ∗>0) when ρp>ρp
∗ and cp>Cp

∗ in each Θp
∗, one finds by virtue of (4.4.4)

that

|A∗(U,U)| > γ∗

 N∗∑
p=1

(
‖U∗‖2W∗(Θ

p
∗)

+ ‖w‖2H1(Θp
∗)

)
+

No∑
q=1

‖w‖2H1(Θq
o )

 . (4.5.10)
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As a result, the sesquilinear form A∗ is coercive with

|A∗(U,U)| > γ∗ ||U ||2E∗ , ||U ||2E∗ := ‖U∗‖2W∗(D∗)
+ ‖w‖2H1(D). (4.5.11)

With the continuity i.e. boundedness of both antilinear form L∗ and sesquilinear form A∗ being

direct consequences of the triangle inequality and the Cauchy-Schwarz inequality, the hypotheses of

Lax-Milgram theorem are thus verified. This in turn guarantees a unique solution to the variational

problem (4.5.7) with an a priori estimate

‖U∗‖W∗(D∗) + ‖w‖H1(D) 6
2C∗
γ∗

(
‖f∗‖L2(D) + ‖f‖L2(D∗)

+ ‖g‖
H

1
2 (∂D∗)

+ ‖h∗‖
H− 1

2 (∂D∗)
+ ‖ho‖

H− 1
2 (∂Do)

)
, (4.5.12)

where constant C∗> 0 is independent of f∗, f , g, h∗ and ho, cf. (4.4.9). Following the argument

presented in Section 4.4, one consequently finds that the strong solution (u∗,w) ∈ H1(D∗) ×
H1(D) solving modified ITP (4.5.2) i.e. (4.3.6) is likewise unique with an estimate

‖u∗‖H1(D∗) + ‖w‖H1(D) 6 c∗

(
‖f∗‖L2(D) + ‖f‖L2(D∗)

+ ‖g‖
H

1
2 (∂D∗)

+ ‖h∗‖
H− 1

2 (∂D∗)
+ ‖ho‖

H− 1
2 (∂Do)

)
, (4.5.13)

such that constant c∗>0 is independent of f∗, f , g, h∗ and ho, cf. (4.4.14). The proof of Theorem 7

can be brought to a close by introducing the auxiliary space

Ξ∗(D) :=
{
(u∗,w) ∈ H1(D∗)×H1(D) : ∇·[C∗ :∇u∗] ∈L2(D∗), ∇·[C :∇w] ∈L2(D)

}
and a bijective differential-trace operator M∗, representing (4.5.2), from Ξ∗(D) onto L2(D∗) ×
L2(D)×H

1
2 (∂D∗)×H− 1

2 (∂D∗)×H− 1
2 (∂Do) such that

M∗(u∗,w) :=
(
∇·[C∗ :∇u∗]−ρ∗u∗, ∇·[C :∇w]−ρw,

(u∗−w)|∂D∗ , (t∗[u∗]− t[w])|∂D∗ , t[w]|∂Do

)
. (4.5.14)

On defining the perturbation operatorP∗ from Ξ∗(D) intoL2(D∗)×L2(D)×H
1
2 (∂D∗)×H− 1

2 (∂D∗)×
H− 1

2 (∂Do), namely

P∗(u∗,w) := (ρ∗u∗, ρw, 0, 0,0) (4.5.15)
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that is compact by virtue of compact embedding of H1(D∗) into L2(D∗) and H1(D) into L2(D),

one can finally apply the Fredholm alternative to the compound operator I + (1+ω2)M−1
∗ P∗

whereby (
I + (1+ω2)M−1

∗ P∗
)−1

exists and is bounded except for at most a countable set of values ω ∈ S∗ ⊂ C. Again, S∗ is

characterized by infinity as the only possible accumulation point, since the countable spectrum of

M−1
∗ P∗ can only accumulate at zero.

Remark. With reference to Theorems 6 and 7, it will be assumed throughout the remainder of this

study that either

ρp< ρp
∗ and Cp< cp

∗, ∀p∈{1, . . . , N∗}, (4.5.16)

or

ρp> ρp
∗ and cp> Cp

∗, ∀p∈{1, . . . , N∗}. (4.5.17)

As shown via the foregoing theorems, the compliance with either (4.5.16) or (4.5.17) represents a

sufficient condition for the ellipticity of the modified ITP (4.3.6) and thus for the unique solvability

of ITP (4.3.4) provided that ω does not belong to a countable spectrum of transmission eigenvalues.

4.6 Can the set of transmission eigenvalues be empty?

In light of the foregoing results which establish sufficient conditions for the countability of the

transmission eigenvalue set via the analysis of elastic parameters <[C] and <[C∗], it is next of

interest to examine whether the material attenuation, manifest via =[C] and =[C∗], can bring about

the uniqueness of a solution to the interior transmission problem (4.3.4) for all ω ∈ C. To this end,

it is useful to introduce two auxiliary measures of the “viscosity” of the system

Vmin[C, D] := inf{=[ξ :C : ξ̄] : ξ∈D} > 0,

Vmax[C, D] := sup{=[ξ :C : ξ̄] : ξ∈D} > 0,

where ξ is a complex-valued, second-order tensor field in D such that |ξ|2 = 1. On the basis

of Definition 1, it is clear that Vmax[C, D] takes zero value only if =[C] (and thus V) vanishes

identically in D.
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Theorem 8. Let D′
o⊆Do and D′

∗⊆D∗ denote the “viscoelastic” regions, preserving respectively

the topology of Do and D∗, that each have a support of non-zero measure. If either

Vmin[C, D′
o] > 0 and Vmin[C, D′

∗] > 0 and Vmax[C∗, D∗] = 0 (4.6.1)

or

Vmin[C, D′
o] > 0 and Vmax[C, D∗] = 0 and Vmin[C∗, D′

∗] > 0 (4.6.2)

the interior transmission problem (4.3.4) has at most one solution. In other words, the multiplicity

of solutions to ITP (4.3.4) is precluded if there is a region D′
o ⊆Do where C is viscoelastic and a

region D′
∗⊆D∗ where either C or C∗ is viscoelastic.

Proof. Let (u∗,u,uo) be the algebraic difference between two solutions to the interior transmission

problem (4.3.4). The displacement field uo, being solution to the homogeneous Neumann problem

over Do, vanishes identically owing to the premise that Vmin[C, D′
o] > 0 where D′

o preserves the

topology of Do. From the homogeneous counterparts of (5.3.3) and (5.3.34), on the other hand,

one finds by employing the divergence theorem together with boundary conditions u = u∗ and

t[u]=t∗[u∗] over ∂D∗ that∫
D∗

[
∇u : C :∇ū− ρω2u · ū

]
dV =

∫
∂D∗

t[u] · ū dS =

=
∫

∂D∗

t∗[u∗] · ū∗ dS =
∫

D∗

[
∇u∗ : C∗ :∇ū∗ − ρ∗ω

2u∗ · ū∗
]

dV. (4.6.3)

The triviality of u and u∗ can now be established by taking the imaginary part of (4.6.3) which

reads ∫
D∗

∇u : =[C] :∇ū dV =
∫

D∗

∇u∗ : =[C∗] :∇ū∗ dV. (4.6.4)

Assuming (4.6.1) which requires the right-hand side of (4.6.4) to vanish, one finds by virtue of (4.2.2)

that

0 ≤
∫

D′
∗

∇u : =[C] :∇ū dV ≤
∫

D∗

∇u : =[C] :∇ū dV = 0,

which via Korn’s inequality [154, 145] yields ∇u=0 inD′
∗. On recalling the field equation (5.3.34)

with f = 0, it follows that u = 0 in D′
∗ as well. By way of the Holmgren’s uniqueness theorem

for piecewise-homogeneous bodies [105] and hypothesis that D′
∗ preserves the topology of D∗, the

trivial Cauchy data u= t[u]=0 on ∂D′
∗ can now be uniquely extended to demonstrate that u = 0
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in D∗ and consequently that u=t[u]=0 on ∂D∗. On the basis of the interfacial conditions (4.3.4d)

and (4.3.4e) with g = 0 and h∗ = 0, one further has u∗ = t∗[u∗] = 0 on ∂D∗, so that finally

u∗= 0 in D∗ by virtue of the Holmgren’s uniqueness theorem. The companion claim, namely that

the solution difference (u∗,u,uo) vanishes identically when (4.6.2) is met, can be established in an

analogous fashion.

One is now in position to demonstrate, under suitable restriction on C, C∗, ρ and ρ∗, the existence

of a unique strong solution to the interior transmission problem (4.3.4) ∀ω ∈ C.

Theorem 9. Assuming that either (4.5.16) or (4.5.17) hold in terms of ρ, ρ∗,<[C] and <[C∗], and

that either (4.6.1) or (4.6.2) hold in terms of =[C] and =[C∗], ITP (4.3.4) has a unique strong

solution (u∗,u,uo) ∈ H1(D∗)×H1(D∗)×H1(Do) with an a priori estimate

‖u∗‖H1(D∗) + ‖u‖H1(D∗) + ‖uo‖H1(Do) 6 c
(
‖f∗‖L2(D) + ‖f‖L2(D∗)

+ ‖g‖
H

1
2 (∂D∗)

+ ‖h∗‖
H− 1

2 (∂D∗)
+ ‖ho‖

H− 1
2 (∂Do)

)
(4.6.5)

where constant c>0 is independent of f∗, f , g, h∗ and ho.

Proof. The above claim is a direct consequence of Theorems 6, 7, and 8. To illustrate the proof,

assume that (4.5.16) and either (4.6.1) or (4.6.2) are met, and recall the definition of operators M
and P given respectively by (4.3.8) and (4.3.9). By Theorem 6, operator O = M + (1+ω2)P
identified with ITP (4.3.4) is surjective, whereas Theorem 8 assures that O is injective. As a conse-

quence, O is bijective with bounded inverse [46]. Thus there exists a unique solution to the interior

transmission problem (4.3.4), for all ω ∈ C, verifying the a priori estimate (4.6.5). The proof

when (4.5.17) holds in lieu of (4.5.16) can be established in an analogous fashion on the basis of

Theorems 7 and 8, recalling that u ≡ w|D∗ and uo ≡ w|Do in terms of the “combined” field w

such that (u∗,w) ∈ H1(D∗)×H1(D) solves (4.5.1).

Remark. Implicit in the foregoing analysis is the fact that the solution, uo, to the homogeneous

ITP over Do is uncoupled from u and u∗ in that it solves the interior Neumann problem

∇·[C :∇uo] + ρω2uo = 0 in Do,

t[uo] = 0 on ∂Do.
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As a result, uo will by itself introduce discrete eigenvalues into the problem [134] as soon as the

restriction C|Do is elastic i.e. real-valued. This is reflected in Theorem 8 which precludes such

possibility by requiring that Vmin[C, D′
o] > 0 where D′

o ⊆Do has a support of non-zero measure

and preserves the topology of Do. To provide a focus in the study, this assumption will be retained

hereon.

With the above premise, consider next the “elastic-elastic” case

Vmin[C, D′
o] > 0 and Vmax[C, D∗] = 0 and Vmax[C∗, D∗] = 0,

where both C and C∗ are real-valued everywhere in D∗. In this situation, both sides of (4.6.4)

vanish which precludes the foregoing analysis from emptying the (countable) set of transmission

eigenvalues. This is consistent with the well-known behavior of the interior Dirichlet and Neumann

problems in elastodynamics [134] which are known to have discrete eigenvalues.

If the same procedure as in Theorem 8 is applied to the “viscoelastic-viscoelastic” case, on the

other hand, where both C and C∗ are (at least intermittently) complex-valued such that

Vmin[C, D′
o] > 0 and Vmin[C, D′

∗] > 0 and Vmin[C∗, D′′
∗ ] > 0, (4.6.6)

where D′
∗∩Dc 6= ∅, D′′

∗ ∩Dc 6= ∅, and Dc ⊂D∗ is connected, one finds that both sides of (4.6.4)

are non-trivial over Dc, which again fails to eliminate the transmission eigenvalues. Note that the

featured assumption onD′
∗ andD′′

∗ physically means that there is at least one connected piece,Dc⊂
D∗, where both C and C∗ are at least partially viscoelastic. This of course encompasses the case

where C and C∗ are complex-valued throughout. To better understand such counter-intuitive result

whereby the introduction of “additional” material dissipation relative to that in Theorem 8 may lead

to the loss of injectivity, it is useful to re-examine the problem within an energetic framework.

4.6.1 Energy balance

To establish the energetic analogue of (4.6.3) and (4.6.4), involved in the proof of Theorem 8,

consider the case of steady-state viscoelastic vibrations as in [60]. With reference to the implicit

time-harmonic factor eiωt, one may recall the expressions for the velocity fields, v = iωu and
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v∗ = iωu∗, over D∗ which allows one to interpret

=[∇u :C :∇ū] =
1
π

∫ T

0
<[C :∇u eiωt] : <[∇veiωt] dt ≡ 1

π
ED,

=[∇u∗ :C∗ :∇ū∗] =
1
π

∫ T

0
<[C∗ :∇u∗ eiωt] : <[∇v∗eiωt] dt ≡ 1

π
ED
∗ ,

(4.6.7)

in terms of the dissipated energy densities, ED and ED
∗ in D∗, calculated per period of vibrations

T = 2π/ω. Similarly, one finds that

=[t[u]·ū] =
1
π

∫ T

0
<[t[u]eiωt] · <[veiωt] dt ≡ 1

π
FD,

=[t∗[u∗]·ū∗] =
∫ T

0
<[t∗[u∗]eiωt] · <[v∗eiωt] dt ≡ 1

π
FD
∗ ,

(4.6.8)

carry the meaning of energy influx densities, FD and FD
∗ over ∂D∗, reckoned per period of vibra-

tions. On the basis of (4.6.7) and (4.6.8), the imaginary part of (4.6.3) can be written as∫
D∗

ED dV =
∫

∂D∗

FD dS =
∫

D∗

ED
∗ dV =

∫
∂D∗

FD
∗ dS, (4.6.9)

which states that any solution to the homogeneous ITP must be such that the dissipated energies over

D∗, and corresponding energy influxes over ∂D∗, are the same for both bodies. In this setting it is

clear that when either body is purely elastic over D∗ as specified by (4.6.1) and (4.6.2), the equality

of dissipated energies (4.6.9) requires the displacement field in the viscoelastic companion to vanish

by virtue of the positive definiteness (4.2.2) of the imaginary part of the viscoelastic tensor. From

the vanishing Cauchy data on ∂D∗, one consequently finds by virtue of the Holmgren’s uniqueness

theorem [105] that the solution in the elastic body must vanish as well. When both bodies are

viscoelastic as in (4.6.6), on the other hand, one finds from (4.6.9) that∫
Dc

ED dV =
∫

∂Dc

FD dS =
∫

Dc

ED
∗ dV =

∫
∂Dc

FD
∗ dS > 0, (4.6.10)

where Dc is a connected piece of D∗, and the foregoing approach provides no means to preclude

the existence of non-trivial solutions to the homogeneous ITP. In particular, (4.6.10) demonstrates

the homogeneous ITP is not mechanically isolated from its surroundings in the sense that it per-

mits positive energy influx into both bodies over ∂Dc ⊂ ∂D∗ even though the jump between the

respective Cauchy data, specified via g and h∗, vanishes.
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4.7 Results and discussion

Comparison with existing results. In Section 4.5, it is shown that ITP (4.3.4) is well-posed

when ω does not belong to (at most) countable set of transmission eigenvalues, provided that ei-

ther (4.5.16) or (4.5.17) holds. These sufficient conditions, formulated in terms of the material-

parameter distributions (C, ρ) and (C∗, ρ∗), state that

either ρp< ρp
∗, Cp< cp

∗ or ρp> ρp
∗, cp> Cp

∗ ∀p∈{1, . . . , N∗}, (4.7.1)

where C and c signify respectively the maximum and minimum eigenvalues of the real part of a

fourth-order viscoelasticity tensor C as examined earlier.

To the authors’ knowledge, the first (and only existing) study of an elastodynamic ITP involving

heterogeneous bodies can be found in [63], who assumed that: i) the obstacle and the background

are both non-dissipative i.e. elastic; ii) the background is homogeneous with unit mass density,

and iii) the obstacle is in the form of a single connected inclusion with bounded but otherwise

arbitrary distribution of elastic properties. Within the framework of the present investigation, these

hypotheses can be summarized as

=[C] = =[C∗] = 0, C = const., ρ = 1, C∗ < ∞, D ≡ D∗. (4.7.2)

With such assumptions, [63] employed the variational formulation analogous to that in this study

(following [111, 48]) and obtained sufficient conditions for the countability of the transmission

eigenvalue spectrum as

either ρmin
∗ > cmin

∗ >
C2

c
or ρmax

∗ <
c

C2
, Cmax

∗ <
c

C2
, (4.7.3)

where
ρmin
∗ = inf{ρ∗ : ξ∈D}, ρmax

∗ = sup{ρ∗ : ξ∈D},

cmin
∗ = inf{c∗ : ξ∈D}, Cmax

∗ = sup{C∗ : ξ∈D}.
(4.7.4)

Despite the fact that all quantities in (5.4.54) are dimensionless, conditions (5.4.54) are unfortu-

nately non-informative as either set of inequalities could be, for a given ITP, both met and violated

depending on the choice of the reference modulusK0 in Table 4.1 used to normalize C and C∗ (note

that ρ0 must equal the mass density of the background solid to have ρ = 1). As a point of reference,

sufficient conditions (4.7.1) obtained in this study can be degenerated by virtue of (4.7.2) and (4.7.4)
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to conform with the hypotheses made in [63] as

either ρmin
∗ > 1, cmin

∗ > C or ρmax
∗ < 1, Cmax

∗ < c. (4.7.5)

This counterpart of (5.4.54), that is invariant under the choice of ρ0 and K0, can be qualitatively

described as a requirement that the inclusion be either “denser and stiffer” or “lighter and softer”

than the background solid throughout – a condition which guarantees that ITP (4.3.4), subject to

hypotheses (4.7.2), is characterized by a countable spectrum of transmission eigenvalues.

In the context of dissipative solids, [65] considered the ITP for a homogeneous viscoelastic

obstacle in a homogeneous elastic background. For the particular case where the prescribed jump in

Cauchy data, manifest via g and h∗ in the present study, is given by the traces of the elastodynamic

fundamental solution, they established the existence and uniqueness of a solution to the featured

ITP via a volume integral approach. Most recently, [64] investigated the ITP in isotropic elasticity

for the canonical case where both the inclusion and the background solid are homogeneous. By

making recourse to the integral equation approach, ellipticity of the elastostatic ITP, and the compact

perturbation argument, they arrived at sufficient conditions for the countability of the transmission

eigenvalue spectrum as

either µ∗ > µ, κ∗ > κ or µ∗< µ, κ∗ < κ. (4.7.6)

For completeness, sufficient conditions (4.7.1) can be degenerated by virtue of (4.2.4) to the homo-

geneous isotropic elastic case as

0 < ν < 1
2 ⇒ either ρ∗ > ρ, 2µ∗ > 3κ or ρ∗< ρ, 3κ∗ < 2µ,

− 1 < ν∗ < 0 ⇒ either ρ∗ > ρ, 3κ∗ > 2µ or ρ∗< ρ, 2µ∗ < 3κ.
(4.7.7)

Clearly, inequalities (4.7.7) are more restrictive than those in (4.7.6), most notably in that they entail

a relationship between the mass densities of the inclusion and the background. The principal reason

for such distinction lies in the fact that [64] centered their analysis around the elastostatic ITP, de-

ployed as an elliptic (and compact) perturbation of the featured (elastodynamic) ITP. Unfortunately,

the weak formulation of the modified ITP employed in this study does not permit elastostatic anal-

ysis as it would formally require setting ρ and ρ∗ in (4.3.6) and thus in (4.3.13) and (4.3.14) to zero,

which both introduces unbounded terms and destroys the required H1-structure of the quadratic

form A(U,U). Despite this apparent limitation formulas (4.7.1) provide, for the first time, an ob-
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jective set of sufficient conditions that ensure the well-posedness of the visco-elastodynamic ITP in

a fairly general situation (where both the obstacle and the background solid can be heterogeneous,

anisotropic, and dissipative) provided that the excitation frequency does not belong to (at most)

countable spectrum of transmission eigenvalues.

4.7.1 Analytical examples

Assuming that either (4.5.16) or (4.5.17) holds, it is shown in Section 4.5 that the set of transmission

eigenvalues characterizing ITP (4.3.4) is at most discrete. Except for the “elastic-viscoelastic” case

examined in Theorem 8, however, it is not known whether this set is nonempty. For the ITP in

acoustics, it was demonstrated in [76] that the transmission eigenvalues indeed exist for certain

problem configurations. For completeness, this possibility is examined in the context of (visco-)

elastic waves via two analytical examples.

Longitudinal waves in rods. Consider the interior transmission problem involving longitudinal

waves in two thin prismatic rods having unit length and equal cross-sectional areas. In this setting,

let (E,E∗)∈ C2 and (ρ, ρ∗)∈ R2 denote respectively the constant Young’s moduli and mass den-

sities of the two rods. One seeks a non-trivial displacement solution, (u, u∗), of the homogeneous

ITP associated with frequency ω > 0 so that

E∗
d2u∗
dx2

+ ρ∗ω
2u∗ = 0 in [0, 1],

E
d2u

dx2
+ ρω2u = 0 in [0, 1],

u∗(0) = u(0), u∗(1) = u(1),

E∗
du∗
dx

(0) = E
du

dx
(0), E∗

du∗
dx

(1) = E
du

dx
(1).

(4.7.8)

Clearly, the solution to (4.7.8) entails four unknown constants, computable from the algebraic sys-

tem of equations whose determinant vanishes when ω is a transmission eigenvalue. To examine

this possibility, one may adopt the inverse of the featured determinant, termed Fr, as an indicator
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function. On the basis of (4.7.8), on finds that

Fr =

∣∣∣∣∣∣∣∣∣∣∣
det


1 1 −1 −1

ei
ω
c e−iω

c −ei
ω
c∗ −e−i ω

c∗

E
c −E

c −E∗
c∗

E∗
c∗

E
c e

iω
c −E

c e
−iω

c −E∗
c∗
ei

ω
c∗ E∗

c∗
e−i ω

c∗



∣∣∣∣∣∣∣∣∣∣∣

−1

, (4.7.9)

where c =
√
E/ρ and c∗ =

√
E∗/ρ∗ denote the phase velocities in the two rods. The left panel in

Fig. 4.3 plots Fr versus ω for the “elastic-elastic” case assuming E∗ = 2E∈ R and ρ∗ = 2ρ, noting

that the featured set of material parameters conforms with the one-dimensional variant of (4.5.16)

which guarantees that the set of transmission eigenvalues is at most countable. From the display,

one can clearly see the indication of transmission eigenvalues, spread uniformly along the frequency

range of interest. As a complement to this result, the right panel in Fig. 4.3 plots Fr versus ω for the

“elastic-viscoelastic” case which assumes E∗= (2 + 0.1i)E ∈ C and ρ∗ = 2ρ. Consistent with the

claim of Theorem 8, the latter result indicates absence of transmission eigenvalues when E is real

and E∗ is complex-valued (note that the local maximum at ω= 0, present in both diagrams, takes

significantly smaller value than the truncated “dynamic” maxima in the left panel).

(a) “Elastic-elastic” case, (E, E∗) ∈ R2 (b) “Elastic-viscoelastic” case, (E, E∗) ∈ R×
C

Figure 4.3: Eigenvalue indicator Fr versus vibration frequency ω

Oscillations of spheres. The second example deals with the ITP for two homogeneous and isotropic

spheres of unit radius, characterized by the respective shear moduli (µ, µ∗) ∈ C2, Poisson’s ratios

(ν, ν∗) ∈ R2, and mass densities (ρ, ρ∗) ∈ R2. Once again, the transmission eigenvalues are as-

sociated with non-trivial solutions to the homogeneous ITP for which the two spheres share the
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Cauchy data on the boundary. Assuming that the two spheres are subjected respectively to constant

radial pressures p and p∗, the induced (radial) boundary displacements u and u∗ can be computed

following [35] as

u∗ =
p∗
4µ∗

Q∗ cos(Q∗)− sin(Q∗)
Q∗ cos(Q∗)− (1− α2

∗Q
2
∗) sin(Q∗)

,

u =
p

4µ
Q cos(Q)− sin(Q)

Q cos(Q)− (1− α2Q2) sin(Q)
,

(4.7.10)

where

α2 =
1− ν

2− 4ν
, α2

∗ =
1− ν∗
2− 4ν∗

, Q2 =
ρω2

4µα2
, Q2

∗ =
ρ∗ω

2

4µ∗α2
∗
. (4.7.11)

To develop an eigenvalue indicator function in the spirit of the previous example, one may assume

that equality p = p∗ holds on the boundary, and define

Fs =
|uu∗|∣∣∣up − u∗

p∗

∣∣∣ , (4.7.12)

as a quantity which becomes unbounded when ω is a transmission eigenvalue. As an illustration,

the left panel in Fig. 4.4 plots Fs versus ω for the “elastic-elastic” case assuming µ∗ = 2µ ∈ R,

ν∗ = ν = 1/8 and ρ∗ = 2ρ, while the right panel describes the corresponding “elastic-viscoelastic"

situation where µ∗ = (2 + 0.1i)µ ∈ C. Similar to the previous example, the numerical results

indicate the existence of transmission eigenvalues when both spheres are elastic, as well as their

suppression when one of the two spheres is dissipative.

(a) “Elastic-elastic” case, (µ, µ∗)∈ R2 (b) “Elastic-viscoelastic” case, (µ, µ∗)∈ R×C

Figure 4.4: Eigenvalue indicator Fs versus vibration frequency ω
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Viscoelastic-viscoelastic case. In the above examples, the focus was made on “conventional”

ITP configurations where neither or either of the two bodies is dissipative. In light of the results

in Section 4.6 where the analysis used to demonstrate the absence of transmission eigenvalues in

the “elastic-viscoelastic” case failed to yield the same result for “viscoelastic-viscoelastic” (VV)

configurations, it is of interest to examine the latter class of problems via the example of oscillating

spheres. To ascertain whether transmission eigenvalues could indeed exist in the VV case, the

spheres problem is approached from an alternative point of view, namely by fixing the vibration

frequency at ω=ωo∈ R, and then seeking admissible sets of viscoelastic parameters for which ωo

is a transmission eigenvalue. To this end, one may introduce an auxiliary set of material parameters

(β, γ)∈ C2 and (β∗, γ∗)∈ C2 as

β = µα2, γ =
α2

µ
, β∗ = µ∗α

2
∗, γ∗ =

α2
∗
µ∗
. (4.7.13)

From (4.7.11) and (4.7.13), one finds

Q2 =
ρω2

4β
, Q2

∗ =
ρ∗ω

2

4β∗
,

which allows the boundary displacements in (4.7.10) to be rewritten as

u∗ =
p∗
4

(
γ∗
β∗

) 1
2 Q∗ cos(Q∗)− sin(Q∗)

Q∗ cos(Q∗)− [1− (β∗γ∗)
1
2Q2

∗] sin(Q∗)
,

u =
p

4

(
γ

β

) 1
2 Q cos(Q)− sin(Q)

Q cos(Q)− [1− (βγ)
1
2Q2] sin(Q)

.

(4.7.14)

Given ωo∈R, (ρ, ρ∗)∈R2, and (β, β∗, γ∗)∈(C\R)3, one is now in position to seek γ ∈ C\R such

that u = u∗ and p = p∗. On the basis of (4.7.14), the explicit solution is given by

γ =
βΛ2(Q cos(Q)− sin(Q))2

[Q cos(Q)− (1 + ΛβQ2) sin(Q)]2
, (4.7.15)

where

Λ =
(
γ∗
β∗

) 1
2 Q∗ cos(Q∗)− sin(Q∗)

Q∗ cos(Q∗)− [1− (β∗γ∗)
1
2Q2

∗] sin(Q∗)
. (4.7.16)
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In this setting, any relevant solution in terms of γ must also satisfy the conditions of physical ad-

missibility in terms of the shear and bulk moduli

µ =
(
β

γ

) 1
2

, κ = 4β − 4
3

(
β

γ

) 1
2

,

which are subject to the ellipticity and thermomechanical stability requirements

<[µ] > 0, =[µ] > 0, <[κ] > 0, =[κ] > 0. (4.7.17)

Despite the multitude of inequality constraints in (4.7.17), it is indeed possible to find an admissible

solution (4.7.15) in terms of γ given ωo, (ρ, ρ∗) and (β, β∗, γ∗) as shown in Table 4.2. For com-

pleteness, this result is accompanied by the variation of the eigenvalue indicator function (4.7.12) in

Fig. 4.5, where Fs is plotted versus frequency for each of the three VV configurations highlighted

in Table 4.2. From the display, it is seen that the three diagrams of Fs exhibit apparent “blow-off”

behavior respectively at ω = 2, 10 and 25 as expected. In unison, Table 4.2 and Fig. 4.5 provide

a clear indication that the transmission eigenvalues may appear even in situations when both the

obstacle and the background solid are viscoelastc i.e. dissipative - a finding that may be especially

relevant in the application of inverse scattering theories to real-life problems (e.g. seismic imaging)

were many materials are known to exhibit dissipative constitutive behavior.

Table 4.2: Oscillating spheres problem - VV configuration: numerical values of material parameters for
which ω=ωo is a transmission eigenvalue.

ωo ρ ρ∗ µ µ∗ κ κ∗ Config.
2 3 1.5 8.833 + 1.214i 3.139 + 0.314i 12.22 + 0.781i 11.82 + 0.782i 1
10 3 1.5 4.157 + 1.684i 3.139 + 0.314i 26.46 + 0.155i 11.82 + 0.782i 2
25 6 3.4 173.6 + 4.320i 1.414 + 0.071i 368.5 + 52.24i 14.11 + 1.106i 3

4.8 Conclusions

In this study the analysis of the interior transmission problem (ITP), that plays a critical role in a

number of inverse scattering theories, is extended to enable the treatment of problems in piecewise-

homogeneous, anisotropic, elastic and viscoelastic solids involving multiply-connected penetrable

and impenetrable obstacles. Making recourse to a particular variational formulation, the Lax-
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Figure 4.5: Oscillating spheres problem - VV configuration: numerical manifestation of the transmission
eigenvalues exposed in Table 4.2

.

Milgram theorem, and the compact perturbation argument, a set of sufficient conditions is estab-

lished in terms of the elasticity and density parameters of the obstacle and the background solid that

ensure the ellipticity of the ITP provided that the excitation frequency does not belong to (at most)

countable set of transmission eigenvalues. It is further shown that this set is empty in situations

when either the obstacle or the background solid are dissipative i.e. viscoelastic. When both the

obstacle and the background are either elastic or viscoelastic, on the other hand, the same type of

analysis fails to produce any further restrictions on the (countable) set of transmission eigenvalues.

Given the counter-intuitive nature of such finding for the “viscoelastic-viscoelastic” (VV) case, the

problem is further investigated via an energetic argument which shows that the homogeneous ITP

involving VV configurations is not mechanically isolated from its surroundings in that it permits

a non-zero energy influx into the system even though the prescribed excitation (given by the jump

in Cauchy data between the two bodies) vanishes. A set of numerical results, computed for con-

figurations that meet the sufficient “solvability” conditions, is included to illustrate the problem.

Consistent with the underpinning analysis, the results indicate that the set of transmission values

is indeed empty in the “elastic-viscoelastic” case, and countable for the “elastic-elastic” and VV

configurations.
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5.1 Introduction

The interior transmission problem (ITP), which appears in inverse scattering theory for inhomoge-

neous medium, is a boundary value problem formulated as a pair of equations defined in a bounded

domain and coupled through the Cauchy data on the boundary. Solving the homogeneous ITP, for a

fixed frequency value, can be seen as the task of finding an incident wave field that has no scattered

counterpart. In the context of inverse scattering methods, that aim at reconstructing the support of

the scatterer, such frequency, which is an eigenvalue of the problem, should be avoided. The ITP

which suffers from a lack of self-adjointness and of ellipticity, is not covered by any classical theory

and a survey of the particular issues raised by its study can be found in [82]. Earlier studies have

focused on the question of its well-posedness, and mainly two approaches have been employed: in-

tegral equation methods [77, 180, 127, 65] and variational formulations [111, 48, 63, 23]. Previous

studies have shown in particular, by recourse to the analytic Fredholm theory that the set of fre-

quency eigenvalues of the ITP, namely transmission eigenvalues, is at most countable with infinity

as the only possible accumulation point.

Initiated by [159] where the question of existence of transmission eigenvalues has been ad-

dressed for the first time, the interest for the study of the spectrum associated with the ITP has

grown recently [64, 58, 128, 54, 55, 59, 53]. Moreover, transmission eigenvalues can be used to

obtain qualitative informations on the material properties of the scatterers [51, 41, 49] which can

provide a significant improvement of non-iterative inverse scattering techniques, such as the linear

sampling method, that have solely been used for topological identification until now.

This chapter is dedicated to the study of the interior transmission eigenvalue problem in the

elasticity case, using the tools developed in the references given previously. It aims at giving a

systematic treatment of the ITP in elasticity, where conditions on material parameters, namely elas-

tic tensors and mass densities, that ensure solvability of the problem and existence of transmission

eigenvalues are established. Moreover, the question of the relation between elastic parameters and

lower bounds of transmission eigenvalues is addressed. The introduction of the problem in Section

5.2 is followed by a reference analytical example for which the existence of eigenvalues can be

proved. Sections 5.3 and 5.4 then provide a comprehensive study of the eigenvalue problem for

different material configurations.
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5.2 Preliminaries

Consider the time-harmonic vibrations of a bounded domain D⊂R3, with smooth boundary ∂D, at

frequency ω. For clarity, all quantities in this study are interpreted as dimensionless by making ref-

erence to the characteristic length d0, reference elastic modulus µ0, and reference mass density ρ0.

Next, let (C, ρ) ∈L∞(D) and (C∗, ρ∗) ∈L∞(D) denote two sets of bounded material-parameter

distributions over D, where C(ξ) and C∗(ξ) are real-valued, symmetric, fourth-order elastic tensor

fields, while ρ(ξ) and ρ∗(ξ) are mass density distributions such that

c|ϕ|2 6 ξ :C(ξ) : ξ̄ 6 C|ϕ|2,

c∗|ϕ|2 6 ξ :C∗(ξ) : ξ̄ 6 C∗|ϕ|2,
ξ ∈ D, (5.2.1)

and
p 6 ρ(ξ) 6 P,

p∗ 6 ρ∗(ξ) 6 P∗,
ξ ∈ D. (5.2.2)

Here ϕ is a complex-valued, second-order tensor, while c, c∗, p, p∗ and C,C∗,P,P∗ are strictly

positive constants, signifying respectively the infima and suprema of the associated scalar quantities.

With reference to (5.2.1), it is further noted that c,C, c∗ and C∗ represent the bounds on the extreme

eigenvalues of C and C∗, computed with respect to double contraction with a second-order tensor.

In the most general anisotropic case C and C∗, which are endowed with major symmetry [23], may

each have up to six distinct eigenvalues.

Hereon, it is assumed that the two distributions of material properties are “non-intersecting” in

the sense that either

c∗ > 1 > C or c > 1 > C∗ or C = C∗ in D, (5.2.3)

and either

p∗ > 1 > P or p > 1 > P∗ or ρ = ρ∗ in D, (5.2.4)

with the unity as a point of demarcation achieved via suitable choice of the normalization con-

stants µ0 and ρ0. Note that the strict equalities in (5.2.3) and (5.2.4) are, when applicable, assumed

to hold almost everywhere in D, with the additional constraint

(
c∗=C ∨ c=C∗ ∨ C = C∗ in D

)
∧
(
p∗=P ∨ p=P∗ ∨ ρ=ρ∗ in D

)
= ⊥, (5.2.5)
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imposed on (5.2.3) and (5.2.4) to facilitate the variational analysis of the ensuing eigenvalue prob-

lem.

5.2.1 Interior transmission eigenvalue problem

With the above definitions the interior transmission eigenvalue problem (ITEP), that arises in a

variety of inverse scattering problems [78], can be stated as a task of finding the non-trivial pair

(u,u∗) ∈ H1(D)×H1(D) that solves the homogeneous interior transmission problem

∇·[C :∇u] + ρω2u = 0 in D,

∇·[C∗ :∇u∗] + ρ∗ω
2u∗ = 0 in D,

u− u∗ = 0 on ∂D,

n · C :∇u− n · C∗ :∇u∗ = 0 on ∂D,

(5.2.6)

whereH1:= W 1,2 denotes the usual Sobolev space, andn is the unit normal on ∂D oriented toward

the exterior of D.

Definition 4. Values of ω2 for which homogeneous problem (5.2.6) permits non-trivial solution

(u,u∗) ∈ H1(D)×H1(D) are called the transmission eigenvalues corresponding to transmission

eigenfunctions (u,u∗).

The ITEP plays a central role in the development of qualitative techniques for obstacle re-

construction such as the linear sampling method [73, 46] and the factorization method [129], that

commonly revolve around the behavior of the so-called measurements operator which maps a set of

incident wave patterns onto the set of scattered wavefields. To provide specificity for the discussion,

let (C∗, ρ∗) and (C, ρ) hereon denote respectively the material properties of a hidden obstacleD⊂Ω

and the background domain Ω (e.g. R3 or a half-space). With such premise, it can be shown that the

scattering operator characterizingD is injective with dense range providing that there does not exist

a non-trivial solution (u,u∗) to homogeneous boundary value problem (5.2.6), where u is in the

form of a single-layer potential over Ω whose source density is distributed over the source surface.

Thus, if ω2 is a transmission eigenvalue of (5.2.6), the scattering operator fails to be one-to-one and

the linear sampling and factorization methods can no longer be applied.

The difficulties plaguing the study of the above-described ITEP stem from the structure of the

boundary conditions prescribed over ∂D whereby (5.2.6) is neither self-adjoint, nor elliptic at any
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frequency (see [82] in the context of the scalar Helmholtz equation). These impediments are re-

flected in the fact that the existing studies of the ITEP for elastic bodies [63, 64, 23] are each formu-

lated under fairly restrictive conditions in terms of the “contrast” between (C∗, ρ∗) and (C, ρ). To

shed further light on the problem, this investigation aims to generalize upon the recent developments

for the Helmholtz equation and Maxwell equations [159, 128, 58, 59, 55, 114] toward: a) studying

the solvability of (5.2.6) in situations when the contrast between (C∗, ρ∗) and (C, ρ) transcends the

restrictions imposed by earlier studies, and b) establishing, for the first time, the existence of trans-

mission eigenvalues in elasticity. To this end, the task of investigating the ITEP for elastic bodies is

recast as that of characterizing the kernel of a differential-trace operator J−f(ω)K that synthesizes

the left-hand side of (5.2.6), constructed such that i) J and K are both self-adjoint, and ii) K is

compact. Such decomposition in turn permits the analysis to proceed by focusing on the so-called

“material ellipticity conditions” under which operator J is invertible.

5.2.2 Analytical example

To help lay the foundation for the ensuing analysis, consider first the canonical case where D is a

ball of radius R, while pairs (C, ρ) and (C∗, ρ∗) each correspond to a homogeneous isotropic solid.

By virtue of its simplicity, this example allows one to explicitly demonstrate the existence of a

countable set of transmission eigenvalues associated with radially-symmetric eigenfunctions.

In the isotropic case, the fourth-order elastic tensors C and C∗ can be synthesized in terms of

the respective Lamé parameters (λ, µ) and (λ∗, µ∗). Under such restriction C and C∗ have only two

distinct eigenvalues [131], given respectively by {2µ, 3λ + 2µ} and {2µ∗, 3λ∗+ 2µ∗}, and their

strong ellipticity is ensured by the well-known inequalities

µ > 0, µ∗ > 0

3λ+ 2µ > 0, 3λ∗ + 2µ∗ > 0.
(5.2.7)

For completeness, it is noted that λ and λ∗ are sign-indefinite by virtue of the fact that sign(λ) =

sign(ν) and sign(λ∗) = sign(ν∗), where ν ∈ (−1, 1
2) and ν∗ ∈ (−1, 1

2) are the Poisson’s ratios

affiliated respectively with C and C∗. In what follows, it is for simplicity assumed that ν > 0 and

ν∗ > 0. With such hypothesis, one has

λ =
C− c

3
> 0, µ =

c

2
> 0, λ∗ =

C∗ − c∗
3

> 0, µ∗ =
c∗
2
> 0. (5.2.8)
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When the solution to the interior transmission problem is sought in the form of radially-symmetric

vector fieldsu(ξ)=u(r)er andu∗(ξ)=u∗(r)er such that r= |ξ| and er =ξ/r, the field equations

(5.2.6a) and (5.2.6b) can next be reduced as

u′′(r) +
2
r
u′(r) +

(
ω2

c2
− 2
r2

)
u(r) = 0, r ∈ [0, R)

u′′∗(r) +
2
r
u′∗(r) +

(
ω2

c2∗
− 2
r2

)
u∗(r) = 0, r ∈ [0, R)

(5.2.9)

where c=
√

(λ+2µ)/ρ; c∗=
√

(λ∗+2µ∗)/ρ∗, while f ′ and f ′′ denote respectively first and second

derivative of f(r) with respect to its argument. As a result, the solution to (5.2.6) can be written

in terms of the spherical Bessel functions of the first order j1
(

ω
c r
)

and j1
(

ω
c∗
r
)
, which exposes the

existence of a non-trivial solution when ω2 is a transmission eigenvalue satisfying the characteristic

equation

F (ω) :=

∣∣∣∣∣ j1
(

ω
cR
)

j1
(

ω
c∗
R
)

ω
√
ρ(λ+ 2µ)j′1

(
ω
cR
)

+ 2λ
R j1

(
ω
cR
)

ω
√
ρ∗(λ∗ + 2µ∗)j′1

(
ω
c∗
R
)

+ 2λ∗
R j1

(
ω
c∗
R
) ∣∣∣∣∣ = 0.

(5.2.10)

Previous studies of the ITEP for elastic solids [63, 64, 23] have consistently shown that the

transmission eigenvalues, when they exist, can only accumulate at infinity. Accordingly, it is natural

to investigate the asymptotic behavior of F (ω) as ω → ∞. To this end, one may employ the

relationships

j1(t) =
t→∞

− cos(t)
t

+O

(
1
t2

)
,

j′1(t) =
t→∞

sin(t)
t

+O

(
1
t2

)
,

(5.2.11)

to find

F (ω) =
ω→∞

c c∗
ωR2

[√
ρ(λ+ 2µ) sin

(
ω

c
R

)
cos
(
ω

c∗
R

)
−√

ρ∗(λ∗+ 2µ∗) cos
(
ω

c
R

)
sin
(
ω

c∗
R

)]
+O

(
1
ω2

)
. (5.2.12)

Assuming non-zero material contrast between (C, ρ) and (C∗, ρ∗), one finds that the leading

terms in (5.2.12) are nearly-periodic functions of frequency as ω→∞, and so is F [122]. Thus,
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expansion (5.2.12) demonstrates that F has infinitely many zeros, i.e. that the set of transmission

eigenvalues stemming from (5.2.10) is indeed countable. In concluding the example, it is noted

that (5.2.9)–(5.2.12) represent an elastic-solid analogue of the well known spherically-symmetric

study of the scalar Helmholtz equation, see e.g. [59, 82].

5.3 Configurations with material similitude

In what follows, let Dρ :=(ρ∗−ρ)−1 and DC :=(C−1
∗ −C−1)−1 quantify respectively the contrasts

in mass density and elasticity between the two materials. With such notation, this section is devoted

to investigating the ITEP for elastic solids in situations where eitherDρ or DC vanishes identically in

D. Following the approach suggested in [180, 109, 57, 49], the problem at hand can be conveniently

formulated as a system of fourth-order differential equations that is amenable to eigen-analysis in

terms of variational methods.

For clarity of the ensuing developments, it is important to recall the underpinning analytical

framework introduced in [58]. To this end, let J a bounded, positive definite, self-adjoint linear op-

erator on separable Hilbert spaceW , and letK be a non-negative, self-adjoint, compact bounded lin-

ear operator onW . With such hypotheses, it can be shown that there exists an increasing sequence of

positive real numbers λn and associated sequence of elements wn∈W such that Jwn = λnKwn.

Next, letting τ 7→ Jτ be a continuous mapping from (0,+∞) to the set of self-adjoint, positive

definite, bounded linear operators on W , consider the eigenvalue problem of finding w ∈ W such

that

Jτw − λn(τ)Kw = 0. (5.3.1)

The following theorem, established in [58], is a fundamental tool toward demonstrating the exis-

tence of transmission eigenvalues.

Theorem 10. Let τ 7→ Jτ be a continuous mapping from (0,+∞) to the set of self-adjoint, pos-

itive definite, bounded linear operators on W , and let K be a non-negative, self-adjoint, compact

bounded linear operator on W . Assume the existence of two positive constants τ0 > 0 and τ1 > 0

such that

1. Jτ0− τ0K is positive on W , and

2. Jτ1− τ1K is non-positive on an m-dimensional subspace of W .
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Then each of the equations λn(τ) = τ , n = 1, 2 . . . ,m has at least one solution for τ ∈ [τ0, τ1]

where λn(τ) is the nth eigenvalue (counting multiplicity) of Jτ with respect to K, i.e. ker(Jτ−
λn(τ)K) 6= {0}.

5.3.1 Equal elastic tensors

In this section, it postulated that DC vanishes (i.e. C = C∗) while Dρ 6= 0 almost everywhere in D

according to (5.2.5). On introducing the Sobolev space of vector fields with zero Cauchy data on

∂D, namely

H2
0 (D) =

{
ϕ ∈ H2(D) : ϕ = 0 and n · C :∇ϕ = 0 on ∂D

}
, (5.3.2)

and assuming that pair (u,u∗) ∈ L2(D)× L2(D) solves the interior transmission problem

∇·[C :∇u] + ρω2u = 0 in D,

∇·[C :∇u∗] + ρ∗ω
2u∗ = 0 in D,

u− u∗ = 0 on ∂D,

n · C :∇(u− u∗) = 0 on ∂D,

(5.3.3)

one finds that the solution difference v := u− u∗ ∈ H2
0 solves the fourth-order equation

(
∇·[C :∇] + ρω2

)
Dρ

(
∇·[C :∇] + ρ∗ω

2
)
v = 0 in D, (5.3.4)

when ρ∗ 6= ρ and ω > 0.

The variational formulation of (5.3.4) consists in finding v ∈ H2
0 (D) such that∫

D
Dρ

(
∇·[C :∇v] + ρ∗ω

2v
)
·
(
∇·[C :∇ϕ̄] + ρω2ϕ̄

)
dV = 0 ∀ϕ ∈ H2

0 (D). (5.3.5)

To facilitate the treatment of the variational problem at hand, let τ := ω2, and define the auxiliary
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bounded sesquilinear forms on H2
0 (D)×H2

0 (D) as

Aτ (ϕ,ψ) :=
〈
Dρ (∇·[C :∇ϕ] + ρ τϕ) , (∇·[C :∇ψ] + ρ τψ)

〉
L2(D)

+ τ2
〈
ρϕ,ψ

〉
L2(D)

,

A∗τ (ϕ,ψ) := −
〈
Dρ (∇·[C :∇ϕ] + ρ∗τϕ) , (∇·[C :∇ψ] + ρ∗τψ)

〉
L2(D)

+ τ2
〈
ρ∗ϕ,ψ

〉
L2(D)

,

B(ϕ,ψ) :=
〈
C :∇ϕ,∇ψ

〉
L2(D)

,

(5.3.6)

for all (ϕ,ψ) ∈ H2
0 (D) × H2

0 (D), where the inner product between two nth-order tensors is

understood in the sense of n-tuple contraction. On exercising (5.3.6) and the divergence theorem,

(5.3.5) can be equivalently formulated as a task of finding v ∈ H2
0 (D) that satisfies either

Aτ (v,ϕ) − τ B(v,ϕ) = 0 ∀ϕ ∈ H2
0 (D), (5.3.7)

or

A∗τ (v,ϕ) − τ B(v,ϕ) = 0 ∀ϕ ∈ H2
0 (D). (5.3.8)

Note that the boundedness of the featured operators is a consequence of tensor C being positive

definite and bounded. To expose the sufficient conditions for the ellipticity of Aτ and A∗τ , the latter

can be conveniently recast as

Aτ (ϕ,ψ) =
〈
ρDρ (∇·[C :∇ϕ] + τϕ) , (∇·[C :∇ψ] + τψ)

〉
L2(D)

+
〈
(1− ρ)Dρ∇·[C :∇ϕ],∇·[C :∇ψ]

〉
L2(D)

+ τ2
〈
ρDρ(ρ∗− 1)ϕ,ψ

〉
L2(D)

,

A∗τ (ϕ,ψ) = −
〈
ρ∗Dρ (∇·[C :∇ϕ] + τϕ) , (∇·[C :∇ψ] + τψ)

〉
L2(D)

−
〈
(1− ρ∗)Dρ∇·[C :∇ϕ],∇·[C :∇ψ]

〉
L2(D)

− τ2
〈
ρ∗Dρ(ρ− 1)ϕ,ψ

〉
L2(D)

.

(5.3.9)

Lemma 12. Assuming C = C∗ and restrictions on the contrast in mass densities as in (5.2.4)

and (5.2.5), either Aτ or A∗τ is a coercive sesquilinear form on H2
0 (D)×H2

0 (D).

Proof. For brevity, the ensuing analysis focuses on the case when p∗ > 1 > P and Dρ 6= 0; the

companion claim (when p>1>P∗ and Dρ 6=0) can be established by interchanging the roles of ρ

and ρ∗. With such restriction, the stated hypotheses of the Lemma imply the existence of real-valued
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constants α, α∗ and γ such that

1− ρ > α > 0

ρ∗− 1 > α∗ > 0

Dρ > γ > 0

in D, (5.3.10)

where α and α∗ cannot vanish simultaneously.

When ϕ ∈ H2
0 (D), one finds by virtue of (5.3.9a), (5.3.10), the Cauchy-Schwarz inequality,

and triangle inequality that

Aτ (ϕ,ϕ) > p γ

{(
1 +

α

p

)
x2 + (1 + α∗) y2 − 2xy

}
, (5.3.11)

where x :=‖∇·[C :∇ϕ]‖L2(D) and y :=τ ‖ϕ‖L2(D). In this setting, several combinations in terms

of α and α∗ must be considered separately to provide a valid lower bound for Aτ . In particular, it

can be shown that

Aτ (ϕ,ϕ) > pγ

{
α

p
x2 + α∗y

2 + (x− y)2
}

when
α > 0,

α∗ > 0,
(5.3.12)

Aτ (ϕ,ϕ) > pγ

{(
1− 1

δ∗

)
x2 + (1 + α∗ − δ∗) y2 + δ∗

(
y − x

δ∗

)2
}

when
α = 0,

α∗ > 0,
(5.3.13)

assuming δ∗ ∈ (1, 1+α∗), and

Aτ (ϕ,ϕ) > pγ

{(
1 +

α

p
− δ

)
x2 +

(
1− 1

δ

)
y2 + δ

(
x− y

δ

)2
}

when
α > 0,

α∗ = 0,
(5.3.14)

where δ ∈ (1, 1+α/p).

From the lower bound in (5.2.1) on elastic tensor C, on the other hand, there exists a constant

β > 0 such that

‖∇·[C :∇ϕ]‖2L2(D) + ‖ϕ‖2L2(D) > β ‖ϕ‖2H2(D), (5.3.15)

see, e.g., [145]. On dropping the squared-difference terms on the right-hand sides of (5.3.12),

(5.3.13) and (5.3.14), one finally concludes from (5.3.15) that there exists a constant Cτ > 0 (de-
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pendent on τ ) such that

Aτ (ϕ,ϕ) > Cτ ‖ϕ‖2H2(D),

which concludes the proof.

On employing the Riesz representation theorem and identifying H2
0 (D) with its dual, one can

introduce bounded linear operators Aτ ,A∗
τ ,B : H2

0 (D) → H2
0 (D) such that for all (ϕ,ψ) ∈

H2
0 (D)×H2

0 (D)

〈
Aτϕ,ψ

〉
H2

0 (D)
= Aτ (ϕ,ψ),

〈
A∗

τϕ,ψ
〉
H2

0 (D)
= A∗τ (ϕ,ψ),

〈
Bϕ,ψ

〉
H2

0 (D)
= B(ϕ,ψ).

(5.3.16)

As a result, (5.3.7) and (5.3.8) can be rewritten respectively as

〈
(Aτ− τB)v,ϕ

〉
H2

0 (D)
= 0 ∀ϕ ∈ H2

0 (D) (5.3.17)

and 〈
(A∗

τ− τB)v,ϕ
〉
H2

0 (D)
= 0 ∀ϕ ∈ H2

0 (D). (5.3.18)

Thus if ω2 is a transmission eigenvalue associated with (5.3.3) then, recalling that τ = ω2, one has

that either

ker(Aτ − τB) 6= {0} or ker(A∗
τ − τB) 6= {0}.

Lemma 13. Assuming C = C∗, linear operator Aτ : H2
0 (D) → H2

0 (D) (resp. A∗
τ : H2

0 (D) →
H2

0 (D)) is positive definite, self-adjoint, and depends continuously on τ > 0 when p∗ > 1 > P

(resp. p> 1>P∗) and Dρ 6= 0 hold almost everywhere in D. Further, B :H2
0 (D) → H2

0 (D) is a

self-adjoint and positive compact linear operator.

Proof. Since ρ, ρ∗ and C are by premise real-valued and C possesses the major symmetry, the

sesquilinear forms Aτ , A∗τ and B are Hermitian which requires that operators Aτ , A∗
τ and B be

self-adjoint. The positive definite character of Aτ and A∗
τ is a direct consequence of (5.3.16) and

Lemma 12, while their continuous dependence on τ > 0 arises from the premise that Aτ and A∗τ
depend continuously on τ > 0.

To establish the claim that B is compact, consider a bounded sequence ϕn ∈H2
0 (D), such that

there exists a subsequence ϕ̃n that weakly converges with respect to the H2
0 (D)-norm to ϕo ∈

H2
0 (D). Since ϕ̃n ∈ H2

0 (D), it follows that ∇ϕ̃n∈H1(D). By virtue of the compact embedding
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of H1(D) in L2(D), one accordingly finds that ∇ϕ̃n converges strongly to ∇ϕo with respect to

the L2(D)-norm. Finally using the definition of B in (5.3.16), the Cauchy-Schwarz inequality, and

the boundedness of elastic tensor C, one finds that

‖B(ϕ̃n −ϕo)‖H2
0 (D) 6 C ‖∇(ϕ̃n −ϕo)‖L2(D), (5.3.19)

which implies that B is compact since Bϕ̃n strongly converges to Bϕ̃o with respect to the H2
0 (D)-

norm. With this result in place, the proof of the lemma can now be completed by noting that B is

positive owing to the positive definiteness of C stipulated in (5.2.1).

The ensuing theorem establishes a lower bound for the transmission eigenvalues. To this end

consider the negative Laplace operator −∆ for which, as shown by classical eigenvalue theory

[113], there exist an increasing sequence of real-valued, positive Dirichlet eigenvalues λn(D) and a

sequence of corresponding first-order eigentensors ϕn satisfying

−∆ϕn = λn(D)ϕn in D,

ϕn = 0 on ∂D.
(5.3.20)

In this setting λ1(D) > 0 denotes the first, i.e. the smallest Dirichlet eigenvalue of the negative

Laplace operator.

Theorem 11. If either p∗ > 1 > P or p > 1 > P∗ while DC = 0 and Dρ 6= 0 hold almost

everywhere in D, the set of transmission eigenvalues affiliated with (5.2.6) is discrete, with infinity

being the only possible accumulation point. Moreover, every feasible transmission eigenvalue ω2 is

such that

ω2 > λ1(D)
c

max(P,P∗)
.

Proof. When p∗ > 1 > P (resp. p > 1 > P∗) and Dρ 6= 0 holds almost everywhere in D, linear

operator Aτ (resp. A∗
τ ) is invertible due to Lemma 13 and, since B is a compact operator, so is

Aτ
−1B (resp. A∗−1

τ B). On denoting by I the identity operator on H2
0 (D), the Fredholm alternative

applies [191] whereby I− τAτ
−1B (resp. I− τA∗−1

τ B) is invertible except for, at most, a discrete

set of values τ ∈ C that can only accumulate at infinity.

Assuming for the time being that p > 1 > P∗ i.e. Dρ < 0, let v ∈ H2
0 (D) such that v ∈
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ker(Aτ − τB). Then
〈
(Aτ − τB)v,v

〉
H2

0 (D)
= 0 yields

−
∫

D
Dρ |∇·[C :∇v] + ρ τv|2 dV + τ

∫
D

(
∇v :C :∇v̄ − ρ τ |v|2

)
dV = 0. (5.3.21)

Whenever the second integral is non-negative, one must clearly have ∇ · [C : ∇v] + ρ τv = 0 in

D. Since v = 0 and C : ∇v : n = 0 on ∂D for v ∈ H2
0 (D), it follows that v must also vanish

in D by virtue of the Holmgren’s uniqueness theorem (see [105] for a discussion in the context

of elasticity). Due to (5.2.1) and Courant-Fischer min-max formulae [113], on the other hand, the

Rayleigh quotient of elastic tensor C is found to be bounded from below as

inf
v∈H2

0 (D)

∫
D

∇v :C :∇v̄ dV∫
D
|v|2 dV

> c inf
v∈H1

0 (D)

∫
D
|∇v|2 dV∫

D
|v|2 dV

> cλ1(D), (5.3.22)

so that ∫
D

(
∇v :C :∇v̄ − ρ τ |v|2

)
dV > ‖v‖2L2(D) (cλ1(D)− τP) . (5.3.23)

As a result, the last integral in (5.3.21) is necessarily non-negative whenever ω2 = τ 6 λ1(D)c/P,

whereby no eigenvalues can exist within interval (0, λ1(D)c/P].

Alternatively when p∗ > 1 > P i.e. Dρ > 0, let v ∈ ker(A∗
τ − τB). In this case, the inferred

equality∫
D
Dρ|∇·[C :∇v] + ρ∗ω

2v|2 dV + τ

∫
D

(
∇v :C :∇v̄ − ρ∗τ |v|2

)
dV = 0 (5.3.24)

and inequality ∫
D

(
∇v : C : ∇v̄ − ρ∗τ |v|2

)
dV > ‖v‖2L2(D) (cλ1(D)− τP∗) (5.3.25)

require that v = 0 in D whenever τ 6 λ1(D)c/P∗, i.e. that no transmission eigenvalues can exist

within interval (0, λ1(D)c/P∗]. The combination of the above two cases concludes the proof.

Theorem 12. If either p>1>P∗ or p∗>1>P while DC =0 and Dρ 6= 0 hold almost everywhere

in D, there exists a countable set of transmission eigenvalues affiliated with (5.2.6).

Proof. The proof of the theorem relies on the existence of a countable set of transmission eigen-
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values for the spherically-symmetric case of homogeneous isotropic elastic bodies examined in

Section 5.2.2. Suppose that p∗ > 1 > P and that Dρ 6= 0 holds almost everywhere in D. Then by

virtue of Lemma 13, operators Aτ and B satisfy the hypotheses of Theorem 10 with W := H2
0 (D).

In this case, inequalities (5.3.12)–(5.3.14) of Lemma 12 further ensure the existence of a real-valued

constant β′>0 such that

〈
Aτv,v

〉
H2

0 (D)
> β′ ‖∇·[C :∇v]‖2L2(D), (5.3.26)

for all v ∈ H2
0 (D). Moreover since n ·C : ∇v = 0 on ∂D, one finds from (5.2.1), the major

symmetry of C, and application of the Poincaré inequality as in [113] that

〈
C :∇v,∇v

〉
L2(D)

6
1
c

〈
C :∇v,C :∇v

〉
L2(D)

6
1

cλ1(D)
‖∇·[C :∇v]‖2L2(D), (5.3.27)

whereby 〈
(Aτ− τB)v,v

〉
H2

0 (D)
>

(
β′− τ

cλ1(D)

)
‖∇·[C :∇v]‖2L2(D). (5.3.28)

Accordingly when 0 < τ0 < cλ1(D)β′, operator Aτ0− τ0B is positive on H2
0 (D) and thus meets

Assumption 1 of Theorem 10.

Next, from the results in Section 5.2.2 it follows that interior transmission problem (5.3.3),

formulated for a ball Br ⊂ D of radius r with constant material parameters Ĉ = Ĉ∗, ρ̂ := P

and ρ̂∗ := p∗, is affiliated with a countable set of transmission eigenvalues. To help establish the

claim of the theorem, let τ̂ be one such eigenvalue and let v̂ ∈ H2
0 (Br) be the corresponding

eigenfunction. In particular, v̂ satisfies (5.3.17) with τ = τ̂ , H2
0 (D) replaced by H2

0 (Br), and with

featured operators corresponding to the assumed (constant) material parameters. Accordingly, by

taking ϕ = v̂ and integrating (5.3.17) by parts, one finds

p∗P τ̂
2‖v̂‖2L2(Br) = −‖∇·[Ĉ ·∇v̂]‖2L2(Br) + (p∗+ P) τ̂

∫
Br

∇v̂ : Ĉ :∇¯̂v dV. (5.3.29)
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Moreover, if v̂0 ∈ H2
0 (D) denotes the extension of v̂ by zero to the whole of D one has

〈
(Aτ̂ − τ̂B)v̂0, v̂0

〉
H2

0 (D)
6

(
1 + P− p

p∗− P

)
‖∇·[C :∇v̂]‖2L2(Br)

−
(

p∗+ P

p∗− P

)
τ̂

∫
Br

∇v̂ : C : ∇¯̂v dV

+
(

PP∗
p∗− P

)
τ̂2‖v̂‖2L2(Br),

(5.3.30)

where Aτ̂ and B are given by (5.3.16) assuming τ= τ̂ and the original set of material parameters in

terms of distributions (C, ρ) and (C∗, ρ∗) over D. A substitution of (5.3.29) into (5.3.30) yields

〈
(Aτ̂ − τ̂B)v̂0, v̂0

〉
H2

0 (D)
6

1
p∗− P

{
(1 + P− p)‖∇·[C :∇v̂]‖2L2(Br) −

P∗
p∗
‖∇·[Ĉ :∇v̂]‖2L2(Br)

}
+
(

p∗+ P

p∗− P

)
τ̂

∫
Br

∇v̂ :
[
P∗
p∗

Ĉ − C
]
:∇¯̂v dV.

(5.3.31)

On choosing the maximum eigenvalue, Ĉ, of elastic tensor Ĉ such that

Ĉ <
p∗
P∗

c, (5.3.32)

inequality (5.3.31) demonstrates that for sufficiently large τ̂ = τ1, operator Aτ1−τ1B is non-positive

on the subspace ofH2
0 (D) spanned by v̂0 – a result which constitutes Assumption 2 of Theorem 10.

As a consequence, one concludes from Theorem 10 that there is at least one transmission eigenvalue

within interval [τ0, τ1] located on the positive real axis, where 0 < τ0 < cλ1(D)β′ as examined

earlier.

Next, consider ε > 0 such that D contains m > 1 disjoint balls B1
ε , B

2
ε , . . . B

m
ε of radius εr,

whence Bi
ε⊂D for i = 1, . . . ,m and Bi

ε∩B
j
ε =∅ for i 6= j. By the scaling argument, τ̂ε = τ̂ /ε2 is

a transmission eigenvalue for each of these balls associated with the interior transmission problem

formulated assuming mass densities ρ̂ = P and ρ̂∗ = p∗, and homogeneous isotropic elastic tensor Ĉ
verifying (5.3.32). Thus, if v̂i∈H2

0 (Bi
ε) is an eigenfunction corresponding to τ̂ε for all i = 1, . . . ,m

whose extension by zero to the whole of D is denoted by v̂i
0 ∈H2

0 (D), vectors {v̂1
0, v̂

2
0, . . . , v̂

m
0 }

are linearly independent and orthogonal inH2
0 (D) since they have disjoint supports. With reference

to (5.3.31) and (5.3.32), on the other hand, operator Aτ̂ε1−τε1B is non-positive on them-dimensional

subspace of H2
0 (D) spanned by {v̂1

0, v̂
2
0, . . . , v̂

m
0 } for sufficiently large τε1 = τ1/ε

2. By virtue of

Theorem 10, there exist at least m transmission eigenvalues within interval [τ0, τε1], counting their
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multiplicity. By letting ε→ 0 and m→∞, one concludes that the set of transmission eigenvalues

characterizing (5.3.3) is countable with infinity being the only possible point of accumulation.

The case when p > 1 > P∗ and Dρ 6= 0 almost everywhere in D can be treated by the same

argument due to the symmetry in ρ and ρ∗ of the formulation employed.

The above analysis allows one to establish implicit bounds on ρ, ρ∗ and C = C∗ in terms of the

first transmission eigenvalue (see Corollary 2.6 in [55] for detailed proof). To this end, denote by

Br the largest ball of radius r such that Br ⊂ D, and by BR the smallest ball of radius R such that

D ⊂ BR. Further, let Ĉ be a constant elastic tensor satisfying (5.3.32), and let ωball
1 (r, Ĉ,P, p∗)

and ωball
1 (R, Ĉ, p,P∗) denote respectively the first transmission eigenvalue of (5.3.3) for ball Br

with material parameters Ĉ∗ = Ĉ, ρ̂ := P and ρ̂∗ := p∗, and ball BR with material parameters

Ĉ∗= Ĉ, ρ̂ :=p and ρ̂∗ :=P∗.

Corollary 1. Assume that C =C∗, and let ρ and ρ∗ satisfy p> 1>P∗. Then the first transmission

eigenvalue ω1 affiliated with (5.3.3) is such that

max

(
ωball

1 (R, Ĉ, p,P∗),
√

c
λ1(D)

P

)
6 ω1 6 ωball

1 (r, Ĉ,P, p∗). (5.3.33)

where c is defined in (5.2.1), Ĉ satisfies (5.3.32), and λ1(D) is the first Dirichlet eigenvalue for −∆

in D. For completeness, it is noted that the analogous bounds when p∗ > 1 > P can be obtained

from (5.3.33) by reversing the roles of ρ and ρ∗ due to symmetry of the problem.

5.3.2 Equal mass densities

This section deals with the case when Dρ vanishes (i.e. ρ= ρ∗), while DC 6= 0 almost everywhere

in D following (5.2.5). With such premise, consider the pair (u,u∗) ∈ H1(D)×H1(D) satisfying

∇ · [C : ∇u] + ρω2u = 0 in D,

∇ · [C∗ : ∇u∗] + ρω2u∗ = 0 in D,

u− u∗ = 0 on ∂D,

n · C :∇u− n · C∗ :∇u∗ = 0 on ∂D,

(5.3.34)



CHAPTER 5. ELASTIC INTERIOR TRANSMISSION EIGENVALUE PROBLEM 205

and introduce the Sobolev spaces of symmetric second-order tensor fields

V(D) :=
{
Φ∈L2(D) : Φ = ΦT, ∇·Φ ∈L2(D)

}
,

V0(D) := {Φ∈V(D) : n ·Φ = 0 on ∂D} ,
(5.3.35)

and
W(D) =

{
Φ∈V(D) : Φ = ΦT, ∇·Φ ∈H1(D)

}
,

W0(D) =
{
Φ∈V0(D) : ∇·Φ ∈ H1

0 (D)
}
,

(5.3.36)

equipped with the inner product
〈
Φ,Ψ

〉
W(D)

=
〈
Φ,Ψ

〉
L2(D)

+
〈
∇·Φ,∇·Ψ

〉
H1(D)

.

To facilitate the ensuing developments, one may recall that any vector field ϕ ∈ H1(D) and

second-order tensor field Φ ∈ V(D) satisfy the relationship∫
D

(∇·Φ)·ϕ dV =
∫

∂D
n·Φ·ϕ dS −

∫
D

Φ :∇ϕ dV, (5.3.37)

and note that Φ ∈ W0(D) verifies n · Φ = 0 and ∇ · Φ = 0 on ∂D. In this setting, one

may take the gradient of the field equations in (5.3.34) and reformulate the problem in terms of

U := C :∇u ∈W(D) and U∗ := C∗ :∇u∗ ∈W(D) as

∇∇· U + ρω2C−1: U = 0 in D,

∇∇· U∗ + ρω2C−1
∗ : U∗ = 0 in D,

∇· (U − U∗) = 0 on ∂D,

n · (U − U∗) = 0 on ∂D.

(5.3.38)

Following the developments in Section 5.3.1, one finds that the featured solution difference V :=

U − U∗ satisfies V ∈ W0(D) and meets the fourth-order differential equation

(
∇∇·+ ρω2C−1:

)
DC :

(
∇∇·+ ρω2C−1

∗ :
)
V = 0 in D, (5.3.39)

when DC 6= 0, ρ > 0 and ω > 0. By virtue of (5.3.37), the variational formulation of (5.3.39) can

be posed as the task of finding V ∈ W0(D) such that∫
D

(
∇∇·V + ρω2C−1

∗ : V
)

: DC :
(
∇∇·Φ̄ + ρω2C−1: Φ̄

)
dV = 0 ∀Φ ∈ W0(D). (5.3.40)

To aid the treatment of the featured variational problem, one may introduce the auxiliary sesquilinear
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forms on W0(D)×W0(D) as

Fτ (Φ,Ψ) =
〈
DC :

(
∇∇·Φ + ρ τC−1 :Φ

)
,
(
∇∇·Ψ + ρ τC−1 :Ψ

) 〉
L2(D)

+ τ 2
〈
ρ2C−1 :Φ,Ψ

〉
L2(D)

,

F∗
τ (Φ,Ψ) =−

〈
DC :

(
∇∇·Φ + ρ τC−1

∗ :Φ
)
,
(
∇∇·Ψ + ρ τC−1

∗ :Ψ
) 〉

L2(D)

+ τ2
〈
ρ2C−1

∗ :Φ,Ψ
〉
L2(D)

,

G(Φ,Ψ) =
〈
ρ∇·Φ,∇·Ψ

〉
L2(D)

,

(5.3.41)

where again the inner product between two nth-order tensors is understood in the sense of n-tuple

contraction. With such definitions, (5.3.40) can be restated as either

Fτ (V ,Φ) − τ G(V ,Φ) = 0 ∀Φ ∈ W0(D), (5.3.42)

or

F∗
τ (V ,Φ) − τ G(V ,Φ) = 0 ∀Φ ∈ W0(D). (5.3.43)

By virtue of the symmetry of elastic tensors C and C∗, Fτ and F∗
τ can be conveniently rewritten as

Fτ (Φ,Ψ) =
〈
C−1 :DC : (∇∇·Φ + ρ τΦ) , (∇∇·Ψ + ρ τΨ)

〉
L2(D)

+
〈
(Isym − C−1) :DC :∇∇·Φ,∇∇·Ψ

〉
L2(D)

+ τ2
〈
ρ2(C−1

∗ − Isym) :C−1 :DC :Φ,Ψ
〉
L2(D)

,

F∗
τ (Φ,Ψ) =−

〈
C−1
∗ :DC : (∇∇·Φ + ρ τΦ) , (∇∇·Ψ + ρ τΨ)

〉
L2(D)

−
〈
(Isym − C−1

∗ ) :DC :∇∇·Φ,∇∇·Ψ
〉
L2(D)

− τ2
〈
ρ2(C−1− Isym) :C−1

∗ :DC :Φ,Ψ
〉
L2(D)

,

(5.3.44)

to help expose the conditions for their ellipticity, where Isym is the symmetric fourth-order identity

tensor.

Remark 14. When DC 6= 0 and Dρ = 0 almost everywhere in D, condition c > 1 > C∗ implies the
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existence of real-valued constants α > 0, α∗ > 0 and γ > 0 such that

ϕ : (Isym − C−1) : ϕ̄ > α|ϕ|2

ϕ : (C−1
∗ − Isym) : ϕ̄ > α∗|ϕ|2

ϕ : DC : ϕ̄ > γ|ϕ|2;

(5.3.45)

similarly, condition c∗ > 1 > C ensures that there are constants α′ > 0, α′∗ > 0 and γ′ > 0

verifying
ϕ : (Isym − C−1

∗ ) : ϕ̄ > α′∗|ϕ|2

ϕ : (C−1− Isym) : ϕ̄ > α′|ϕ|2

−ϕ : DC : ϕ̄ > γ′|ϕ|2.

(5.3.46)

for all complex-valued second-order tensors ϕ.

Lemma 14. Assuming ρ = ρ∗ and restrictions on the contrast in elastic tensors given by (5.2.3)

and (5.2.5), either Fτ or F∗
τ is a coercive sesquilinear form on W0(D)×W0(D).

Proof. Owing to the fact that the roles of C and C∗ are interchangeable, the ensuing analysis con-

siders the coercivity of Fτ as an example.

Assume that c > 1 > C∗. On the basis of (5.2.1) and Remark 14, one accordingly has

Fτ (Φ,Φ) >
γ

C

{
(1 + αC)x2 + (1 + α∗) y2 − 2xy

}
(5.3.47)

for all Φ ∈ W0(D), where x = ‖∇∇·Φ‖L2(D) and y = τ‖ρΦ‖L2(D). Depending on the sign of

α and α∗, one further has

Fτ (Φ,Φ) >
γ

C

{
αCx2 + α∗y

2 + (x− y)2
}
, when

α > 0,

α∗ > 0,
(5.3.48)

Fτ (Φ,Φ) >
γ

C

{(
1− 1

δ∗

)
x2 + (1 + α∗ − δ∗) y2 + δ∗

(
y − x

δ∗

)2
}
, when

α = 0,

α∗ > 0,
(5.3.49)

assuming δ∗ ∈ (1, 1+α∗), and

Fτ (Φ,Φ) >
γ

C

{
(1 + αC− δ)x2 +

(
1− 1

δ

)
y2 + δ

(
x− y

δ

)2
}
, when

α > 0,

α∗ = 0,
(5.3.50)
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where δ ∈ (1, 1+αC). Moreover since ∇ ·Φ ∈ H1
0 (D) the Poincaré inequality holds, i.e. there

exists a constant CP > 0, dependent only on D, such that

‖∇·Φ‖L2(D) 6 CP ‖∇∇·Φ‖L2(D). (5.3.51)

On dropping the squared-difference terms in (5.3.48)–(5.3.50) and recalling (5.2.2) which guaran-

tees that ρ is bounded, one concludes that there is a constant C ′
τ > 0 such that

Fτ (Φ,Φ) > C ′
τ ‖Φ‖2W(D),

which concludes the proof.

With reference to (5.3.41), the Riesz representation theorem ensures the existence of bounded

linear operators Fτ ,F∗τ ,G : W0(D) →W0(D) such that for all (Φ,Ψ) ∈ W0(D)×W0(D)

〈
FτΦ,Ψ

〉
W0(D)

= Fτ (Φ,Ψ) ;
〈
F∗τΦ,Ψ

〉
W0(D)

= F∗
τ (Φ,Ψ) ;

〈
GΦ,Ψ

〉
W0(D)

= G(Φ,Ψ),

(5.3.52)

which permits (5.3.42) and (5.3.43) to be rewritten respectively as

〈
(Fτ − τG)V ,Φ

〉
W0(D)

= 0 ∀Φ ∈ W0(D), (5.3.53)

and 〈
(F∗τ − τG)V ,Φ

〉
W0(D)

= 0 ∀Φ ∈ W0(D). (5.3.54)

Here it is again noted, analogous to the observation made in Section 5.3.1, that τ=ω2 is a transmis-

sion eigenvalue associated (5.3.34) if either ker(Fτ− τG) 6= {0} or ker(F∗τ− τG) 6= {0}.

Lemma 15. Assuming ρ = ρ∗, linear operator Fτ : W0(D) → W0(D) (resp. F∗τ : W0(D) →
W0(D)) is positive definite, self-adjoint and depends continuously on τ >0 when c>1>C∗ (resp.

c∗ > 1>C) and DC 6= 0 holds almost everywhere in D. Further, linear operator G : W0(D) →
W0(D) is self-adjoint, positive, and compact.

Proof. Linear operators Fτ , F∗τ and G are self-adjoint since ρ, C and C∗ are real-valued functions;

the positivity of either Fτ or F∗τ is a direct consequence of Lemma 14, while the positivity of G is

implied by the fact that ρ is positive according to (5.2.2).
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Next, let Φn denote a bounded sequence inW0(D) whose subsequence, Φ̃n, converges weakly

with respect to the W0(D)-norm to Φo ∈W0(D). Since Φ̃n ∈ W0(D), one has by (5.3.36) that

∇· Φ̃n ∈ H1(D) which is compactly embedded in L2(D), whereby ∇· Φ̃n converges strongly to

∇·Φo in L2(D). Accordingly, one has

‖G(Φ̃n−Φo)‖W0(D) 6 P‖∇·(Φ̃n−Φo)‖L2(D), (5.3.55)

which ensures the strong convergence of GΦ̃n in the W0(D)-norm sense to GΦo, and thus the

compactness of G.

Following the path established in Section 5.3.1, the ensuing theorem provides a lower bound for

possible transmission eigenvalues when ρ= ρ∗. To this end consider the linear operator −∇∇· ,
which is known to possess an increasing sequence of positive eigenvalues λ̃n(D) and associated

(second-order) eigentensors Φn [3, 18] such that

−∇∇·Φn = λ̃n(D)Φn in D,

∇·Φn = 0 on ∂D.
(5.3.56)

Alternatively, (5.3.56) can be written in terms of the sequence of first-order tensors ϕn := ∇·Φn

as
−∆ϕn = λ̃n(D)ϕn in D,

ϕn = 0 on ∂D,
(5.3.57)

where (λ̃n(D),ϕn) are the solutions of the Laplace eigenvalue problem over D assuming Dirichlet

boundary conditions. Thus if λ1(D) denotes the first Dirichlet eigenvalue of the negative Laplace

operator, one has that λ̃1(D) > λ1(D).

Theorem 13. If either c > 1 > C∗ or c∗ > 1 > C while DC 6= 0 and Dρ = 0 hold almost

everywhere inD, the set of transmission eigenvalues associated with (5.2.6) is discrete, with infinity

being the only possible accumulation point. Further, every feasible transmission eigenvalue ω2 is

such that

ω2 > λ1(D)
min(c, c∗)

P
.

Proof. Under the premises of the theorem, either Fτ or F∗τ is invertible owing to Lemma 15 and,

since G is a compact operator, so is Fτ
−1G or F∗τ−1G. The Fredholm alternative then ensures that

I−τF∗τ−1G or I − τF−1
τ G is invertible except for, at most, a discrete set of values τ ∈ C that can



CHAPTER 5. ELASTIC INTERIOR TRANSMISSION EIGENVALUE PROBLEM 210

only accumulate at infinity.

Next, assume that c∗ > 1 > C whereby −ξ :DC : ξ̄ > γ∗|ξ|2 for some γ∗>0 due to (5.3.46),

and let V ∈ W0(D) such that V ∈ ker(Fτ − τG). Then
〈
(Fτ− τG)V ,V

〉
W0(D)

= 0 implies

−
∫

D

(
∇∇·V + τ ρC−1 : V

)
: DC :

(
∇∇·V̄ + τ ρC−1 : V̄

)
dV

+
∫

D

(
τ ρ (∇·V)·

(
∇·V̄

)
− τ2ρ2 V :C−1 : V̄

)
dV = 0.

(5.3.58)

Whenever the second integral is non-negative, one finds that ∇∇ ·V + ρ τC−1 : V = 0 in D.

However, since n ·V = 0 and ∇·V = 0 on ∂D, one must also have V = 0 inD due to Holmgren’s

uniqueness theorem. From an application of the Courant-Fischer min-max formulae [113], on the

other hand, one has

inf
V∈W0(D)

∫
D

(∇·V)·
(
∇·V̄

)
dV∫

D
|V |2 dV

> inf
V∈W(D)

∇·V=0 on ∂D

∫
D

(∇·V)·
(
∇·V̄

)
dV∫

D
|V |2 dV

> λ1(D) (5.3.59)

and, owing to the bounds on C and ρ as in (5.2.1),∫
D

(
ρ (∇·V)·

(
∇·V̄

)
− τρ2V : C−1 : V̄

)
dV > p ‖V‖2L2(D)

(
λ1(D)− τPc−1

)
, (5.3.60)

whereby τ 6 λ1(D)c/P clearly cannot be a transmission eigenvalue.

Similarly if c > 1 > C∗ (so that ξ : DC : ξ̄ > γ|ξ|2 for some γ > 0, see (5.3.45)) and

V ∈ ker(F∗τ − τG), then the inequality∫
D

(
∇∇·V + τ ρC−1

∗ :V
)

: DC :
(
∇∇·V̄ + τ ρC−1

∗ : V̄
)

dV

+
∫

D

(
τ ρ (∇·V)·

(
∇·V̄

)
− τ2ρ2 V : C−1

∗ : V̄
)

dV = 0,

(5.3.61)

implies that V = 0 in D, i.e. that τ=ω2 cannot be a transmission eigenvalue as long as∫
D

(
ρ (∇·V)·

(
∇·V̄

)
− τρ2V : C−1

∗ : V̄
)

dV > p ‖V‖2L2(D)

(
λ1(D)− τPc−1

∗
)

> 0, (5.3.62)

i.e. when τ 6 λ1(D)c∗/P.
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Theorem 14. If either c > 1 > C∗ or c∗ > 1 > C while DC 6= 0 and Dρ = 0 hold almost

everywhere in D, there exists a countable set of transmission eigenvalues affiliated with (5.2.6).

Proof. The proof in this case follows the ideas developed in the context of Theorem 12. Suppose

that c > 1 > C∗ and that DC 6= 0 holds almost everywhere in D, so that operators Fτ and G satisfy

the hypotheses of Theorem 10 with W ≡ W0(D).

With reference to the proof of Lemma 14 and inequalities (5.3.48)–(5.3.50), there exists a con-

stant β′′ > 0 such that for all V ∈ W0(D)

〈
FτV ,V

〉
W0(D)

> β′′‖∇∇·V‖2L2(D), (5.3.63)

which together with Poincaré inequality (5.3.51) ensures that

〈
(Fτ− τG)V ,V

〉
W0(D)

>
(
β′′ − τPCP

)
‖∇·V‖2L2(D). (5.3.64)

From (5.3.64), one concludes that Fτ0− τ0G is positive on W0(D) for 0<τ0<β′′/(PCP ), which

meets Assumption 1 of Theorem 10.

Next, consider the interior transmission problem (5.3.34) for a ball Br ⊂ D of radius r with

constant mass densities ρ̂ = ρ̂∗ = const. and homogeneous isotropic elastic tensors Ĉ and Ĉ∗ given

by their eigenvalues
Ĉ = C,

ĉ = c,

Ĉ∗ = C∗,

ĉ∗ = c∗.
(5.3.65)

From the analytical solution in Section 5.2.2, it is known that there exists an infinite set of trans-

mission eigenvalues for this problem. To help establish the claim of the theorem, let τ̂ be one

such eigenvalue and let V̂ ∈ W0(Br) be the corresponding eigenfunction. Accordingly, V̂ sat-

isfies (5.3.53) with τ = τ̂ , D superseded by Br, and with the featured operators taken as those

corresponding to assumed (constant) material parameters. Accordingly by taking Φ = V̂ , recalling

that c−1
∗ > C−1, and integrating (5.3.53) by parts, one finds that

C−1C−1
∗ ρ̂2τ̂2‖V̂‖2L2(Br) 6 −

(
1 + C−1 − c−1

)
‖∇∇·V̂‖2L2(Br) +

(
c−1
∗ + C−1

)
ρ̂τ̂‖∇·V̂‖2L2(Br).

(5.3.66)
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If V̂0∈W0(D) is the extension of V̂ by zero to the whole D, then

〈
(Fτ̂ − τ̂G)V̂0, V̂0

〉
W0(D)

6

(
1 + c−1 − C−1

C−1
∗ − c−1

)
‖∇∇·V̂‖2L2(Br) −

(
C−1
∗ + c−1

C−1
∗ − c−1

)
pτ̂‖∇·V̂‖2L2(Br)

+
(

c−1c−1
∗

C−1
∗ − c−1

)
P2τ̂2‖V̂‖2L2(Br),

(5.3.67)

where Fτ̂ and G are given by (5.3.52) assuming τ= τ̂ and the original set of material parameters in

terms of distributions (C, ρ) and (C∗, ρ∗) over D. A substitution of (5.3.66) into (5.3.67) yields

〈
(Fτ̂ − τ̂G)V̂0, V̂0

〉
W0(D)

6

{(
1+c−1−C−1

C−1
∗ −c−1

)
− c−1c−1

∗
C−1C−1

∗

(
1+C−1−c−1

C−1
∗ −c−1

)
P2

ρ̂2

}
‖∇∇·V̂‖2L2(Br)

+
{

c−1c−1
∗

C−1C−1
∗

(
c−1
∗ + C−1

C−1
∗ − c−1

)
P2

ρ̂
−
(

C−1
∗ + c−1

C−1
∗ − c−1

)
p

}
τ̂2‖V̂‖2L2(Br).

(5.3.68)

Recalling further that C−1
∗ > c−1 and choosing the constant mass density ρ̂ > 0 such that

ρ̂ >
c−1c−1

∗
C−1C−1

∗

(
c−1
∗ + C−1

C−1
∗ + c−1

)
P2

p
, (5.3.69)

one finds from (5.3.68) that for sufficiently large τ̂ = τ1, operator Fτ1 − τ1G is non-positive on

the subspace of W0(D) spanned by V̂0 – a result which meets Assumption 2 of Theorem 10. As

a result, one finds from the latter theorem that there is at least one transmission eigenvalue of Br

within interval [τ0, τ1], where τ0<β′′/(PCP ). The reminder of the proof mimics that in Theorem

12 and is omitted for brevity.

Note again that the above analysis allows one to establish implicit estimates on the extreme

eigenvalues of C and C∗ in terms of the first transmission eigenvalue, ω1, of (5.3.34) in a way

analogous to that in Corollary 1.

5.4 Configurations without material similitude

For a comprehensive treatment of the subject, this section assumes that the mass density and elas-

ticity contrasts between the two solids, ∆ρ := ρ∗− ρ and ∆C := C∗− C , are both non-zero almost

everywhere in D. The difficulty in the treatment of such class of configurations stems from the

imposed “dual” boundary condition in (5.2.6). In particular, if one attempts to apply the methods



CHAPTER 5. ELASTIC INTERIOR TRANSMISSION EIGENVALUE PROBLEM 213

of analysis established in Section 5.3, the fact that ∆ρ 6= 0 and ∆C 6= 0 simultaneously makes it

impossible to deploy the featured functional spaces which postulate homogeneous boundary con-

ditions over ∂D. To deal with the impediment, the ensuing analysis pursues an alternate route by

generalizing upon the developments in [23] and [59].

To help establish the necessary framework, one may recast the interior transmission prob-

lem (5.2.6) in a variational setting as either of∫
D

(
∇u :C :∇ϕ̄− ρω2u·ϕ̄

)
dV = 0∫

D

(
∇u∗ :C∗ :∇ϕ̄− ρ∗ω

2u∗ ·ϕ̄
)

dV = 0
∀ϕ ∈ H1

0 (D), (5.4.1)

and∫
D

(
∇u :C :∇ϕ̄ − ρω2u·ϕ̄

)
dV =

∫
D

(
∇u∗ :C∗ :∇ϕ̄− ρ∗ω

2u∗ ·ϕ̄
)

dV ∀ϕ ∈ H1(D),

(5.4.2)

where H1
0 (D) denotes the Hilbert space of all ϕ ∈ H1(D) such that ϕ=0 on ∂D. As a result, if

v := u− u∗ then clearly v ∈ H1
0 (D) and from (5.4.2) it follows that∫

D

(
∇u :∆C :∇ϕ̄ − ∆ρω

2u·ϕ̄
)

dV =
∫

D

(
∇v :C∗ :∇ϕ̄ − ρ∗ω

2v ·ϕ̄
)

dV ∀ϕ ∈ H1(D),

(5.4.3)

or alternatively∫
D

(
∇u∗ :∆C :∇ϕ̄ − ∆ρω

2u∗ ·ϕ̄
)

dV =
∫

D

(
∇v :C :∇ϕ̄ − ρω2v ·ϕ̄

)
dV ∀ϕ ∈ H1(D).

(5.4.4)

5.4.1 Elasticity and mass density contrasts of opposite sign

To examine the issues of discreteness and existence of the transmission eigenvalues characteriz-

ing (5.2.6) that have, for this class of material configurations, eluded earlier studies [23], set τ = ω2

and let Mτ and M∗
τ be the bilinear forms on H1(D)×H1(D) defined by

Mτ (ϕ,ψ) :=
〈
∆C :∇ϕ,∇ψ

〉
L2(D)

− τ
〈
∆ρϕ,ψ

〉
L2(D)

,

M∗
τ (ϕ,ψ) :=

〈
∆C :∇ϕ,∇ψ

〉
L2(D)

− τ
〈
∆ρϕ,ψ

〉
L2(D)

.
(5.4.5)
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Next, for given v ∈ H1
0 (D), let Nτ,v and N ∗

τ,v be the linear forms on H1(D) such that

Nτ,v(ψ) :=
〈
C∗ :∇v,∇ψ

〉
L2(D)

− τ
〈
ρ∗ v,ψ

〉
L2(D)

,

N ∗
τ,v(ψ) :=

〈
C :∇v,∇ψ

〉
L2(D)

− τ
〈
ρv,ψ

〉
L2(D)

,
(5.4.6)

for all (ϕ,ψ) ∈ H1(D) ×H1(D). With such definitions, variational problems (5.4.3) and (5.4.4)

consist respectively in finding u ∈ H1(D) such that

Mτ (u,ϕ) = Nτ,v(ϕ) ∀ϕ ∈ H1(D), (5.4.7)

and solving for u∗∈H1(D) that satisfies

M∗
τ (u∗,ϕ) = N ∗

τ,v(ϕ) ∀ϕ ∈ H1(D). (5.4.8)

Lemma 16. For every v∈H1
0 (D) and τ ∈C such that<(τ)>−δ for some δ>0, there exists unique

u∈H1(D) satisfying (5.4.3) (resp. u∗∈H1(D) satisfying (5.4.4)) when P∗< p and c∗>C (resp.

p∗ > P and C∗ < c). Further, the linear operator Mτ : H1
0 (D) → H1(D) constructed such that

Mτv = u is solution of (5.4.3) (resp. M∗
τ : H1

0 (D) → H1(D) constructed such that M∗
τv = u∗ is

solution of (5.4.4)) is bounded and depends analytically on τ ∈ {z ∈ C : <(z)>−δ}.

Proof. The proof is essentially the same in the two cases, and is shown here assuming P∗< p and

c∗>C. Assuming v ∈ H1
0 (D) and setting ϕ in (5.4.7) to be a constant vector, one finds that∫

D
∆ρu·ϕ̄ dV =

∫
D
ρ∗v ·ϕ̄ dV.

As a result, the solution u∈H1(D) of (5.4.7) when τ =0 is unique up to a constant vector which

can be chosen such that the above equality holds for three linearly independent constant vectors ϕ.

In light of this result, the solution for τ ∈ C can be conveniently sought as u = ũ+ k, where k is

a constant vector and ũ ∈ H̃1(D) belongs to the space of “zero-weighted-mean” functions

H̃1(D) :=
{
ψ ∈ H1(D) :

∫
D

∆ρψ dV = 0
}
,
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equipped with the usual H1(D) norm. On selecting k independent of τ as

k =

∫
D
ρ∗v dV∫

D
∆ρ dV

,

one finds from (5.4.5)-(5.4.7) that ũ satisfies the same equation as u. By the standard arguments for

ψ ∈ H̃1(D), it also follows that ‖∇ψ‖2L2(D) is an equivalent norm in H̃1(D) since

µ

µ+ 1
‖ψ‖2H1(D) ≤ ‖∇ψ‖

2
L2(D) ≤ ‖ψ‖

2
H1(D), (5.4.9)

where µ > 0 is the unique minimizer

µ = inf
ψ∈H̃1(D)

‖∇ψ‖2L2(D)

‖ψ‖2
L2(D)

.

When c∗>C and P∗< p, it follows from (5.4.5a) and (5.4.9) that for sufficiently small δ > 0

one has

< (Mτ (ϕ,ϕ)) > (c∗− C)‖∇ϕ‖2L2(D) − δ (P− p∗)‖ϕ‖2L2(D) > C ′′‖ϕ‖2H1(D), (5.4.10)

for all ϕ ∈ H̃1(D) and some positive constant C ′′ independent of τ ∈ {z ∈ C : <(z) > −δ},

wherebyMτ is coercive in H̃1(D). SinceMτ andNτ,v are also continuous, application of the Lax-

Milgram theorem ensures the existence of a unique ũ that solves (5.4.7) and depends continuously

on v. Furthermoreu = ũ+k also satisfies (5.4.7) by the definition of k. As a result, one concludes

that bounded linear operator Mτ , which maps v to a unique solution u of (5.4.7), is well defined

and depends analytically on τ ∈ {z ∈ C : <(z)>−δ}.

On recalling (5.4.1) and making reference to the relationships u = Mτv and u∗ = M∗
τv where

v∈H1
0 (D), one can define the respective linear forms on H1

0 (D) as

Lτ (ϕ) :=
〈
C :∇u,∇ϕ

〉
L2(D)

− τ
〈
ρu,ϕ

〉
L2(D)

, (5.4.11)

and

L∗τ (ϕ) :=
〈
C∗ :∇u∗,∇ϕ

〉
L2(D)

− τ
〈
ρ∗u∗,ϕ

〉
L2(D)

, (5.4.12)
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such that, in light of Lemma 16 and the Riesz representation theorem, there exists a bounded

linear operator Lτ (resp. L∗τ ) from H1
0 (D) into H1

0 (D) such that for all ϕ ∈ H1
0 (D) one has〈

Lτv,ϕ
〉
H1

0 (D)
= Lτ (ϕ) (resp.

〈
L∗τv,ϕ

〉
H1

0 (D)
= L∗τ (ϕ)). Thus if P∗ < p and c∗ > C (resp.

p∗>P and C∗<c) and τ=ω2 is a transmission eigenvalue of (5.2.6) associated with eigenfunction

pair (u,u∗) ∈ H1(D) × H1(D), then v = u − u∗ ∈ H1
0 (D) verifies v 6= 0 and v ∈ ker(Lτ )

(resp. v ∈ ker(L∗τ )). Conversely, if v ∈ ker(Lτ )\{0} (resp. v ∈ ker(L∗τ )\{0}), then u = Mτv

and u∗ = u − v solve (5.4.1a) and (5.4.2) as a consequence of (5.4.3) (resp. u∗ = M∗
τv and

u = v+M∗
τv satisfy (5.4.1b) and (5.4.2) owing to (5.4.4)). Thus, (u,u∗) defines a set of transmis-

sion eigenfunctions in H1(D) ×H1(D) in each case. Note that, owing to Lemma 16, Lτ (resp.

L∗τ ) depends analytically on τ ∈ {z ∈ C : <(z) > −δ}

Lemma 17. Linear operator L0 : H1
0 (D) → H1

0 (D) (resp. L∗0) is coercive if P∗< p and c∗>C

(resp. p∗>P and C∗<c).

Proof. Again, the proof is shown only for the case where P∗ < p and c∗ > C. With reference

to (5.4.11), one finds by setting τ=0 that

〈
L0v,v

〉
H1

0 (D)
=
∫

D
∇u : C : ∇v̄ dV, (5.4.13)

where v ∈ H1
0 (D) and u = M0v also satisfies (5.4.3) due to Lemma 16. On substituting u =

v + u∗ in (5.4.3) and (5.4.13), one further has

〈
L0v,v

〉
H1

0 (D)
=
∫

D
(∇v :C :∇v̄ + ∇u∗ :∆C :∇ū∗) dV (5.4.14)

and, due to the bounds in (5.2.1) on elastic tensors,

〈
L0v,v

〉
H1

0 (D)
> c‖∇v‖2L2(D) + (c∗− C)‖∇u∗‖2L2(D). (5.4.15)

Finally, since v ∈ H1
0 (D) one finally concludes from the Poincaré inequality that there exists a

constant C>0 such that 〈
L0v,v

〉
H1

0 (D)
> C‖v‖2H1

0 (D), (5.4.16)

whereby L0 is coercive on H1
0 (D).

Lemma 18. Linear operator Lτ (resp. L∗τ ) from H1
0 (D) into H1

0 (D) is self-adjoint and has the
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property that Lτ− L0 (resp. L∗τ− L∗0) is compact on H1
0 (D), if P∗<p and c∗>C (resp. p∗>P

and C∗<c ).

Proof. Suppose that P∗ < p and c∗ > C, and let (v,v′) ∈ H1
0 (D)×H1

0 (D). Due to Lemma 16,

u = Mτv and u′ = Mτv
′ each satisfy (5.4.3). With reference to (5.4.11), one has

〈
Lτv,v

′〉
H1

0 (D)
=
∫

D

(
∇u : C : ∇v̄′ − ρ τu·v̄′

)
dV

= −
∫

D

(
∇u : ∆C : ∇v̄′ −∆ρτu·v̄′

)
dV

+
∫

D

(
∇u : C∗ : ∇v̄′ − ρ∗τu·v̄′

)
dV,

(5.4.17)

which by applying (5.4.3) twice, yields

〈
Lτv,v

′〉
H1

0 (D)
= −

∫
D

(
∇v : C∗ : ∇v̄′ − ρ∗τv ·v̄′

)
dV

+
∫

D

(
∇u′ : ∆C : ∇ū−∆ρτu

′ ·ū
)

dV.
(5.4.18)

As a result,
〈
Lτv,v

′〉
H1

0 (D)
=
〈
Lτv′,v

〉
H1

0 (D)
i.e. Lτ is self-adjoint.

To establish the compactness of Lτ − L0, consider a bounded sequence vn in H1
0 (D) for

which there exists a subsequence ṽn that weakly converges with respect to the H1
0 (D)-norm to

v ∈ H1
0 (D). Since H1

0 (D) is compactly embedded in L2(D), ṽn converges strongly to v with

respect to the L2(D)-norm and, due to Lemma 16, sequences ũn := Mτ ṽn and ũ0
n := M0ṽn

converge strongly in L2(D) to u and u0, respectively. On the basis of (5.4.11), the Cauchy-Schwarz

inequality, and the bounds on C and ρ as in (5.2.1), on the other hand, one has

‖(Lτ−L0)(ṽn−v)‖H1
0 (D) 6 C

{
‖∇(ũn− u)‖L2(D) + ‖∇(ũ0

n− u0)‖L2(D)

}
+Pτ‖ũn−u‖L2(D),

(5.4.19)

which guarantees that (Lτ− L0)ṽn converges strongly to (Lτ− L0)v with respect to the H1
0 (D)-

norm, i.e. that Lτ− L0 is compact.

Theorem 15. If either P∗<p and c∗>C or p∗>P and C∗<c, the set of transmission eigenvalues

associated with (5.2.6) is discrete, with infinity being the only possible accumulation point. Further,
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every feasible transmission eigenvalue ω2 is such that

ω2 > λ1(D)
min(c, c∗)
max(P,P∗)

.

Proof. The discreteness of the set of transmission eigenvalues is a direct consequence of Lemmas

16, 17 and 18. Indeed, under the hypothesis that P∗<p and c∗>C (resp. p∗>P and C∗< c), one

has that L0 (resp. L∗0) is invertible and that Lτ − L0 (resp. L∗τ − L∗0) is compact, while Lτ (resp.

L∗τ ) depends analytically on τ in a neighborhood of the real axis. On employing the decomposition

Lτ =L0 +(Lτ−L0) (resp. L∗τ =L∗0 +(L∗τ−L∗0)), it follows from the analytic Fredholm theory [78]

that compact operator I+L−1
0 (Lτ−L0) (resp. I+L∗0

−1(L∗τ−L∗0)) is invertible except for a discrete

set of values τ ∈ C that can only accumulate at infinity.

To establish the remainder of the claim, assume first P∗ < p and c∗ > C, and let v ∈ H1
0 (D)

such that v ∈ ker(Lτ ). On recalling that u = Mτv and u∗ = u − v , one finds from (5.4.1a)

and (5.4.3) that

∫
D

(∇u∗ :∆C :∇ū∗ −∆ρτ u∗ ·ū∗) dV +
∫

D
(∇v :C :∇v̄ − ρ τ v ·v̄) dV = 0. (5.4.20)

But∫
D

(∇u∗ :∆C :∇ū∗ −∆ρτ u∗ ·ū∗) dV > (c∗− C)‖∇u∗‖2L2(D) + (p− P∗)τ‖u∗‖2L2(D) > 0,

(5.4.21)

and since v ∈ H1
0 (D) one has∫

D
(∇v :C :∇v̄ − ρ τ v ·v̄) dV > ‖v‖2L2(D) (λ1(D)c− τP) , (5.4.22)

due to (5.2.1) and Courant-Fischer min-max formulae. As a result, one finds from (5.4.20)–(5.4.22)

assuming τ < λ1(D)c/P that ‖v‖L2(D) = ‖u∗‖L2(D) = 0 and consequently that u = u∗ = 0,

whereby such τ cannot be a transmission eigenvalue.

Next, assume p∗>P and C∗< c, and let v ∈ H1
0 (D) such that v ∈ ker(L∗τ ). By invoking the

relationships u∗ = M∗
τv and u = u∗ + v together with (5.4.1b) and (5.4.4), one finds that

−
∫

D
(∇u :∆C :∇ū−∆ρτu·ū) dV +

∫
D

(∇v :C∗ :∇v̄ − ρ∗τv ·v̄) dV = 0, (5.4.23)
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which leads to the conclusion that ‖v‖L2(D) = ‖u‖L2(D) = 0 whenever τ < λ1(D)c∗/P∗.

The last step of the analysis is to demonstrate the existence of a countable set of (real-valued)

transmission eigenvalues associated with (5.2.6) assuming that ∆ρ and ∆C are both non-zero al-

most everywhere in D. In what follows, this is accomplished by employing the methodology pro-

posed in [59] for scalar problems and making an additional restriction that the medium represented

by (C, ρ) is homogeneous and isotropic, i.e. that

ρ = p and

{
C = 1

3(c−C) I ⊗ I + C Isym for ν∈(−1, 0],

C = 1
3(C−c) I ⊗ I + c Isym for ν∈ [0, 1

2),
(5.4.24)

where⊗ signifies the (outer) tensor product, I and Isym are the symmetric second- and fourth-order

identity tensors respectively. In this setting one may first invoke the result of Lemma 17 and note,

assuming P∗<p and c∗>C, that the kernel of Lτ coincides with that of I + (L0)−1/2Cτ (L0)−1/2,

Cτ := (Lτ − L0) owing to the fact that operator L0 : H1
0 (D) → H1

0 (D) is positive definite (recall

that Cτ is compact by virtue of Lemma 18). As a result, the multiplicity of any given transmission

eigenvalue is finite for τ is a transmission eigenvalue of (5.2.6) if and only if 1 is an eigenvalue

of the compact self-adjoint operator −(L0)−1/2Cτ (L0)−1/2. Here it is noted that operator Tτ :=

(L0)−1/2Cτ (L0)−1/2, being compact and self-adjoint, is characterized by an infinite sequence of

eigenvalues µj(τ) accumulating at +∞. Owing to the Courant-Fischer min-max principle, one can

further deduce that µj(τ) are continuous in τ . For completeness, it is worth mentioning that the

analogous result can be established for L∗τ in situations when p∗>P and C∗<c .

Making use of the above discussion, the proof of the existence of transmission eigenvalues is

based on the following theorem established in [159], which plays a similar role as Theorem 10 in

Section 5.3.

Theorem 16. Assume that P∗<p and c∗>C (resp. p∗>P and C∗< c ), and let τ → Lτ (resp.

τ → L∗τ ) be a continuous mapping from [0, +∞) to the set of linear self-adjoint operators H1
0 (D)

→ H1
0 (D) with property that L0 (resp. L∗0) is coercive and Lτ − L0 (resp. L∗τ − L∗0) is compact.

Provided that there are two nonnegative constants τ0 > 0 and τ1 > τ0 such that

1. Lτ0 (resp. L∗τ0) is positive on H1
0 (D),

2. Lτ1 (resp. L∗τ1) is non-positive on an m-dimensional subspace of H1
0 (D),

operator Lτ (resp. L∗τ ) possessesm transmission eigenvalues (counting multiplicity) within interval

[τ0, τ1], i.e. m values of τ for which ker(Lτ ) 6= {0} (resp. ker(L∗τ ) 6= {0}).
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With the above result in place, the next theorem establishes the existence of an infinite set of

transmission eigenvalues.

Theorem 17. Assume that the medium represented by (C, ρ) is homogeneous and isotropic as

in (5.4.24), and let either P∗ < p and c∗ > C, or p∗ > p and C∗ < c . Then there exists an in-

finite sequence of transmission eigenvalues τj = ω2
j associated with (5.2.6) with +∞ as their only

accumulation point.

Proof. The proof is essentially the same in the two cases, and is shown here for P∗<p and c∗>C.

Without loss of generality, it is also assumed that the Poisson’s ratio ν affiliated with the homoge-

neous background solid, see (5.4.24), is non-negative. First recall that, by virtue of Lemma 17, the

first assumption of Theorem 16 is satisfied for τ0 = 0. From Theorem 15, self-adjoint operator Lτ0

(see Lemma 18) is thus positive on H1
0 (D) for all sufficiently small τ0 > 0. Next, from (5.4.17)

and the fact that u = v + u∗ one finds

〈
Lτv,v

〉
H1

0 (D)
=
∫

D
(∇u : C : ∇v̄ − ρ τu·v̄) dV

=
∫

D
(∇u∗ : C : ∇v̄ − ρ τu∗ ·v̄ + ∇v : C : ∇v̄ − ρ τv ·v̄) dV

(5.4.25)

which, combined with (5.4.4) when ϕ = u∗, yields

〈
Lτv,v

〉
H1

0 (D)
=
∫

D

(
∇u∗ : ∆C : ∇ū∗ − τ ∆ρ |u∗|2 + ∇v : C : ∇v̄ − ρ τ |v|2

)
dV (5.4.26)

due to major symmetry of the elastic tensor. To facilitate the application of (5.4.26), let Br⊂ D be

an arbitrary ball of radius r included in D, and let τ̂ be a transmission eigenvalue corresponding to

ball Br, see Section 5.2.2, affiliated with two sets of constant material properties (Ĉ, ρ̂) := (C, ρ)
and (Ĉ∗, ρ̂∗) := (c∗Isym,P∗), where C and ρ are given by (5.4.24). Recalling an earlier assumption

that ν > 0, such configuration in particular implies that

∆Ĉ = Ĉ∗ − Ĉ =
1
3
[
(c∗−C)− (c∗−c)

]
I ⊗ I + (c∗− c) Isym (5.4.27)

which is, in of itself, an isotropic elastic tensor whose maximum and minimum eigenvalue are given

respectively by c∗−c>0 and c∗−C>0 (compare with the expression for C in (5.4.24) for negative

Poisson’s ratio). Hereon, the nontrivial solutions corresponding to τ̂ are denoted by û and û∗, and

their difference by v̂ = û − û∗ which is clearly in H1
0 (Br). If L̂τ is the corresponding operator
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constructed from v̂ and û by the same procedure as in Lemma 16, one has

0 =
〈
L̂τ̂ v̂, v̂

〉
H1

0 (Br)
=
∫

Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗ − τ̂ ∆ρ̂ |û∗|2 + ∇v̂ : C : ∇¯̂v − ρ τ̂ |v̂|2

)
dV.

(5.4.28)

Next, letting ṽ∈H1
0 (D) be the extension by zero of v̂∈H1

0 (Br) to the whole of D, and taking the

corresponding unique solution of (5.4.3) as ũ := Mτ̂ ṽ and ũ∗ := ũ − ṽ, sequential application

of (5.4.4) to pairs (ũ∗, ṽ) and (û∗, v̂) yields∫
D

(∇ũ∗ : ∆C : ∇ϕ̄− τ̂ ∆ρũ∗ ·ϕ̄) dV =
∫

D
(∇ṽ : C : ∇ϕ̄− ρ τ̂ ṽ ·ϕ̄) dV

=
∫

Br

(∇v̂ : C : ∇ϕ̄− ρ τ̂ v̂ ·ϕ̄) dV =
∫

Br

(
∇û∗ : ∆Ĉ : ∇ϕ̄− τ̂ ∆ρ̂û∗ ·ϕ̄

)
dV (5.4.29)

for all ϕ ∈ H1(D). Since ∆Ĉ is positive definite, see (5.4.27) while ∆ρ̂ < 0, the last integral

in (5.4.29) is positive for ϕ = ũ∗. With the latter restriction on the trial function, one accordingly

finds from (5.4.27) and (5.4.29) via the Cauchy-Schwarz inequality that∫
D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2

)
dV =

∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̃u∗ − τ̂ ∆ρ̂û∗ · ¯̃u∗

)
dV (5.4.30)

6

[∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗ − τ̂ ∆ρ |û∗|2

)
dV
]1/2 [∫

Br

(
∇ũ∗ : ∆Ĉ : ∇¯̃u∗ − τ̂ ∆ρ̂ |ũ∗|2

)
dV
]1/2

6

[∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗ − τ̂ ∆ρ̂ |û∗|2

)
dV
]1/2 [∫

D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2

)
dV
]1/2

since ξ :∆Ĉ : ξ̄ = ξ : (Ĉ∗−Ĉ) : ξ̄ 6 ξ : (C∗−C) : ξ̄ = ξ :∆C : ξ̄ and −∆ρ̂ = ρ−P∗ 6 ρ−ρ∗ = −∆ρ.

As a result, one has∫
D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2

)
dV 6

∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗ − τ̂ ∆ρ̂ |û∗|2

)
dV.

A substitution of this result into (5.4.26) with τ = τ̂ and v = ṽ, followed by the use of (5.4.28),

yields

〈
Lτ̂ ṽ, ṽ

〉
H1

0 (D)
=

∫
D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2 + ∇ṽ : C : ∇¯̃v − ρ τ̂ |ṽ|2

)
dV

6
∫

Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗ − τ̂ ∆ρ̂ |û∗|2 + ∇v̂ : C : ∇¯̂v − ρ τ̂ |v̂|2

)
dV = 0.



CHAPTER 5. ELASTIC INTERIOR TRANSMISSION EIGENVALUE PROBLEM 222

By making reference to Theorem 16, one concludes that there exists at least one transmission

eigenvalue within interval (0, τ̂ ]. Finally, by arguing in exactly the same way as in the last part of

the proof of Theorem 12, it is possible to demonstrate that in fact there exists a countable set of

transmission eigenvalues affiliated with (5.2.6).

Remark 15. As a consequence of the proof of Theorem, 17 one obtains an upper bound for the

first transmission eigenvalue ω1. More specifically, consider Br⊂D as the largest ball contained

in D. If P∗ < p and c∗ > C, then the first eigenvalue associated with (5.2.6) is not larger than

the first transmission eigenvalue corresponding to Br endowed with a pair of constant material

properties (Ĉ, ρ̂) := (C, ρ) and (Ĉ∗, ρ̂∗) := (c∗Isym,P∗), where C and ρ are given by (5.4.24).

Conversely if p∗ > p and C∗ < c, then the first eigenvalue affiliated with (5.2.6) is not larger

than the first transmission eigenvalue corresponding to Br endowed with (Ĉ, ρ̂) := (C, ρ) and

(Ĉ∗, ρ̂∗) := (C∗Isym, p∗).

5.4.2 Elasticity and mass density contrasts of the same sign

The methodology proposed in [111, 48], together with its extensions to the elasticity case [63, 23],

allow one to deal with situations where (5.2.6) involves contrasts in material parameters that are of

the same sign, namely when either p∗ > P and c∗ > C, or p > P∗ and c > C∗. To facilitate the

discussion, one may introduce the space of first-order tensors

H (D) := {(ϕ,ϕ∗)∈H1(D)×H1(D) : ∇·[C :∇ϕ] ∈ L2(D), ∇·[C∗ :∇ϕ∗] ∈ L2(D)},
(5.4.31)

together with the pair of (linear) differential-trace operators P,Q : H (D) → L2(D) × L2(D) ×
H

1
2 (∂D)×H− 1

2 (∂D) defined by

P(ϕ,ϕ∗) :=
(
∇·[C :∇ϕ]−ρϕ,∇·[C∗ :∇ϕ∗]−ρ∗ϕ∗,(ϕ−ϕ∗)|∂D,n·(C :∇ϕ− C∗ :∇ϕ∗)|∂D

)
,

Q(ϕ,ϕ∗) :=(ρϕ,ρ∗ϕ∗,0,0).
(5.4.32)

for all (ϕ,ϕ∗) ∈ H (D). On the basis of (5.4.31) and (5.4.32), the interior transmission problem

(5.2.6) can be recast as a task of finding (u,u∗) ∈ H (D) such that

P(u,u∗) + (1+τ)Q(u,u∗) = 0. (5.4.33)



CHAPTER 5. ELASTIC INTERIOR TRANSMISSION EIGENVALUE PROBLEM 223

Next, it is useful to define the auxiliary spaces of symmetric second-order tensors

W (D) := {Φ ∈ L2(D) : Φ = ΦT, ∇·Φ ∈ L2(D), ∇× [C−1 :Φ] = 0},

W∗(D) := {Φ∗ ∈ L2(D) : Φ∗ = ΦT
∗,∇·Φ∗ ∈ L2(D), ∇× [C−1

∗ :Φ∗] = 0},
(5.4.34)

and introduce a bounded bilinear form, R, on K (D) := W (D)×H1(D) so that

R
(
(Φ,ϕ∗), (Ψ,ψ∗)

)
:=
〈
ρ−1∇·Φ,∇·Ψ

〉
L2(D)

+
〈
C−1 :Φ,Ψ

〉
L2(D)

+
〈
C∗ :∇ϕ∗,∇ψ∗

〉
L2(D)

+
〈
ρ∗ϕ∗,ψ∗

〉
L2(D)

−
〈
ϕ∗,Ψ·n

〉
L2(∂D)

−
〈
Φ·n,ψ∗

〉
L2(∂D)

,

(5.4.35)

for all (Φ,ϕ∗) and (Ψ,ψ∗) in K (D), together with its companion on K∗(D) :=H1(D)×W∗(D),

given by

R∗
(
(ϕ,Φ∗), (ψ,Ψ∗)

)
:=
〈
ρ−1
∗ ∇·Φ∗,∇·Ψ∗

〉
L2(D)

+
〈
C−1
∗ :Φ∗,Ψ∗

〉
L2(D)

+
〈
C :∇ϕ,∇ψ

〉
L2(D)

+
〈
ρϕ,ψ

〉
L2(D)

−
〈
ϕ,Ψ∗ ·n

〉
L2(∂D)

−
〈
Φ∗ ·n,ψ

〉
L2(∂D)

,

(5.4.36)

for all (ϕ,Φ∗) and (ψ,Ψ∗) in K∗(D). With reference to (5.4.35) and (5.4.36), the Riesz represen-

tation theorem guarantees the existence of a linear operator R : K (D) → K (D) such that

〈
R(Φ,ϕ∗), (Ψ,ψ∗)

〉
K (D)

= R((Φ,ϕ∗), (Ψ,ψ∗)), (5.4.37)

for all (Φ,ϕ∗) and (Ψ,ψ∗) in K (D), and linear operator R∗ : K∗(D) → K∗(D) satisfying

〈
R∗(ϕ,Φ∗), (ψ,Ψ∗)

〉
K∗(D)

= R∗((ϕ,Φ∗), (ψ,Ψ∗)), (5.4.38)

for all (ϕ,Φ∗) and (ψ,Ψ∗) in K∗(D).

With the above notation in place, one is in position to state the key results from [23] that are

essential for the treatment of the problem at hand.

Lemma 19. Operator P is bijective if and only if operators R and R∗ are bijective.

Lemma 20. Operator R : K (D) → K (D) (resp. R∗ : K∗(D) → K∗(D)) is self-adjoint and

positive definite if P < p∗ and C < c∗ (resp. P∗ < p and C∗ < c). Further, linear operator

Q : H (D)→L2(D)× L2(D)×H
1
2 (∂D)×H− 1

2 (∂D) is self-adjoint, positive and compact.

To establish a lower bound for the transmission eigenvalues of (5.2.6) under the featured restric-
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tion on material contrasts, one may introduce the Sobolev space of weighted zero-mean functions

as

H̃1(D) :=
{
ϕ ∈ H1(D) :

∫
D

∆ρϕ dV = 0
}
. (5.4.39)

For further reference, it is also recalled that that the negative Laplace operator, −∆, admits an in-

creasing sequence of positive Neumann eigenvalues µn(D) and associated (first-order) eigentensors

ψn [113] satisfying
−∆ψn = µn(D)ψn in D,

∇ψn ·n = 0 on ∂D.
(5.4.40)

Due to the fact that the first eigenvalue in (5.4.40) is µ1 = 0, µ2 denotes the smallest non-zero

Neumann eigenvalue of the negative Laplace operator.

Theorem 18. If either P < p∗ and C < c∗ or P∗< p and C∗< c, the set of transmission eigen-

values associated with (5.2.6) is discrete, with infinity being the only possible accumulation point.

Moreover, every feasible transmission eigenvalue ω2 is such that

ω2 >min
[
λ1(D) min(c, c∗)

(
1

min(P,P∗)
− 1

max(p, p∗)

)
,µ2(D)

max(c, c∗)−min(C,C∗)
max(P,P∗)−min(p, p∗)

]
.

(5.4.41)

Proof. The first part of the theorem is a direct consequence of Lemmas 19 and 20. Under the

hypothesis that either R or R∗ is positive definite (which is ensured by the featured restriction on

material contrasts), the use of the Lax-Milgram theorem demonstrates that P is invertible [23]. In

light of the “operator” formulation (5.4.33) of the interior transmission problem (5.2.6), on the other

hand, the Fredholm alternative applied to compact operator I+(1+τ)P−1Q (where I is the relevant

identity operator) affirms the claim regarding the nature of the set of transmission eigenvalues.

To establish the lower bound (5.4.41) on the transmission eigenvalues, assume first that P∗<p

and C∗<c. The combination of (5.4.1b) and (5.4.4) then yields∫
D

(∇u :∆C :∇ū−∆ρτu·ū) dV =
∫

D
(∇v :C∗ :∇v̄ − ρ∗τv ·v̄) dV, (5.4.42)

see also (5.4.23). If u is next decomposed as u = ũ + c where ũ∈ H̃1(D) and c is a complex-
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valued vector constant, then taking ϕ = 1 in (5.4.3) shows that

c =

∫
D
ρ∗v dV∫

D
∆ρ dV

, (5.4.43)

which reduces (5.4.42) to∫
D

(∇ũ :∆C :∇¯̃u−∆ρτ ũ· ¯̃u) dV =
∫

D
(∇v :C∗ :∇v̄ − ρ∗τv ·v̄) dV + τ |c|2

∫
D

∆ρ dV.

(5.4.44)

Here the application of relationship u = ũ+c and Courant-Fischer min-max formulae [113] yield

inf
ũ∈H̃1(D)

∫
D
|∇ũ|2 dV∫

D
|ũ|2 dV

> inf
u∈H1(D)R
D udV = 0

∫
D
|∇u|2 dV∫

D
|u|2 dV

> µ2(D), (5.4.45)

while (5.2.1) requires that supD ∆ρ = P∗−p<0 and supD supξ ξ :∆C : ξ̄ = (C∗−c)|ξ|2 60 for

all complex-valued vectors ξ. As a result, the left-hand side of (5.4.44) can be shown to be bounded

from above as∫
D

(∇ũ :∆C :∇¯̃u−∆ρτ ũ· ¯̃u) dV 6
(
(C∗− c)µ2(D)− τ(p∗− P)

)
‖ũ‖2L2(D). (5.4.46)

On recalling that v ∈ H1
0 (D), a similar treatment of the right-hand side yields∫

D
(∇v :C∗ :∇v̄ − ρ∗τv ·v̄) dV + τ |c|2

∫
D

∆ρ dV >

(
c∗λ1(D) + τ

pP∗
P∗ − p

)
‖v‖2L2(D).

(5.4.47)

Thus, if τ = ω2 satisfies

τ < µ2(D)
c− C∗
P− p∗

and τ < c∗λ1(D)
(

1
P∗
− 1

p

)
, (5.4.48)

inequalities (5.4.46) and (5.4.47) together with (5.4.44) require that ũ = v = 0 and consequently

u=u∗=0, whereby such τ cannot be a transmission eigenvalue.

Alternatively when P < p∗ and C < c∗, the use of (5.4.1a) and (5.4.3) demonstrates that

−
∫

D
(∇u∗ :∆C :∇ū∗ −∆ρτu∗ ·ū∗) dV =

∫
D

(∇v :C :∇v̄ − ρ τv ·v̄) dV, (5.4.49)
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see also (5.4.20). In this setting u∗ can be decomposed in u∗ = ũ∗ + c∗, where ũ∗∈ H̃1(D) and

c∗ is a complex-valued vector constant. Then (5.4.4) provides the value of the constant as

c∗ =

∫
D
ρv dV∫

D
∆ρ dV

, (5.4.50)

which permits (5.4.49) to be rewritten as

−
∫

D
(∇ũ∗ :∆C :∇¯̃u∗ −∆ρτ ũ∗ · ¯̃u∗) dV =

∫
D

(∇v :C :∇v̄ − ρ τv ·v̄) dV − τ |c∗|2
∫

D
∆ρ dV.

(5.4.51)

Since in this case infD ∆ρ = p∗−P > 0 and infD infξ ξ : ∆C : ξ̄ = (c∗−C)|ξ|2 > 0 for

all complex-valued vectors ξ, one can show that the left and the right-hand side of (5.4.51) are

bounded respectively as

−
∫

D
(∇ũ∗ :∆C :∇¯̃u∗ −∆ρτ ũ∗ · ¯̃u∗) dV 6

(
−µ2(D)(c∗−C)+τ (P∗−p)

)
‖ũ∗‖2L2(D), (5.4.52)

and ∫
D

(∇v :C :∇v̄ − ρ τv ·v̄) dV − τ |c∗|2
∫

D
∆ρ dV >

(
cλ1(D)− τ

p∗P

p∗− P

)
‖v‖2L2(D).

(5.4.53)

As a result, when τ is such that

τ < µ2(D)
c∗ − C

P∗ − p
and τ < cλ1(D)

(
1
P
− 1

p∗

)
, (5.4.54)

substitution of (5.4.52) and (5.4.53) into (5.4.51) guarantees that ũ∗ = v = 0 and consequently

u∗ = u = 0, whereby such τ cannot be a transmission eigenvalue. Finally, the combination of

conditions (5.4.48) and (5.4.54) recovers (5.4.41) and thus completes the proof.

To establish the existence of the transmission eigenvalues in situations where the elasticity and

mass density contrasts of the same sign, it is possible to adapt the methodology developed in Sec-

tion 5.4.1. To this end, it is again assumed that the background medium is homogeneous and

isotropic, whereby C and ρ are given by (5.4.24). For brevity, the ensuing discussion assumes

that P< p∗ and C< c∗, noting that the case when P∗< p and C∗< c can be handled in exactly the

same way. To avoid repetition, the focus is made on the differences between the current treatment
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and that in Section 5.4.1.

The main difficulty in dealing with the problem at hand resides in solving (5.4.3), i.e. finding

u∈H1(D) such that

Mτ (u,ϕ) = Nτ,v(ϕ) ∀ϕ ∈ H1(D),

for given v ∈ H1
0 (D), due to general lack of coercivity of the bilinear form Mτ (ϕ,ψ) given

by (5.4.5). To deal with the impediment, let Br⊂D be a ball of radius r contained in D, and let τ̂

be the first transmission eigenvalue corresponding toBr endowed with two sets of constant material

properties (Ĉ, ρ̂) :=(1
2C, ρ) and (Ĉ∗, ρ̂∗) :=(1

2c∗Isym,P∗), where C and ρ are given by (5.4.24). In

this setting, it is further required that

(P∗ − p) <
µ

2τ̂
(c∗ − C), (5.4.55)

where µ is the unique minimizer defined via (5.4.9). With reference to the analytical framework

developed in Lemma 16, for ϕ ∈ H̃1(D) and τ ∈ {z ∈ C : <(z) 6 τ̂} one now has

< (Mτ (ϕ,ϕ)) = <
(〈

∆C :∇ϕ,∇ϕ
〉
L2(D)

− τ
〈
∆ρϕ,ϕ

〉
L2(D)

)
> (c∗− C)‖∇ϕ‖2L2(D) − τ̂ (P∗− p)‖ϕ‖2L2(D)

> (c∗− C)‖∇ϕ‖2L2(D) −
τ̂

µ
(P∗− p)‖∇ϕ‖2L2(D)

>

[
(c∗− C)− τ̂

µ
(P∗− p)

]
‖∇ϕ‖2L2(D) >

(c∗− C)
2

µ

µ+ 1
‖ϕ‖2H1(D),

which ensures the coercivity of Mτ in H̃1(D) under the featured set of of restrictions. Following

the proof of Lemma 16, one can consequently construct a linear operator Mτ : H1
0 (D) → H1(D)

such that Mτv = u. This construction leads to the definition of operator Lτ : H1
0 (D) → H1

0 (D)

as 〈
Lτv,ϕ

〉
H1

0 (D)
=
∫

D
(∇u : C : ∇ϕ̄− ρ τu·ϕ̄) dV,

where u = Mτv. By mimicking the proofs of Lemma 17 and Lemma 18, one can next show that

L0 is coercive, that Lτ is self-adjoint, and that Lτ−L0 is compact. On recalling the first transmission

eigenvalue τ̂ for ball Br ⊂D described earlier and denoting the corresponding nonzero solutions

as û and û∗ so that v̂ = û− û∗∈H1
0 (Br), it follows that (5.4.28) also holds for L̂τ̂ in the present

case. Further, if ṽ ∈ H1
0 (D) is the extension by zero of v̂ ∈ H1

0 (Br) to the whole ofD, one finds by

taking ũ := Mτ̂ ṽ and ũ∗ := ũ− ṽ, and performing similar calculations as in (5.4.29) and (5.4.30)
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that ∫
D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2

)
dV 6

∫
D

(∇ũ∗ : ∆C : ∇¯̃u∗) dV

=
∫

D
(∇ṽ : C : ∇¯̃u∗) dV =

∫
Br

(∇v̂ : C : ∇¯̃u∗) dV =
∫

Br

(
∇û∗ : ∆Ĉ : ∇¯̃u∗

)
dV

6

[∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗

)
dV
]1/2 [∫

Br

(
∇ũ∗ : 2∆Ĉ : ∇¯̃u∗ −∇ũ∗ : ∆Ĉ : ∇¯̃u∗

)
dV
]1/2

6

[∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗

)
dV
]1/2 [∫

D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − (c∗ − C)|∇ũ∗|2

)
dV
]1/2

6

[∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗

)
dV
]1/2 [∫

D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2

)
dV
]1/2

,

due to (5.4.55) and relationships ξ : 2∆Ĉ : ξ̄ = ξ : 2(Ĉ∗−Ĉ) : ξ̄ 6 ξ : (C∗−C) : ξ̄ = ξ :∆C : ξ̄ and

P∗ − p > ρ∗ − p = ∆ρ. As a result,∫
D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2

)
dV 6

∫
Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗

)
dV.

On substituting this result into (5.4.26) when τ = τ̂ and v = ṽ, it follows by virtue of (5.4.28) that

〈
Lτ̂ ṽ, ṽ

〉
H1

0 (D)
=

∫
D

(
∇ũ∗ : ∆C : ∇¯̃u∗ − τ̂ ∆ρ |ũ∗|2 + ∇ṽ : C : ∇¯̃v − ρ τ̂ |ṽ|2

)
dV

6
∫

Br

(
∇û∗ : ∆Ĉ : ∇¯̂u∗ + ∇v̂ : C : ∇¯̂v − ρ τ̂ |v̂|2

)
dV,

which implies, via Theorem 16, that there exists at least one transmission eigenvalue within interval

(0, τ̂ ]. The above analysis proves the following result abut the existence of transmission eigenvalues

for the case where the elasticity and mass density contrasts are of the same sign.

Theorem 19. Assume that the medium represented by (C, ρ) is homogeneous and isotropic as

in (5.4.24). If either

1. p<p∗ and C<c∗ such that

(P∗ − p) <
µ

2τ̂
(c∗ − C)

where τ̂ is the first transmission eigenvalue corresponding to ball Br ⊂ D endowed with

constant material properties (Ĉ, ρ̂) :=(1
2C, ρ) and (Ĉ∗, ρ̂∗) :=(1

2c∗Isym,P∗), or
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2. P∗<p and C∗<c such that

(p− p∗) <
µ

2τ̂
(c− C∗)

where τ̂ the first transmission eigenvalue corresponding to Br ⊂ D endowed with constant

material properties (Ĉ, ρ̂) :=(1
2C, ρ) and (Ĉ∗, ρ̂∗) :=(1

2C∗Isym, p∗),

there exists at least one transmission eigenvalue associated with (5.2.6) within interval (0, τ̂ ] .

Remark 16. The foregoing developments, catering for the case where the elasticity and mass den-

sity contrasts are of the same sign, unfortunately can not be carried further along the lines of the

proof of Theorem 12 to establish the existence of infinitely many eigenvalues since the linear oper-

ator Lτ has the required properties only for τ 6 τ̂ , where τ̂ is bounded by (5.4.55). However, if the

mass density contrast is sufficiently small so that (5.4.55) is met for r > 0 such that m> 1 balls

of radius r can be fitted in D (see the proof of Theorem 12), one can show that there are m> 1

transmission eigenvalues within interval (0, τ̂ ] counting multiplicity.

5.5 Conclusions

In this study, the existence and structure of the transmission eigenvalues for heterogeneous and

anisotropic elastic bodies is considered for a wide class of mass density and elasticity contrasts be-

tween the two solids featured by the interior transmission problem. When no external excitation is

present, the latter boundary value problem entails two body-force-free equations of (anisotropic, in-

homogeneous) linear elasticity in a bounded domain D⊂R3, with shared Cauchy data over ∂D. In

the context of the inverse scattering theory, these two equations model respectively penetrable obsta-

cle D and background medium occupying region D. The resulting eigenvalue problem turns out to

be nonlinear and may, at best, be transformed into a linear eigenvalue problem for a non-self-adjoint

compact operator. For generality, the interior transmission eigenvalue problem is investigated for a

wide class of material contrasts between the obstacle and the background, namely those with mate-

rial similitude in terms of equal elastic tensors or equal mass densities, and configurations without

material similitude where the mass density and elasticity contrast are each sign-definite through-

out D. For configurations involving either equal elastic tensor distributions or equal mass density

distributions over D it is shown, via a suitable variational formulation of the interior transmission

problem for heterogeneous anisotropic solids, that the latter is necessarily characterized by a count-

able set of (positive) transmission eigenvalues that accumulate only at infinity. For configurations

without material similitude, on the other hand, a further distinction is made between the situations
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where the elasticity and mass density contrasts of the same sign, and those where the two are of the

opposite sign. In the latter case the discreteness of transmission eigenvalues is again established for

a general case involving anisotropic heterogeneous solids, while the existence of a countable set of

transmission eigenvalues is proven under an additional restriction that either the background or the

obstacle is homogeneous and isotropic. In situations where the elasticity and mass density contrasts

share the sign over D, an earlier result on the discreteness of the transmission eigenspectrum [23]

is complemented by the proof of its nonemptiness, requiring again that either the background or the

obstacle be homogeneous and isotropic. Necessitated by the breadth of material configurations stud-

ied, the above claims are established through the development of a suite of variational techniques,

each customized to meet the needs of a particular class of eigenvalue problems. As a secondary

result, the lower and upper bounds on the first transmission eigenvalue are obtained in terms of the

elasticity and mass density contrasts between the obstacle and the background. Given the fact that

the transmission eigenvalues are computable from the observations of the scattered field, such esti-

mates may have significant potential toward estimating the nature (e.g. compliance) of penetrable

scatterers in elasticity, see [50] for a discussion in the context of scalar problems.
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6.1 Introduction

Previous developments in this dissertation have addressed theoretical or practical issues related to

the topological sensitivity and the linear sampling methods. Their respective presentations in Parts I

and II have shown that these techniques rely on different concepts but in spite which these methods

have been successfully developed for various physical models and employed as two non-iterative

techniques to obtain qualitative topological or geometrical informations on hidden scattering obsta-

cles. On the one hand, the topological sensitivity method consist in a heuristic interpretation of an

indicator function itself derived from a mathematically rigorous asymptotic analysis. On the other

hand, the linear sampling method, which relies on the use of the solution to an integral equation of

the first kind, is supported by key theoretical results that ensure the validity of the reconstruction of

the unknown scatterers.

The purpose of the following study is i) to provide a simple but instructive analytical framework

within which the two methods can effectively be compared, and ii) to give tangible elements of

comprehension of their respective performances. The object of the study is the imaging of a pene-

trable obstacle embedded in an acoustic medium from a knowledge of the time harmonic incident

waves and the corresponding scattered fields, using the two methods of interest. Within the frame-

work of the analytical resolution of the direct acoustic scattering problem in a simple case, a parallel

is drawn between the two methods in order to evaluate and compare their capabilities to tackle with

the topological identification of the scatterer using full or partial observations of the scattered fields.

Specificities and limitations of both techniques are also highlighted in this common setting. The

effect of noisy data on the efficiency of the methods has been finally emphasized.

6.2 Preliminaries

6.2.1 Forward problem

The direct scattering of acoustic waves by penetrable homogeneous body is a well known subject

[see e.g. 130, 174] which is addressed in this section. Consider the lossless scattering of acoustic

waves by a penetrable bounded obstacle B in the infinite medium R3 which is assumed to be ho-

mogeneous and isotropic with mass density ρ and elastic bulk modulus κ. These parameters are

respectively denoted ρ∗ and κ∗ inside the homogeneous obstacle, defining the material coefficients

β = ρ/ρ∗ and η = κ/κ∗. Moreover, if c and c∗ denote the sound speed in the background medium

and the obstacle respectively, then the relative index of refraction γ = c/c∗ is such that βγ2 = η.
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Given a set Σ of unit directions, the domain is illuminated by incident time harmonic acoustic plane

waves u(ξ, δ) = eikξ·δ propagating in directions δ ∈ Σ at frequency ω = ck, with |δ| = 1 and

the factor e−iωt being omitted henceforth for brevity. The presence of the obstacle gives rise to the

acoustic scattered fields v such that the total acoustic fields, uB in R3 can be decomposed as

uB(ξ, δ) = u(ξ, δ) + v(ξ, δ) (ξ ∈ R3\B, δ ∈ Σ). (6.2.1)

The forward scattering problem entails solving the following set of Helmholtz equations and

boundary conditions

∆v(ξ, δ) + k2v(ξ, δ) = 0 (ξ ∈ R3\B, δ ∈ Σ)

∆w(ξ, δ) + γ2k2w(ξ, δ) = 0 (ξ ∈ B, δ ∈ Σ)

v(ξ, δ) + u(ξ, δ) = w(ξ, δ) (ξ ∈ ∂B, δ ∈ Σ)

v,n(ξ, δ) + u,n(ξ, δ) = βw,n(ξ, δ) (ξ ∈ ∂B, δ ∈ Σ)

lim
|ξ|→∞

|ξ|
(
∂v(ξ, δ)
∂|ξ|

− ikv(ξ, δ)
)

= 0 (δ ∈ Σ),

(6.2.2)

where f,n(ξ) = ∇f(ξ) · n(ξ) denotes the derivative with respect to the unit outward normal n to

∂B, the last equation defining the Sommerfeld radiation condition.

The problem (6.2.2) is formulated for any penetrable obstacle B, but for further developments it is

interesting to characterize its solutions for some limit behaviors of the scatterer. With reference to

the acoustic impedance of the background medium and the obstacle, respectively Z and Z∗, it is

noticeable that, introducing the governing ratio
√
βη = Z/Z∗, one has [123, 84]

• If Z/Z∗ � 1, the transmission problem (6.2.2) reduces to an exterior Dirichlet problem for

which the acoustic pressure field in B vanishes while its velocity potential is non zero. The

pressure release on the boundary ∂B characterized a so-called sound-soft obstacle.

• Conversely, if Z/Z∗ � 1 then (6.2.2) turns out to be an exterior Neumann problem whose

solution has a maximum pressure amplitude in B with a vanishing velocity potential. The

vanishing velocity field on ∂B is characteristic of a sound-hard obstacle.

6.2.2 Inverse problem

The aim of the inverse problem is to reconstruct the geometrical support of the obstacle from the

measurements uobs, over an observation surface Sobs, of the scattered fields v produced by incident
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plane waves in the set Σ of unit directions [72, 78]. In what follows it is assumed that the material

obstacle characteristics, synthesized via β and η, are be known beforehand. In this setting, two

non iterative techniques will be investigated analytically and numerically in simple cases in order to

demonstrate and compare their efficiencies and accuracies.

Topological sensitivity method

To deal with the topological sensitivity method, let us introduce a cost functional

J(Bt, β, η) =
∫

Σ

∫
Sobs

ϕ(ut, ξ, δ) dSξ dSδ, (6.2.3)

where Bt is a trial obstacle in the background medium R3 and ut the corresponding scattered acous-

tic field. The cost functional evaluates the difference between trial and true topologies and is ex-

pressed by mean of a misfist function ϕ. Its aim is to measure a gap between ut and uobs and in the

following it is considered in the form of the commonly employed least-squares misfit function

ϕ(ut, ξ, δ) =
1
2
|ut(ξ, δ)− uobs(ξ, δ)|2 (ξ ∈ Sobs, δ ∈ Σ). (6.2.4)

Let Bε(z) = z + εB be the trial obstacle considered and characterized by its center z, the

unit bounded set B ⊂ R3 containing the origin, the radius ε > 0 and material properties ρ∗ and

κ∗ of the unknown obstacle. Following [183] and [102] one seeks for the asymptotic behavior of

J(Bε(z), β, η) as ε→ 0 through the expansion

J(Bε(z), β, η) =
ε→0

J(∅, β, η) + η(ε)|B|T(z, β, η) + o(η(ε)), (6.2.5)

where J(∅, β, η) denotes the cost functional evaluated without obstacle, |B| is the volume of the unit

set B and the function η(ε) vanishes in the limit ε→ 0. The topological derivative T(z, β, η) arising

in (6.2.5) remains only a function of the point z and constitutes a local indicator of obstacle location.

Negatives values are associated with local decreasings of the cost functional which means that

infinitesimal obstacle added at these locations fit the measurements. Thus one seeks for sampling

points z where the topological derivative attains maximum negative values, i.e. for a given positive

real α, the obstacle can be reconstituted by the domain

BTSM(α) =
{
z ∈ R3,T(z, β, η) 6 αmin

ξ∈R3
T(ξ, β, η) < 0

}
. (6.2.6)
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Closed form of the topological derivative can be expressed by mean of an adjoint field û [see

35, 29] which is solution of the set of equations

∆û(ξ, δ) + k2û(ξ, δ) = 0 (ξ ∈ R3, δ ∈ Σ)

[[û,n]](ξ, δ) =
∂ϕ

∂u
(u, ξ, δ) = −v(ξ, δ) (ξ ∈ Sobs, δ ∈ Σ)

lim
|ξ|→∞

|ξ|
(
∂û(ξ, δ)
∂|ξ|

− ikû(ξ, δ)
)

= 0 (δ ∈ Σ),

(6.2.7)

where the condition (6.2.7b) is associated with the first-order term of Taylor’s expansion (6.2.5),

assumed that the total field is known exactly, i.e. uobs ≡ v given by (6.2.1), and that, <[·] and =[·]
denoting real and imaginary part of a quantity, one has

∂ϕ

∂u
≡ ∂ϕ

∂<[u]
− i

∂ϕ

∂=[u]
. (6.2.8)

In the case of an infinitesimal spherical obstacle and following the developments presented in

[102], the topological sensitivity of the cost function is characterized by

η(ε) = ε3

|B| = 4π3

3

T(z, β, η) =
∫

Σ
<
[
(1− β)∇û ·A ·∇u− (1− η)k2û u

]
(z, δ) dSδ

A =
3

2 + β
I,

(6.2.9)

where I is the second order identity tensor.

The topological sensitivity (6.2.9) of the cost functional (6.2.3) allows to tackle with geometrical

identification of the obstacle with non iterative computations in a obstacle-free domain R3 in which

both the definition of the misfit function and the measurements are synthesized in the formulation

of the adjoint field û.

Linear sampling method

The linear sampling method [46] had been originally proposed in inverse acoustic scattering theory

in far field formulations [76], and later extended to obstacle identification based on near-field ob-

servations [73, 155]. In the present study the method conjugates these two approaches. Assuming

that uobs ≡ v, for a given sampling point z ∈ B, one seeks the function gz ∈ L2(Σ) solution of the
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linear integral equation

[Sgz](ξ) =
∫

Σ
v(ξ, δ)gz(δ) dSδ = G(ξ,z) (∀ξ ∈ Sobs), (6.2.10)

where S denotes the so-called scattering operator and G(ξ,z) = eik|ξ−z|

4π|ξ−z| is the full-space funda-

mental solution. Let us underline that the operator S is compact from L2(Σ) into L2(Sobs), so the

equation (6.2.10) is ill-posed [133]. Nevertheless, the resolution of the integral equation (6.2.10) is

based on the result [78] that S is injective with dense range if and only if there does not exist a pair

of solutions ug and w to the so-called homogeneous interior transmission problem

∆ug(ξ) + k2ug(ξ) = 0 (ξ ∈ B)

∆w(ξ) + γ2k2w(ξ) = 0 (ξ ∈ B)

ug(ξ) = w(ξ) (ξ ∈ ∂B)

ug,n(ξ) = βw,n(ξ) (ξ ∈ ∂B),

(6.2.11)

with a non zero density function g ∈ L2(Σ) such that

ug(ξ) =
∫

Σ
u(ξ, δ)g(δ) dSδ. (6.2.12)

The values k for which the problem (6.2.11) has a non-trivial solution are called transmission eigen-

values. For these values precisely the linear sampling method breaks down, so their study has be-

come of great importance recently [128, 159]. When k is not a transmission eigenvalue, it can be

shown [46] that for every ε > 0, there exists a nearby solution gε
z ∈ L2(Σ) such that

‖Sgε
z(·)−G(·,z)‖L2(Sobs) < ε. (6.2.13)

The linear sampling method is supported by the key property that ‖gε
z‖L2(Σ) becomes un-

bounded as z → ∂B. The description of the behavior of gε
z in the exterior domain z ∈ R3\B

requires a more involved analysis and its study can be found for acoustics and electromagnetism in

[73, 46] and for elasticity in [155, 105], and formally

‖gε
ze
‖L2(Σ) � ‖gε

zi
‖L2(Σ) (∀ze ∈ R3\B,∀zi ∈ B). (6.2.14)

Then, according to a threshold value 0 6 α < 1, we can assume that the unknown obstacle can

be reconstituted as the domain
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BLSM(α) = R3\

{
z ∈ R3,

1
‖gε
z‖L2(Σ)

� 1
1− α

}
. (6.2.15)

Thus, in the linear sampling method, the indicator of obstacle location is constituted by the function

gz or its approximation gε
z.

6.3 Analytical formulation for a spherical scatterer

In the following, the obstacle B is considered as a unit sphere. The observation surface Sobs is

defined as a concentric sphere of radius R and the set of incident directions is taken as Σ = {δ ∈
R3, |δ| = 1}. An analytical solution to this acoustic inverse scattering problem can then be derived.

6.3.1 Scattered field

The topological sensitivity and linear sampling methods rely both on the knowledge of the field scat-

tered by the obstacle and monitored on the observation surface. In the case of this study, equations

(6.2.2) will be solved for an incident field u in direction δ ∈ Σ. The acoustic fields v and w respec-

tively solutions of an exterior problem in R3\B and an interior problem in B can be expanded over

the set of spherical harmonics (Y m
n )n∈N,−n6m6+n [153] as

v(ξ, δ) =
+∞∑
n=0

+n∑
m=−n

λm
n (δ)hn(k|ξ|)Y m

n (ξ̂) (ξ ∈ R3\B, δ ∈ Σ),

w(ξ, δ) =
+∞∑
n=0

+n∑
m=−n

µm
n (δ)jn(γk|ξ|)Y m

n (ξ̂) (ξ ∈ B, δ ∈ Σ),

(6.3.1)

where ξ̂ = ξ
|ξ| , while jn and hn denote respectively the n-order spherical Bessel and Hankel func-

tions of the first kind. On employing the boundary conditions over ∂B and the orthonormality of

spherical harmonics (6.B.2), the scattered field v is expressed as

v(ξ, δ) =
+∞∑
n=0

+n∑
m=−n


∫

S

(
1
k
u,n(ζ, δ)− αnu(ζ, δ)

)
Y m

n (ζ) dSζ

−h′n(k) + αnhn(k)

hn(k|ξ|)Y m
n (ξ̂), (6.3.2)

where (ξ ∈ R3\B, δ ∈ Σ), S = {ζ ∈ R3, |ζ| = 1} and defining an effective admittance of the
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surface ∂B for the n-order spherical harmonic [151]

αn =
√
βη
j′n

(
k
√
η/β

)
jn

(
k
√
η/β

) . (6.3.3)

Written in terms of u, it is noticeable that the equation (6.3.2) can be used for arbitrary incident

field. In the case of an incident plane wave in direction δ ∈ Σ, using the expansion (6.B.3) and the

spherical harmonics addition theorem (6.B.4), relation (6.3.2) reduces to

v(ξ, δ) =
+∞∑
n=0

in(2n+1)Λn(β, η)hn(k|ξ|)Pn(ξ̂·δ) with Λn(β, η) =
j′n(k)− αnjn(k)
−h′n(k) + αnhn(k)

, (6.3.4)

where Pn denotes the n-order Legendre polynomial, and j′n, h′n the respective derivative of Bessel

and Hankel functions with respect to their arguments. Note that if only one incident plane wave

is considered to reconstruct the obstacle, i.e. Σ = {δ} and if the system of spherical coordinates

ξ = (ρ, θ, φ) is chosen such as ξ̂ · δ = cos θ then the axisymmetry of the scattered field is explicit

in (6.3.4).

From expression (6.3.4) one can recover some limiting behaviors:

• For a fixed η, the sound-soft obstacle corresponds to β →∞, and thus αn →∞ entails

Λn(β, η) = − jn(k)
hn(k)

, (6.3.5)

which corresponds to the case treated in [78].

• Conversely, the sound-hard obstacle β → 0 at fixed η, is such that αn → 0 so

Λn(β, η) = − j
′
n(k)
h′n(k)

(6.3.6)

as previously shown in e.g. [153].

• Finally, if the obstacle has the same compressibility modulus and mass density that the back-

ground medium (β = η = 1, i.e. no obstacle) then αn = j′n(k)/jn(k) which implies Λn = 0

and v = 0 as expected.
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6.3.2 Analytical topological sensitivity method

Analytical expression

The topological derivative (6.2.9) can now be given in the case of the scattered field (6.3.4). To find

the adjoint field û, the problem (6.2.7) can be reformulated as

∆û(ξ, δ) + k2û(ξ, δ) = F (ξ, δ) (ξ ∈ R3, δ ∈ Σ)

F (ξ, δ) = −v(ξ, δ)χSobs(ξ) (ξ ∈ R3, δ ∈ Σ)

lim
|ξ|→∞

|ξ|
(
∂û(ξ, δ)
∂|ξ|

− ikû(ξ, δ)
)

= 0 (δ ∈ Σ),

(6.3.7)

where χSobs denotes the characteristic function of the subset Sobs. Then using the Green’s function,

the adjoint field is given by the single layer potential

û(ξ, δ) =
∫

R3

F (ζ, δ)G(ξ, ζ) dVζ (ξ ∈ R3, δ ∈ Σ). (6.3.8)

With the assumption that Sobs is a sphere of radius R, the equation (6.3.8) reduces to

û(ξ, δ) = −R2

∫
S
v(Rζ̂, δ)G(ξ, Rζ̂) dSζ̂ (ξ ∈ R3, δ ∈ Σ). (6.3.9)

The Green’s function will then admit two different expansions (6.B.10) depending on whether

|ξ| < R or |ξ| > R. In the situation considered of seeking the obstacle inside of the observation

surface, i.e. ξ ∈
◦

Sobs (interior of Sobs), the adjoint field is expressed by

û(ξ, δ) = −kR2
+∞∑
n=0

(−1)nin+1(2n+ 1)Λn(β, η)|hn(kR)|2jn(k|ξ|)Pn(ξ̂ · δ) (|ξ| 6 R, δ ∈ Σ).

(6.3.10)

One may note, that according to (6.B.10), expression (6.3.10) should be modified in the exterior

domain |ξ| > R, and will then verify the radiation condition (6.3.7c).

Finally, for a given sampling point z ∈
◦

Sobs, using relation (6.3.10), Jacobi-Anger expansion (6.B.3)

and properties (6.B.2), (6.B.6), and (6.B.8), with summation over the set Σ of incident directions,

the topological derivative is given by the relation



CHAPTER 6. ANALYTICAL COMPARATIVE STUDY IN ACOUSTICS 241

T(z, β, η) = −4πkR2
+∞∑
n=0

<

{
i(2n+ 1)Λn(β, η)|hn(kR)|2·

[(
n(n+ 1)

3(1− β)
2 + β

− (1− η)k2

)
jn(k|z|)2 +

3k2(1− β)
2 + β

j′n(k|z|)2
]}

.

(6.3.11)

Truncation

The relation (6.3.11) involves infinite summation over index n which has to be truncated for com-

putational purposes. On employing the results from Appendix 6.C, the leading terms in formula

(6.3.11) for topological sensitivity can be written as

• kR2i(2n+ 1)Λn(β, η)|hn(kR)|2 =
n→∞

1− β

1 + β

(
1
R

)2n(
1 +O

(
1
n

))
•

(
n(n+ 1)

3(1− β)
2 + β

− (1− η)k2

)
jn(k|z|)2 =

n→∞

3(1− β)
8(2 + β)

(
ek|z|

2

)2n 1
n2n

(
1 +O

(
1
n

))
• 3k2(1− β)

2 + β
j′n(k|z|)2 =

n→∞

3(1− β)
8(2 + β)

|z|2n−2

(
ek

2

)2n 1
n2n

(
1 +O

(
1
n

))
.

(6.3.12)

Accordingly, on writing T(z, β, η) =
+∞∑
n=0

Tn(z, β, η) one has

Tn(z, β, η) =
n→∞

O

(
1
n2n

)
. (6.3.13)

Thus, the sum in (6.3.11) can be evaluated by retaining the terms up to a prescribed order no.

However it should be noted that the asymptotic behavior of the Bessel and Hankel function in (6.C.2)

and their derivatives in (6.C.6) is such that the featured truncation errors are inversely proportional

to the order of these functions. Consequently, as observed in Figure 6.1, increasing the wave number

must increase the truncation order no in (6.3.11).

Material sensitivity

The topological sensitivity method is based on an asymptotic expansion corresponding to the nu-

cleation of an infinitesimal obstacle, whose properties have been bound to match the ones of the

scattering obstacle in the previous developments for better understanding of the method. The be-
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Figure 6.1: Leading terms in topological derivative depending on frequency and material parameters

havior of the indicator (6.2.9) provided relies then strongly on the a-priori choice of the material

properties of the nucleating obstacle. Thus, while a shape identification technique will rely on their

correct match with the material parameters βtrue, ηtrue of an unknown obstacle, which supposes a

full prior information about its nature, the material sensitivity of the topological derivative can also

be seen as a potential tool for material identification [104]. From an other point of view, following a

study initiated in [143] in the time domain, the focus can be made on the quality of the identification

in the case where the assumed parameters β, η are incorrect. The idea being that if the signs of

the two coefficients (1 − β) and (1 − η) of the two summands in (6.2.9) are correct relatively to

(1 − βtrue) and (1 − ηtrue) respectively, then the identification of the obstacle through pronounced

negative values of the topological derivative is correct. On the contrary, if both signs are incorrect

the contrast is inverted and the obstacle tends to be identified by the maximum positive values of the

indicator. The investigation of this hypothesis in the sequel, for a given set of true parameters βtrue,

ηtrue, is based on the computation of an a-priori topological derivative Tap derived from (6.3.11) as

a function of a-priori parameters β and η as

Tap(z, β, η) = −4πkR2
+∞∑
n=0

<

{
i(2n+ 1)Λn(βtrue, ηtrue)|hn(kR)|2·

[(
n(n+ 1)

3(1− β)
2 + β

− (1− η)k2

)
jn(k|z|)2 +

3k2(1− β)
2 + β

j′n(k|z|)2
]}

.

(6.3.14)
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In the equation (6.3.14), the coefficients Λn still depend on the true parameters as they are associated

to the field (6.3.4) scattered by the true obstacle and introduced in the topological derivative through

the adjoint field (6.3.10).

For a given set of N sampling points z1, . . . ,zN , the sign correspondence with the topological

derivative T(z, βtrue, ηtrue) (6.3.11) is measured by computing the indicator I(β, η) defined by

I(β, η) =
1
N

N∑
j=1

sign
(

Tap(zj , β, η)
T(zj , βtrue, ηtrue)

)
, (6.3.15)

where sign(α) = 1 if α > 0, and −1 if α < 0. Thus −1 6 I(β, η) 6 1, and the extremum values

1 and −1 correspond respectively to a total match or inversion of the signs of the two topological

derivatives. Moreover small values of this indicator are associated with numerous differences of the

signs of the two topological derivatives. Owing to the coefficients in (6.3.11), the coordinates are

defined as

x =
(1− β)
(2 + β)

(2 + βtrue)
(1− βtrue)

,

y =
(1− η)

(1− ηtrue)
,

(6.3.16)

and the Figure 6.2 is then plotted for a maximum range of −4 6 x 6 4 and −4 6 y 6 4 possibly

restricted by admissible values of the material parameters β, η relatively to given βtrue and ηtrue, and

for a fixed wave number k = 5.

The Figure 6.2(a) corresponds to the case investigated in [143], and clearly highlights the idea

described previously that if x > 0 and y > 0 then I(β, η) ' 1, i.e. the signs of the a-priori

topological derivatives match the signs of the true ones, and if x 6 0 and y 6 0 then I(β, η) ' −1,

i.e. the signs of the topological derivatives are opposite. The intermediate cases where xy 6 0 can

be discussed with further reference to the Figure 6.2(b). In the domain considered it can be seen

that the sign differences are greater than in the previous case as the values of the indicator I(β, η)

are smaller. Furthermore the Figure 6.2(c) highlights that those differences can also be observed if

xy > 0, which suggests a moderation of the statement proposed in [143]. Finally the Figure 6.2(d)

corresponds to a situation where the hypothesis is valid almost essentially for the cases x = y.

In the light of the previous analysis, it can be claimed that the heuristic of the topological

sensitivity method (obstacle revealed by maximum negative values of T) can be strictly followed

with incorrect a-priori material parameters which lead to coefficients (1−β)/(2+β) and (1−η) of
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(a) βtrue = 2 ηtrue = 0.5 (b) βtrue = 0.5 ηtrue = 2

(c) βtrue = 4 ηtrue = 2 (d) βtrue = 0.5 ηtrue = 0.1

Figure 6.2: Index I(β, η) function of x = (1−β)
(2+β)

(2+βtrue)
(1−βtrue) and y = (1−η)

(1−ηtrue)

(i) correct signs and (ii) same proportional errors relatively to (1− βtrue)/(2 + βtrue) and (1− ηtrue)

respectively. Owing to the interpretation of the parameters β as the ratio of the mass densities, and η

as the ratio of elastic moduli, the previous statements involves that the identification is correct if the

infinitesimal obstacle used in the asymptotic expansion (6.2.5) matches qualitatively the material

behavior of the obstacle sought. Furthermore, if (iii) both signs are opposite, providing (ii), then the

infinitesimal obstacle presents a complete opposite mechanical behavior than the unknown obstacle,

so the positive values of T become relevant since they correspond to the less likely possible matching

location of these two obstacles. Finally, the relaxation of the statement (ii) should involve a careful

interpretation of the topological derivative.
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This material sensitivity, particularly significant in the time harmonic domain, can be moder-

ated by multi-modal illumination of the obstacle or time domain formulation of the topological

sensitivity method (see [29] and [143]).

Numerical results

Numerical results are presented in this section for the computation of the topological derivative

(6.3.11), i.e. assuming that the nature of the obstacle is known. The set of incident direction is

defined as Σ = {δ ∈ R3, |δ| = 1}, then since the observation surface is a sphere concentric

to the spherical unit obstacle considered, the inversion is based on a unique observation, and the

topological derivative is axisymmetric. Thus, the indicator T is plotted along a radius for different

frequencies.

According to the previous considerations, the topological derivative relies strongly on the material

properties of the obstacle considered, so rigorous and systematic interpretation of the behavior of

the indicator is intricate. For better understanding let us differentiate the two different components

in T, namely the velocity term Tv and the pressure term Tp, such that, according to (6.2.9) and

(6.3.11), one has

T(z, β, η) =
3(1− β)
(2 + β)

Tv(z, β, η) + (1− η)Tp(z, β, η). (6.3.17)

One may note that the weighting of the terms Tv and Tp in (6.3.17) is governed respectively by

the ratio of the mass densities β and the ratio of elastic moduli η, which is consistent with classical

governing equations of acoustics [151].

Figure 6.3 depicts the radial variation of the two components (6.3.17) of the topological deriva-

tive for several combinations of frequency and material parameters, chosen such that the ratio of the

acoustic impedance described in section 6.2.1 is
√
βη = 103 for the case 6.3(a), and

√
βη = 10−3

for 6.3(b). On the Figure 6.3(a) corresponding to the case of a sound-soft obstacle, one can observe

that for |z| > 0, Tv attains its maximum negative value inside the obstacle (|z| < 1), while Tp has

its minimum located outside of B (|z| > 1). Moreover, as the frequency increases, both minima

move to the boundary of the obstacle. This is consistent with the qualitative description of the di-

rect scattering by sound-soft obstacle in section 6.2.1, for which one can expect that an inversion

technique based on the velocity field should able to image the interior of the obstacle (non zero

velocity potential in B), while the use of the pressure field should emphasize its boundary (vanish-

ing pressure on ∂B and in B). On the contrary, these behaviors are inverted for the scattering by a
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sound-hard obstacle, which match again the patterns observed in Figure 6.3(b).

(a) β = 103 η = 103 (
√

βη = 103)

(b) β = 10−3 η = 10−3 (
√

βη = 10−3)

Figure 6.3: Topological derivative components depending on frequency and material parameters

The construction of the topological derivative T via the coefficients of the two summands in

(6.3.17) involves complex interactions between velocity and pressure components. Nevertheless,

as observed on Figure 6.4, as frequency increases, the method provides a reliable identification of

the boundary ∂B of the obstacle. Moreover, it is noticeable on Figures 6.3 and 6.4, that whatever

are the behaviors inside the obstacle, the indicators are relatively smooth and tend asymptotically to

zero for |z| > 1, which contributes to increase the contrast between the obstacle and the background

medium.
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(a) β = 2 η = 0.5

(b) β = 1 η = 0.1

Figure 6.4: Topological derivative depending on frequency and material parameters

6.3.3 Analytical linear sampling method

Singular value decomposition of operator S

The operator S fromL2(Σ) intoL2(Sobs) defined by (6.2.10) is compact [133]. Moreover, (Y m
n ) for

n ∈ N,−n 6 m 6 +n constitutes a basis of L2(Σ), and (hnY
m
n )n∈N,−n6m6+n constitutes a basis

for outgoing Helmholtz solutions in R3 (see [153]), so, restricted to Sobs it is a basis of restrictions
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to L2(Sobs) of such solutions.

From equations (6.3.4), (6.B.2) and (6.B.4) we can deduce that

[SY m
n ](ξ) = 4πinΛn(β, η)hn(kR)Y m

n (ξ̂) (∀ξ ∈ Sobs,∀n ∈ N,∀m ∈ {−n, . . . ,+n}).
(6.3.18)

Thus the set (σn)n∈N of singular values of S can be identified as

σn = 4πinΛn(β, η) (∀n ∈ N). (6.3.19)

On the basis of the results from Appendix 6.C, it can be seen that these singular values have the

following asymptotic behavior which is independent of η

σn =
n→∞

πin+1k

(
1− β

1 + β

)(
ek

2

)2n 1
n2n+1

(
1 +O

(
1
n

))
. (6.3.20)

Figure 6.5: Behavior of singular values depending on frequency and material parameters

We notice finally (see Figure 6.5) that the asymptotic behavior depends essentially on frequency

rather than on material parameters. This dependence have to be considered in a regularization

method.
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Interior transmission problem

The integral equation (6.2.10) has a unique solution provided that k is not a transmission eigenvalue

(see paragraph 6.2.2). This paragraph is then dedicated to the question of the existence of such

eigenvalues, thus one seeks for a non trivial solutions ug and w to the problem (6.2.11), where in

the case of incident plane waves, the function ug takes the form of a Herglotz wave function, i.e. a

function of the form

ug(ξ) =
∫

Σ
eikξ·δg(δ) dSδ, (6.3.21)

where g ∈ L2(Σ). In the same fashion as (6.3.1), these solutions can be expanded in a series of

spherical harmonics as

ug(ξ) =
+∞∑
n=0

+n∑
m=−n

um
n jn(k|ξ|)Y m

n (ξ̂) (ξ ∈ B),

w(ξ) =
+∞∑
n=0

+n∑
m=−n

wm
n jn(γk|ξ|)Y m

n (ξ̂) (ξ ∈ B).

(6.3.22)

Thanks to Funk-Hecke formula (6.B.5), one clearly has that ug is a Herglotz wave function as

a series of such functions. Then owing to boundary conditions (6.2.11c) and (6.2.11d) one obtains

that there exists a non trivial pair of solutions ug and w if and only if there exists no ∈ N and k ∈ R,

k > 0 such that

αnojno(k) = j′no
(k), (6.3.23)

where the term αno is defined in (6.3.3). In particular, it is noticeable that (6.3.23) implies that the

coefficient Λno(β, η) in (6.3.4) is null.

Since the focus is made on the existence of transmission eigenvalues in the problem considered, one

can restrict the study to non trivial solutions (6.3.22) depending only on |ξ|, i.e. ug(ξ) = uojo(k|ξ|)
and w(ξ) = wojo(γk|ξ|), which characterize values k solutions of (6.3.23) with no = 0. In the

case considered of the scattering by a penetrable obstacle, this result is consistent with the result

in the more restrictive study [82], since jo(t) = sin t/t. The Figure 6.6 represents the function

Jo(k) = αojo(k) − j′o(k) for different values of the material parameters and characterizes the

existence of transmission eigenvalues k for which Jo(k) = 0. This example illustrates that such

values do exist, and it is actually possible to show that they constitute an infinite countable set.
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(a) β = 0.5 η = 0.1

(b) β = 4 η = 2

Figure 6.6: Transmission eigenvalues depending on material parameters

Analytical expression

By virtue of the spherical-harmonics expansion (6.3.2) of the scattered field, the indicator function

gz featured in the linear sampling equation (6.2.10) can now be computed analytically provided that

k is not a transmission eigenvalue. For a given sampling point z ∈
◦

Sobs, then gz ∈ L2(Σ) can be

expanded onto the set of spherical harmonics as

gz(δ) =
+∞∑
n=0

+n∑
m=−n

[gz]
m
n Y

m
n (δ) (∀δ ∈ Σ). (6.3.24)
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owing to the definition of the set Σ of plane wave unit incidence directions for which |δ| = 1. Thus,

with relations (6.3.4), (6.B.2), and spherical harmonics orthonormality (6.B.10), equation (6.3.24)

reads

gz(δ) =
k

(4π)2

+∞∑
n=0

(2n+ 1)
il−1Λn(β, η)

jn(k|z|)Pn(ẑ · δ) (∀δ ∈ Σ). (6.3.25)

since Λn(β, η) 6= 0 for all n ∈ N if k is not a transmission eigenvalue.

Regularized solution

The previous section establishes the existence of the solution (6.3.25) to the linear sampling equation

(6.2.10). Unfortunately, this solution does not belong in L2(Σ) as shown in the sequel. From

the addition theorem (6.B.4) and spherical harmonics orthonormality condition (6.B.2) and finally

(6.B.6), the L2(Σ)-norm of the indicator function can be written as

‖gz‖2L2(Σ) =
k2

(4π)3

+∞∑
n=0

(2n+ 1)
(
jn(k|z|)
|Λn(β, η)|

)2

. (6.3.26)

Next, by means of the results in Appendix 6.C, one finds that

(2n+ 1)
(
jn(k|z|)
|Λn(β, η)|

)2

=
n→∞

4
k2

(
1 + β

1− β

)2(2|z|
ek

)2n

n2n+1

(
1 +O

(
1
n

))
. (6.3.27)

From which it clearly follows that

‖gz‖L2(Σ) = +∞. (6.3.28)

This result is not surprising since the countable spectrum of singular values (6.3.19) of operator

S has a single point of accumulation at zero. The blow-off feature of the L2(Σ)-norm of gz can

therefore be attributed to the smallest singular values. Then following the idea proposed in [71]

for electromagnetism, this solution can be regularized by truncation of the spectrum for sufficiently

small eigenvalues.
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Numerical results

On the Figure 6.7, one has represented the norm (6.3.26) of the indicator function provided by the

linear sampling method for a truncation of singular values (6.3.19) smallest than 10−5. Unlike the

topological sensitivity method, there is no need of any prior information on the material behavior

of the unknown obstacle, and the term Λn appearing in (6.3.26) comes from the exact knowledge

of the scattered field (6.3.4). As highlighted by the Figure 6.7, these material properties have a little

influence on the indicator function which behaves as expected in paragraph 6.2.2.

Nevertheless, as observed previously in [71] in electromagnetism, it appears that ‖gz‖2L2(Σ) � 1

for an sampling point z far from the obstacle boundary ∂B, while ‖gz‖2L2(Σ) is relatively small

for |z| � 1. Moreover the transition region seems frequency dependent, so that for low frequency

(k = 5), the interface ∂B is not identified with sufficient accuracy, whereas high frequency (k = 20)

gives reasonable reconstruction of the obstacle.

6.4 Effect of noisy data

One of the key parameters affecting the quality of the identification with techniques such as the

topological sensitivity method or the linear sampling method is the use of noisy data. This issue

is discussed in this section to highlight the contrasting behaviors of the two methods. Thus, let

ν denote a noise distribution over the observation surface defining a noisy measurement ṽ of the

scattered field v such that

ṽ(ξ, δ) = v(ξ, δ) + ν(ξ) (ξ ∈ Sobs, δ ∈ Σ). (6.4.1)

6.4.1 Topological sensitivity method

Let T̃ denote the noisy topological derivative resulting from the noisy data (6.4.1), which is char-

acterized by a noisy misfit function ϕ̃. Using the adjoint field formulation (6.2.7) and (6.2.9), the

topological derivative can be expressed without loss of generality by

T(z, β, η) =
∫

Σ

∫
Sobs
<
{
∂ϕ

∂u
(u, ζ, δ) [(1− β)∇zG(z, ζ) ·A ·∇u(z, δ)

−(1− η)k2G(z, ζ)u(z, δ)
]}

(z, δ) dSζ dSδ.

(6.4.2)
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(a) β = 0.5 η = 2

(b) β = 4 η = 2

Figure 6.7: Indicator from the linear sampling method depending on frequency and material parameters

where ∇z involves partial derivative with respect to z. Since the noisy counterpart of the topological

derivative is obtained by replacing ϕ by ϕ̃ in the previous relation, the perturbation Tν induced by

the noisy measurement can by defined as
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|Tν |(z, β, η) =|T̃− T|(z, β, η) =

∣∣∣∣∣
∫

Σ

∫
Sobs

<
{(

∂ϕ̃

∂u
− ∂ϕ

∂u

)
(u, ζ, δ)·

[
(1− β)∇zG(z, ζ) ·A ·∇u(z, δ)− (1− η)k2G(z, ζ)u(z, δ)

]}
(z, δ) dSζ dSδ

∣∣∣∣∣.
(6.4.3)

An upper bound for the perturbation can be then deduced as

|Tν |(z, β, η) 6 C(z, β, η)
∥∥∥∥∂ϕ̃∂u − ∂ϕ

∂u

∥∥∥∥
L2(Sobs×Σ)

, (6.4.4)

where the function C of the point z is defined with an intermediate constant c depending only on

the material parameters through

C(z, β, η) = c(β, η)
(
‖∇zG(z, ·)‖L2(Sobs)‖∇u(z, ·)‖L2(Σ) + ‖G(z, ·)‖L2(Sobs)‖u(z, ·)‖L2(Σ)

)
,

(6.4.5)

and

∥∥∥∥∂ϕ̃∂u − ∂ϕ

∂u

∥∥∥∥2

L2(Sobs×Σ)

=
∫

Σ

∫
Sobs

∣∣∣∣∂ϕ̃∂u − ∂ϕ

∂u

∣∣∣∣2(ζ, δ) dSζ dSδ. (6.4.6)

The right-hand side of the inequality (6.4.4) is related to the global amount of noise in the

measurements, and in the case of the least-squares misfit function considered herein, it reduces to∥∥∥∥∂ϕ̃∂u − ∂ϕ

∂u

∥∥∥∥
L2(Sobs×Σ)

= ‖ṽ − v‖L2(Sobs×Σ) = |Σ|
1
2 · ‖ν‖L2(Sobs). (6.4.7)

Since z /∈ Sobs and z /∈ Σ, the function C defined in (6.4.5) is clearly bounded, which implies the

boundedness of the perturbation of the topological derivative. Thus, the robustness of the topologi-

cal sensitivity method is highlighted in the inequality (6.4.4) and is essentially a consequence of the

regularity of the Green’s function and the incident field. Moreover, if the use of a least-squares mis-

fit function involves that the perturbation of the topological derivative depends linearly on the noise,

a misfit function of higher order can provide even more regularization against such perturbation.
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6.4.2 Linear sampling method

Owing to the description of the linear sampling method (6.2.10), let S̃ denote a noisy scattered

operator, and let g̃z ∈ L2(Σ) be a solution of the integral equation

[S̃ g̃z](ξ) =
∫

Σ
ṽ(ξ, δ)g̃z(δ) dSδ = G(ξ,z) (∀ξ ∈ Sobs). (6.4.8)

This operator can then be decomposed as S̃ = S + Sν , where Sν is the perturbation induced by the

noise and which corresponds to the same decomposition of the solution g̃z such that g̃z = gz+gz,ν .

Equations (6.2.10) and (6.4.8) provide then

[(S + Sν)(gz + gz,ν)](ξ) = [Sgz](ξ) (∀ξ ∈ Sobs). (6.4.9)

Using a classical operator norm (see e.g. [149]) on L[L2(Σ), L2(Sobs)] denoted by ‖ ·‖op, it can

be deduced that

‖gz,ν‖L2(Σ)

‖gz + gz,ν‖L2(Σ)
6 ‖S−1‖op‖Sν‖op, (6.4.10)

which can be recast in

‖gz,ν‖L2(Σ)

‖gz + gz,ν‖L2(Σ)
6 Cond(S)

‖Sν‖op

‖S‖op
, (6.4.11)

where Cond(S) = ‖S‖op‖S−1‖op stands for the condition number of the operator S.

Since the operator S is compact, its singular values accumulate at zero and then ‖S−1‖op � 1.This

implies that S is ill-conditionned, and from the inequalities (6.4.10) and (6.4.11) it can be seen

that the relative error on the indicator provided by the method results from a large amplification

of the perturbation on the scattered operator. Thus the use of the linear sampling method requires

an efficient regularization of this operator such as Tikhonov regularization widely employed in

applications [46].

6.5 Conclusion

In this study, the acoustic inverse scattering by a penetrable obstacle is investigated by way of non

iterative techniques that are the topological sensitivity and the linear sampling methods. To pro-

vide a common framework for the assessment and the comparison of the two methods, the forward
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problem of scattering by a sphere is solved analytically in a general setting which emphasizes the

influence of the combined material properties of the background medium and the obstacle. On one

hand, the topological sensitivity method, associated with the heuristic interpretation of an infinites-

imal perturbation of a cost functional, is implemented via an adjoint field formulation which allows

the use of generic measurements of the scattered fields. The closed form of the indicator function

obtained permits a numerical investigation of its critical dependence on the material parameters in-

volved in the problem, as well as its behavior as a function of the frequency of the excitation. On

the other hand the analytical implementation of the linear sampling method, which is supported by

key theoretical results, emphasizes the crucial role of the interior transmission problem character-

izing frequency values at which the method is ineffective. Apart from this discrete countable set

of particular values, the focus is made on the influence of the frequency on the accuracy of the in-

dicator. These methods are then implemented in formulations which take into account partial and

discrete monitoring of the scattered fields. In this specific setting, numerically fast computations

are of particular interest with the use of separation between variables of observation and sampling

points. Finally, special attention is given to characterize and compare the effects of the use of noisy

data on the two methods that are formulated in a general setting.
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6.A Partial and discrete observations

This section is concerned with the identification of the obstacle B within the framework of the

foregoing discussion in situations where nobs discrete observation points, located on a part of a non-

concentric sphere O =
{
ζp, p ∈ {1, . . . , nobs}

}
, are used to monitor the scattered field. The set of

sampling points is denoted D. Special attention is given to reducing numerical cost by a method of

separation of variables.

Figure 6.8: Limited observation in obstacle identification

6.A.1 Topological sensitivity method

Semi-analytical expression

With reference to the integral formulation (6.3.8), if the set of observation points is discrete a corre-

sponding discrete adjoint field û is defined by

û(ξ, δ) = −
∑
ζ∈O

v(ζ, δ)G(ξ, ζ) (ξ ∈ D, δ ∈ Σ), (6.A.1)

where the scattered field is given by (6.3.4). Owing to the results of the previous section, the choice

of the setsO and D to ensure the condition ∀(ζ, ξ) ∈ O×D, |ζ| > |ξ| can be made without loss of

generality. Then using the Green’s function expansion (6.B.10), the adjoint field can be expressed

by
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û(ξ, δ) =
k

4π

∑
ζ∈O

+∞∑
n=0

+∞∑
n′=0

(−i)n+1(2n+ 1)(2n′ + 1)Λn(β, η)hn(k|ζ|)hn′(k|ζ|)jn′(k|ξ|)

Pn(ζ̂ · δ)Pn′(ζ̂ · ξ̂).
(6.A.2)

Once again, for a given sampling point z ∈ D, using equations (6.A.2) and (6.B.3), property

(6.B.2) and summation over δ ∈ Σ, a discrete topological sensitivity can be deduced as

T(z, β, η) =− k
∑
ζ∈O

+∞∑
n=0

+∞∑
n′=0

<

{
i(2n+ 1)(2n′ + 1)Λn(β, η)hn(k|ζ|)hn′(k|ζ|)·[

jn(k|z|)jn′(k|z|)
(

3(1− β)
2 + β

∇Pn(ζ̂ · ẑ) ·∇Pn′(ζ̂ · ẑ)−

(1− η)k2Pn(ζ̂ · ẑ)Pn′(ζ̂ · ẑ)

)

+
3k2(1− β)

2 + β
j′n(k|z|)j′n′(k|z|)Pn(ζ̂ · ẑ)Pn′(ζ̂ · ẑ)

]}
.

(6.A.3)

Using the addition theorem (6.B.4), the previous relation can written as

T(z, β, η) =− (4π)2k
∑
ζ∈O

+∞∑
n=0

+n∑
m=−n

+∞∑
n′=0

+n′∑
m′=−n′

<

{
iΛn(β, η)hn(k|ζ|)hn′(k|ζ|)Y m

n (ζ̂)Y m′
n′ (ζ̂)·

[
jn(k|z|)jn′(k|z|)

(
3(1− β)
2 + β

∇Y m
n (ẑ) ·∇Y m′

n′ (ẑ)− (1− η)k2Y m
n (ẑ)Y m′

n′ (ẑ)
)

+
3k2(1− β)

2 + β
j′n(k|z|)j′n′(k|z|)Y m

n (ẑ)Y m′
n′ (ẑ)

]}
.

(6.A.4)

where the angular derivatives of the spherical harmonics are given by (6.B.11). One can check that

the relation (6.A.4) can be transformed into (6.3.11) in the case of an observation on a complete

sphere and using properties (6.B.2), (6.B.6) and (6.B.8).
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Numerical implementation

The separation of variables achieved in the Green’s function expansion (6.B.10) can be used to

reduce the numerical computation cost. This is in fact, the idea of the fast multipole method [158].

The topological sensitivity (6.A.4) is of the form

T(z, β, η) =
∑
ζ∈O

+∞∑
n=0

+n∑
m=−n

+∞∑
n′=0

+n′∑
m′=−n′

<
{
a(n,m, ζ)b(n,m,z)c(n′,m′, ζ)d(n′,m′,z)

}
,

(6.A.5)

where, owing to previous section and Appendix 6.C, the sums over n and n′ can be truncated at

no and n′o respectively. Nevertheless, in practice the truncation orders are set to be equal no = n′o.

For the sake of brevity let us introduce the function of integer M : m 7→ M(m) = max{n ∈
N,floor(n2/m) = 0}. Since O =

{
ζp, p ∈ {1, . . . , nobs}

}
, the following quantities are computed

• A(no,O) ∈Mnobs,(no+1)2(C) whose entry indexed by (p, q) is defined by

A(no,O)pq = a(n,m, ζp) with n = M(q) and m = q − (n2 + n+ 1)

• B(no,z) ∈M(no+1)2,1(C) whose entry p is given by

B(no,z)p = b(n,m,z) with n = M(p) and m = p− (n2 + n+ 1)

• C(no,O) ∈M(no+1)2,nobs(C) whose entry (p, q) is

C(no,O)pq = c(n′,m′, ζq) with n′ = M(p) and m′ = p− (n′2 + n′ + 1)

• D(no,z) ∈M1,(no+1)2(C) with

D(no,z)p = d(n′,m′,z) with n′ = M(p) and m′ = p− (n′2 + n′ + 1).

(6.A.6)

Then, for each z ∈ D, the topological sensitivity (6.A.3) can be computed as

T(z, β, η) = <{D(no,z)C(no,O)A(no,O)B(no,z)} , (6.A.7)

where the product C(no,O)A(no,O) is computed only once.
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6.A.2 Linear sampling method

Semi-analytical expression

In the case of discrete and limited observations described earlier, for a given sampling point z ∈ D
and provided that k is not a transmission eigenvalue, one seeks for the function gz ∈ L2(Σ) as a

solution of the linear integral equation

[Sgz](ζ) = G(ζ,z) (∀ζ ∈ O). (6.A.8)

The use of (6.3.4) and the expansion of gz onto the set of spherical harmonics (see (6.3.24))

leads to

[Sgz](ζ) = 4π
+∞∑
n=0

+n∑
m=−n

inΛn(β, η)hn(k|ζ|)[gz]mn Y
m
n (ζ̂) (∀ζ ∈ O). (6.A.9)

Thus, with reference to the Green’s function expansion (6.B.10), equation (6.A.8) can be solved

numerically. Moreover, with reference to the previous section, this ill-posed problem can be regu-

larized via truncation of the n-indexed summations.

Numerical implementation

One seeks the coefficients ([gz]
m
n )n6no,−n6m6+n, solution of the discrete problem, ∀ζ ∈ O

no∑
n=0

+n∑
m=−n

inΛn(β, η)hn(k|ζ|)[gz]mn Y
m
n (ζ̂) =

ik

4π

n′o∑
n′=0

+n′∑
m′=−n′

hn′(k|ζ|)jn′(k|z|)Y m′
n′ (ẑ)Y m′

n′ (ζ̂),

(6.A.10)

where O =
{
ζp, p ∈ {1, . . . , nobs}

}
and Λn(β, η) 6= 0 for all n ∈ N (see paragraph 6.3.3) if k

is not a transmission eigenvalue. For numerical purposes, the truncation orders are set to be equal

no = n′o, then the following quantities are computed
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• S(no,O) ∈Mnobs,(no+1)2(C) whose entry (p, q) is defined by

S(no,O)pq = inΛn(β, η)hn(k|ζp|)Y m
n (ζ̂p) with n = M(q) and m = q − (n2 + n+ 1)

• gz ∈M(no+1)2,1(C) which defines the unknowns at point x

[gz]p = [gz]
m
n with n = M(p) and m = p− (n2 + n+ 1)

• E(no,O) ∈Mnobs,(no+1)2(C) whose entry (p, q) is defined by

E(no,O)pq =
ik

4π
hn(k|ζp|)Y m

n (ζ̂p) with n = M(q) and m = q − (n2 + n+ 1)

• F(no,z) ∈M(no+1)2,1(C) depending on point x with

F(no,z)p = jn(k|z|)Y m
n (ẑ) with n = M(p) and m = p− (n2 + n+ 1).

(6.A.11)

Then, for each z ∈ D, one seeks for the solution gz of the equation

S(no,O)gz = E(no,O)F(no,z), (6.A.12)

where the terms S(no,O) and E(no,O) are computed only once.

The resolution of the previous equation faces the problem that in general nobs 6= (no + 1)2, so

the systems (6.A.12) can be either an over or under-determined problem. Furthermore, the operator

S(no,O) inherits the compactness of S. To deal with these issues, the solution gz is computed using

a Moore-Penrose pseudoinverse based on the singular values decomposition of the operator. Then

the L2(Σ)-norm of the indicator function is given by

‖gz‖2L2(Σ) =
(no+1)2∑

p=1

|[gz]p|2. (6.A.13)

6.B Spherical harmonics and their properties

Noting S = {ζ ∈ R3, |ζ| = 1} and ∆S the angular part of the Laplacian (i.e. the Laplace-Beltrami

operator), then the set of spherical harmonics (Y m
n )n∈N,−n6m6+n verifying

∆SY
m
n (ζ) + n(n+ 1)Y m

n (ζ) = 0 (∀ζ ∈ S,∀n ∈ N,∀m ∈ {−n, . . . , n}), (6.B.1)
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constitutes an orthonormal basis of L2(S), so

∫
S
Y m

n (ζ)Y m′
n′ (ζ) dSζ = δnn′δmm′ (∀(n, n′) ∈ N2,∀(m,m′) ∈ {−n, . . . ,+n}×{−n′, . . . ,+n′}).

(6.B.2)

The Jacobi-Anger expansion [1] for plane wave in direction δ ∈ Σ is expressed by

eikζ·δ =
+∞∑
n=0

(2n+ 1)injn(k|ζ|)Pn(ζ̂ · δ) (∀ζ ∈ R3, δ ∈ Σ), (6.B.3)

where Pn denotes the n-order Legendre polynomial. The spherical harmonics verify also the addi-

tion theorem

Pn(ξ · ζ) =
4π

2n+ 1

+n∑
m=−n

Y m
n (ξ)Y m

n (ζ) (∀(ξ, ζ) ∈ S2), (6.B.4)

so that from (6.B.3), (6.B.4) and (6.B.2) one can obtain the Funk-Hecke formula

∫
S
eikζ·δY m

n (δ) dSδ = 4πinjn(k|ζ|)Y m
n (ζ̂) (∀ζ ∈ R3,∀n ∈ N,∀m ∈ {−n, . . . , n}). (6.B.5)

Moreover ∀n ∈ N Pn(1) = 1 so

+n∑
m=−n

Y m
n (ζ)Y m

n (ζ) =
2n+ 1

4π
(∀ζ ∈ S). (6.B.6)

Using the fact that

∇Y m
n (ζ) ·∇Y m

n (ζ) =
1
2
[
∆S(Y m

n (ζ)Y m
n (ζ))−∆SY

m
n (ζ)Y m

n (ζ)− Y m
n (ζ)∆SY m

n (ζ)
]
,

(6.B.7)

then, with relations (6.B.1) and (6.B.6), one obtains

+n∑
m=−n

∇Y m
n (ζ) ·∇Y m

n (ζ) =
n(n+ 1)(2n+ 1)

4π
(∀ζ ∈ S). (6.B.8)

To expand the Green’s function onto the set of spherical harmonics, let us introduce the Gegen-
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bauer theorem [1]

eik|ξ−ζ|

|ξ − ζ|
= ik

+∞∑
n=0

(2n+ 1)hn(k|ζ|)jn(k|ξ|)Pn(ξ̂ · ζ̂) if |ζ| > |ξ|, (6.B.9)

then with the addition theorem (6.B.4), the Green’s function is given by

G(ξ, ζ) = ik

+∞∑
n=0

+n∑
m=−n

hn(k|ζ|)jn(k|ξ|)Y m
n (ξ̂)Y m

n (ζ̂) if |ζ| > |ξ|. (6.B.10)

Finally, for a point ζ = (ρ, θ, φ) in spherical coordinates, the derivative of spherical harmonics

w.r.t. angles θ and φ are given by relations



∂Y 0
o (ζ̂)
∂θ

= 0

∂Y m
n (ζ̂)
∂θ

=

√
(2n+ 1)(n+m+ 1)(n−m+ 1)

(2n+ 3)
Y m

n+1(ζ̂)
sin θ

− n+ 1
tan θ

Y m
n (ζ̂)

∂Y m
n (ζ̂)
∂φ

= imY m
n (ζ̂).

(6.B.11)

6.C Asymptotic behavior of special functions and their derivatives

6.C.1 Spherical Bessel and Hankel functions of the first kind

The asymptotic behaviors of the spherical Bessel and Hankel functions of the first kind with respect

to the order n are given by [78]

jn(t) =
n→∞

tn
2nn!

(2n+ 1)!

(
1 +O

(
1
n

))
,

hn(t) =
n→∞

1
itn

(2n− 1)!
2n−1(n− 1)!

(
1 +O

(
1
n

))
,

(6.C.1)

owing to Stirling formulae n! ∼
n→∞

(
n
e

)n√2πn, it can be deduced that

jn(t) =
n→∞

1
2n
√

2

(
et

2n

)n(
1 +O

(
1
n

))
,

hn(t) =
n→∞

√
2
it

(
2n
et

)n(
1 +O

(
1
n

))
.

(6.C.2)
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With respect to the argument t, one also has the following asymptotic behavior at 0

jn(t) =
t→0

2nn!
(2n+ 1)!

tn (1 +O(t))) , (6.C.3)

and at infinity

jn(t) =
t→∞

1
t

cos
[
t− n+ 1

2
π

](
1 +O

(
1
t

))
. (6.C.4)

6.C.2 Derivatives of spherical Bessel and Hankel functions

The derivatives of jn and hn w.r.t. their arguments are given by the recursion formula [1]

For fn = jn or hn then f ′n(t) =
nfn−1(t)− (n+ 1)fn+1(t)

2n+ 1
, (6.C.5)

then their asymptotic behavior w.r.t. the order n can be deduced from (6.C.2) as

j′n(t) =
n→∞

1
2t
√

2

(
et

2n

)n(
1 +O

(
1
n

))
,

h′n(t) =
n→∞

−n
√

2
it2

(
2n
et

)n(
1 +O

(
1
n

))
,

(6.C.6)

as well as w.r.t. the argument t one has at 0

j′n(t) =
t→0

2nn!
(2n+ 1)!

ntn−1 (1 +O(t))) , (6.C.7)

and at infinity

j′n(t) =
t→∞

1
t

cos
[
t− n

2
π
](

1 +O

(
1
t

))
. (6.C.8)

6.C.3 Legendre polynomials

From [20] the following result is due to Stieltjes

(sin θ)
1
2 |Pn(cos θ)| <

(
2
πn

) 1
2

(∀θ ∈ [0;π]). (6.C.9)

Then, owing to [185], the Laplace relation for the asymptotic behavior of Legendre polynomials

precises this property with
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Pn(cos θ) =
n→∞

(
2

πn sin θ

) 1
2

cos
[(
n+

1
2

)
θ − π

4

](
1 +O

(
1
n

))
(∀θ ∈]0;π[). (6.C.10)

6.C.4 Derivatives of Legendre polynomials

The Legendre polynomials derivatives can be expressed by means of the recurrence relation
P ′o(x) = 0

P ′n(x) =
n(n+ 1)
(2n+ 1)

Pn−1(x)− Pn+1(x)
1− x2

if n 6= 0.
(6.C.11)

Then, the asymptotic behavior is deduced from (6.C.10) as

P ′n(cos θ) =
n→∞

(
2n

π sin θ

) 1
2 sin

[(
n+ 1

2

)
θ − π

4

]
sin θ

(
1 +O

(
1
n

))
(∀θ ∈]0;π[). (6.C.12)



Conclusion

Conclusions

The focus of the research described in this dissertation is the theory of inverse scattering in solid

mechanics which aims at detecting and identifying scattering obstacles in an elastic background

medium through the use of elastic or acoustic illuminating waves. Over the past decade, the lim-

itations of customary treatments of the latter class of problems, that employ either weak scatterer

approximation or non-linear optimization techniques, have spurred the development of the so-called

sampling methods for obstacle reconstruction. These methods have in common a paradigm change

in their approach to inverse scattering, in that they seek only a qualitative information about hid-

den scatterers within a computationally efficient and robust framework that makes use of the full-

waveform measurements of the scattered field. The qualitative information that is recoverable by

these methods can be ordered by the level of “complexity” as i) information on the presence of

obstacles, ii) geometrical information on their location and shape, and iii) information on the ma-

terial characteristics of a hidden obstacle. In this context, the present study is concerned with the

advancement of two such sampling methods, namely the topological sensitivity approach and the

linear sampling method that jointly carry a potential of detecting, reconstructing, and characterizing

obstacles in an elastic solid with moderate computational effort.

Even though the question of possible theoretical links between the two methods is addressed

via a simple but instructive analytical case in Chapter 6, the TS and LSM techniques rely, to a

large extent, on fundamentally different concepts. In particular, the topological sensitivity method

is based on the heuristic interpretation of the perturbation of a given cost functional generated by

the introduction of an infinitesimal flaw, whereas the linear sampling method relies on the resolution

of a linear integral equation of the first kind featuring a fundamental singular solution to the wave

(Navier or Helmholtz) equation. The developments proposed in this study aim to i) address the

266
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unresolved theoretical issues of the LSM, ii) extend the range of application of both the TS and

LSM techniques and iii) demonstrate their usefulness for practical applications.

By building up on earlier TS studies, the topological sensitivity method is implemented within

a classical FEM computational platform in Chapter 1 to assess its ability to deal with time-domain

inverse scattering problems, and constitutes a first comprehensive study of this kind. Chapter 2

introduces a novel extension of the method to deal with three-dimensional time-domain crack iden-

tification with an emphasis on on the ability of the TS approach to furnish a comprehensive “point-

by-point” information on both crack presence and its local orientation (i.e. the normal on a crack

surface). The study demonstrates that in contrast to the relatively involved, but mathematically rig-

orous, analysis required to arrive at the correct formulation of the topological gradient field, the

subsequent numerical implementation is rather simple. This feature, together with a remarkable

robustness of the TS method in situations involving noisy data, highlight the promise of this tool in

the context of real-life engineering applications.

A comprehensive study of the linear sampling method in the context of acoustic inverse scat-

tering, together with a novel perturbation study that for the first time provides clues towards its

performance in a multi-frequency setting, is given in Chapter 3. For completeness, the multi-

frequency developments are illustrated through both analytical and numerical examples. Chapter

4 is concerned with the study of the interior transmission problem for (visco-) elastic bodies, a non-

traditional boundary-value problem whose issue of well-posedness is critical for the applicability

and performance of the LSM. Finally, the characterization of the set of frequencies, for which the

homogeneous interior transmission problem does not have a unique solution, which is a lynchpin

toward extension of the linear sampling method toward multi-frequency inverse scattering and ma-

terial characterization of a hidden scatterer, is addressed in Chapter 5 in a comprehensive study of

the corresponding eigenvalue problem.

As mentioned earlier, Chapter 6 represents the first step toward exposing the commonalities

between the TS and LSM techniques that makes use of an instructive analytical study.

Possible directions for future work

In what follows, suggestions are given for future work and developments on inverse scattering

in solid mechanics in the context of the topological sensitivity approach and the linear sampling

method.
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Topological sensitivity method

Error in constitutive relation. To a large extent, previous topological sensitivity studies have

focused on the mathematical developments of the small-defect asymptotics and on the use of the

topological gradient as a flaw indicator function, rather than on the structure of the featured cost

functional. In solid mechanics, energy-like cost functionals which measure the error in the consti-

tutive relationship, are of particular relevance, as their use to quantify local perturbations of proper-

ties of a reference body spread out from the seminal work by [135]. The topological sensitivity of

energy-like functionals has been only recently established by [25] for Stokes flow problems and by

[33] in elastodynamics. These studies may soon inspire others, on both theoretical and numerical

aspects, contributing to a wider use of the topological sensitivity method within the solid mechanics

community.

Configurations with heterogeneous media. Most of the work on the topological sensitivity has

been concerned with the nucleation of an infinitesimal flaw in a homogeneous linear elastic solid.

The literature addressing TS for heterogeneous background media is scarce, notably [61] for the

Helmholtz equation and [107] that deals with heterogeneous viscoelastic bodies with piecewise-

analytic distribution of the material parameters. Further extension to configurations with randomly

distributed physical properties, is a challenging problem that has numerous applications. In this

respect one can refer to [132] for an introduction to stochastic mechanics and [97] for an overview

of wave propagation and time reversal method in random media.

Use of dimensional analysis toward the asymptotic perturbation studies. The use of dimen-

sional analysis toward the development of the topological sensitivity approach may lead to signifi-

cant simplification of the formulation and may represent a completely new avenue toward extending

the TS studies for more general configurations. The work by [107] in the context of heterogeneous

solids is, to the authors’ knowledge, the first attempt to use dimensional analysis for a topological

perturbation study.

Quantitative approach by higher-order expansions. The first-order asymptotic expansion of a

given cost functional, in terms of the linear size of the infinitesimal domain perturbation, leads to the

formulation of the corresponding topological gradient which is used for a qualitative geometrical

identification of unknown scattering objects. High-order developments, that have been addressed in

[178, 31, 32] for 2D potential problems and in [30] in connection with the Helmholtz equation in

3D, were motivated by their potential for quantitative identification of the size of the scatterer(s) by
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minimization of higher-order terms. Such studies can be extended to a broader class of problems,

including elastodynamic inverse scattering and crack identification.

Interface crack identification. The exploitation of the topological sensitivity approach, devel-

oped in this Ph.D. project, for the identification of cracks in homogeneous solids or interface cracks

in bimaterial bodies, constitutes another promising perspective as this problem arises in a num-

ber of applications dealing in particular with composite materials. A numerical implementation of

the method to perform, an extensive campaign of simulations is needed to assess its effectiveness.

However, given in particular the availability in closed-form of the corresponding polarization ten-

sors, the simplicity of the method may contribute to its generalization in an engineering context for

non-destructive material testing.

Mathematical justification. The topological sensitivity method relies on the formulation of a

topological gradient stemming from a mathematically rigorous asymptotic perturbation of a cost

functional for an infinitesimal defect. The use of this method in inverse scattering problems is,

however, based on a heuristic interpretation of this gradient to define an indicator function for fi-

nite defects. A deeper analysis of the method is needed to provide both a better understanding of

this indicator and a firmer mathematical justification of its use in applications, so far supported by

numerical experiments.

Linear sampling method

Formulation using reciprocity gap. The linear sampling method makes a recourse to the solution

of a linear integral equation of the first kind, where the left-hand side of the equation (i.e. the kernel)

is constructed from the experimental data, while the right-hand side depends on a singular solution

to the featured wave equation in the reference (defect-free) domain. For applications that deal with

full- or half-space configurations, this solution is usually the relevant Green’s solution. However,

for situations where the background medium is bounded, such fundamental solution is not known

analytically and its numerical computation can suffer from prohibitive approximations [see e.g.

141]. To circumvent this drawback, the method can be combined with the reciprocity gap principle

following the work by [74] in acoustic inverse scattering. This strategy avoids the need to compute

the fundamental solution and thus opens new perspectives for the use of the linear sampling method

in inverse elastodynamic problems dealing with finite solids.
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Qualitative material identification. A comprehensive study of the interior transmission problem

in the elasticity case presented in this dissertation represents a theoretical advancement in that it

establishes a link between the lower bound on the (experimentally-observed) transmission eigenval-

ues and combined material properties of the scatterer and the background medium. In earlier studies

by [51, 41, 49], dealing with the Helmholtz equation, such relations are used to obtain qualitative

information on the physical properties of a hidden scatterer. The question of such use of the LSM

in elastodynamics is still open and may have a wide range of practical applications.

Inverse scattering in the time domain. Most of qualitative inverse scattering methods have been

initially formulated for time-harmonic problems. An obvious alley toward the extension of such

works toward time-domain problems revolves around the use of the Fourier transform. Such ex-

tension however raises the issue of the so-called (interior) transmission eigenfrequencies that may

pollute the observed spectrum of the scattered data and, depending on the sampling technique used,

may render the method unusable. This in particular applies in the case of the linear sampling

method, whose multi-frequency treatment is for the first time rigorously addressed in this thesis and

cited reference work [103]. For completeness, it is also noted that a time domain treatment of the

LSM has been proposed in [67]. Notwithstanding the contribution of the latter work, however, a

time domain scattering situation where the undesirable (interior) transmission eigenvalues intersect

the Fourier spectrum of a prescribed transient signal as in [103] is still an open question.

Common challenges

Tests on real experimental data. The topological sensitivity approach and the linear sampling

method have each been the subject of a large number of studies that aim at establishing their the-

oretical foundation and exploring their range of applications, via numerical simulations that make

use of synthetic measurements. At present, however, the supporting literature dealing with the ex-

perimental data is relatively scarce, and the only light in this direction was shed in [87] and [186]

in the context of the TS and the LSM, respectively. As a result, there is a significant need for ad-

ditional experimental studies to build up examples using real scattering measurements which could

be more effectively designed through the proposition of benchmark problems for qualitative inverse

scattering methods.

Explore a unified inverse scattering theory. Inverse scattering problems, that have been the

subject of intense studies over the last twenty years, have witnessed the growth and the flourishing
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of qualitative methods that aim at providing a robust and computationally effective alternative to

the customary linearization and non-linear optimization approaches. In light of the diversity of the

sampling techniques developed so far, however, the question of the commonality (if any) of their

theoretical platform, arises naturally. In direct scattering problems, the so-called scattering operator

(see e.g. [136]) plays a central role and inverse methods have early been conceived as strategies to

extract the informations it contains [78, 124]. A brief review of the literature on the subject, with an

emphasis on the methods covered by this dissertation, is given below to highlight the importance of

the idea. It is believed that an in-depth review of the cited and related works may lead to significant

progress towards a unified theory of qualitative methods for inverse scattering.

• Exploitation of the spectrum of the scattering operator: [79, 125, 147].

• Linear sampling and factorization methods, seen as two comparable strategies [17] to extract

information from the scattering operator in a “simple” way [46].

• Parallels between the MUSIC algorithm and linear sampling and factorization methods: [69,

126].

• Use of the MUSIC algorithm to deal with inverse scattering problems: [7].

• MUSIC algorithm and time reversal: [85, 86].

• Time reversal and imaging: [62, 95, 171, 37].

• Exploitation of the spectrum of the time reversal operator and DORT method: [168, 169, 170].

• Time-domain topological sensitivity method and time reversal analogy: [88].

• As the topological sensitivity method employing least-square misfit function leads to a topo-

logical gradient in the form of a single-layer potential over the observation domain and whose

kernel is the scattered field, analogies naturally arise with the adjoint version of the linear

sampling method proposed by [156].

Figure A provides a synthetic diagram of these interconnections between the topological sensitivity

method (TSM) and the linear sampling method (LSM). Solid lines represent theoretically estab-

lished links, while dashed lines stand for future research directions.
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Figure A: Towards a unified vision of inverse scattering methods.
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