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On the Applicability of Truncated
Component Analysis Based on Correlation
Coefficients for Nominal Scales

Svante Janson and Jan Vegelius
University of Uppsala

The possibility of using component analysis for
nominal data is discussed. Particularly, two nomi-
nal scale correlation coefficients are applicable,
namely, Tschuprow’s coefficient and the J index.
The reason is that they are E-correlation coeffi-
cients; that is, they satisfy the requirements of a
scalar product between normalized vectors in a Eu-

clidean space. Some characteristics of these coeffi-
cients are described. The contingency coefficient
and Cram&eacute;r’s V are shown not to be applicable in a
component analysis. An example of a truncated
component analysis on artifical nominal data is in-
cluded with both the J index and Tschuprow’s coef-
ficient.

One frequently used vector-algebra-based method in psychological research is truncated compo-
nent analysis (see Gorsuch, 1974). By using some kind of similarity measure between test items as the
scalar product between the normalized vectors corresponding to the items, a Euclidean space is
created. Certain choices of base vectors of a linear subspace will then be interpreted as the main fac-
tors of the item structure. Not all similarity measures are applicable. In order to clarify this problem,
Vegelius (1973, 1976a, in press) introduced the concept E-(correlation) coefficient, where E stands for
Euclidean.
An E-coefficient is a similarity measure which satisfies the requirements of a scalar product be-

tween normalized vectors in a Euclidean space. From the definition of a scalar product, it is possible
to deduce that the following conditions must be fulfilled for all variables u, v, and w in order for a

similarity measure r to be an E-coefficient (Shilov, 1961):
1. r (u,v) = r(v,u)
2. ~t(u,v)~< 1

3. r(u,u) = 1
4. If r(v,w) _ -1, then r~u,v) = -r(u,w) to

5. Ifr(v,w} = 1, then r(u,v) = r(u,w)
6. If r(u,v) = and r(u,w) = 1, then r(v,w) must also be equal to 1 (transitive relation)
7. A correlation matrix based on r must be non-negative definite

For interval, ordinal, and dichotomized scales there exist many types of coefficients that are E-coef-
ficients, e.g., the product-moment correlation coefficient, Kendall’s T, and the G index.
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Traditional Nominal Scale
Correlation Coefficients

The most common correlation measure for nominal scales is the contingency coefficient. It was first
presented by Pearson (1904), who called it the first coefficient of contingency. It is defined by

where vk and v, represent the two variables,
m = number of units (individuals) and
X2 = the X2 value, computed from the contingency table.
Pearson assumed that the variable pair in question has a bivariate normal distribution. Both vari-

ahles are then divided into a finite number of parts, so that the entire variable plane is split into a fin-
ite number of rectangles (of finite or infinite area). If a sample of the variable pair population is
drawn, it will be split into a contingency table by this division. Pearson showed that if the rectangles
are made infinitely small, the limit of the expected value of the contingency coefficient will be equal to
the absolute value of the product-moment correlation coefficient between the original continuous
variables.
The contingency coefficient is not an E-correlation coefficient. One reason is that r~,~,) can never

be equal to 1. In Appendix 2 it is further shown that a correlation matrix based on a contingency table
is not necessarily non-negative definite. Therefore, the contingency coefficient should not be used in a
component analysis.
Tschuprow (1925, 1939) introduced another alternative based on the X’ value of the contingency

table. It is defined by

where c, = number of categories of variable vk and
Cp = number of categories of variable vP.

Janson and Vegelius (1977) proved that this coefficient is an E-correlation coefficient.
As Tschuprow’s coefficient can be 1 only for a square contingency table, Cramer (1946) suggested a

modification called V, which is defined as

V can be maximum (=1) also for a non-square table.
However, Cramer’s V is not an E-coefficient, as perfect correlation is not a transitive relation

(shown in Appendix 3). Therefore, Tschuprow’s coefficient will be considered as a superior version in
this connection.

Other coefficients with more limited areas of application have also been proposed, e.g., kappa
(Cohen, 1960) and weighted kappa (Cohen, 1968; Fleiss & Cohen, 1973). As they cannot be used for
an arbitrary pair of variables measured on a nominal scale, they will not be further discussed here.
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J index: Definition
and Characteristics

Recently a new correlation coefficient for nominal scales was introduced under the designation the
J index (Janson & Vegelius, 1977; Vegelius, 1976b). It was defined as a special case of Kendall’s gen-
eral definition of a correlation coefficient (Kendall, 1948). The following denotations were used:

m = number of individuals

Y,, = original value of individual i on variable k as obtained by measurement
c~ = number of levels of variable k ( it is assumed that c, is at least 2)

x,,k = value of individual pair (ij) on variable k, somehow defined as a function of they-values
(and similarly for variable p).

Kendall’s coefficient between the variables k and p is defined as

Different definitions of the x-values will yield different correlation coefficients.
The J index is now defined as the special case of Kendall’s coefficient, where

and similarly for variable p.
Janson and Vegelius (1977) proved some theorems about the J index. The main conclusions are

listed below:

1. The J index is an E-coefficient. Consequently it satisfies all the requirements mentioned in the in-
troduction.

2. The range of variation of the J index is the closed interval [0,1 ].
3. The J index will be equal to its maximal value 1 if, and only if, one of the following cases is true:

a. all values are equal in each of the two variables (see Table 7 in Appendix 1);
b. the table is square, and in each row and each column there is at most one frequency which is

not zero (see Table 8 in Appendix 1).
4. The J index will be equal to its minimal value 0 if, and only if, the number of units in each cell is a

sum of a fixed row index and a fixed column index (see Table 9 in Appendix 1).
5. Removal of an empty category will affect the J index (see Tables 10 and 8 in Appendix 1).
6. For dichotomized variables the J index equals the square of the G index (Holley & Guilford,

1964).

Tschuprow’s Coefficient:
Definition and Characteristics

Janson and Vegelius (1977) have shown that Tschuprow’s coefficient is a special case of Kendall’s
general correlation coefficient (Kendall, 1948). If we let mk, = number of individuals who have the
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value r in variable k, and use the denotation that was defined in the previous section, Equation 4 can
be applied with the x values defined as

Then the Kendall coefficient will equal Tschuprow’s coefficient.
The following characteristics can be deduced for Tschuprow’s coefficient (cf. Tschuprow, 1925;

Yule & Kendall, 1953; Guilford, 1956; Siegel, 1956).

1. Tschuprow’s coefficient is an E-coefficient.
2. The range of variation for Tschuprow’s coefficient is the closed interval [0,1].
3. Tschuprow’s coefficient is equal to its maximum value 1 if, and only if, the contingency table is

square and in each row and each column exactly one frequency is positive (see Table 8 in Appen-
dix 1).

4. Tschuprow’s coefficient is equal to its minimal value 0 if, and only if, the frequency in each cell is
the product of a fixed positive row index and a fixed positive column index (see Table 12 in Ap-
pendix 1).

5. If one category of one variable is empty, it must be omitted in order for Tschuprow’s coefficient to
be defined (see Table 10 in Appendix 1).

6. For dichotomized variables, Tschuprow’s coefficient is equal to the square of the phi-coefficient.

Component Analysis for
Nominal Scale Variables

The J index and Tschuprow’s coefficient are E-correlation coefficients. From a mathematical point
of view, there is consequently no objection to using them in component analysis. As their range of
variation only includes the closed interval [0,1], and no negative values, the entire n-dimensional Eu-
clidean space will not be used.
Some researchers may find it strange to base a component analysis on nominal data, since the Eu-

clidean space has metric properties. However, it must be pointed out that the existence of distances
(and angles) in a Euclidean space depends on the scalar product chosen. If a scalar product is chosen
that is relevant for nominal scale, metric properties will be obtained in the Euclidean space.

Example

The following is an example of a truncated components analysis based on the J index (and on
Tschuprow’s coefficient), using artificial data:
Twenty Swedish persons were assumed to have answered various preference questions with four al-
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ternatives on a nominal scale. The three main correlation measures for nominal scales were applied to
the data by the CONTIN program.’ As the contingency coefficient is not an E-coefficient, it was not
further analyzed. The matrices of the other two types were then used in a components analysis. The
linear subspace generated by the two major components was then rotated by the method of simple
loadings (Gorsuch, 1974). The program used in the component analysis and the rotation was
BMDX72 (Sampson & Jennrich, 1970).
The preference questions were as follows:

Raw Data Matrix:

Table 1.

’A Fortran program CONTIN which is available from the authors is capable of computing the contingency coefficient, the J in-
dex, Tschuprow’s coefficient, and Cramer’s V between each pair of variables read by the program.
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Note: The component intercorrelation = .114
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Rotated Components (based on J indices):
Table 6.

Note: The component intercorrelation = .063

Both component analyses gave essentially the same result with two main &dquo;factors.&dquo; The first
&dquo;factor&dquo; had strong loadings in variables 3 and 4 and is thus an &dquo;interest factor.&dquo; The second factor
had similarly strong loadings in variables 1 and 2 and may therefore be interpreted as a &dquo;factor&dquo; of

political attitude.
In both analyses the rotated component 1 can be interpreted as a component of interest and com-

ponent 2 as one of ideological political attitude. The difference between the structures based on the J
index and Tschuprow’s coefficients was very small in this example. If, however, some-alternative, e.g.,
alternative c in question 3, had not been chosen, Tschuprow’s coefficient would have been undefined
unless this category was deleted, which would be a doubtful convention.
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Appendix 1
Tables

In order to show the magnitude of the four nominal scale correlation coefficients, some contingency
tables are given below with the values computed.
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From these scores the following correlation matrix with contingency coefficients will be obtained.

This matrix has the following eigenvalues
... - I - .

As the last one of them is negative, the matrix is a negative definite matrix.

Q. E. D.

Appendix 3

Theorem: Cramer’s V is not an E-coefficient.

Proof. Variables 1 and 3 have four possible categories, while variable 2 has only three categories.
Eight persons have been scored with the following results:
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If Cram6r’s V is applied to the variable pairs, the following result is obtained:

Consequently, although V2 should be maximally similar both to v and V3, v. and V3 are not maximally
similar.
Thus Cramer’s V is not on E-coefficient; It should not be applied in a component analysis.
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