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ga 3 ‘ o the Quantum Hall Effect in 1920 launched a very exciting field which

&\?b bring new surprising phenomena. among these are stripe and bubble
\\Q' * igh Landau levels, excitonic condensates in bilayer systems,
\ An-induced zero-resistance states and domain structure in very high Landau

fi=, and quantum Hall effect in graphene. The goal of the workshop s to bring
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24 years ago....

Announcing...

AbigailandJohnVanVleck

LEGTURE

John Hasbrouck Van Vieck and his wife, Abigail.

John Van Vleck, who died in 1980, served for thirty-five
years as Professor and later as Hollis Professor of
Mathematics and Natural Philosophy at Harvard University
until his retirement in 1969.

Early in his career, he was a member of the faculty of the
Department of Physics at the University of Minnesota.

Van Vleck is universally recognized as the father of modern

. magnetism.
Harvard University, Cruft Photo Lab

University of Minnesota/Institute of Technology
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“Basic Research on

Exactly one year after the announcement
. . £l of the Nobel Prize for the QHE
Microelectronic Devices

aooratory of Physics | 2010: 25th anniversary of Nobel Prize
for quantum Hall effect
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SI MOSFET

basic research on

such a device led
to the discovery
of the

Quantum Hall
Effect




An artists impression
of the original QHE device
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An Artists Impression
of the Original QHE Device
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Misleading theoretical paper

LTy
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Note that the derivation up to here does not refer
to details of the random potential. Specifically, the
minimum metallic conductvity 0,,,,, 1n equation (8) has

a unwersal value independent of the randomness, magni-

tude of the magnetic field, and the Landau index N
This 1s reminiscent of the situation in the usual two
dimensional disordered system 1n the absence of
magnetic fields, 1n which the mimimum metallic conduc-
tiity has been claimed to be a umiversal constant, 0,
~ const X (¢*/h) with const ~ 0 1 bemng a numerical
constant, as pointed out by Mott et al * The number of
immobile carriers NV, ,, can be calculated from £, as

MPI-FKF

A remark must be made on the Hall conductivity
0y Evenif the Fermu level lies in the Anderson-
localized region 1n the tail of the N-th sub band (N 2 1),
there exist the extended states in the sub-band below
Ep. Since the relative coordinates (¢ , & ) of the
cyclotron motion contribute® to the Hall conductivity
as the correlation function of ¢ (1)¢_(0)), the extended
states below Er give nse to the Hall conductivity of
— (nec/H), where n 1s the number of mobile carriers
below £y This 1s consistent with the experimental
results by Kaway et al.!

A detailed comparison with experimental results
and the discussion on the electnc-field effects will be
made 1n a subsequent paper.

Acknowledgements — The authors are indebted to
Professor Y. Uemura, Professor § Kawayi, Dr M
Tsukada and Mr. J. Wakabayash: for valuable
discussions.
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Theory of Hall Effect

J. PHYS. SOC. JAPAN 39 (1975) 279-288

Theory of Hall Effect in a Two-Dimensional Electron System

Tsuneya ANDO,* Yukio MATSUMOTO and Yasutada UEMURA
Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113
(Received February 14, 1975)
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EP2DS Conference Berchtesgaden (September 19-22, 1977)

(Experiments by S.Kawaiji)

1c T 4 T = o
Si-MOS N(100)
f SN5-16 .
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Q&@ EP2DS-2, Berchtesgaden (Sept.19-22, 1977)

@;, Th. Englert and K.v.K., Surface Science 73, 70 (1978) /"

n

fxy as a function of the gate voltage
obtained from the Hall voltage. In

the lower part the calculated ny-.

»J

curve is plotted. The relation

- ne
o/xy - B is indicated by the

straight line.
slope by
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(Wulrzburg, August 1979)
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Fieldeffect Transistors

A.B.Fowler, F.F. Fang, W.E.Howard, and P.J.Stiles :
L Proc. ICPS-8 Kyoto 1966, p.331) i
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@;, Self Consistent Born Approximation

Theory:

T. Ando, Y. Matsumoto, Y. Uemura
(Proc, ICPE-11 Wargzawe 1872; D.<L94)
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The very first experiment which showed quantized Hall resistance

n-channel

-B=10Tesla
T=16K

A I i 1
‘i‘ . e =4 1‘ i s e i
' ©

At present such 2-terminal measurements on graphene
are published as proof for fractional quantum Hall effect

-channel resistance

hl4e2=6450 Q

5 10 ' 5 20V
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Dissertation Thomas Englert 27.10.77

'! (100} n-channel #309
| T:15K  B=10T

Ug(V)
POTENTIAL MEASUREMENTS

INCLUDING CURRENT CONTACTS




Birth of quantum Hall effect:

a) Analysis of Hall effect relative to
filling factor and not as a function
of carrier density/magnetic field
b) Experimental observation that localized
states do not influence the Hall effect
TV VYV v~

Ug (V)

POTENTIAL MEASUREMENTS
WITH POTENTIAL PROBES
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Uge First Version of the iy

@&0 “NOBEL” Publication (2 month after dlscovery)

Realization of a resistance standard based on natural constants

K. v. Klitzing, Physikalisches Institut der Universitat Wirz-

burg, D-8700 Wirzburg, FRG
G. Dorda, Forschungslaboratorien der Siemens AG, D-8000 Minchen

and M. Pepper, Cavendish Laboratory, University of Cambridge,

GCambridge, U.K.

Abstract

Measurements of the Hall voltage of a two dimensicnal electron
gas, realized with a silicon MOS fieldeffect transistor, show,
that the Hall resistance at experimentally well defined surface
carrier concentrations has a fixed value which depends only on

natural constants and which is insensitive to the geometry of

the device.



UNIVERSITY OF CAMBRIDGE
DEPARTMENT OF PHYSICS
CAVENDISH LABORATORY

Telephone : 0223-66477 MADINGLEY ROAD
Telex 81292 CAMBRIDGE CB3 0OHE

6th November 1979

Dr. K. von Klitzing,
Max-Planck-Institut,
Hochfeld-Magnetlabor.

G -

Grenoble 25, Avenue des Martyrs,
Grenoble Cedex,

France.

Dear Karl,

I hope that the chips have arrived safely and I'd be grateful if
you could confirm this. I'm also preparing some more chips with different
processing conditions.

As I'm sure you appreciate the preparation of special samples is a
very expensive and time consuming business. I fund this work with grants
from agencies within the U.K. and abroad, as a consequence I have to
document and fully report all the obtained results. Thus, the samples
are not gifts but are part of a collaborative venture and all results
obtained using them must be written up as joint publications with due
acknowledgements to the funding agencies. I hope that this is agreeable
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Physics in High Magnetic Fields
Hakone, Japan, 10.-13.9.1980

Kubo: Toorro, eerythi i be clear
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Answer from PRL Editor

has been reviewed by our referee(s). On the basis of the resulting report(s), we judge
that the paper is not suitable for publication in Physical Review Letters in its pres-
ent form, but might be made so by appropriate revision. Pertinent criticismextracted
from the report(s) is enclosed. While we cannot made a definite commitment, the prob-
able course of action if you choose to resubmit is indicated below.

( ) Acceptance, if the editors can judge that all or most of the criticism has
been met.

( ) Return to the original referee(s) for judgement.

( Submittal to new referee(s) for judgement.

Please accompany your resubmittal by a summary of the changes made, and a brief
response to any criticisms youhave not attempted tomeet. Donot ask us to make changes
in the manuscript, but send us either a new copy or revised pages for substitution.

CAUTION! T —
PLEASE STAY WITHIN ALLOWED
LENGTH WHENEVER ADDITIONS otg Ba@ﬁf“—’
OR MODIFICATIONS ARE MADE. T EeRREEE

enc.

GB/vm
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Referee report

This paper reports a new technique for measuring a fundamental

constant using solid state properties. It is well written, explicit,

_—

and straightforward. It should be published even though the accuracy is

still not as good as can be attained from h/e and e - 6ppm - and even

though an order of magnitude improvement is expected.
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@;, Referee report from Berry Taylor (NBS)

LS1509 '~ REFEREE REPORT

" In looking it over, I concluded that someone with a
strong background in semiconductor physics, especially the
Hall effect, would be a more appropriate referee than myself.

I+t is not principally a fundamental constants paper. However,

if in fact the theory is correct, that is, if the Hall resist-
ance (RH) is given by h/ezi where i is an integer and there are

no significant correction terms at say the 0.1 part-per-million

(p-pm) level, then their discovery is potentially guite exciting

e ———

since what they may have really discovered is a new way to ged=

ermine the fine-structure constant, o to high accuracy.




CONFERENCE ON PRECISION MPI-FKF
ELECTROMAGNETIC MEASUREMENTS i &

(23.-27.6.1980)

Result of discussions on 27.6.1980 with Dr. E.R.Cohen and
referee Dr B N Taylor (NBS/NIST) about the submitted QHE paper
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First Publication about the y:N

QUANTUM HALL EFFECT

11 Aucust 1980

VoOLUME 45, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AucusT 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance

K. v. Klitzing
Prysikalisches Institut der Universitat Wurzbuvg, D-8700 Wireburg, Fedeval Republic of Germany, and
Hochfeld-Magnetlaboy des Max-Planck -Instituts fur Festkorperforschung, F-38042 Grenoble, France

and

Measurements with a voltmeter with higher resolution and a
calibrated standard resistor with a vanishing temperature

coefficient at T=25°C yield a value of h/4e?=6453,17 £ 0,02 Q
corresponding to a fine-structure constant a!' = 137,0353 + 0,0004 Q
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Experimental Determination of the
Quantized Hall Resistance Ry =h/e?

BATTERY LARGE SERIES
RESISTANCE

| CALIBRATED
RESISTOR Ry

O
=latanco

R=9999,69 Q at 20°C

{+ current switch, R, =R, -U%
{
thermal power reduction,

temperature control...}
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Typical pages from my workbook for high precision measurements of the QHE
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Improvisation of
High Precision Experiments

DATA AQUISITION WITH DVM
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Q&@ High precision measurements of the QHE at the

% Physics Department EPI11, Wiirzburg

(April 1980)
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Based on Quantized Hall Resistance
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The quantum Hall effect- ﬂ
a phenomenon for
(nearly) all area m physics
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QUANTUM HALL EFFECT

PHYSICAL REVIEW D, VOLUME 39, 044028

BTZ black hole and quantum Hall effect in the bulk-boundary dynamics

Y. S. Myung
Department of Physics, Inje University, Kimhae 621-749, Korea
(Received 17 September 1998; published 27 January 1999)

We point out an interesting analogy between the BTZ black hole and QHE (quantum Hall effect) in
(2+1)-dimensional bulk-boundary theories. It 1s shown that the Chern-Simons—Liouville (Chern-Simons—
chiral-boson) theory 1s an effective description for the BTZ black hole (QHE). Also the IR- (bulk-) UV
(boundary) connection for a black hole information bound is realized as the UV- (low-lying excitations on
bulk) IR (long-range excitations on boundary) connection in the QHE. An inflow of a conformal anomaly
(c=1 central charge) onto the timelike boundary of AdS; by the Noether current corresponds to an inflow of

chiral anomaly onto the edge of the disk by the Hall current. [S0556-2821(99)01104-2]

PACS number(s): 04.70.Dy. 04.60.Kz, 11.25.Hf
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QUANTUM HALL EFFECT

PHYSICAL REVIEW D 71, 034014 (2005)

Quantum Hall states of gluons in dense quark matter

Aldichi Iwazaki
Department of Physics, Nishogakusha University, Shonan Ohi Chiba 277-8585, Japan

Osamu Morimatsu and Tetsuo Nishikawa

Institute of Particle and Nuclear Studies, High Energv Accelerator Research Organization,
1-1, Oocho, Tsukuba, Ibaraki, 305-0801, Japan

Munehisa Ohtani
Radiation Laboratory, RIKEN (The Institute of Phvsical and Chemical Research), Wako, Saitama 351-0198, Japan
(Received 9 Apnl 2004; revised manuscript received 15 October 2004; published 15 February 20035)

We have recently shown that dense quark matter possesses a color ferromagnetic phase in which a
stable color-magnetic field arises spontaneously. This ferromagnetic state has been known to be Savvidy
vacuum in the vacuum sector. Although the Savvidy vacuum is unstable, the state is stabilized in the quark
matter. The stabilization 1s achieved by the formation of quantum Hall states of gluons, that 1s, by the
condensation of the gluon’s color charges transmitted from the quark matter. The phase 1s realized
between the hadronic phase and the color superconducting phase. After a review of quantum Hall states of
electrons in semiconductors, we discuss the properties of quantum Hall states of gluons in quark matter in
detail. Especially, we evaluate the energy of the states as a function of the coupling constant. We also
analyze solutions of vortex excitations in the states and evaluate their energies. We find that the states
become unstable as the gauge coupling constant becomes large, or the chemical potential of the quarks
becomes small. as expected. On the other hand, with the increase of the chemical potential. the color
superconducting state arises instead of the ferromagnetic state. We show the region of the chemical
potential of the quarks in which the color ferromagnetic phase is realized. We also show that the quark
matter produced by heavy ion collisions generates observable strong magnetic field —10'* G when it is in
the ferromagnetic phase.
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QUANTUM HALL EFFECT

Quantum Hall quarks or Short distance physics of quantized Hall fluids

Martin Greiter
Department of Physics, Stanford University, Stanford, CA 94305, greiter@quantum.stanford.edu
(SU-ITP 96/30, cond-mat/9607014, July 2, 1996)

In order to obtain a local description of the short distance physics of fractionally quantized Hall
states for realistic (e.g. Coulomb) interactions, I propose to view the zeros of the ground state wave
function, as seen by an individual test electron from far away, as particles. I then present evidence
in support of this interpretation, and argue that the electron effectively decomposes into quark-like
constituent particles of fractional charge.

PACS numbers: 73.40.Hm,73.20.Dx,03.65.-w,03.80.+1
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PHYSICS LETTERS A

Physics Letters A 239 (1998) 141-146

Quantum computation in quantum-Hall systems

V. Privman?, L.D. Vagner®, G. Kventsel >¢

2 Department of Physics, Clarkson University, Poitsdam, NY 13699-5820, USA
b Grenoble High Magnetic Field Laboratory, Max-Planck-Institut fiir Festkbrperforschung, and Centre National de la Recherche
Scientifique, BP 166, F-38042, Grenoble Cedex 9, France
¢ Depariment of Chemisiry, Technion - Israel Institute of Technology, Haifa 32000, Israel

Received 17 July 1997; revised manuscript received 10 December 1997 accepted for publication 10 December 1997
Communicated by C.R. Doering

Abstract

We describe a quantum information processor (quantum computer) based on the hyperfine interactions between (he
conduction electrons and nuclear spins embedded in a two-dimensional electron system in the quantum-Hall regime.
Nuclear spins can be controlled individually by electromagnetic pulses. Their interactions, which are of the spin-exchange
type, can be possibly switched on and off pair-wise dynamically, for nearest neighbors, by controlling impuritics. We also
propose the way to feed in the initial data and explore ideas for reading off the final results. (©) 1998 Elsevier Science B.V.
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Physics Today , July 2006

Topological quantum
computation

Sankar Das Sarma, Michael Freedman, and Chetan Nayak

The search for a large-scale, error-free quantum computer is reaching an
infellectual junction at which semiconductor physics, knot theory, string the-

ory, anyons, and quantum Hall effects are all coming together to produce
quantum immunlﬁt.
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A Four-Dimensional
Generalization of the Quantum
Hall Effect

Shou-Cheng Zhang and Jiangping Hu

We construct a generalization of the quantum Hall effect, where particles move
in four dimensional space under a SU(2) gauge field. This system has a mac-

roscopic number of degenerate single particle states. At appropriate integer or
fractional filling fractions the system forms an incompressible quantum liquid.

Gapped elementary excitation in the bulk interior and gapless elementary
excitations at the boundary are investigated.

PhysicsWeb: The work by Shou-Cheng Zhang
and Jianping Hu of Stanford University in California and Tsinghua
University in China might even represent a small step towards one of
the ultimate goals in theoretical physics - a quantum theory of gravity quantum theory of gravity
(S-C Zhang and J Hu 2001 Science 294 823).
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@6’0 J. Phys. A: Math. Gen. 36 (2003) 9415-9423 PII: 50305-4470(03)62871-4

Geometric construction of the quantum Hall effect in
all even dimensions

Guowu Meng

Department of Mathematics, Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China

E-mail: mameng@ust.hk

Received 24 April 2003, in final form 27 June 2003
Published 27 August 2003
Online at stacks.iop.org/JPhys A/36/9415

Abstract |htq:| /fstacks iop.org/ja/36/9415 |
The quantum Hall effects in all even dimensions are uniformly constructed,

Contrary to some recent accounts in the literature, the existence of quantum Hall
effects (QHE) does not crucially depend on the existence of division algebras.
For QHE on flat space of even dimensions, both the Hamiltonians and the
ground-state wavelfunctions for a single particle are explicitly described. This
explicit description immediately tells us that QHE on a higher even-dimensional
Hat space shares common features such as incompressibility with QHE on a
plane.
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Algebraic geometry realization of quantum Hall soliton

R. Abounasr, M. Ait Ben Haddou,? A. El Rhalami, and E. H. Saidi®
Lab/UFR-Physique des Hautes Energies, Faculté des Sciences de Rabat, Morocco and
Groupement National de Physique des Hautes Energies, GNPHE; Siege focal, Rabat,
Morocco

(Received 24 September 2004; accepted 29 September 2004;
published online 31 January 2003)

Using the Igbal-Netzike—Vafa dictionary giving the correspondence between the
H, homology of del Pezzo surfaces and p-branes, we develop a way to approach
the system of brane bounds in M-theory on S'. We first review the structure of
10-dimensional quantum Hall soliton (QHS) from the view of M-theory on S'.
Then, we show how the DO dissolution in D2-brane is realized in M-theory lan-
guage and derive the p-brane constraint equations used to define appropriately the
QHS. Finally, we build an algebraic geometry realization of the QHS in type IIA
superstring and show how to get its type IIB dual. Other aspects are also
discussed. © 2005 American Institute of Physics. [DOIL: 10.1063/1.1834695]
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IIB string quantum hall | Suche |
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FIG. 1. This figure represents the type stringy representation of a fractional quantum Hall soliton.
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Available online at www.sciencedirect.com

SCIEHGE@DIHECT’ NI_IE:LEAR
PHYSICS

Nuclear Physics B 731 [FS] (2005) 285-308

Abstract

The LLM’s 1/2 BPS solutions oupergravity are known to be closely related to the integer quantum
Hall droplets with filling factor v = 1, and the giant gravitons in the LLM geometry behave like the quasi-
holes in those droplets. In this paper we consider how the fractional quantum Hall effect may arise in this
context, by studying the dynamics of giant graviton probes in a special LLM geometry, the AdSs x 3
background, that corresponds to a circular droplet. The giant gravitons we study are D3-branes wrapping
on a 3-sphere in S°. Their low energy world-volume theory, truncated to the 1/2 BPS sector, is shown
to be described by a Chern—-Simons finite-matrix model. We demonstrate that these giant gravitons may
condense at right density further into fractional quantum Hall fluid due to the repulsive interaction in the
model, giving rise to the new states in IIB string theory. Some features of the novel physics of these new
states are discussed.
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QUANTUM HALL EFFECT and STRING THEORY

Higher-dimensional quantum Hall effect in string

theory
Contents
1. Introduction
2. Review: 2 + 1d quantum Hall effect on an S?
2.1 The string theory picture
3. Review: 4 + 1d quantum Hall effect on an S*
3.1 The second Hopf map
3.2 The quantum Hall mechanics
4. U(n) interpretation of the 4 + 1d quantum Hall effect
5. String theory construction of the 4 + 1d quantum Hall effect

5.1 Fuzzy four-sphere interpretation
5.2 The magic geometry of the fuzzy S4
5.3 How to see the fuzzy S* without using string theory

6. Generalization to higher dimensions
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A heterotic string Is
a mixture of the
bosonic string and
the superstring
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@, QHE against wire resistor

Comparison of the 100 Q standard resistor at LNE
2.200 with a QHE device (R 4= 25812.807 Q)

2.000

1.800

o

wire resistors show

: ",./ time-dependent variations
1.200

TEGAM SR102 A2041297SR102

(R-100)/100 (10)
B o
S 38

1.000 ‘ |
01/09/2002 09/11/2004 18/01/2007

Date




%, Comparison between four different  MP-FXF
@, QHE devices

(¢

If output voltage = 0,
all resistances R, 1234

are identical
(interchange of input and output)

Result:
R,1%34identical within an

accuracy of some parts in 10"
(acquisition time £= 46 000 s)

Ry 25812 307xxx Q

x-digits unknown within our
International System of Units (Sl)




X, Recommendations MPA-EKF
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P

0 Comite International des Poids et Mesures

(October 4-6, 1988)

recommends

- that 25 812,807 Q exactly be adopted as a conventional value,
denoted by EKFEU’ for the von Klitzing constant, Ry,
£

- that this value be used from Lst January fégﬂ, and not before,

by all laboratories which base their measurements of resistance on the
quantum Hall effect,

- that from this same date all other laboratories adjust the value
of their laboratory reference standards to agree with Ry_gg»

- that in the use of the quantum Hall effect to establish a
laboratory reference standard of resistance, laboratories follow the
most recent edition of the technical guidelines for reliable
measurements of the quantized Hall resistance drawn up by the Comité

Consultatif d'Electricité and published by the Bureau International des
Poids et Mesures,

and is of the opinion

- that no change in this recommended value of the von Klitzing
constant will be necessary in the foreseeable future.
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Constants
Topics:
Values

Energy
Equivalents

oearchable
Bibliography

Background

The NIST Reference on
Constants, Units, and Uncertalnty

MPI-FKF
http://physics.nist.gov/cuu/Constants/index.html )

_Fundamental Physical Constants

conventional value of von Klitzing constant
Rk 90
YValue 25 812.807 ()

standard uncertamty  (exact)

Eelative standard uncertainty  (exact)

Concise form 25 812 .807 ()

Click here for correlation coefficient of this constant with other constants

oource: 2006 CODATA,
recommended values

Correlation coefficient with
any other constant

Definition of
uncertainty
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The NIST Reference on
Constants, Units, and Uncertainty

Constants
Topics:
Values

Equivalents

searchable et
Bibliography Standard uncertamty

Background

Eelative standard uncertamty

Concise form

Ll Eilds

finestructure
constant

_ Fundamental Physical Constants

Click eguation to show only symbaol

von Klitzing constant
Energy RK — }L/EE = I.LUC‘/TZEE

25 B12.807 557 ()
0.000 018 ()

6.8 x 10710

25 812 .807 557({18) ()
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e, Different routes to ALPHA

o~1=137.036..

THE MOST IMPORTANT
FUNDAMENTAL CONSTANT

fine
structure
splitting

Muonium gyfomagnetic
hyperfine ratio of
splitting protons

electron

magnetic

moment g,

QED-THEORY WITHOUT
NECESSARY QED




PRIMARY
R E'SSE IR (¥

STANDARD

EVERYONE IN THE WORLD

(if he spends about 300 T€ for
this equipment)

IS ABLE TO CALIBRATE

RESISTANCES WITH AN

UNCERTAINTY OF LESS
THAN 108

“The better choice for your Primary
Resistance Standard - QHR2000”

Quantum Hall Resistance Standard
(Inset; typical LabVIEW® screen)

The QHR2000 is a primary resistance The QHR2000’s principle features are:-

standard system developed by Cryogenic Ltd.

based upon the Quantum Hall Effect. It ® Comparison of the 100() standard with
allows calibration of a nominally 1000} Ry to 1 part in 108.

standard resistor against the von Klitzing

constant with a precision of 10-8. @ Precision comparison of 10002

standard to resistances from 1{) to

The Cryogenic Current Comparator (CCC
ryogeni parator ( ) 10KkCY.

used enables precision measurement and
control to 10-%. It may be used independently

to carry out very accurate bridge circuit @ Portable CCC insert for independent

use with low LHe consumption.

measurements.
ST mmm oy e e — B EE e @ LabVIEW® software for automated
s Em TR snEIINEER operation, measurement and analysis.

CRYOGEMNIC LIMITED *
For further information please contact us ar: @ 14 Tesla magnet at 4.2K allowing easy
Unit 30, Acton Park Industrial Estate. The Vale, ~ use of plateaux up to n=2.
London W3 7QE. UK )
Tel: +44 181 743 6049 Fax: +44 181 749 5315 @ Fully shielded, a screened room is not
E-mail: cryogenic@cix.compulink.co.uk required. :
® National Instruments

A=l s o INSERT 10 ON REPLY CARO




Primary Standard

14T Magnet

3He Cryostat

CCC Bridge

DC samples from

. a . LEP,DFM

| PTB, OFMET
NRC, ...




WwWw.cryogenic.co.u

NEW QHR MAGNET FOR THE NPL

Cryogenic has been selected once
again by the National Physical
Laboratory (NPL) to design and
manufacture a high field magnet
complete with a low loss cryostat for
Quantum Hall Metrology. The magnet
has been delivered for use as a
Quantum Hall Resistance transfer
standard. It will form part of a basic
physics and fundamental constant
experiment, which seeks to determine
the kilogram in terms of electrical
standards. This follows a successful
delivery of a similar project carried out
for the Physikalisch-Technische
Bundesanstalt (PTB) in Germany last
year. The system is installed in a
stainless steel cryostat and provides a
14 Tesla magnetic field.

Cryogenic have also supplied the NPL
with a glass fibre helium cryostat with
HTS leads to be used for their 100
Amp Cryogenic Current Comparator
for precision metrology.
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Metrologia 42 (2005) 431441 doi: 10 T0ER0026-1304/42/5/014

Towards an electronic kilogram:
an improved measurement of the Planck
constant and electron mass

Richard L Steiner, Edwin R Williams. David B Newell and
Ruimin Liu

National Institute of Standards and Technology (NIST), 100 Bureau Dr Stop 2171,
Gaithersburg, MD 20809-8171, USA

Abstract

The electronic kilogram project of NIST has improved the watt balance
method to obtain a new determination of the Planck constant # by measuring
the ratio of the SI unit of power W to the electrical realization unit Wy,
based on the conventional values for the Josephson constant K gy and von
Klitzing constant Rk.oo. The value i = 6.626 069 01(34) x 1077* s verifies
the NIST result from 1998 with a lower combined relative standard
uncertainty of 52 nW/W. A value for the electron mass

m. = 9.109382 14(47) x 107! kg can also be obtained from this result.



MPI-FKF

“. Sl base unit for the MASS

(¢

ONLY ONE OFFICIAL kg
IN THE WORLD (prototype)
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Official definition:

“The Kilogram is equal to the mass of the International Prototype

of the Kilogram after cleaning and washing using the BIPM method.”
(CIPM, 1989)

BIPM Cleaning Method

 Rub artifact with chamois cloth soaked in ether / alcohol mixture.

« Wash in a jet of steam.
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INSTITUTE OF PHYSICS PUBLISHING METROLOGIA
Metrologia 42 (2005) 71-80 doi:10.1088/0026-1394/42/2/001

Redefinition of the kilogram: a decision
whose time has come

Ian M Mills', Peter J Mohr?, Terry J Quinn?, Barry N Taylor®
and Edwin R Williams®

The quantum Hall effect may be important
for the redefinition of the kilogram!!
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Watt balance (first part)

current I ~v-e
I

O

Y
o) e/

[h/e?]

i -
[h/e]

w|
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", \Watt balance (second part) =
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First experiment Second experiment

Uiwa* 1 = v

&
&
&
&

~hle <& mg

The most inaccurate quantities in this equation are
the Planck constant h and the mass m

h~m
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Metrologia 42 (2005) 431441 doi: 10 T0BR0026-1 3044275014

Towards an electronic kilogram:
an improved measurement of the Planck
constant and electron mass

Richard L Steiner. Edwin R Williams. David B Newell and
Ruimin Liu

With uncertainties .ﬁppi'ﬂa{:hing the limit of those commercially applicable to
mass calibrations at the level of 1 Kg, an electronically-derived standard for
the mass unit kilogram is closer to fruition.



Qs A possibility for a new definition MP'FKF

@3 of the kilogram in 2011:

The kilogram is the mass, which by comparison
of mechanical and electrical power results
In a value of the Planck constant of

h=6.626 069 01 x 10-3*Js (exact).

electrical power: U%/R ~ h
Josephson voltage U~ h/e
quantized Hall resistance R ~ h/e?



MPI-FKF

@5,

Ann.Physik 1, 69-122 (1900)

Max Planck:

“....with the help of fundamental constants we
have the possibility of establishing units of
length, time, mass, and temperature, which
necessarily retain their significance for all
cultures, even unearthly and nonhuman
ones.“



NATURAL UNITS

Max Planck 1899

/h- f
length: 3
¢ h = Planck constant
h-c L
mass: ‘/T =- f = gravitational constant

T ¢ = light velocity
time: / :
C
ermperature: | 1" _EEGGRRN
| k*. f
2
resistance: /h_4 :- e = elementary charge
e

k = Boltzmann onstant
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. Realization of Planck’s idea?

(¢

RECOMMENDATION OF THE
INTERNATIONAL COMMITTEE FOR WEIGHTS AND MEASURES

h e k
Preparative steps towards new definitions of the kilogram, the ampere, the kelvin and the mole in terms of
fundamental constants
RECOMMENDATION 1 (C1-2005)

approve in principle the preparation of new definitions and mises en pratique of the kilogram, the
ampere and the kelvin so that if the results of experimental measurements over the next few years are
indeed acceptable, all having been agreed with the various Consultative Committees and other relevant
bodies, the CIPM can prepare proposals to be put to Member States of the Metre Convention in time for

possible adoption by the 24th CGPM in 2011
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International System (basic Sl units)

¢ = fixed
h = fixed
e = fixed

h/e = fixed
h/e2 = fixed

1N=1s2m-kg

1J=1Nem =1s-2.m>2-kg




Ry: h/e?
K,: 2e/h

exact| e

‘The new S| 1? \

109

oth exacts

Sl volt 10-10
Sl ohm 10-°

Na

exact 10-8

©

104 0

Biological
weighting
factor

k and R exact
106
10-15
Y is(2°C8)
exact
10-12
O
c | exact

108
h |exact

Figures in blue: approximate relative
uncertainty of realization
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201 1 (c, h, e, hle, h/e? fixed
The End of
Quantized Hall Resistance
Measurements!?
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University of Minnesota — Twin Cities, April 30 — May 02, 2010

QHE@30

Home The Quantum Hall Effect at 30 Years
April 30 - May 2, 2010
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Q&@ Richard Feynman (* 1918; + 1988) iy

@5, There's Plenty of Room at the Bottom

An Invitation to Enter a New Field of Physics
(published February 1960 in Engineering and Science)

Final blackboard left b Fe nman in his office when he died:
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First attempt to present the results at a
semiconductor conference (ICPS-15)
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ABSTRACTS (ICPS15 in Kyoto)

The deadline for the submission of abstracts
Is March 15, 1980. Full details for the
submission of abstracts will be given in a
forthcoming announcement.

XV INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS
KYOTO, 1980 SEPTEMBER |-5

MAILING ADDRESS : PROFESSOR YUTAKA TOYOZAWA  PROGRAM CHAIRMAN
INSTITUTE FOR SOLID STATE PHYSICS
Transport properties of a two- UNIVERSITY OF TCKYO
dimensional electron gas at the  7-22-1 ROPPONGI, MINATO-KU, TOKYO 106, JAPAN
surface of InP-field effect
transistors

VON KLITZING Grenoble
ENGLERT

L

May 14, 1980



XV INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS
KYOTO, 1980 SEPTEMBER |-5

MAILING ADDRESS : PROFESSOR YUTAKA TOYOZAWA  PROGRAM CHAIRMAN
INSTITUTE FOR SOLID STATE PHYSICS
UNIVERSITY OF TOKYO
7-22-1 ROPPONGI, MINATO-KU, TOKYO 106, JAPAN

June 3, 1980

Dr. K. von Klitzing
Physikalisches Institut

der Universitdt Wiirzburg
8700 Wiirzburg, ROntgenring 8
West Germany

Dear Dr. von Klitzing,

Thank you for your letter of June 19. I also got Prof. Landwehr's
telegram to Prof. Kamimura concerning your new work. I am very much
interested in your new method for the determination of h/e? based on Hall
resistance measurements on MOSFETs.

As a program chairman, however, I cannot agree with vour proposal of
replacing your accepted paper (5pD-2) by this new work. The reasons are
as follows. (1) Selection of the papers was done under the attendances




Q&é\ Post-deadline Presentation at Satellite Conference _
@30 “Physics in High Magnetic Fields” (Hakone 10.-13.9.1980)
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« QHE equipment for metrology:
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Automated calibration system for capacitors

based on the ac QHR

|
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QHE device

Coaxial ac bridge

ae

to main, Dy, or D,

(ZH - ZR)

= -0 - 107k, - jowkyR, C,
L 60






The QHARS: a new development of the

metrological application of QHE

QHARS 129: 100 Hall bars in parallel
QHARS 100: 16 Hall bars in series +129 Hall bars in parallel
R,,= 16R, /4130 =~ 100 Q (within 10-°)

Hall bar width= 400 zm

190 T7=1 3K ig
1 1=100 pA T
125 1 40
@00 — QHARS 129 435
T+ QHARS 100 103
75| 250
3 /- 20 e
I
o 20 115
25 - - 10
15
0 -0
0 1 2 3 4 5 6 7 8 9 10 M

B(T)
n,=4.3.10! cm?
p =310 000 cm?V-1st
W. Poirier et al., J. Appl. Phys. 92, 2853 (2002)
W. Poirier et al., Metrologia 41, 285 (2004)
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Voltage V4rtbetween the layers
(measured with potential probes)
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WD= 8mm Signal A= InLens File Name = 070820_21.tif
EHT = 2.00 kV FIB Mag= 669X Date :12 Sep 2007
Mag= M23K X FIB Lock Mags = No Time :16:25:08

Jochen Weber, MPI-FKF



A tip with a single-electron transistor
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