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I. An integrability condition. 

Let M be a Cr n-manifold (1 ~ r ~ ~) and let W be a Ck I-form 

(1 ~ k ~ r) on M which never vanishes. We seek conditions on w that 

it admit, for a set N ~ M, a Ck integrating pair (p,\) on N, more 

specifically a never-vanishing function (integrating factor) \: N ~ ~ 

and a Ck function ~: N ~ ~ such that AW = d~ on N; it follows that such 

A would be Ck-l and could be chosen either positive or negative. 

For any N ~ M, by a Cr positive w-cycle in N we mean a cr 

function y: [O,T] ~ N, for some real T > 0, such that y(O) = y(T) and 
• 1 

for all t€[O,T], Wy(t)(Y) > O. 

Theorem. Let y€M. There is a neighborhood of y on which w 

admits a Ck integrating factor if some neighborhood of y contains no 

Cr positive w-cycle and only if some neighborhood of y contains no 

continuous, piecewise 0 positive w-cycle. 

+ The approach to integrability here is based on all axiom of J. Ville 

[18], but the method of proof is a modification of Turner's modification 

[17] of Caratheodory's accessibility theorem ([3], §4). We have found 

that there is substantial parallelism between the methods we use in 

proving our theorem and the method used by Serrin in proving an 

analogous result (cf. [15], p. 145); however we employ a Ville-like 

axiom, natural in the economic context, in place of the usual "Second 

Law." We are also extremely grateful to Professor Serrin for some of 

his Minnesota classroom notes which suggested a step in our proof. 
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Proof. The "only if" is trivial. We prove the "if" as follows. 

Let N be a neighborhood of y containing no Cr positive w-cycle. 

Clearly we may identify N with a neighborhood No. of the origin On 

in Rn , and y with On. Then for every y€No , Wy has the form 

w = y 

n 

L: Xi (y) dy xi: TyM -; Rl, for some Ck functions Xi: M -; Rl, where 
1 ::1 

the xi are the standard coordinate functions on Rn. Since w 

never vanishes, we may without loss of generality assume that 

X(y) = (Xl (Y), ••• ,2f (y)) = (r,O, ••• ,0) for some real r > 0. 

Because X is continuous, there is an open neighborhood Nl 

of y such that, for all y€Nl , Xl (y) > ° 

1. 1) 

that 

1. 2) 

KU.Yl I Xl (y) < 1 

For a11 y€Rn let Ily II 

(j 2, ••• , n) • 

n 
L: IYi I· We choose 6 > ° to be so small 

1=1 

{ y€ R.n: II y II < 6} 

is an open subneighborhood of y in Nl • 

For any given Ck path a: [O,T] -; {y€N2 : Yl = O}, and real ~, we 

consider solutions to the corresponding ordinary differential equation 

say. 

dz1 (t) 
dt 

xj(Zl(t),a2(t), ••. ,o!'(t)) ~j(t) +~ 
Xl (zl (t) , if (t) , ••• , cP (t)) 

First let y€N2 and let aCt) = (O,(l-t)Yz, ••• ,(l-t)Yn) for all t. 

Then fa is Ck , and the equation (I.3.~) with ~ = ° has a unique 

solution z}(.;~) with z~(O;~) = Yl, defined on a maximal interval J 

about 0. By the choice of N2 , z;(.;~) remains bounded on [0,1] n J, 

and so (by [8], p. 12 (Thm. 3.1)) the maximal interval includes [0,1], 

hence z;(l;~) is defined and is thus locally a Ck function of y 

and ~ ([8], p. 100 (Thm. 4.1)). We may therefore define a Ck function 

cp: Nz -; Rl by 
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1.4) cp ( y) = z~ ( 1 ; 0) for all y€N:a. 

Note that (z;(o;O), a2(o), ••• ,ct(.» lies in N:cp and so (z;(.;~), QI:a(o), ••• ,ct(o» 

also lies in N:a for all small ~. 

We now show that, for any real t:a > t1 and any Ck path ~: [t
1

, t:aJ -+ N:a 

such that w(§(t» = ° for all t€[t1 ,t:a], we have CP(~(t1» = cp(~(t:a». 
Without loss of generality we take ~ = 1 and t:a = 2. First, define 

131 (o;~) to be the unique solution z~ (1) (o;~) of (1. 3.~) through ~1 (1) , 

where QlJ = ~j for j = 2, ••• ,n; and define ~j(o;~) = ~j(o) for j = 2, ••• ,n. 

Thus 13(0;0) = S(o), and ~(o;~) lies in N:a for all small~. Next define 

a real valued function qS(l) (o;~) as the solution of (I.3.~) going through 

~1 (1) at time t = 1, for QI'! (t) == t~J (1) (j = 2, ••. ,n). (That this solution 

exists on all of [0,1] follows from the fact that qf3(l) (t;~) = 1(1) (l-t; -~) 

for all t, and for all small ~ the latter exists for all t€[O,l] by the 

previous paragraph.) Now suppose cp(~(l» > cp(~(2), and consider the 

continuous, piecewise Ck path Tl ( 0 ;~) in Rn, for some sma 11 ~ > 0, 

obtained by following the solution of (I.3.~), first radially from 

L = {y€Rn: Y:a = ••• = Yn = O} to ~(l), then from S(l) to S(2;~) and 

finally from ~(2;~) radially back to L; equivalently, define: 

for all t€[O,l] 

~«t-l)2 + (2-t)1;~) for all t€[ 1,2] 

Just as with (z;(o;~),QI:a(o), ••• ,aJl(o» earlier, Tl(o;~) lies in N:a for 

all small~. Note that Tl(O;O) lies above Tl(3;0) on L, since 

Tl1 (0;0) = cp(~(l» > cp(~(2» = ~ (3;0). Then, because Tl is continuous, 

Tl1(0;~) > Tl1(3;~) for all small ~. Let us extend Tl(o;~) from [0,3] 

to [0,4] by going straight up on L: 
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1. 6) ~(t;~) = (4-t)~(3;~) + (t-3)~(0;~) for all t€[3,4] 

so ~(O;~) = ~(4;~). It is readily verified that: 

for all tE:[0,3] 

1.7) d -
W(dt'1l(t;j..L» 

for all tE:[3,4] 

for all small ~ > O. Finally, it is straightforward to show, using the 

linearity of wand the Weierstrass approximation theorem, that the 

continuous but only piecewise Ck path ~(o;~) may be smoothed to give 

a ~ path ~(o) with ~(O) = ~(4), still lying in N2 , and on which w 

is still positive. Thus we have a positive Cr w-cycle in N2 , a 

contradiction. Therefore ~(~(l» ~ ~(~(2». A similar argument 

shows ~(~(l» ~ ~(~(2», and we conclude ~(~(l» = ~(~(2». 
For any y€ (LnN2 ) we have ~(y) = Yl, sol CPJ. (y) = 1. Thus 

CPJ. > 0 on some subneighborhood N3 of y in Nz . We next define an 

integrating pair (~,A) on N3 • Let y€N3 and 1 ~ j ~ n, and define 

QI: [0,1] ~ Rn by: 

Yi' i 1: j 

Ql1 (t) for all tE:[ 0 , 1] • 

Yl + t, i j 

Let z1 (0) be the solution of (1.3.~) throughyl, for ~ = O. Then by 

d 
the constancy property proved for ~, dt ~ (zl (t) ,QlZ(t), ••• ,~ (t» It::>o = 0, 

so (since y€Nl ) 

1. 8) &.ill -CPJ. (y) Xl (y) + ~j (y) 0, 

and thus 
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I. 9) 

where cp is d'. Now for y€Ns , ~ X (y) 
is positive and Ck - 1 , and so (cp,A) , 

with A ~, is a positive Ck integrating pair for w on Ns . This 

completes the proof of the Theorem. 

II. An application to thermodynamics. 

Let the equilibrium states of a "simple" ([ 3], §3; [17], p. 785) 

or "standard" ([ 2], § 10) thermodynamic system form a Cr (n+l) -dimensional 

manifold M with global coordinates U, ~ , ••• , ~ representing the 

internal energy (U) and such relevant "deformation" variables as 

volumes, etc. Let a be a nonvanishing Ck I-form on M representing 
n 

heat inflow, and let (3 = L: Pi dxi (for some func tions Pi of U, x~ , ••• ,x!' ) 
i =1 

be a I-form on M representing the flow of work (performed by the system). 

Then a differential version of the First Law of Thermodynamics is often 

stated1 for quasi-static2 process as: 

II.1) dU + (3. 

One partS of what is often called the Second Law of Thermodynamics 

concerns the existence of a Ck function S: M ~ Rl called entropy, 

with the property: for quasi-static processes, 

II. 2) 
1 

ct = )::"dS, 

for some d'-l integrating factor A on M. To establish the existence 

of such a function, we state as an axiom: 

II.3) There do not exist any positive Cr a-cycles. 
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The intuition of axiom (11.3) is clear: there exist no quasi­

static paths on which heat is continually flowing into the system, but 

on which the state variables u,XL, •.. ,xn all return to their initial 

values. Such a "perpetual" perpetuum mobile of the second kind is 

~ fortiori prohibited by Landsberg's version ([11], pp.176-l77) of the 

Kelvin formulation of the Second Law. 

By our Theorem, it follows immediately from axiom (11.3) that in 

a neighborhood Nz of every point z€M there exists a Ck function 
1 

S: Nz -? Rl, and a positive Ck - 1 function i: Nz -? Rl such that, for 

1 
all y€N z , ay = A(Y) dyS. At least when the coefficients Pi of ~ are 

nonnegative, the extension to a global integrating pair is straight­

forward (cf. [6], pp. 608-610). 

From the usual assumptions about the way that the parts of a 

thermodynamic system relate to the whole system, one can deduce that 

the integrating factor A can be chosen in a special way, usually as 

a function of just temperature. 

III. An application to utility theory. 

Let the possible consumption bundles of a consumer be the set 

M = {y€Rn
: y > O}. Suppose that, for each x€M, there exists a 

n 

p(x)€{y€M: i~lYi I} = Z, representing the unique price vector in Z 

at which bundle x is purchased. Assume that p(.) is a Ck function, 

for some k ~ 1. 

If we let xl, •.• , x!' be the standard coordinate functions on M, 

and if we let a be the nonvanishing I-form 

we may consider: 1 

on M, then 

The Ville Axiom. There do not exist any positive COO a-cycles. 
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The intuition of the Ville Axiom is clear: if y: [0,1] ~ M is a 

path on which 

III. 1) p(y(t» • dX(d~t» > 0, 

then intuitively yet) is revealed a "preferred" direction from y(t). 

(CL [1], pp. 203-5; [7], p. 552; [10], p. 118.) So the Ville Axiom 

simply states that no path exists which moves always in a revealed 

preferred direction but ends at its starting point. 

By our Theorem, it follows immediately from the Ville Axiom that 

in a neighborhood Nx of every point z€M there exists a Ck "utility" 

function S: Nz ~ Rl and a positive Ck - 1 function \: Nz ~ Rl such that, 
n 

for all y€N z , \(y)ay = \(y) 1~l1 (y)dyx1 = dyS. 

The extension to a global integrating factor is again straight­

forward (cf. [6], pp. 608-10). For more details, and a discussion of 

second order conditions and utility maximization, cf. [9]. 

Note that if there corresponds to each positive vector x€Rn not 

only a price vector p(x) at which x is purchased by the consumer, 

but also a positive "income" m€R1 , then the budget identity p(x) ·x = m 

frequently assumed by economists becomes, in differential form, very 

like the differential version of the First Law of Thermodynamics (II.l~: 

III. 2) p(x) .dx 

Clearly there are close formal similarities between thermodynamics 

and utility theory.l 
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FOOTNOTES 

* Research aided by National Science Foundation Grant GS3l276X. 

** Research aided by National Science Foundation Grant GS35682X. 

Helpful conversations with Russell K. Hobbie are gratefully 

acknowledged. 

Page 1, n. 1. We mean right- and left-hand derivatives where derivatives 

are not defined. Note that a negative w-cycle is obtained by 

traversing a positive w-cycle in the opposite direction. 

Page 4, n. 1. Subscripts on ~ denote partial derivatives. 

Page 5, n. 1. Cf. [19], p. 81. 

Page 5, n. 2. Cf. [2], §7; [11], p. 35. 

Page 5, n. 3. The other part deals with entropy increase on irreversible 

paths. 

Page 6, n. 1. This is essentially the condition used by Ville in [18] 

to obtain the integrability of the differential form a. His proof 

of integrability was based on Darboux's theorem ([4], Premiere 

Partie, V; [16], p. 141, Theorem 6.2) on canonical forms for 

I-forms. In thermodynamics this same approach, through Darboux's 

theorem, was later used by Landsberg [11], pp. 51-3, 392-8). The 

approach through our Theorem seems much more direct, and also 

imposes weaker differentiability conditions on the I-form a. 
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Page 7, n. 1. This was observed already by V. Pareto ([13, p. 543) 

and P. A. Samuelson ([14], p. 70) in a very general fashion. The 

similarity of the First Law of Thermodynamics and the consumer's 

budget identity was noted by H. T. Davis ([5], Chapter 8, Section 

5), J. Lisman [12], and N. Georgescu-Roegen ([7], p. 17). 
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