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A SUBORDINATED STOCHASTIC PROCESS MODEL 

WITH FINITE VARIANCE FOR SPECULATIVE PRICES 

I. INTRODUCTION 

The past seventeen years have seen a large amount of research by 

academic economists on prices in speculative markets, an area which 

was formerly studied almost exclusively by financial speculators and 

their advisors. l Considering the time series of prices at short inter-

vals on a speculative market such as that for futures in commodities, 

or corporation shares, one primary characteristic is evident. If 

~ denotes price at time t and ~~ = ~ - ~-l , examination of the 

data suggests that: 

and 

The increments in the price process are stationary in the mean and un-

correlated; a random walk model (1) 

( 1 ) ~ = ~_ 1 + Ct, E (Ct) = O. E (Ct E. ) = 0 I t J s 

explains these empirical facts well. 

Besides empirical realism, the random walk model has a theoretical 

basis. Z If price changes were correlated, then alert speculators should 

notice the correlation and trade in the right direction until the relation-

ship was removed. This was first shown by Bachelier in 1900, when he 

derived the diffusion equation from a condition that speculators should 

receive no information from past prices. Equation (1) is, of course, a 

solution to a discrete formulation of the diffusion problem. 

1. See Clark [6J for a comprehensive bibliography, or Cootner [8J 
for a collection of these articles. 

2. Bachelier [3J 
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It is also empirically evident that the price changes AXt ' however 

independent, are not normally distributed. Instead of having the normal 

shape, which would be the case if the components in A~ were almost 

independent and almost identically distributed,3 AX has too many small 

and too many large observations, as pictured in Figure 1. 

One way to express this is to say that the distribution of AX -is 

leptokurtic, for the sample kurtosis: 

is much greater than 

1 -- 4 - ~ (AX! - AX) 
= n 1 

1 ~ [(AX
1 

_ AX)~]2 
n 1 

3, the value for a normal population. 

It is evident, then, that conditions sufficient for the Central Limit 

Theorem are not met by the influences which make up AX. The violation of 

these conditions and the reason for the leptokurtic distribution of AX 

is the subject of the present article. 

In 1963, Mandelbrot set out to explain this non-normality in price 

changes that had been observed by Kendal14 and many others. s The ob-

served distribution of price changes clearly indicates that the Central 

Limit Theorem does not apply to them. But what condition is being vio-

lated? Mandelbrot decided that the individual effects making up a 

price change did not have finite variance, but were still independent. 

The distribution of price change should then belong to the stable family 

3. Feller [9J, Gnedenko and Kolmogorov [10], and Loeve [13J contain 
good expositions on the conditions under which the Central Limit Theorem 
is satisfied. 

4. Kendall [llJ 

5. Mandelbrot [14J lists many references to the problem of non­
normality, one as early as 1915. 
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of distributions, which were shown by Levy to be the only possible 

limit distributions for sums of independent random variables. 6 These 

stable distributions have an unbounded kurtosis and will usually give 

high values for any measured sample kurtosis, thus making them good 

candidates for the distribution of price change. 

The opposing hypothesis presented and tested in this paper is that 

the distribution of price change is subordinate? to a normal distribution. 

The price series for cotton futures evolves at different rates during 

identical intervals of time. The number of individual effects added 

together to give the price change during a day is variable and in fact 

random, making the standard Central Limit Theorems inapplicable. 

The different evolution of price series on different days is due to 

the fact that information is available to traders at a varying rate. 

On days when no new information is available, trading is slow, and the 

price process evolves slowly. On days when new information violates 

old expectations, trading is brisk, and the price process evolves 

much faster. 

II. DISTRIBUTIONS SUBORDINATE TO THE NORMAL DIITRIBUTION 

A. The Central Limit Theorem, 

As we have noted in the last section, empirical evidence shows 

that the random elements that make up cotton futures price differences 

do not obey conditions sufficient for the Central Limit Theorem to apply. 

6. Levy. [12]. Gnedenko and Kolmogorov [lOJ is the classic 
exposition in this field. 

7. For a definition and explanation of subordination, see Section II. 
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In the following development, the Central Limit Theorem is generalized 

in a way that makes the resulting limit distributions applicable to 

the distribution of cotton futures price differences. 

First, one variant of the Central Limit Theorem and two Lemmas 

are stated without proofs 

Lemma 1 For n=I,2, ••• , and t>O, 

I elt -l-it- (it ya 
2! 

- ... -
11 -1 

(it ) 
(n-l )! 

That is, the Taylor Series expansion for elt differs from e lt by 

less than the first excluded term. 

Lemma 2 
go 

and Mn = J lyl l1 dF,., where y is 
_go 

a random variable and Fy is its distribution; m 
a 

and Mn are extended 

real numbers. If Mil < .. , then nt II derivative of t =E( ell! Y ) , the 

characteristic function of y, exists and is a continuous function 

given by: (Il ) 11 J. t (w) = i e l l!1 ylldF,.. 
-go 

Corollary 
, 

If rna < • then I (0) = im, and " t (0) = -ma. 

Theorem I (Central Limit Theorem) Let (Yl } be a sequence 

of identically distributed independent random variables with 
n 

mean o and variance I • Let S = I Y1 • Then the distri-
1=1 

bution of ~A{n tends to the unit normal distribution. 

First, we may generalize this theorem to the case where the number 

of terms, n, in the sum S 
Il 

is itself a random variable. 

8. See Feller [9J for proofs of both Lemmas and a slightly modified 
form of Theorem 1. 
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Theorem 29 Let be a sequence of positive integral valued 

pUm (~ = 1. 
n.... • 

random variables obeying the property Let 

the same distribution as in Theorem 1, and Assume 

and (Yl} are mutually independent. Then SNn/~ converges in 

probability to the unit normal distribution as n-o =. 

have 

Proof: It must be shown that the characteristic function 

approaches the characteristic function of a unit 

normal variable 1 as n .... = . 

By Lemma 1 and the Corollary to Lemma 2, 

N C3 .... - ~ w 
2n 

as 

(- ~C31' n .... =. Since by hypothesis (~) 
-w :a e , n .... = , and the theorem is proved. 

w2 1 
Hw/.rn) = 1 - - + 0(-) as 

2n n 

(!W
n 

• and log ~Nn (w/;--n).... nJ 
N 

prob 1, n .... =, ~ n(w/~) prob 

This theorem says that if Nn has small variation around n for large 
Nn 

n, then ~ Y1' the random sum of random variables, still approaches 
1=1 

the normal distribution. 

Now suppose that Nn has appreciable variance around n even for 

large n. This is the case that is relevant for the cotton futures price 

process. The number of small price changes added up on each day is variable. 

For instance, let: Nn = [ZnJ where Z has mean 1 and variance r > 0, 

where [J denotes "largest integer less than". Following the development 

in Theorem 2, for large n, 

Nn log Hw//n) _ [~nJ '-.! w:a) ,n .... = 
_Zw2 )\ 2 

~NQ (wqnl .... e 2, n .... = 

9. The proof of a theorem similar to this was given by Robbins [18J. 
See also Anscombe [2J, Billingsley [4J, Renyi [16J, [17J, and Feller [9J 
for theorems on limit distributions of random sums of random variables. 
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This characteristic function may be inverted to find the limit distri-

bution of SN I~ This is the characteristic function for a variable 
n 

with random variance Z; as we shall see, the distribution for such a 

variable is not normal, and depends on the distribution of Z. 

We have just proved the following theorem: 

Theorem 3 10 Let (Y1} be distributed as in Theorem 1, and let 

Let Nn = [ZnJ for large n, where Z is a random variable with mean 

1, again independent of Then SN ljin has 
n 

:3 
f( ) 

_ 1 -u 12Z 
u - ~ e 

./ 2TT'l. 
as its density. 

We now have the limit distribution of SN
n 

conditional on Z. 

Over a long period of time, the price changes of cotton futures will be 

the marginal distribution of SN found by taking the expectation of 
n 

the distribution above with respect to Z. This simple procedure yields 

the subordinate distributions described below. 

B. Subordinated Stochastic Processes 

Discrete stochastic processes are indexed by a discrete variable, 

usually time, in a straightforward manner: XO, Xl' ••• , Xt , ~+l' 

This may also be written X(O), X(l), ••• X(t), X(s) is the 

value that a particular realization of the stochastic process assumes at 

time s. Instead of indexing by the integers 0, 1, 2, ... , the process 

could be indexed by a set of numbers . .. , where these 

numbers were themselves a realization of a stochastic process (with posi-

tive increments, so that tl~t2~t3~ ••• )11 • That is, if T(t) is a 

10. See Robbins [18J for a different result on the limit distri­
bution of a random sum of random variables. 

11. The idea of a subordinated process was originated by Bochner [5J 

However, for a simpler exposition, see Feller [9J, p. 333 ff. 
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positive stochastic process, a new process X(T(t» may be formed. 

This process is said to be subordinated to X(t); T(t) is called the 

directing process. The distribution of aK(T(t» is said to be subordinate 

to the distribution of AX(t). 

Note that AX(t) will assume the role of the individual effects 

in the evolution of the price process, while T(t) is a clock measuring 

the speed of evolution. X(T(t» is, of course, the price process itself. 

The following theorem holds for very general classes of subordinated 

stochastic processes with independent increments. Aside from providing a 

simple formula for calculating the variance of the increments, it also 

shows that this variance is finite for processes having increments with 

finite variance, and directed by a process with increments of finite mean. 

Theorem 4 12 Let X(t) and T(t) be processes with stationary 

independent increments; that is: 

1. X(tk +1 ) - X(tk ), (k=I,2, ••• ,n-l), are mutually independent for 

any finite set tl~~ •••.• ~tn , and similarly for T(t). 

2. X(s+t) - Xes) depends on t but not on s for all s, and 

similarly for T(t). 

Let the increments of X(t) be drawn from a distribution with mean 0 and 

finite variance 2 
(J ; Le., E[X(s+l) - Xes)] = 0, all s, and E[X(s+l) -

X(S)]2 = ~ , all s. Let the increments of T(t) be drawn from a 

positive distribution with mean a, independent of the increments of X(t). 

That is, E[T(s+l) - T(s)J = a, and [T(s+t) - T(s)] ~ 0, t>O. Then the 

subordinated stochastic process X(T(t» has stationary independent increments 

12. Robbins [18J proves this theorem in somewhat less generality. 
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with mean 0 and variance acr2 
• 

Proof: If the steps AX(t) are independent with mean 0 and 

variance aA , then v steps have mean 0 and variance va2. Therefore 

the variance of ~(T(t» conditional on ~T(t) is 

Var (~X(T(t» ~T(t) = v) = va2 

The unconditional variance of ~X(T(t» is just the expectation of the 

conditional variance. 

E~(T(t» (vaA) = aa
2 

• 

The expectation of the mean of the steps over the distribution of ~T(t) 

is clearly O. 

Note that no mention has been made of the variance of the increments 

of the directing process; this says that if the directing process has a 

finite mean, then ~X(T) will have a finite variance unless ~T does 

not. It also indicates that even if the parameters a2 and a are 

specified, a family of distributions with 0 mean and identical variance 

may be obtained by allowing the variance or other parameters of distri-

bution of ~T(t) to change. 

Corollary 4.1: If X(t) is normal with stationary independent incre-

ments, and T(t) has stationary independent positive increments with 

finite second moment which are independent of x, then the kurtosis, k, 

of the increments of X(T(t» is an increasing function of the variance 

of the increments of T(t). 

Pro~: The kurtosis for a normal distribution is 3. There-

fore conditional on ~T(t) = v 

E(~X(T(t) 
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The unconditional expectation is 

a " E~T(t) (3v 0 ) = 

The unconditional kurtosis is then 

30" (or + Var (v» 

(2) k~X{T(t» = 
304 (cfl + Var (v» 

dd04 

where a is the mean of v, the random variable which represents the 

increments of T(t). 

Note that this corollary shows that the introduction of any directing 

process makes the distribution of the increments of X(T(t» only more 

leptokurtic. The corollary is directly applicable to the limit distributions 

found in Theorem 3, since we know that the limit distribution of a random 

sum of random variables which obey the Central Limit Theorem is as~ptotically 

normal with random variance, or in new terminology, subordinate to the normal 

distribution. 

Corollary 4.2: If the condition that the increments of T(t) are 

stationary and independent is removed, then Theorem 4 still holds, with the 

exception that the increments of X(T(t» are uncorrelated as opposed to 

independent. 

As has been pOinted out by Mandelbrot and Taylor13 , in certain cases 

distributions subordinate to a normal distribution have symmetric stable 

distributions. Feller14 shows that if X(t) and T(t) have stationary 

mutually independent increments, when 6X(t) has a symmetric stable 

distribution wi.th l<a1 S;2,16 and b.T(t) has a stable distribution with 

13. Mandelbrot and Taylor [lSJ. 

14. Feller [9J. 

15. a is a parameter of stable distri~~&i~nf' 0<~2. Stable distri-
butions behave asymptotically like f(u)-Iu/ for large u, so that 
for ~l they have no mean, and for a<2 they have no variance. 
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O<aa<l, then AX(T(t» has a stable distribution with a = a1 • aa • 

Note that this result fits intuitively with Theorem 4. If a1 = 2, 

and AX(T(t» therefore has a distribution subordinate to a normal 

distribution, the variance of this distribution is finite if the mean 

of the distribution of ~T(t) is finite, but is infinite in this case, 

where FT has no mean. 

c. The Distribution of the Lognormal -- Normal Increments 

As a special case of the subordinate distributions in the last 

section, consider a process X(t) whose independent increments 6X(t) 

are normally distributed, directed by a process T(t), whose independent 

increments are lognormally distributed. By a lognormal distribution, we 

mean a random variable x whose density is: 

(3) f(x;~,a~) = 
1 

e 

It is named the lognormal distribution because u = log x is normally 

distributed with mean I.L and variance 01 :3 16 As may be easily shown, . 
the mean of x is Ilx = e 

10.1.+0'1 a /2 
and the variance of x is 

Theorem 4 now tells us that ifAX(t) is distributed normally with mean 

o and variance ~2 , the increments ~(T(t» of the lognormal - normal 

process have mean 0 and variance: 

16. Aitchison and Brown [lJ have a complete discussion of the 
properties of the lognormal distribution. 
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2 2 
o 6X(T( t» = Oa • 

Corollary 4.1 says that for given (~+ 012/a) but increasing 

0 1
2 the variance of this distribution stays constant while its kur-

tosis increases as much as desired. Presumably this distribution will 

fit the observed distribution of cotton price changes much better than 

the normal distribution, and might do better than the stable distribu-

17 tions. 

Theorem 5 A random process subordinated to a normal process with 

independent increments distributed 2 N(O, Os ) and directed by a log-

normal with independent increments (and parameters ~ and 0 1
2

) has the 

Z _ .:i....-
2voaz 

following lognormal-normal increments: 

(4) • e . e dv 

Proof: As in Theorem 4, the distribution of 6X(T(t» is just the 

expectation of the distribution of .a Fx(O, tOa ), the expectation being 

taken over the increments of T(t). That is: 

where t is lognormally distributed. Thus 

J' CD ( 1 fLNN(y) = ---
o 2rrv022 

Simplification yields formula (4). 

This relatively complicated formula may be approximated by numerical 

integration techniques. 

17. In fact, the lognormal-normal distribution was included 
because it was found empirically to be the most useful. See Clark 
[6] for other distributions subordinate to the normal. It is not 
clear theoretically why operational time should be lognormally 
distributed. 
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III. TESTS OF THE CONDITIONAL DISTRIBUTION 
[~(T(t» I 6T(t)] AND THE DISTRIBUTION OF 6T(t) 

At the end of Section I, it was mentioned that the price process, 

X(T(t» , evolved at different rates on different days. An obvious measure 

of this speed of evolution is trading volume. In fact, if the price changes 

on individual trades were uncorrelated, T(t) , the directing process, 

would be the cumulative trading volume up to time t. The distribution of 

the increments of the price process 6X(T(t» would then have a distribution 

subordinate to that of the price changes on individual trades, and directed 

by the distribution of trading volume. 

The way to test the hypothesis that trading volume in some sense 

measures the speed of evolution is clear; the relationship between trading 

volume and price change variance must be examined. If trading volume is not 

related to the speed of evolution, there should be no correlation between 

V(t) (trading volume on day t) and [6X(T(t»]a. If trading volume is 

the directing process, the relationship should be linear, with the propor-

tionality coefficient representing the variance of 6X(t). 

The first approach was the grouping of the two samples of 1000 obser-

vationseach on cotton futures prices into 20 groups of 50 each by increasing 

volume. 18 The sample variance and kurtosis within each group were calculated. 

These results displayed in Table 1. Trading volume and price change variance 

seem to have a curvilinear relationship. 

More significantly, note that the kurtosis has been very much reduced 

when price changes with similar volumes are considered. The variance of 

the sample kurtosis from a normal population is 24/n, where n is the 

18. See the Appendix for a description of the data used. 



- 14 -

Table 1 

Price Change Variance and 

Kurtosis by Volume Class 

A. Sample One: January 17, 1947, to August 31, 1950 

Volume Range Volume Sample Sample 
Mean Variance Kurtosis 

Entire) 326 - 12156 2718.94 584.55 19.45 
Sample) 

326 - 939 718.4 30.51 3.95 

948 - 1123 1030.7 59.60 3.53 

1124 - 1297 1223.7 48.87 4.64 

1298 - 1434 1371.0 102.70 5.09 

1435 - 1556 1493.2 105.46 4.02 

1558 - 1710 1628.7 73.76 3.21 

1711 - 1873 1788.4 104.65 2.73 

1874 - 2032 1955.3 138.53 4.75 

2033 - 2225 2121.8 173.38 4.18 

2227 - 2408 2316.2 300.17 4.55 

2408 - 2595 2504.9 310.99 2.93 

2608 - 2807 2712.4 240.52 3.47 

2807 - 2995 2912.5 347.13 3.01 

2998 - 3279 3146.0 486.91 4.55 

3284 - 3539 3399.6 352.68 2.95 

3540 - 3800 3676.2 800.07 2.61 

3803 - 4194 4013.8 711.67 3.14 

4204 - 4737 4434.3 785.06 2.07 

4739 - 5512 5149.3 2716.77 5.14 

5556 - 12156 6782.3 3695.87 6.35 
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Sample Two: March 24, 1951, to February 10, 1955 

Volume Range Volume Sample Sample 
Mean Variance Kurtosis 

Entire) 488 - 10571 2733.40 501.73 20.49 
Sample) 

488 - 979 794.7 18.67 2.64 

985 - 1187 1078.4 42.93 3.57 

1202 - 1336 1271.4 56.56 3.03 

1337 - 1509 1432.2 59.52 2.73 

1510 - 1631 1570.0 53.44 2.65 

1634 - 1766 1699.1 87.41 2.30 

1768 - 1895 1822.5 89.84 4.04 

1899 - 2026 1963.8 105.71 3.71 

2029 - 2190 2110.8 136.25 3.59 

2191 - 2353 2266.1 178.86 3.57 

2355 - 2537 2445.7 214.31 4.82 

2538 - 2705 2615.1 223.56 2.68 

2709 - 2913 2816.6 283.70 4.82 

2913 - 3179 3043.7 263.73 2.12 

3180 - 3434 3294.6 295.70 3.63 

3436 - 3763 3581.1 520.92 2.98 

3765 - 4128 3935.4 642.46 1.99 

4160 - 4795 4509.6 937.33 2.35 

4800 5754 5238.9 2067.90 8.76 

5759 - 10571 7178.2 3659.21 4.41 
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sample size. Thus any sample kurtosis that lies between 1.6 and 4.4 

are within 2 standard deviations of the true value, 3, expected with a 

normal parent. The vast majority of sample kurtoses lie within this 

range for both samples. 

The average sample kurtosis is larger than 3 for both samples; but 

this is just as expected. Each volume class contains a range of volumes; 

just as in the case of the entire sample, this makes the sample distri-

bution of the daily price changes non-normal. However, since each volume 

class contains a much smaller range of volumes, this phenomenon is con-

siderably reduced. Note that the last two volume classes in both samples 

have significantly higher kurtosis than the other classes; this is clearly 

caused by the larger range of volumes included in these classes. Grouping 

by volume classes has brought the kurtosis of the price change distribution 

to within two standard deviations of that expected from a normal parent, 

while the original kurtosis of the whole sample is 100 standard deviations 

away. 

To investigate the curvilinear relationship between price variance 

and trading volume, the regressions in Table 2 were used. The results 

indicate that either 2 ~ o = Ae or are equally good in 

explaining movement of price variance. The first faces the theoretical 

objection that but is negligibly different from 0 for 

the sizes of numbers we are using. The linear specification .is clearly 

worse; the F statistics calculated for linear regressions with a 

constant term were about 125, with a large negative intercept. The high 

negative intercept term for the unconstrained regressions indicates that 
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Table 2 

Daily Price Change Variance as a Function of Daily Volume 

Sample No. 1 : 

a) log (D,X.2 ) = 1. 977 + .00082l9v F 295.20 
<'149 ) ( .00004784) 

b) log ( D,X.2 ) = -12.71 + 2.181 log (v) 
F 280.38 (1.01) <. 1303) = 

c) !:::.X2 = .31374 v F 156.25 ( .02428) = 

Sample No. 2: 

a) log ( t:,X2 ) = 1.968 + .0007334 v 
F 236.83 (. 149 ) (.00004766 ) 

b) log ( t:,X 2 ) = -12.73 + 2.1503 log (V) 
253.69 ( 1. 05) ( • l350) F = 

c) !:::.X2 .25598 v 
F 86.24 (.02611) 

(The numbers in parentheses are standard errors) 

F.Ol (1,998) = F.01 (1,999) = 6.66 
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the linear model performs very poorly, as does the low F-statistic. 

Even if all trades on any given day are perfectly correlated, the depend-

ence of price change variance on volume would be only the data 

reject even this high dependence as too low. 

To see how this curvilinear dependence of price change variance on 

volume might occur, consider how the futures market actually works. At 

any time there are a number of traders in the market who have expectations 

about the price of a given cotton contract. Some will have long positions 

(holding contracts), some will have short positions (having sold contracts), 

and some may have no net position at all if they are waiting for more 

favorable conditions. When new information (in the form of data that 

the traders consider relevant) flows to the market, both prices and traders' 

price expectations will change. If the information is uncertain (i.e., some 

traders shift expectations up and others down on the basis of the information), 

or if only "inside" traders get the information first, then large price 

changes will be coincident with high volumes. On the other hand, very 

large price changes will probably be due to information that is perceived 

by all traders to move the plice in one direction. News of widespread 

insect problems might be an example of this sort of information in the 

cotton futures market. In this case, all traders would revise their 

expectations in the same direction, and the price change would have rela-

tively low volume. 

Thus the relationship Var (6X) = CJ·18 is seen as combination of 

correlation of price changes on individual trades, and a deficiency of 

volume at high price changes, caused by traders moving their expectations 
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in unison. Trading volume is taken as an instrument for the true opera-

tional time, or an "imperfect clock" measuring the speed of evolution of 

the price change process. The regressions in Table 2 are taken as the 

way to adjust the "volume clock' ! to get the best obtainable estimate of 

operational time. 

It is now natural to use these equations estimating "operational tJme" 

to adjust price changes and find the distribution of AX(t). That is, 

if 6T(t) = f(v(t», then L\X(T(t» IJ f(v(t» should be distributed 

as AX(t). The results of this adjustment are summarized in Table 3. 

The distribution of the Kolmogorov-Smirnov statistic under a complex 

null hypothesis is not known exactly, but the significance level is reduced 

in the normal case. Although these K-S statistics are very encouraging, 

the sample kurtosis is still too high. This is attributable to one of 

two causes. Either lIT(t) = f( V<t» and the estimation procedure in 

Section II has not found the true f(v), or 6T(t) = f(v(t» . u(t) 

where u(t) flo In either case the transformation AX(t) Ilf( vet»~ leaves 

a small deterministic or random element of operational time still in the 

adjusted series. Since the results in section II tell us that introduction 

of operational time will always lead to increased kurtosis, either type of 

error should lead to results like those in Table 3. 19 The relative 

strength of these numbers is seen when the figures in Table 3 are compared 

19. Although the introduction of operational time always increases kur­
tosis, it is easy to think of a stistical adjustment procedure that could makl' 
k<3. By making overestimates of variance (or f(v» on very high price changes, 
but not having them too low on small price changes, it is possible to cut off 
the tails entirely in the adjusted distribution. Any regression method of esli­
mating will usually have both positive and negative errors on the low and high 
ends of the volume range. In fact, f(v) in Table 2 tends to underestimate on 
the high end. 



Table 3 

bJ{(t) 
Distri bution of Vf< V( t) ) for f(v) ot = Av and f (v) Be~v 

Sample til Sample 1/2 

. 
-12.71 2.1818 f(v) -12.73 2.1503 e v e v 

K-S test against 
.0321 (.26)20 .0195 (.84) normality 

Kurtosis 4.55 4.56 

f (v) 1.977 .00082l9v 1. 968 .0007334v e e e e 

-S test against .0294(.35) .0239 (.62) ormality 
K 
n 

K urtosis 4.26 4.18 

20. The numbers in parentheses indicate the probability that the 
preceding value of the K-S statistic will be exceeded when the null 
hypotheses is true. 
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with those in Table 1 for the entire sample. The K-S test statistics 

against normality are .114 for Sample No.1 and .121 for Sample No.2, 

both of which have probability of less than .000001 of occurrence if the 

sample is drawn from the normal parent. Similarly, the kurtosis has been 

reduced a very significant amount. 

Although the results are far from perfect, they are good enough to . 

conclude that the "imperfect clock" hypothesis is a good approximation 

to the truth at this level of analysis. 

There is, then,a strong case for normality of price change when it 

is adjusted for operational time. To find the distribution of price 

change, however, the distribution of AT(t) must be found. Both the 

Gamma and Lognormal distributions were fit to the two specifications 

of AT(t) = (f(V(t» for operational time. Only the Lognormal results 

are reported in Table 4, since the Lognormal fit very much better than 

the Gamma. 

The easiest way to test for lognormality is to take logarithms of 

the sample and test for normality; since this is the method used, the 

kurtosis of the sample after logarithms have been taken is also displayed 

in Table 4. Note that testing the lognormality of f(v) = AVa is equi-

valent to testing the lognormality of v, while testing the lognormality 

of ff--v) = Be~Vis equivalent to testing the normality of v. The results 

in Table 4 indicate that v is lognormally distributed as opposed to 

ex normally distributed; the model f( v) = A'v is the better one to use, given 

both models seem to work equally well as operational time. 



Table 4 

Tests of Lognormality of 6T(t) = f( v(t» for f(v) = Ava 

and f(v) = Be~v 

Sample III Sample :/12 

f (v) -12.71 2.1818 -12.73 2.1503 
e v e v 

K-S statistic 21 

against .03343(, 21) . 01562(. 97) 
lognorma1ity 

Kurtosis of 
2.929 2.858 log (f(v» 

f(v) 1.977 .00082l9v 1.968 .0007334v e e e e 

K-S statistic 
against .08303(.00001) . l114( . 00000) 
lognormality 

Kurtosis of 
6.744 6.115 log (f(v» 

I 

21. Again numbers in parentheses are the probability of exceeding 

the given K-S statistic if the null hypothesis were true. 
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All of the results above are very strong evidence in favor of the 

finite-variance subordination model. They also point out that the marginal 

distribution (unconditional on operational time) of price changes should 

be lognormal-normal rather than stable. If 6X(t) is normal, then 6T(t) 

must have a stable distribution with a very long tail (no finite mean) in 

order that 6X(T(t» have a stable distribution. If this were the case, 

the lognormal fit in Table 4 should be much worse. 

IV. A DIRECT TEST OF THE TWO COMPETING HYPOTHESES 

Two approaches were used to test the Lognormal-Normal (LN) family 

against the stable (S) family of distributions as the parent of the observed 

distribution of price changes for cotton futures. 

The first test was a Bayesian one, with discrete prior and posterior 

distributions over the two hypotheses. The construction of this test, 

although not completely rigorous, was well-motivated by practical consider­

ations. Suppose a decision-maker is trying to decide whether cotton futures 

price changes have a stable or lognormal-normal distribution, and his initial 

position before examination of the data is complete ignorance. Then his 

prior distributiQ,n should have P(S) = P(LN) = .5, and presumably after 

the sample information has been examined, these probabilities will change. 

Calculation of posterior probabilities could proceed in straightforward 

fashion if Sand LN were not complicated, with an infinite number of parameter 

values available within each hypothesis. In view of the fact that analytical 

calculation of likelihoods as functions of parameter values was considered 

impossible by the author, a second-best approach was used. Twenty-five 
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simple hypotheses (that is, exact ly -specified sets of parameters) 

within each set of Sand LN we~e chosen, using all the prior 

information possible about the region in which these parameter points 

should lie. Such a strategy assumes that the likelihood functions are 

smooth and do not have high peaks between the selected points in parameter 

space. It also makes use of the present decision-maker's relative indif-

ference about the exact parameter values. 

Once this method is adopted, prior probabilities may be 

assigned in such a way that PiA are the same for all i, and that 

Posterior probabilities [PiB}60 for these hypoth-
1 = 1 

eses may be calculated using Bayes' rule: 

P B 
1 

where L(Sm/Hi) is the likelihood of the sample given hypothesis i. 

Posterior probabilities for S and LN are and 
LN 

P B 
1 

respectively. Each simple hypothesis was given a prior probability of 

0.02. The parameters which constituted each simple hypothesis were 

made up by using theoretical considerations to guess what combinations 

of parameters would maximize the likelihood of the sample: 

Lognormal-Normal distributions: 

Let ~T(t) = T(t) - T(t-l) be distributed lognormally with para-

meters That is, log (~T( t» is distributed normally with 

" 

mean ~ and variance o{" 

Let LJ{(t) = X(t) - X(t - 1) be distributed normally 'Nith mean 0 
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and variance oa2 

Theorem 4 then says that the variance of the distribution of 6X(T(t» = 
2 

X(T(t» - X(T(t - 1» is oa2
• ef.L+01

/2 

Since the data are normalized so that the sample variance is 1, one 

constraint on the parameters for the prior distribution of the lognormal-

normal is: 

Corollary 4.1 states that the kurtosis of the lognormal-normal 

family is 
[ ;a f.L+o 12 

2 
2"",+°1 ( 0

2 1)] 2 
_ 3 e + e e 1 - 3 e °1 k 

2f.L+Ol
lii = 

e 
Thus another constraint on the parameters in the prior distribution is 

a 
01 = log (k/3) where k is the sample kurtosis. 

Stable distributions: 

The characteristic function for this family is which 

_02U2 I 2 
e converges to as OI-t 2, when the normal distribution is obtained. 

If 01<2, then y must be smaller than 0.5 to fit a sample with a sample 

variance of 1, so 1<01<2 and O<y<.5 is the correct region for the 

prior. Since these restrictions represent far less information than the 

restrictions on the lognormal-normal, some preliminary calculations of 

the likelihood were made to narrow down the region for the prior which 

would present the stable distributions in the most favorable light. 

The concepts involved in constructing this test are elementary; the 

difficult problems are the practical ones. In order to calculate the 

likelihood of a sample, the density of the distribution of the sample 

under the null hypothesis must be known. For the case at hand, these 

densities are: 
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fS(x; 0', y) ::: lin fXl cos(ux) e -y/ul 0' du 

a 

(6) Lognormal-Normal: 

1 r
' 00 

-3/2 

2 ') 
(log v - j.1) x~ 
~:...c:2l-(]~t--J:.:":'" - 2Vr:t; 

Jo v e 

Expression (5) is a consequence of Lhe fact that the characteristic 

function of a distribution is its Fourier transform, while expression '(6) 

is the lognormal-normal density derived in II. Since neither of the 

integrals on the right hand side of these equations may be solved ana-

lytically, the problem of finding an approximate likelihood function for 

any sample reduces to finding values of fS or fLN for many different 

values of x, and then interpolating to find the likelihoods for sample 

values of x. 

The density for the stable distributions (5) is by far the easier 

to approximate accurately; the integral on the right is the Fourier 

transform of e-y/uIO', and the fast Fourier transform methods that have 

been recently developed22 are extremely accurate. For the test at hand, 

dv 

the value of fSex) was tabulated for x e [O,IOJ at 2048 equal intervals. 

This range was adequate, for no observations were recorded at more than 

10 sample standard deviations from O. 

Calculation of fLN(x) was less accurate and more costly. First the 
Ib 

interval over which the integrand in (6) was greater than 10 was found. 

The required integral was then calculated by using Simpson's rule with 601 

22. Cooley, J. W., and J. W. Tukey, [7J. In fact, these methods 
are accurate and fast en~ugh to calculate 4 or 5 place tables of the stable 
distributions at relatively small expense, if anyone so desired. 
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points after dividing the interval up so that the interpolation 

points would be closer together when the integrand was changing rapidly. 

This process was repeated for x e [0, 10J at 101 points. Both 

distributions required small adjustments so that their numerical 

integral on [-10, 10J equalled 1. 

Tables 5 and 6 give posterior probabilities and likelihoods for 

the samples, given the parameters in the distributions. Again, all 

prior probabilities are 0.02. 

The posterior probability of Sand LN for the two samples are: 

Sample 1: 
-5 

P(S) =.11 X 10 

Sample 2: P(S) .0007 

P(LN) = .999999 

P(LN) = .9993 

These results are very convincing evidence that the observed leptokur­

ticity in the price change distribution for cotton futures is caused by 

the fact that the data are recorded in "clock" time rather than opera-

tional time. 

Note that the results are independent of the choice of prior distri­

bution as long as at least one of the prior points in the LN hypothesis 

is in the region of high likelihood. This is only another way of saying 

that the likelihood of a lognormal-normal having generated the sample 

is very significantly higher than the likelihood for any stable distri­

butions. 

One way to see why this is true is to look at the maximum likelihood 

distributions in each family, as displayed in Table 7. The primary 

difference is that the lognormal-normal distribution is larger at 0 and 

smaller in the tails; if there were very many observations 8 or 9 sample 
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Table 5A 

Posterior Probabilities and Likelihoods of Sample 1 

Stable Distribution 

Likelihood = Posterior Prob. = 

Ax10-B Cx10 -D 

a y A B C D 

1.3 .3 .7028 539 .6895 8 

1.3 .325 .8671 539 .8507 8 

1. 35 .275 .4910 539 .4817 8 

1. 35 .3 .5742 538 .5634 7 

1. 35 .325 .3453 538 .3388 7 

1. 35 .35 .2057 539 .2018 8 

1.375 .287 .5393 538 .5291 7 

1. 375 .312 .9776 538 .9788 7 

1.375 .337 .1378 538 .1352 7 

1.4 .275 .2630 538 .2580 7 

1.4 .3 .1476 537 .1449 6 

1.4 .325 .5001 538 .4907 7 

1.4 .35 .1913 539 .1877 8 

1.425 .287 .1139 537 .1117 6 

1.425 .312 .1156 537 .1134 6 

1.425 .337 .1045 538 .1025 7 

1.45 .275 .4439 538 .4355 7 

1.45 .30 .1397 537 .1371 6 

1.45 .325 .3047 538 .2989 7 

1.475 .287 .8759 538 .8594 7 

1. 475 .312 .5729 538 .5621 7 

1. 475 .337 .3739 539 .3668 8 

1.5 .275 .2698 538 .2647 7 

1.5 .3 .5507 538 .5403 7 

1.55 .275 .6532 539 .6409 8 
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Table 5B 

Posterior Probabilities and Likelihoods for Sample 1 

Lognormal - Normal Distribution 

Likelihood = Posterior Prob. = 
Ax10 -B Cx10 -D 

IJo 
(12 

1 
.a 

(12 A B C D 

- .5 1.5 .7 .3677 532 .3608 1 

- .5 1.5 .25 .3425 537 .3362 6 

- .5 2.5 .5 .2418 533 .3272 2 

-1.49 1.6 2.0 .5673 537 .5566 6 

-1.21 1.6 1.5 .2124 534 .2084 3 

- .8 1.6 1.0 .9510 533 .9389 2 

- .11 1.6 .5 .4191 532 .4112 1 

.59 1.6 .25 .3236 532 .3175 1 

-1. 31 1.8 1.5 .6728 534 .6601 3 

- .90 1.8 1.0 .3198 532 .3138 1 

- .21 1.8 .5 .1047 531 .1026 0 

.49 1.8 .25 .7619 532 .7475 1 

-1.59 2.0 2.0 .1591 537 .1473 6 

-1.41 2.0 1.5 .1254 533 .1230 2 

-1.0 2.0 1.0 .4798 532 .4707 1 

- .31 2.0 .5 .6633 532 .6508 1 

.39 2.0 .25 .2920 532 .2865 1 

,30 1.8 .30 .1084 531 .1064 0 

.13 1.8 .35 .8771 532 .8605 1 

.13 1.85 .35 .8512 532 .8356 1 

.15 1.85 .35 .8434 532 .8275 1 

.11 1.85 .35 .7978 532 .7827 1 

-1. 10 2.0 1.10 .3919 532 .3845 1 

-1.0 2.2 .9 .5261 532 .5162 1 

- .9 2.0 1.10 .6026 534 .5912 3 
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Table 6A 

Posterior Probabilities and Likelihoods for Sample 2 

Stable Distribution 

Likelihood = Posterior Prob. = 
AxlO -B Cx10- D 

Q' y A B C D 

1. 35 .275 .1806 520 .1617 4 

1. 35 .3 .2104 520 .1886 4 

1.40 .275 .5946 520 .5329 4 

1.40 .3 .2945 520 .2640 4 

1.45 .275 .5909 520 .5296 4 

1.45 .3 .1407 520 .1261 4 

1.50 .275 .1877 520 .1682 4 

1. 45 .25 .8906 521 .7982 5 

1.475 .262 .2776 520 .2488 4 

1. 35 .287 .2919 520 .2616 4 

1.375 .262 .1151 520 .1032 4 

1.375 .275 .3889 520 .3486 4 

1. 375 .287 .4973 520 .4457 4 

1. 375 .3 .2881 520 .2582 4 

1.375 .312 .9115 521 .8170 5 

1.40 .262 .2303 520 .2063 4 

1.40 .287 .6217 520 .2346 4 

1.425 .262 .3374 520 .3024 4 

1.425 .275 .6861 520 .6149 4 

1.425 .287 .5783 520 .5138 4 

1.425 .3 .2255 520 .2021 4 

1.45 .262 .3558 520 .3189 4 

1.45 .287 .4246 520 .3815 4 

1.475 .275 .3756 520 .3366 4 

1.475 .287 .2316 520 .2076 4 
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Table 6B 

Posterior Probabilities and Likelihoods for Sample 2 

<3 
Ik 01 

- .26 1.9 

-1.05 1.9 

- .36 1.9 

- .21 1.8 

-1.00 2.0 

- .31 2.0 

.39 2.0 

- .21 2.0 

.49 2.0 

- .44 1.9 

- .15 1.9 

- .03 1.9 

- .39 1.8 

.02 1.8 

.15 1.8 

- .49 1.8 

- .08 1.8 

.05 1.8 

-1.49 2.0 

- .20 2.0 

- .08 2.0 

- .59 2.0 

- .30 2.0 

- .18 2.0 

.05 1.9 

Lognormal - Normal Distribution 

02
z 

.5 

1.0 

.5 

.5 

1.0 

.5 

.25 

.5 

.25 

.6 

.45 

.4 

.6 

.4 

.35 

.60 

.40 

.35 

.60 

.45 

.40 

.60 

.45 

.40 

.40 

Likelihood = 
Ax10- B 

A 

.5415 

.6388 

.6319 

.3222 

.3048 

.6611 

.3017 

.1772 

.1086 

.5520 

.4847 

.4376 

.3013 

.2710 

.2713 

.7456 

.5358 

.4721 

.7656 

.5707 

.4897 

.7588 

.3874 

.3035 

.1143 

B 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

517 

Posterior Prob. = 
Cx10 -D 

C D 

.4853 1 

.5726 1 

.5664 1 

.2888 1 

.2732 1 

.5925 1 

.2704 1 

.1588 1 

.9733 2 

.4948 1 

.4344 1 

.3922 1 

.2701 1 

.2429 1 

.2432 1 

.6683 1 

.4797 1 

.4231 1 

.6862 1 

.5115 1 

.4389 1 

.6801 1 

.3472 1 

.2720 1 

.1024 1 



x 

o 
.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

6.0 

7.0 

8.0 

9.0 

10.0 
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Table 7 

Stable and Lognormal-Normal Distributions 

which maximize the likelihood of the samples 

Sample 1 Sample 2 

.7755 

.7356 

.6394 

.5302 

.4340 

.3557 

.2925 

.2414 

.2000 

.1665 

.1393 

.0989 

.0716 

.0526 

.0393 

.0298 

.0156 

.870x10- z 

.509x10- z 

.310x10- z 

. 196x10- Cl 

. 127x10- Cl 

.575x10- 3 

.282x10-3 

. 148x10- 3 

.815x10- 4 

.466x10- 4 

.6856 

.6711 

.6304 

.5696 

.4972 

.4216 

.3494 

.2849 

.2300 

.1849 

.1487 

.0882 

.0605 

.0431 

.0318 

.0277 

.0129 

. 891x10- z 

.538x10- 2 

.388xlO- 2 

.284x10- z 

.221x10- z 

.140x10- Cl 

.954x10- 3 

.687x10- 3 

.515x10- 3 

.399xlO- 3 

.7717 

.7399 

.6566 

.5495 

.4449 

.3569 

.2880 

.2349 

.1935 

.1606 

.1342 

.0951 

.0688 

.0507 

.0380 

.0289 

.0153 

.869x10- Cl 

.517x10- z 

.320x10- Cl 

.206x10- Cl 

• 136x10- z 

.637x10- 3 

.323x10- 3 

.175x10- 3 

.998x10- 4 

.598x10- 4 

(1) 

(2) 

(3) 

(4) 

Z 2 
f.I. = • 3 0

1 
,. 1. 8 O2 = • 3 

cx=1.4 y=.3 

~ G 
f.I. = - ~490 1 ::: 2. 0 O2 = • 6 

cx = 1. 425 y::a. 275 

.7159 

.6999 

.6549 

.5882 

.5092 

.4275 

.3503 

.2822 

.2249 

.1786 

.1420 

.0822 

.0556 

.0392 

.0287 

.0217 

.0114 

.720x10- Cl 

. 471x10- <3 

.339x10- 2 

.247x10- Cl 

.191xlO- Cl 

.126xlO- 2 

.820xlO- 3 

.589xlO- 3 

• 440x10- 3 

.340xlO- 3 
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standard deviations from the mean, then the stable distribution would 

have fared much better on the tests. Instead, the sample is charac­

terized by a few large observations that would be unlikely if the under­

lying distribution were normal, but not large enough to make the stable 

family a likely contender. 

The evidence for the lognormal-normal is made stronger by the 

fact that the parameters derived from the theory for the prior distri­

bution turn out. to be the ones which maximize the likelihoods of both 

samples. Values which did not fit the restrictions gave much lower 

likelihoods for the samples. 

On the other hand, the parameters of the stable distribution in 

the region of maximum likelihood were quite different from what was 

expected. Instead of a = 1.8 (or close to 2), a is much lower for 

both samples. This is a standard indication of specification error; 

the model is a bad approximation to the data, so the estimated para­

meters turn out to be different from the ones theoretical considerations 

indicate. 

Estimates of a = 1.4 also cast doubt on the graphs of cumulative 

variance used by Mandelbrot.~3 With an a this low, the sample variance 

as a function of sample size should have a pronounced upward slope. 

The relative flatness of these graphs indicates that the underlying 

population has high probabil ities of large changes, but sti 11 a finite 

variance. The lognormal-normal distribution and other subordinate distri­

butions are very suitable for representing this type of behavior. 

23. Mandelbrot [14J. 
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As second test of the two hypotheses, the Kolmogorov-Smirnov 

statistics testing each sample against the maximum likelihood distri­

butions in Table 7 were calculated. The results are tabulated in 

Table 8. 

Note that the probabilities in parentheses are calculated using 

asymptotic results, but only a small number of steps is used for the 

numerical LNN distribution, so some "small sample" bias is involved. 

Note also that the K-S statistic is better at examining a distri­

bution in the range of high density than in the tails; 20 out of 1000 

observations at 20 standard deviations from the mean would change the 

likelihood results radically, but would have only a small effect on 

the K-S results. 

It is clear also that a bias in favor of the LNN hypothesis exists 

because of the statutory limits on price movements. However, examination 

of the data for 10 individual futures over the span 30 - 250 days until 

maturity24 revealed this bias to be extremely small. For all of these 

10 futures, the limit (2 cents) was reached on only 3 occasions. Further­

more, the limit was an average of 8 sample standard deviations from 0, 

thus making it a very weak constraint. It seems clear that the absence 

of this limitation would not have changed the above results. 

In summary, then, the empirical evidence points to acceptance of 

the finite-variance subordination model. The standard Central Limit 

Theorem holds only when the number of random variables being added is 

constant (in probability limit, at least); in the case of speculative 

markets, this restriction is violated, and the limit distribution of 

price changes are subordinate to the normal distribution. 

24. This period chosen so that the market would not be excessively lhin. 
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Table 8 

K-S statistics testing the samples against the maximum likelihood 

lognormal-normal and stable distributions: 

Sample No. 1 

LNN 

.0856 (.80) 

Stable 

.0374 (. 44) 

Sample No.2 

LNN 

.0955 (.68) 

Stable 

.0438 (.25) 

Numbers in parenthesis are the probability that the given value of 

the K-S statistic will be exceeded if the null hypothesis is true. 
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Appendix 

Construction of a Long Time Series 

for Cotton Futures 

The data on price, transactions, and volume for cotton futures is 

readily available in daily form for the years 1945-1958 in Trade in 

Cotton Futures. 1 Considering the care with which the data were gathered, 

these daily figures potentially give very long and accurate time series. 

:d Except for a brief period during the Korean War when trading was suspended 

due to price controls, these series were recorded daily, and represent two 

periods of 1000 observations each. 3 Such a wealth of data potentially 

provides idean circumstances for testing hypotheses about the structure 

of price movements on speculative markets. 

As even the most casual observer of commodity markets knows, however, 

no contract (or future) has a lifetime that is this long. Contracts are 

made for delivery of cotton on a particular date (almost always on the 

fifteenth of March, May, July, October, or December). Trading in any 

particular contract begins about a year and a half before the delivery date 

on the contract, and ends on that date. Taken by itself, then, anyone 

contract will yield a time series of only 300 points, many of which are 

taken when the market is thin and there is very little trading in that 

particular future (i.e., at the beginning and end of its life). 

To remedy this situation, and generate longer time series that always 

1. Trade in Cvtton Futures, [19J. 

2. January 26, 1951 to March 23, 1951. 

3. "Sample No.1" in the text is from January 17,1947 to August 31, 
1950, while IISample No. 2" is from March 24, 1951 to February 10, 1955. 
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represented prices and volumes on an active market, a continuous time 

series of prices and volume was constructed. The intent was to define a 

"contract" that matured a fixed distance in the future, analogous to "90 

day futures" that exist in some foreign exchange markets. This fixed 

distance in the future was taken to be the average time to maturity of all 

futures in the market. Care was taken to make sure this was the same -for 

all days, thereby avoiding the problem of changing the interest accruing 

to the seller of the contract. 

The most straightforward way of defining this average future is to 

construct a weight function \{(T), where T is the time distance from 

now that I':::ch of the eXisting contracts mature. Since a few contracts 

usually come into existence a year and a half before the maturity date, 

this function was constructed for T = 1, 2, ... 510. Although the time 

pattern of futures contracts in existence clearly changes over time, the 

weight function applied to all dates should be the same, so that the "time 

to maturity" of the weighted average constructed remains relatively fixed 

in time. The "price" of this constructed cotton future is 

I, W(T) pT 
t T = [set of all existing T} 

Pt 
T 

= 
I W(T) 

T 

T 
the P t = price at time t of the contract maturing at time t + T. 

Typically, this sum includes eight terms. 

To estimate W( T), the average time pattern of contracts in c'xistt~nc(', 

the proportion of All contracts was tabulated for all T €(O, 510) days 

in the years 1946 to 1951. This consisted of about 25 proportions for each. 

These proportiolls were then averaged, giving the average proportion of open 



- 38 -

interest for each time distance in the future, for integral numbers of days. 

This procedure yields a rough approximation to the WeT) function 

desired, except that the finite amount of data makes it possible for 

W(T) to have many more than 1 local maximum. Since examination of the 

data reveals that open interest has only 1 local maximum on anyone day, 

it is reasonable to require i(T) to have this property also. Essentlally, 

what is required is some sort of smoothing operation to remove the small 

irregularities in W(T); a very simple and effective method to accomplish 

this smoothing is a moving average. In this case, an eleven-period centered 

moving average sufficed to give W(T) the required shape: First rising 

to a maximum, then monotonically falling, eventually to zero. Figure I 

displays '(T) !£raphically. 

Note that "Sample No.2" starts when there was still a price ceiling 

imposed on the May 1951 and July 1951 contracts. Ideally, the sample period 

should be moved to a later starting point, but the bias involved in starting 

on March 24 is undoubtedly small. Price changes are constrained to 0 only for 

the May contract, with the July contract displaying some variability. The pricl~ 

changes used in the analysis are weighted average, which always includes 

unconstrained contracts; less than 30% of the volume is traded in May and 

July 1951 futures. Thus about 1% of the sample is affected by the price 

controls. The similarity of results for both samples indicates that the 

bias toward too many small price changes is negligible. 

Also, weekends might be a source of error; intermittently throughout 

both sample periods the markets were open on Saturdays. The spectra for 

trading volume and price change indicate that the 6-day cycle that might 

be introduced by Saturday trading is nonexistent. Similarly, no 5-day 

cycle is fOrIlli'c I):, lreating \.Jeekcnds the same as overnight Iwriods. 
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