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1. Introduction

Predictions of the domain structure of real ferromagnetic materials are usually derived from
either domain theory or micromagnetics. Domain theory, often favored by experimentalists, has its
origins in the famous 1935 paper of Landau and Lifshitz. Landau and Lifshitz [1935] calculated
the energy of a domain wall dividing an infinite cylinder with magnetization vector m depending

smoothly on only the axial variable. They accounted for exchange energy, the energy that arises
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from gradients of the magnetization, and for anisotropy energy, the energy that favors axial
magnetization, but not for magnetostatic energy. The main result of their calculation is an

expression for the energy stored in the region of rapid variation of m, i.e., the interfacial energy of

the domain wall.

Domain theory takes the expression of the interfacial energy from the calculation of Landau
and Lifshitz, or one of the improvements which accounts better for the wall structure®, and assi gns
this energy to sharp discontinuities of magnetization. In practice, domain theorists begin with a
divergence-free field of magnetization having a certain specific arrangement of interfaces specified

by several parameters, and then adjust the values of these parameters so as to minimize energy.

W.F. Brown [1962] criticized domain theory on the grounds that it contains too many
geometric restrictions. He remarks that “The mere existence of a lower energy configuration does
not guarantee that that configuration will be attained; if it did, there would be no such phenomenon
as hysteresis. Second, the particular configuration devised is dependent on the ingenuity of the
theorist who devised it; conceivably a more ingenious theorist could devise one with even lower
free energy.” Brown introduced an alternative approach termed micromagnetics that avoids the
geometric restrictions. The theory of micromagnetics develops an expression for the free energy of
a general magnetization field and then seeks to determine that field so as to minimize energy in an

appropriate space.

Despite the general attractiveness of Brown’s philosophy, micromagnetics has not gained
general acceptance. This is apparently due to two features of micromagnetics. First, in the case
often considered (e.g., Brown [1962]) with exchange energy omitted, the minimum of the free
energy is not generally attained. Minimizing sequences for the energy exhibit finer and finer

structure. Nonattainment of the minimum does not occur for all crystal symmetries, and we

* See Kléman [1983] for a discussion of different wall models.
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suggest that this explains in some way the huge dichotomy of scales exhibited by ferromagnetic
materials, whereby large cubic ferromagnets may exhibit a few huge domains while large uniaxial
ferromagnets always exhibit relatively fine columnar or laminar domains. We show this in
Sections 3 and 4. Second, we generalize in Section 8 a metastability calculation of Brown that also
seems to be an origin of the distrust of micromagnetics. The calculation leads to the so-called
“coercivity paradox.” Our calculation sheds light on the coercivity paradox by showing precisely

when the metastable state becomes unstable relative to finite disturbances.

Martensitic materials also exhibit extremely fine twinned microstructures often appearing as
layers or layers within layers. In recent years a new theory of martensite has been developed
which involves free energies that do not have attained minima. See, e.g., Ball and James [1987],
Chipot and Kinderlehrer [1988], Fonseca [1988], James and Kinderlehrer [1990], Pedregal [1989]
and Kohn [1989]. The theory of martensite that has emerged is in many ways analogous to
micromagnetics without exchange energy (with one significant difference described below) and the
analogy can be stretched to include the crystallographic theory of martensite, the analog of domain
theory for the martensitic materials. As in the martensite, a study of the minimizing sequences
(Sections 2 through 5 below) gives a rather complete picture of the macroscopic aspects of the
domain structure, and is particularly useful for predicting where in the body fine structure will
occur, in addition to the averaged properties of this fine structure. It is also anticipated that
information on where fine structure must occur will be useful in setting up reliable micromagnetic

computations with exchange energy included, such as those under development by Luskin.

A remarkable feature of ferromagnetic materials is that the single domain state is generally
unstable. This contrasts with martensite, where the single variant configuration is stable for
arbitrarily large samples. In other physical systems, such as the blue phase of cholesteric liquid
crystals, the failure of stability of the uniform state relative to an array of defects is termed
“frustration.” Our calculations could be interpreted as one possible interpretation of this

phenomenon at a macroscopic scale. The frustration in our system arises from the competition of
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an anisotropy energy which demands constant magnetization strength with an induced field energy
which prefers to tend to zero. A consequence of this is to promote development of a fine scale
structure which seeks to compromise the constraint of constant magnetization strength. A different
mechanism is given by Sethna [1987] for the blue phase. He associates the term frustration with
the failure of existence of a pointwise minimizer of the energy density, such as occurs in the

problem
min _[ IVu-FI2 dx ,
Q
where F(x) is a smooth vector valued function which is not a gradient. This agrees with our
interpretation in the case of zero applied field and in some other special cases, but differs from our

interpretation in that his energy functional does have an attained absolute minimum in an ordinary

function space whereas ours generally does not.

2. Energy of Ferromagnetic Materials

The conventional theory of ferromagnetic materials is based on the classical assumption of

Weiss, Landau and Lifshitz that the magnetization m varies with position x € Q but has a fixed,

temperature dependent magnitude:

Imx)| = f(T), xeQ, (2.1)

with f(T) =0 for T > T,, Tc being the Curie point. In this paper we shall not vary the

temperature so, without loss of generality, we shall consider vector fields

m Q — S2, (2.2)
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the unit sphere in R3, or, more generally, with Q cR" and

m: Q — Sn-1,

The energy of a rigid ferromagnetic material is assumed to consist of the sum of three parts
(¢f. Brown [1963], Landau and Lifshitz [1984]). The exchange energy models the tendency of

neighboring magnetic moments of atoms to align and has the form

[ Vm-AVmdx 2.3)
Q

where A is a linear transformation on constant 3 x 3 matrices. The anisotropy energy models the
tendency of the magnetization to point in specific crystallographic directions and is given by an

even function @(m) which exhibits crystallographic symmetry. We shall discuss two cases:

@) Cubic case. There are orthonormal vectors {m;} such that*
0 = ¢Em)) = @Em) = @(Fm3) < ¢@(m) forall

me {+mj, tmp, Tm3} . (2.4)
(ii) Uniaxial case
0 = ¢Fm;) < ¢@(m) forall m # *tmy. (2.5)

Without loss of generality we have made the minimum values of @ equal to zero. Finally, the

magnetostatic energy is the energy of the magnetostatic field set up by the magnetization m. The

* This is the simplest assumption appropriate to cubic symmetry. It corresponds to having the easy axis along
(100) directions such as in iron. Other cubic materials such as nickel have a greater number of minima. Because ¢
exhibits crystallographic symmetry, it always has a set of minimizers of the form (orbit P)e where P is the point
group of the material.
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form of this energy is calculated, for example, by identifying m with the quantity (i/c)da where i
is the current in a plane filamentary circuit of vector-area da and then by regarding Q as a

continuum field of such circuits. The form of the magnetostatic energy is

[1vupax (2.6)
R 3
where

div[-Vu+mXg] = 0 on R3. 2.7
Here, the presence of the term mXgq is a reminder that (2.7) is solved on all of R3 but with mXg
= 0on R3— Q. Equation (2.7) arises from the two Maxwell’s equations

divB = 0

curlH = 0 (2.8)

and the definition (omitting unessential constants),

B = H+m.

Using (2.8), we have introduced the potential u with H = —Vu. Thus, the total energy is

formally

Eim)= | [Vm-AVm+pm)]dx + 5 | 1V 2 dx 2.9)
Q R

Here u is obtained from m by solving (2.7) subject to the appropriate conditions at e (see

Section 3).
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An odd feature of the constitutive part of this energy, namely, the first two terms of (2.9),
is that it does not embody the most general frame-indifferent energy of the form ¢(Vm, m, ¢;),
which would seem to represent the minimal assumption. Here, for a rigid crystal, {ey, 2, €3}
denote lattice vectors of the crystal and for a rigid ferromagnet are restricted to lie in the domain

A . A . . . .
SO@3)e; with e; constant, linearly independent vectors. Frame indifference would require that

@(RVmRT, Rm, Rej) = ¢(Vm,m,e;) forall Re SO®3). (2.10)

Hence, even frame-indifferent quadratic terms normally found in the energy for liquid crystals, for

example (Frank [1958])

Ko(m-curlm+q) +K3 I mAcurlm 2,

are missing from (2.9). It is possible that the molecular theories used to derive (2.9) contain
hidden geometric assumptions which forbid certain interactions, such as was the case in the theory
of liquid crystals before the appearance of Frank’s paper referenced above. We shall not pursue

this issue here.

The exchange energy can be thought of as giving rise to a surface energy on domain
boundaries. The calculation which justifies this fact in an asymptotic sense is given in a recent
paper of Anzellotti, Baldo and Visintin [1989]. Their calculation qualitatively is similar to the
calculation of the asymptotic behavior of minima for a van der Wall’s fluid with surface energy
measured by the volume integral of | Vv 12 where v is the specific volume, ¢f. Kohn and
Sternberg [1989]. The scaling used in these papers— € in front of the exchange energy and €'1 in
front of the anisotropy energy with € — 0 —might be inferred from the [1935] paper of Landau

and Lifshitz in the magnetic case.
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Except in certain situations which we treat explicitly in Section 5b, crystals of mm or
greater size exhibit fine domain structures, either fine bands in the material or coarse bands that
show splitting into finer and finer domains at the surface of the crystal. In these cases the crystal
exhibits a large surface area of domain walls, suggesting that the essential domain structure can be
obtained by omitting the exchange energy. A similar point of view in theories for martensitic
materials has been successful in predicting their twinned structures and macroscopic properties (cf-
Ball and James [1987, 1990], James and Kinderlehrer [1989]). The operating principle in those
calculations has been that the surface energy only selects some (fine) scale while the minimization
of bulk energy determines the possible microstructures on that scale. A major advantage of this
approach is that detailed stable domain patterns in a great many cases can be calculated rigorously
without resorting to approximate methods. This viewpoint has also been useful in setting up
reliable computations of domain patterns in martensitic materials, such as those of Collins and
Luskin [1989], which necessarily must cope with domain refinement. Analyses of the type
presented here are particularly helpful for deciding where in the body one should expect to find fine

domain structures.

To explore this idea further, we shall put A=0 in (2.9). Set

Egm) = Jomdx+ 1 [IVu2dx 2.11)
Q R3
subject to
div(-Vu+mXg) = 0 in R3 (2.12)
and consider
inf Eo(m) . (2.13)

Iml=1
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Observe that there is an alternative expression for (2.11). Since (2.12) means that
J(—Vu +mXq)-V{dx = 0
R3
whenever V( e L2(R3), then if we set { = u we get
fiverzax = J;mXQ-Vu dx .
R3 R
Hence
B 1
Esm) = [omdx + & [Vu-madx . (2.14)
Q Q
3. The Minimum of the Functional
From (2.11) it is clear that Ey> 0. In this section we show that
inf lm <1 Eo(m) =0 3.1)

provided ¢ has minimizers of the form +mj. Recall that inf ¢ = 0. This covers both the uniaxial
and cubic symmetry hypotheses, (2.4) and (2.5). First let us verify that Eo(m) is well-defined.
In particular, we check the sense in which we understand the equation (2.12). Throughout this
paper we make the standing assumption that € is open and bounded and has a Lipschitz

boundary.

Let B c R be a fixed ball with Q c B; suppose n > 2, and let

v = {ve HI®B): Vvel2®M and [vdx = 0}. (3.2)
B
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V is a Hilbert space with inner product

(u,v) = JVu-Vvdx +J uv dx .
RN B

By Poincaré’s inequality,

Juzdx < cJIVuI2dx < ¢ JIVuIzdx ,ue V,
Rn

from which it follows that a norm equivalent to (v,v)1/2 on V is given by

([ivurdx )2,
RN

We shall regard (3.4) as the normon V.

Lemma 3.1. Let m e L2(Q; R"). The equation

ue V: div(-Vu + mXg) = 0

admits a unique solution in V. The mapping

T:L2(QRN) — V

is linear and continuous.

The equation (3.5) means that

J(—VU +mXQ)-V{dx = 0 for {e V.
]Rn

4/20/90

(3.3)

(3.4)

(3.5)

(3.6)
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Proof. The functional

Iv) = % J'VV 12 dx + JVv-mXde, ue V, 3.7
R R™

is convex and lower semicontinuous with respect to weak convergence in V. Owing to the

elementary estimate

1) 2 ¢ -e) [Ivvizax - gJImﬂdx,
Rn

it is bounded below. T admits a unique minimizer in V and this minimizer satisfies the Euler
equations, (3.5). If m, m' e L2(Q) have solutions u, u' € V respectively, setting { =u —u' in

(3.6), subtracting, and applying the Schwarz inequality gives that

_v < _ 1
Tu—-v'lly, <cllm-m'll,. .

It follows from general principles, and is easy to check, that T is also continuous from L2(€; R")

in the weak topology to V in the weak topology. Hence if

mK — m in L2(;Rn) weakly, then
Vuk — Vu in L2(RP;RP) weakly . (3.8)

By the Rellich and trace theorems, it then follows that

uk - u in L2(Q) and L2(0Q). (3.9

In fact, owing to the compact support of m, (3.5) admits a solution in HI(RD). The

proof of this, although not difficult, is not germane to our considerations here. We turn now to the






proof of (3.1). Assume that @(mj) = ¢(-mp) = 0, and choose p € RM with
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8:R — R be periodic of period 1 with

6 = {1 te [0, 1/2)

-1 te[1/2,1)

Referring to Figure 1a, set

and note that ¢(mk)=0.

SO

We assert two properties of mk:

(@ divmk=0 in Q

This is because mp - p = 0.

(b) mK — 0 in L2(R") weakly.

This is standard. It suffices to show that for any cube D,

limk_)oo Dj mkdx =0 .

Now let uk be the solution of (3.5) corresponding to mX. Then by (3.8)

uk 5 0

in V weakly,

4/20/90

pm;=0. Let

(3.10)
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uk - 0 in L2(Q) and in L2(0Q).
Now we may calculate
Eo(mk) = J o(mk) dx + % fmk~Vukdx
Q
1 . 1
= —5 |divmkukdx +:> |mkwv ukds (3.11)
2 Qj 23 Qj

= 41 k.y yk
= += mX.v ukd$§
3,4

- 0 as k—ooo,

Obviously there are many other choices of minimizing sequences for E,. For example, fine
columnar domains as pictured in Figure 1b, as long as they have the property that they have equal
volumes on average, generate a minimizing sequence. Uniaxial materials often have the general
kind of domain structure pictured in Figure 1b. A great variety of cross-sectional shapes are
observed as shown, for example, by Carey and Isaac [1966] or Chikazumi [1964]. On the other

hand, there are restrictions on the minimizing sequences. We explore these in Section 5.

4. Attainment of the Minimum

We turn now to the question of whether of not the infimum

E0=0

is attained by an m € L2(;Sn-1). The answer is different in the uniaxial and cubic cases. The

former will exhibit the frustration described in the introduction while the latter admits a solution.

If me L2(Q;S"1) with



Frustration in Ferromagnetic Materials 15

4/20/90
Eo(m) =0, (4.1)
then
m(x)e K:= {m:9m) = 0,ImlI=1} in Qae. (4.2)
and the corresponding magnetostatic potential u vanishes identically. By (3.5)
divmXg = 0 in Rn,
that is,
JmXQ-VC dx = 0 forall e V. (4.3)

R

(a) Uniaxial case
We show here that E, does not attain its minimum.

Lemma 4.1. Suppose that fe L2(RM) with supp f ¢ RD compact. Then the mapping from
C=@RM) to R given by

(- [fvedx (4.4)
Rn

either has rank nor fvanishes identically.

Proof. Suppose the rank of the mapping in (4.4) is less than n. Then there is a (unit) vector Ee

R such that

[tveEax = 0 for {e C=mn),
Rn
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or

Jf &;%dx = 0 for { e CeRN).

Rn

Without loss of generality, assume that € = en. Then by Fubini's Theorem and the Lemma of

duBois Reymond it follows that f=f(x1, ..., xn-1), a function of n—1 variables. Hence if supp f is

compact, f vanishes identically . ¢

Assume as above that {m: @(m) =0, Im| = 1} = {#m}, has two points and that (4.1) holds. Then there is

m = Xamp — XQ amj

Il

XA — (Xg—Xa)]m
= (2XA—XQ)my

and

divm = 0.

Hence

0 = Jm-VCdx = I(ZXA—XQ)ml-VCdx.
R R

Thus, with f = 2XA — X, the mapping

¢ - [fvgdx
Rn



Frustration in Ferromagnetic Materials 17 4/20/90

does not have full rank, so f=0,0r | Q| = 0, which violates our hypothesis about Q. Thus, in

the uniaxial case the minimum is not attained in V.

This argument is sensitive to the form of ¢. For example, if we consider a function
¢(m,x) with explicit dependence on x appropriate to a “locally uniaxial” crystal obtained by

bending a uniaxial crystal into the shape of a ring, e.g.

o(m(x),x) < @mx) xe SIxS! forall Iml=1, (4.5)
where
+
mx) = txaes3 6)
| xAesz |

then E, has an attained absolute minimum of the form (4.6) and in fact (+) can be imposed on all
of S!xS! so that the minimizer exhibits a single domain (note that m defined by (4.6) is
divergence-free). However, with unbent uniaxial crystals of sufficient size, we expect always to

see fine structure throughout the crystal, as is observed.

(b) Cubic case

The preceding statement is untrue for cubic crystals where mm size single crystals of iron
often exhibit the classic domain structure pictured in Figure 2a, if the faces of the crystal have been
cut on (100) planes (cf. Carey and Isaac [1966], Figure 101). In fact Figure 2a clearly represents a
minimizer of E, since the field m pictured there is divergence-free on R (and therefore has the

corresponding potential u =0 on RN, and also m assumes only the values *mj; and *mjy.
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Figure 2. Minimizing domain structures in the cubic case. Figure 2c after Craik
and Tebble [1965, Fig. 6.8a,b].
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The question arises whether attainment of the minimum in the cubic case occurs only if 0Q

exhibits (100) normals. To investigate this question we let D, the prototype being the domain

shown in Fig.2a, be some particular, open set in RM on which the minimum is attained by a field

mgy e L2(Q;Sn-1):

ED(my) = 0, 4.7
where

ED(m) : = Ij[<p(m(x))dx+ ! [Ivuizax . (4.8)
]Rn

The following shows that the minimum of E? is attained for any open bounded Q c R,

Theorem 4.2. Let Q c RD be open and bounded and let the open bounded set D C R™ have a

smooth boundary. Suppose

0 = infED = ED(mg), moe LAD;S™1).
Then there is a function me L2(Q;S™1) such that
0 = infE® = Ef(my). (4.9)

Proof. By the Vitali Covering Theorem, there is a countable collection of disjoint closed sets of

the form a; + &D such that

Q = U (aj+&D)UN (4.10)

where meas N = 0. Since mg is @ minimizer on D
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jmoxDVC_, dx = 0 foral (e V.
R

Let mje L2(aj+&D;S™!) be defined by

mi(x) := mo(x——ﬂ), X € aj+ gD,

&

and let m e L2(Q;S"1) be defined by

m(x) := mXx), x € aj+gD.

We have forany {e V

JmOXD-VC dx = J-moVC dx
Q

= 2 jnji-VC_,dx

aj + g;D

R

= Y € [ mo(2)-Vi(aiteiz)dz ,
D

4/20/90

(4.11)

(4.12)

(4.13)

where the series converges because the left hand side is finite. Since j(z) : = {(aj+€jz) belongs to

V, up to an additive constant, each term in the series (4.13) vanishes. Therefore if u is the

potential corresponding to m then, by (4.13), u(x) =0 a.e. x € RP, so m is a minimizer.

¢

Since on domains with non-(100) boundaries there does not exist a piecewise smooth

minimizer having a finite number of domains, the implication of Theorem 2 is that any minimizer

will have the property that it will have a finer and finer domain structure at the boundary. This

inference is made precise in Section 5. Various constructions are possible in addition to the one

given by the Vitali Covering Theorem. For example, the construction shown in Figure 2b also
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delivers a minimizer. Here it is important to observe that the average magnetization in Figure 2b on
a sequences of translates of dQ2, which tend to dQ, goes to zero. Figure 2c shows an actual

domain structure near the curved boundary of an iron crystal.

5. Further Analysis of Domain Structures

As illustrated by Figure 1, there is extensive lack of uniqueness associated with minimizing
sequences for uniaxial materials. However, both of the minimizing sequences illustrated by Figure
1 have magnetization fields whose average is zero, in the sense of weak convergence. In this

section we quantify this idea of uniqueness for any minimizing sequence in the uniaxial case using

the notion of a Young measure.

This uniqueness is proved in the uniaxial case only. No such average behavior is expected
for cubic magnets because of the dichotomy of scales illustrated by Figure 1 and 2a. However,
whether or not a minimizer in the cubic case exhibits refinement at the boundary, we expect the
average magnetization at the boundary to be tangential, and hence to satisfy in some sense the
equation divm = 0. We prove this below. It follows immediately from this fact that if 0Q is
smooth and has a normal v(Xy) at xo€ dQ not perpendicular to (100), (010) or (001), then any

minimizer must exhibit refinement at X,

First we make a few observations about the general situation. Let mke L*(Q), | mK| =1,

be a minimizing sequence for E, with potentials (u¥). Thus

Eom¥) = [omK)dx + 1 [ivukizax —» 0 as k- e,
Q RN

which tells us that both
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[ombydx -0 and
Q
[1vekzax - 0. (5.1)
RI’I
Thus
emk) — 0 in LI(Q) and
uk - 0 in V (in norm). (5.2)

The boundedness of the ( mK) means that there is a subsequence, not relabeled, and an me
L>=(RM) such that

mK — m  in L2(RD) weakly and

suppm < Q. (5.3)
Since for each k,

[ Vukimb) . VEdx = 0, Le C®RM),
Rn

we obtain from (5.2) on passing to the limit that

[®m-veax = 0, teCmm,
RrRD

or

divm = 0. 5.4
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The existence theorem for Young measures (e.g. Ball [1989], Young [1980]) states that

there is a subsequence of ( mk), not relabeled, and a family of probability measures ( [ix )xeQ

such that for every y € C(RD),

y(mk) — y  in Le(R") weakly, where

Vo= [wm) duxm), xe Q. (5.5)
Rl’l

Part of the conclusion of the theorem is that y is measurable. It follows from (5.5) that py has

an interpretation as a local spatial average:

Hx(E) = lim lim %—I | {ze B(x,r): mK(z)eE }I.
10 koo

Also note that the limit magnetization given in (5.3) has the representation
w00 = | mdum. (5.6)

The limit anisotropy energy density is

o) = [ @(m) dux(m)
R n

but since 0 < ¢(mK) — 0, ¢f. (5.2)2,

[ o) dpxm) =0
R n
It follows immediately that

supp px = {m: @(m) =0} =: K. (5.7)
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We now restrict attention to the uniaxial case, where K={m1, -m1}. In this case from
5.7

Hx = A(X)m, + (1- AMx)d_m; inQ, and
mix) = AMx)-1)mXg inQ,
where 0 < A < 1.

On the other hand, by (5.4)

0= [®mVid = [@®-DmixeVidx , e C=®D).
Rn gn

From Lemma 4.6, 2A(x) -1 =0 in Q, or A(x) = % and m=0. It is easily seen that these

conclusions apply to the whole sequence.
We have proved the uniqueness theorem.
Proposition 5.1. Assume that ¢ satisfies the uniaxial assumptions (2.5). Every minimizing
sequence (mK) for E, satisfies
mK — 0 in L2°R") weak*

and generates the Young measure

Now we turn to the cubic case. Let m be a minimizer of Eg, so in particular the potential

corresponding to m is u=0 and divm=0, or
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[mVCax=0,  {e comn).
]R n

This is just a special case of (5.4). Let ae 9Q and { e C7(B(ar)). We assume that 9Q is

smooth near a. Integrating by parts, we get

0= [m-V{dx
B(a,r)

= Jm-VC dx
B(a,r)nQ

= m-v { dS

(5.8)
0QNB(a,r)

Here, m | 20 is defined by routine mollification, i.e.,

m | = lim mg in L*(0Q) weak* 5.9
0Q —0

€

where

me() = | oe(x—x)m(x)dx’ (5.10)
Rn

and (0g) is asequence of mollifiers. Formula (5.8) may be seen directly from the fact that

div me = 0.
Indeed,
0 = [divmeLdx
B(a,r)nQ
= - ng-VC dx + ng-v € dx .
B(a,r)nQ 0QnB(a,r)

Now let € > 0 so
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0 = - JmVCdx + m-v { dx .
B(a,r)nQ QN B(a,r)
But m = mygq, whence
Jm.VC dx = jm-VC dx = 0,

B(a,r)nQ B(a,r)
which yields (5.8). From (5.8), we obtain that

m|aQ-v = 0 onodQ. (5.11)

Returning to the issue of boundary refinement, suppose that dQ is smooth near a € 9Q

and that for every sufficiently small € >0, B(a,e)NQ contains a single domain:

m(x) = +mp, say, fora.e. xe B(a,e) " Q.

Assume for simplicity that n = 3. It follows from (5.9)-(5.11) that v is perpendicular to m;.
Conversely, if v at ae dQ is such that v - mj# 0, i=1,2,3, then there must be a sequence €x
— 0 such that each set B(a,ex) contains at least two sets of positive measures on which m takes
on different values in {*mj,+mj,*m3}. Hence, boundary refinement is necessary in cubic

materials if the boundary normal is not perpendicular to one of the directions (100), (010), (001).

This result does not explain the refinement observed in Figure 2c, since the normal in that
case is perpendicular to (100). This is explained by the following argument. The disc shown in
figure 2c is a cylinder with the top normal to m; = (100). The domains viewed there are on the
top. Suppose that a € dQ lies on a corner of the cylinder and the normal v(a) to the lateral
boundary of the cylinder at a is v(a) = amj+ Bmy with both ao#0 and B #0. Furthermore,

suppose there is a single domain m(x) = +mg,k € {1,2,3} in B(a,e) N Q. Then by (5.11),
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mg-m3 =0 and v(a)-mg = 0. This is a contradiction, in other words, there is no single

domain in a ball of any size. This leads to boundary refinement.

6. Bound on the Minimum Energy via a Lagrangian Formulation

In preparation for the discussion of the effect of an applied field, we find a lower bound on

the infimum of the total energy. The presence of a divergence-free applied field hy e L2(RD;RM)

contributes a term —m - hy to the local part of the energy resulting in a total energy

Emhey) = [(p(m)-mho)dx + 5 [IVui2ax, (6.1)
Q Rn
subject to

div(Vu+mXg) = 0 inV. (6.2)

The field h, is interpreted as the field that would be present were the ferromagnetic

material absent, ¢f. Brown [1962]. Using (6.2), we can write

Em,uhy) = [(p(m)—m-(ho-Vu)dx — 3 [IVui2dx (6.3)
Q RN

Regarding hg, as fixed, we introduce a "Lagrangian,"

L(m,u) =

N | —

fivezdax + [ (m(ho-Vu)-gm)} dx
RN Q

= —E(m, u; hp) (6.4)

Let us regard L(m, u) as a mapping from KxV — R, where V is defined by (3.2) and

K={me L°(Q;RM:Iml=1}.
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So, in (6.4) we ignore the equation (6.2). The reason for this is that it may be directly

incorporated into the variational principle by observing that

-P* = inf E(m) = - sup. ian L (m, u) (6.5)
me K
u satisfies (6.2)

Formally, if we compute the first variation L(m, u), we get (6.2) as well as the Euler equation of

(6.1). Indeed, —L(m, u) is often regarded as the Helmholtz free energy of the system. The proof

of (6.5) is an immediate consequence of our proof of Lemma 3.1.

Let

P = ian Sup,, L(m, u). (6.6)

By an elementary computation (cf., e.g., Ekeland and Temam [1976] or Moreau [1964]),

p* < P (6.7)

Thus (—P) provides a lower bound for the energy attained by the system. The advantage of (6.6) is

that there is always a pair (m, u) which attains (6.6), and this gives a sharp bound in some cases.

Let us calculate P from a variational problem. Define

yE€) = sup (mE-¢m)). (6.8)

Iml=1

Then for each u e V, we set

I(w) = sup, L(m,u) = ; Rj 1VuiZdx Qj\y(ho—vu)dx. (6.9)

Assuming that @ isevenand inf @ = 0, we easily deduce that
Iml=1
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(1) wyis convex and continuous,

i w8 = y@®,and

(i) infy = WO0) = inf|,o;¢=0.

To check (iii), note that a convex even function assumes its minimum at the origin. Thus I is

convex and coercive on V. Hence there is a (unique) u € V such that

Iu) = infyI(u) = P (6.10)

As a means of estimating P, let us note a special case. Let

VO = {uEV:Vu=ho inQ}.
If the closed, convex set V,, is not empty, there is a unique ue V, such that

[ivird=inty, [Ivuizax,
R™ RD

by Stampacchia’s Theorem [1964]. Hence y(he—Vu) =0 on Q and, by (6.9)

1@ =1 Jiviea (6.11)

P <
R1

When hg# 0, (6.11) will provide an optimal bound only for special domains in €. Of course, if
ho=0,then u=0 and P=0 as well. In Section 3 we have shown that P* =0 in this case, so
the bound given by this formulation is optimal.

Another simple case, when Q is an ellipsoid and hg = const., is treated in Section 7.

The numbers P and P* would be equal were it possible to interchange the “inf” and

“sup” in (6.5) or (6.6). For general fields h, this may not be possible. First of all, P* is not
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attained in general, which renders less tractable the computations. A true saddle point does not
exist in this case. Moreover, \ is not the dual function ¢* of ¢ owing to the constraint that | m |
= 1, which refers to the assumption of magnetic saturation. Consonant with this, the set K is not

convex. We refer to Ekeland and Temam [1976] for a general discussion.

The idea of the Lagrangian formulation may be recast in an extended setting. Let

N < Sn-1 and

N = {me Le@sm1): mx)e N }

and introduce

YNE) = supN(Em - o(m)),
which is convex with at most linear growth. For a fixed applied field h,, set
P*(N) = sup yinfy Limu) and P(N) = inf y Sup y L(m,u).

As before, P*(N) < P(N). The convexity of YN ensures that there is always a uy € V such

that

PON) = 3 [IVunRdx +Qj\|/N(ho—VuN)dx.
RN

We shall use this extended setting to interpret the notion of metastable solutions of our

problem, and in particular the coercivity paradox, in the Section 8.



Frustration in Ferromagnetic Materials 31 4/20/90

7. Effect of a Constant Applied Field

In the preceding section we showed that the minimum energy P* in the presence of an

applied field satisfies

p* = inf  Emiho) 2 -P > -1 [iviirdx (7.1)
mek R™
u satisfies (6.2)

provided that U € Vp_ minimizes the field energy

[ivira = inf [1Vui2adx, (7.2)
R Vh, R1M

among other fields in Vp,.
In this section we consider the case hg = const. on €, and we assume n = 3.

It is well-known from potential theory that if € is an ellipsoid, the infimum in (7.2) is
attained by a function u that is exactly the magnetic field of a uniformly magnetized ellipsoid with
magnetization m = D-lhy. Here D =DT is coaxial with the principal axes of Q and its positive
eigenvalues are the so-called demagnetizing factors (cf. Osborn [1945] or Stoner [1945]). The

function u is obtained by solving

ueV: J’(—Vﬁ' +mXg)-Vldx = 0 forall {e V.
R3

We now show that equality holds throughout (7.1) in the special case where € is an

ellipsoid with demagnetizing matrix D, and hy satisfies

ho ” Dml ’

lhg! < IDmyl. (7.3)



Frustration in Ferromagnetic Materials 32 4/20/90

Recall that m) minimizes the anisotropy energy ¢. Assume (7.3) and for A € [0,1], let the 1-

periodic function 6), be given by

1 te[0,A),

0w = {_1 te [A1).

Choose p € R3 with p-mj;=0 and let

m; 0y (kx-p), x€ Q,

k _
my(x) = { 0 .xe R3_-Q.

Then for each fixed A € [0,1],

mk(x) - my := QA-1)Xom; weaklyinL2, (7.4)
so by the theory presented in Section 3 (¢f. equation (3.11)),
% jm§~Vu§ dx — % f[ m-Vu) dx ,
Q

[mkhodx —» [ mhodx (7.5)
Q Q

where uk is the potential for m§ and

uli — u) weaklyin V. (7.6)

It follows from (7.4) and (7.6) that u), is the potential corresponding to the constant magnetization

m), on Q. Thus, we can ensure that u) will be the minimizer of the problem (7.2) if we choose

A € [0,1] such that

Dm)y = (2A-1)Dm; = hg,
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in which case Vuy = hy on Q. By the assumption (7.3) it is always possible to choose such a

A.

We now evaluate directly the energy of the sequence mli. By using (7.5); 2 in the

expression (6.3), we get

-1 [ivieax < pr,
R3

We have arranged that u), achieves the minimum in (7.2) so by (7.1) we also have

1 —
px > 1 RIJVuxlzdx

Thus, we have calculated P* and clearly ( m}f ) provides a minimizing sequence for the

energy.

In summary, if Q is an ellipsoid with demagnetizing matrix D subject to a constant

applied field h, satisfying (7.3), then the infimum of the total energy is given by

1 —_
—= IVuyl2 dx
2 R-L A

where uy, is the potential corresponding to the constant magnetization my = (2A — 1)m; and A
€ [0,1] is chosen so that 2A — 1)m; = D-lh,,. Minimizing sequences for the total energy are

given by uniformly layered microstructures with magnetization mj, —-mjq, my, -m; and having the

volume fraction A.
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8. Remarks on the Calculations of Brown and Lifshitz

Despite the general attractiveness of the philosophy of micromagnetics, it has met with
limited success. A typical attitude toward micromagnetics by experimentalists is the view of Carey

and Isaac [1966]:

Since, in principle, the minimization [of the total free energy] is a straightforward
problem, micromagnetics needs to postulate no domains or walls; if these are real the theory
should predict them. While this approach is undoubtedly rigorous, it seems clear that the
application, at this stage, has most value in the study of particles insufficiently large to support
domain walls. In bulk specimens, conventional domain theory, despite its shortcomings, has the
advantage of pictorial guidance from experimental domain observations and in most cases has
proved successful in accounting for the results obtained.

It appears that this hesitancy toward micromagnetics arises from an interesting calculation
of Brown [1962, p. 125-133; 1963, p. 66-72]. Brown’s calculation concerns the metastability of
the single domain state under constant applied field. The idea of the calculation is the following.
For an appropriately oriented ellipsoid € subject to a large, suitably directed, constant applied
field hy, we expect the single domain state m =m; to be an absolute minimizer of the energy.
(This follows from a calculation similar to the one we presented in Sections 6 and 7, as explained
below). Brown considers the family of fields ho = Dmj + T m; with T decreasing from +eo
toward —o. We expect that for sufficiently small values of 7, the single domain state ceases to be
metastable. Brown calculates sufficient conditions on T that the magnetization m(x) =mj, X €

Q, makes the second variation of the energy positive definite at mj.

We can easily reproduce Brown’s calculation® of metastability using our Lagrangian
formulation of Section 6. Let my be a point of local convexity of the anisotropy energy

corresponding to the conjugate variable &, i.e. assume there is an € >0 such that

* Actually, this is a slightly improved version of his calculation in that we prove mg is a minimizer relative to
other fields m satisfying sup Im—mgl <¢, i.e. our argument does not rely on the use of the second variation.
Q
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¢o(m) — @(mp) — (m-mg) - §o = 0 forall me K, (8.1)

where

Ke = {meL*:Iml=1 and Im-my| < €}.

In terms of the extended setting described at the end of Section 6, we are choosing N =K .

Assume also that Q is an ellipsoid with demagnetizing matrix D (¢f. Section 7) and that

hy = & + Dm,. 8.2)

The argument of Section 6 leading to (6.9) does not depend on the precise form of the compact set

K, so in particular we can repeat the argument with K replaced by K¢ and obtain (6.9), except

that y is now replaced by g, where

Ve €) = sup (mEop(m)), K¢ = {me S} Im-mpl <€}
Ke

In the present calculation, e remains convex and continuous but is no longer even and is not

generally minimized at the origin. Since my satisfies (8.1), we have

Ve€o) = Eomo— @(my) . (8.3)
Let uge V be the field associated with mg:

J(—VuO+mon) . VC dx = O .
]Rn

By the results from potential theory mentioned in Section 7, Vug= Dmg on € and uo satisfies
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[1Vugdx = inf  [1vui2dx (8.4)
R™ VDm, R©T

Thus, using (8.2), (8.3) and (8.4), we get from (6.9),

P = infy I(w) < L) = % Rjnl Vu, 12 dx +Qf\v(€o) dx .

Since ~P is a lower bound for the energy (cf. (6.5) and (6.9) specialized to K = K¢) we have

proved that

inf  Bmiho) 2 -1 [1Vue2dx - [wiEo) dx.
meKg R™ Q
u satisfies (6.2)

But, in fact, this lower bound is attained by mgy e K¢ because

E(m; ho) = QJ«p(mo)—mo-ho)dx + 1 [1vu 12 dx
Rl’l

Vug12dx

B =

J@mo)-mohotmeVugydx — 1 [
Q RN

- JwEax -1 1V 2 ax
Q RN

In summary, if mq satisfies (8.1) and h, satisfies (8.2), then

E(myg; hp) = inf E(m; hy) (8.5)

m e K¢
u satisfies (6.2)
This is essentially Brown’s result on metastability. We note that this result remains true when
exchange energy is included, since the exchange energy itself is minimized at the constant state

m(x) =mg, X € Q.
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The metastability result (8.5) yields an interesting prediction which in turn leads to what

”»

Brown terms the “coercivity paradox.” To obtain this prediction, we first calculate the set of

values of &, for which m, is a point of local convexity. (This set determines a set of applied

fields hg such that mg is metastable, by (8.2)). To correspond to Brown’s treatment, we assume

that

(1 o¢iseven,

. 92¢(m,)

(i1) min [m-—(g;%m] = k1 >0.
Iml=1
m-mg=0

It is then straightforward to determine the set of values of &, such that mg is a point of local
convexity corresponding to &,. A convenient method of doing the calculation is by writing m =
R(m, with R(0) = 1, R(0) = W = -WT, R(0) = W2+ W, WT= —W. It follows that a

sufficient condition for m, to be a point of local convexity is

& = Vo(mp) +Tmp, T > —K1. (8.6)

In addition, it is immediate from (i) and (8.1) thatif A >0 and @(mg) < @(m) forall Iml=1,
then m, is a global point of convexity. Using (8.6) and (8.2), we conclude that m(x)=my is

metastable if

ho = Dmg + Vo(mg) + tTmg, TE€ (—K1, %) . (8.7)

Brown assumes that V@(mg) =0 and concludes that the single domain state m(x) = myg, x € £2,
is metastable at least until hgy reaches Dmg—xi1mg. Since xj; is measured for the common
ferromagnetic materials, this calculation provides a quantitative bound for the fields necessary to

prevent a breakdown of the single domain state. As discussed by Brown [1963, p. 69-70], this
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Figure 3. Curves showing average magnetization vs. field calculated from minimizers or relative

minimizers of the total energy. Dark lines (
lines (— =) correspond to minimizing sequences, and dashed light lines (

) correspond to absolute minimizers, dashed dark

) correspond

to relative minimizers in the sense of Brown. Fields h,corresponding to the various minima
and relative minima are as indicated. In all cases Q is an ellipsoid with demagnetizing matrix D

and £m, minimize the anisotropy energy .
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bound is several orders of magnitude larger than that actually measured to produce breakdown.
For example, in iron the calculation implies metastability for fields up to | hy| = 500 oe, while the
measured value is clearly no greater than about 0.1 oe. This discrepancy is termed the coercivity

paradox by Brown. Brown's results and our results of this section and Section 7 are summarized

by Figure 3.

A full discussion of the coercivity paradox can be found in Brown [1963, Sect. 5.2]. He
argues that the paradox cannot be resolved by accounting for magnetostriction or by domain theory
arguments. The general conclusion is that the paradox may be resolved by the inclusion of
imperfections of some type, possibly even deviations from perfect ellipsoidal shape. We believe
that part of the discussion is obscured by the lack of a clear description of what is the absolute
minimizer, or in this case, the minimizing sequence. For example, the remark just before equation
(8.7) implies that the single domain state is absolutely stable only up to the field ho = Dm; and it
is possible that a more careful consideration of both stable and metastable states may yield a
resolution to the coercivity paradox. A full analysis of these remarks will be found in a

forthcoming paper.

We now turn to a discussion of the paper of Lifshitz [1944] which proposes, from the
point of view of domain theory, the splitting of layered domains near the boundary. At first, this
proposal resembles our results of Section 5 on the necessary splitting of domains near the
boundary in cubic materials, but the splitting proposed by Lifshitz occurs on (100) planes and
therefore is unrelated to our calculation. In fact, the splitting predicted by Lifshitz has origins in
the magnetostrictive contribution to the energy. Lifshitz’ calculations are highly suggestive that in
a setting that includes magnetostriction, e.g. ¢(m,Vy), where y:Q — R3 represents the

deformation, the minimum energy state would not be attained. The case® ¢(m,Vy) has also been

* As written, we have in mind that the exchange energy is omitted, the case treated by most authors. Interestingly,
Lifshitz retains the exchange energy.
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treated extensively in the literature. If this suggestion is true, the various ‘“equilibrium equations”
found by putting the first variation of the total magnetostrictive energy equal to zero would not be

useful for finding the minimum energy state.
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