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ABSTRACT

A previously derived algorithm for the analysis of the Hopf bifurcation in functional
differential equations is extended, allowing the elementary approximation of an exis-
tence and stability — determining scalar bifurcation function. With the assistance of
the symbolic manipulation program MACSYMA [5], [9] this algorithm is used to im-
plement the algorithm and to investigate the nature of nongeneric Hopf bifurcations
in scalar delay — difference equations.



I. INTRODUCTION:
The practical application of the now well — understood theory of Hopf bifurca-

tions in functional differential equations still poses many significant computational
issues. The thorough analysis of the bifurcation structures (including questions of
stability and direction of bifurcation) for specific applications often requires a size-
able amount of computation. Even when a computer - assisted analysis is considered
adequate, the selection of the appropriate technique is an important consideration.

Over the last 15 years, many techniques have been developed to treat such
problems [10]. Among them, three have been most extensively discussed in the
liturature. Specifically, we refer to the method of averaging [3] [4], the use of the
Poincare normal form [8], and the method of Liapunov-Schmidt [13]. Of course,
each of these methods must ultimately produce the same result when applied to a
specific equation. However, the ease of application of each of these methods can
vary significantly.

Our purpose in this paper is to report on the use of symbolic manipulation
software in the implementation of the third of these methods. This method differs
from the other two in that it does not require the approximation of the center
manifold existing near criticality at the equilibrium point under consideration. This
is appears to have an advantage when hand calculations are attempted and, as we
shall see, lends itself to a computationally efficient symbolic implementation, as well.

The specific technique to be considered here was introduced in [13]. A generalized
algorithm appeared in [14], and a FORTRAN - based implementation was developed
in [1], [11], [2]. We consider here the use of symbolic -~ manipulation software in
the extension of the algorithm of [14], and the application of this algorithm to a
class of scalar delay — difference equations. The material presented on these two
topics is based on the results of [6], where additionally a MACSYMA [5], [9] - based
symbolic manipulation package (BIPACK) was designed for analyzing generic and

third-order nongeneric scalar FDE.
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In the section to follow, the specific class of functional differential equations under
consideration, and the technical assumptions required will be presented. Theorems
2.2 and 2.3 represent extensions of the results in [13] to the case of fifth order non-
generic systems. The need for such results is illustrated in [12] where within the
class of scalar integro-differential equations, elementary necessary and sufficient con-
ditions are derived for third order degeneracy. A corollary addresses the important
case of systems with odd nonlinearities. Section 3 is devoted to the application of

these results to scalar delay — difference equations.



II. THE BIFURCATION FUNCTION:
In this section, we begin by making assumptions which remain throughout this
paper. We define C = C([-1,0]: R"), L(a) : C — R", and H(a) : C — R™ and

consider the system of equations
¥(t) = L(a)ye + H(; 9e) (2.1)

where L and H are continuous, and « is a parameter in some (Euclidean) space.

For fixed «, we assume H(a; 1) can be expressed in the following expansion

7

H(a;9p) =3 Hy(%7) + O(|19]1*), (2.2)
=2
where the H;’s, 7 = 2,...,7 are a-dependent, continuous, symmetric, j-linear forms

taking values in R™. By the term symmetric, we mean that each Hj is invariant under
a permutation of its j arguments. More precisely, we assume L and H are continuous
in (e, %), and for fixed a, H(c; 1) is at least 9 times continuously differentiable in .
As in [14], we assume that for 9 € C with derivatives () € C;j =1,2,...,7, the
functions L(a)y, H;(ca; %), and H(a;) are C7 functions of a. Such assumptions
are not uncommon to applications, where often derivatives of all orders are present.

Observe that y = 0 defines a steady state for (2.1). The linearized equation

y(t) = L(a)ye (23)
has nontrivial solutions of the form y(t) = £e** with ¢ € €™ if and only there is a

nontrivial ¢ satisfying the characteristic system

0 =[A — L(a)e™])¢é = Ae; N)E. (2.4)
Assume for a near ag (2.4) possesses a nontrivial solution with A = A(a) such
that A(ao) = tw,w # 0. As usual, we assume that A = iw is a simple root of

detA(ap; A) = 0 and all other roots ( other than 44w ) have negative real parts.
Define £* = €*(a) # 0 to be any solution of £*(a)A(e; A(a)) = 0 for a near ag, and
for A near A(a), let

€= Ea;2) = &/[6 A (a5 0)g], (2.5)



where A’ = 0A /0. See [13], [14] for details.

Our primary goal is to provide computational means of resolving the structure
of Hopf bifurcations for (2.1) near criticality. The following proposition, proved in
[13], asserts the existence of a scalar bifurcation function g(a, ¢) that facilitates such

a study.

Proposition 2.1 For w in a neighborhood of wy there ezists a computable real-
valued function g defined and C® in a neighborhood of (ag,0) whose zeros correspond
in a 1-1 fashion with the small periodic solutions of (2.1) with period near 27 /w.
Under this correspondence, the periodic solution of (2.1) associated to a root ¢ of

g(e;-) has the form
y(t, @;¢,v) = 2Re{{(a)e”}c + O(c?), (2.6)

(up to phase shift). Moreover, y(t) is orbitally asymptotically stable (unstable) if and

only if ¢ is stable (unstable) when viewed as an equilibrium of the scalar equation

¢ = g(a;c).

Essential to the application of this result to specific equations is the effective
approximation of the scalar bifurcation function g. This issue is considered in [14],
where an inductive approximation algorithm is derived. It is shown in that reference
that the small periodic solutions of (2.1) with periods 27/v and « near aq coincide

with those of the (complex) scalar bifurcation equation

0 = G(oyv,c) (2.7)
= @) —ivlet o= / e¢ - H(o;y)du (28)
= (Ma)—1w)c+ Mg(a, v)e® + Ms(w;v)® + My(w;v)e" +--+,  (2.9)

where y(t) = 2Re{cp(t)} + T, y(t)d + ... for m < 8, is defined inductively

according to the following algorithm:



1. The expansion y(l)(t) has the form
y(l)(t) = Az,zel"it + Az,z_ge(l'z)”"t 4ot Al,-ze—l"it,
where A;; = Ai_j.

2. y(¢) = 2Re{p(t)} = A1 + Ay e with 4;; = €(a) and ¢(s) =
é(a)euis’

3. Define [{ ] to be the linear map from C" to C given by
E-h=) ¢k
=1

If, for | > 2, the coefficient of ¢’ in
l -1

> Hi(es [ Y y™em)

=2 m=1

is 3, Bi j(a; v)e*, then

A~Ye; jvi) By i(a; v) for j # %1,

Aj(ev) = { . s
(A~ a;vi) — mf[f NBii(e;v) forj=1.

The singularity at A = A(a), in

1 a
g Ny = ——_£[¢.
is removable. In particular, for h € C*, and A near A(a), we have the expansion

A e Wb = sy tlé Al =

d — [EA(os M))dJé — 51EA"(os M))EIIE - hl¢
+ [e = [6(os Ma))elé + A" A(@))E] A (s Moo))dle
— L1Ea"(as N@))dlé + { (GEA"(es Ma))E))

~ SIEA" (o Me))éT} €+ BlE] (A = M) + O((A = M),



where d € C" is any solution of
Aes M(@))d = h = A(e; Me))E[€ - A,
and e € C™ is any solution of

Mashe)e = —AaMa))d+ A'(as M@)ElEA (e Ma))d
+{ =587 @ M) + F1EA(@5 M)A (@i A(@))é} € 1

For details, see [14], where this is derived through order 0.

Implimentation of this algorithm is obviously difficult to do by hand. We have
choosen to perform the necessary details with the aid of the symbolic manipulation
software MACSYMA (5], [9]; see [6] for complete details. As a result, we obtain the
following the following theorem, which represents an extension of Theorem 2.1 [13],

where the expansion though order 5 is presented.

Theorem 2.2 Under the above hypotheses, there are ¢ > 0 and C7 functions
G(e;c,v) (€ -valued), y(t,;c,v) (R"-valued and 27" -periodic in t) defined for real
¢, el < e |lv—-w|l <e¢ |la—al <e¢€ andt € R such that (1.1) has a 27 /v
-periodic solution y(t) with |y| < ¢, |v — w| < ¢, and ||a — ao| < € if and only if
y(t) = y(t, o c,v) (up to phase shift) and (a,c,v) solves the bifurcation equation:
G(a; c,v) = 0. Moreover, y satisfies (2.6), G is odd in c and

Glasc,v) = [A—iv]e+ Ma(a; v, M) + Ms(a; v, A)e® + My(c; v, X)c” + O(®), (2.10)
where ) = Ma), My(a; 5,3) = &(a 3) - Ny(es; ),
Ni(a; v) = 3Hs(9%, @) + 2Hy(@, Az 26") + 2H,(p, Asy), (2.11)
with o(s) = &(a)e™ for s <0 and Ayz, Ago the unique solutions of

Al 2v1)Ay, = H2(<p2),
A(a;O)Ag,o = 2H2((p,(/_)),



respectively.

Similarly, Ms(c;v,A) = E(ai A) - Ns(o; v), where

Ns(a;v) = 2Ha(p, Asp) + 2H2 (@, Ag2€®) + 2H,( Az 0™, Az ™)
+ 2Hy( Az 6™, A3 2e™) + 2H,(As0, Az €™
+ 3H;(p?, Az1e™) + 6Hs(ip, @, Az1€™)
+ 3Hs(p?, A3,363"") + 6Hs(@, Az €™, Ay p)
+ 6Hs(p, Az 26", Az 26”2 + 3Hs(p, (Az0)?)
+12H4(p, @, A22€™) + 12Hy(0?, 3, Asyp)
+ 4H(¢%, Aspe™™) + 10Hs(¢%, @),

with Asz, Aa1, Aaz2, Aso the unique solutions of

Aoy 3vi)Azs = Hi(p3) + 2H2(¢p,A2,2ez"i')

Asy = d— [E0(os Me))dl€ — 51EA"(e; N(e))EIMat

+ e — [60"(es Ma))elt + H1EA"(es M)l (E'(as Ma))dle

~ Sléa"(as Na))dlg + {(G1EA"(es M))E])

— slé8"(a; M@))el} Mag] (v ~ A(a)),
where d is any solution of A(c; A(a))d = N3 — (A'E) M, e is any solution of

AlasA(@))e = —A'(es Me))d + A'as M())E[EA (a5 Ma))d]
+{=5A%0s Ma))€ + 518" (s Me))EJA (e M) } M,

and

AP = (8'A)0X)(a; M(@));i = 1,2,...

Ale;2vi)As; = 2H;(p, Az1e™) + 2H,(, Az2e3) + 2Hy( Az €™, Azp)
+ 6Hs(p, B, A2 ™) + 3Ha(¢?, Asro) + 4Ha(¢°, ¢),



A(e;0)As0 = 2H,(ep, Az1e™) + 2Hy(@, Az1€”™) + Hy((Az20)?)
+ 2H2(A2,2€2ui', Az,ze_zui') + 3Ha(p?, fiz,ze_zm.')

+ 3H3((|527 AZ.Zezui.) + 6H3(‘P) @)AZ.O) + 6H4(()021 ()52)

Finally, My(a; v, ) = €(a; A) - No(a; v), where at @ = ag and v = w
No(a;v) = 2Hy(@,As2e™) + 2Ha(ip, Aso) + 2Ha(Az 067", A5 3e™%)
+ 2Hy(Aszp, As1€”) + 2Hy( Az 23| Ay 4e™)
+ 2H,( Az 7", Ay ™) + 2H,( Az €™, Agp)
+ 2H,(A 67, A3 3e®) + 2Hy(As 167", Ay 2€™)
+ 3H3(@?, As 3€®") + 6 Ha(@, @, As1€™)
+ 6H3(@, Az pe™®", As4e™) + 6 Ha(p, Az, Agze™™)
+ 6H3(p, Az ge™ 2", Ag2€™) + 6 Ha(@, Az 2™, Asp)
+ 6Ha(p, Ag 0, Aap) + 6Ha( Az 267", Ay, Az, 8)
+ 6 Hy(Aaae ", ¢, Asz, €) + 6 Hy(p, Azre™", Ay, &)
+ 3H3(@, (A3 )?) + 6 Ha( Az pe™%, Ay ™, A3 ™)
+ 3H3((Az0)%, Az ™) + 6Ha(As 7, 0, Az e”)
+ 3H;(As3e7, (Az2€™)?) + 6 Hy( Az 67", Ay, Ap2e™)
+ 6 Ha(Agze™ ", p, Az ™) + 3Hj(As eV, ©%)
+ 4Hy((9)?, Asae™) + 12H((3)%, ¢, Ag26™")
+ 12Hy(@, 0%, Aso) + 12H4((@)?, Az o, A3 3e>7)
+24Hy (3,0, Az ™", A3 3e®%) + 12H,((3)?, Az 2€®, A3 ™)
+ 24Hy(@, p, Az, Ag,le”i') + 12H4(fi2,262""', 0, A3,1e"i')
+ 12Hy(@, Az 2e™ 2", (A226™")?) + 12Hy(3, (Az0)?, Az 26)
+ 24 Hy( Az 26", 0, Ay, Az p€™) + 12Hy( A3 3%, 02, Ay ™)

+ 24H4(‘157 ;13.1 em..) @, AZ.Zezm..) + 4H4((107 (A2,0)3)



+ 12Hy( Az, ()%, Az0) + 4Hy(Agpe™™, (9)?)

+ 20Hs(@%, ¢, Asz) + 30Hs(@%, %, Ag1e™")

+ 10Hs(@°, (A226")?) + 60Hs (3%, 0, Az 0, Az 26*)

+ 60 Hs(®, Azpe™ ", 0%, Az 2e™") + 30Hs (3, 0°, (As0)?)
+ 20Hs( Az 2672, 0%, Ago) + 5H5( Az 3673, 0%)

+ 20Hs(@, Aspe™", ) + 60 Ho(3°, 02, Ay ™)

+ 60He(¢?, 0%, Az0) + 60Hs(3, 0%, Azpe™) + 35Ho (@, p%).
In addition, Ass, Asy, Asg, Aeo, and Agz are unique solutions of

Ale;4vi)Asy = 2Hy(p, Aa3e®™) + Hy((Az26®")?)
+ Hj(4?, Az,zezui') + Hy(p*),
A 1.,
Ay = f-[EA'flE— §[£A €1 Msé,

where f is any solution of A(a; M(a))f = Ns — (A'€)Ms,

A(;3vi)Asz = 2Ha(@, Agae™) + 2H, (i, Agpe™)
+ 2H,(Aszp, A33€™") + 2Hy( Ay 26™*, Az e™)
+ 6 H3(@, ¢, A3 3e®") + 3H;(?, Az e
+ 3H3(@, (Az2€™")?) + 6 Ha(p, Az, Ag 1)
+12Hy(3, 9%, A2 2€™") + 4Ha(9°, Aso) + 5Hs(3, %),
A(e;0)Aso = 2Ha(@,Aspe”™) + 2Hy(Az 72", Aype®™)
+ 2Hy( Az, Asp) + 2Hy(Az 3673, Az 337
+ 2H,( A3, As; e""') + 2Hy(Ayqe™ 2, Az ™)
+ 2H,(As 67", @) + 3Ha(@2, Agze™™)
+ 6H3(@, ¢, Aap) + 6Ha(@, Az e™2" | A3 3e™*)
+ 6H3(@, Az, Az1€”™) + 6 Hy(Ay 2672 0, Agqe¥™)
+ 6Ha(Az2e™ ™, Az, Az2€™") + 6 Ha(Az 3™, Ay 2e®*)
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+ 6Ha(, Asze™, Ay p®) + Hy((Ago))
+ 6Hs(As 1™, ¢, Az) + 3Ha(Asze™2"", ?)
+4Hy(°, As3e®) + 12Hy(3?, p, Az ™)
+ 12Hy(@%, Az o, A2 2™ ) + 24Hy(@, Ag0e™2%, 0, Ay 2e2%)
+12H,(3, 0, (A20)%) + 12Hy( Ay 5672 0%, Ay 0)
+ 4Hy(Azae™", %) + 12Hy(@, Azpe™", %)
+ 20Hs(@°, @, A22¢™*) + 30 Hs(3%, 0°, Aao)
+ 20Hs(@, Az 2672, %) + 20 Ho(3°, 0°),

A(a;2vi)Ags = 2H,(@, As 3e™) + 2H (o, As 1€”)
+ 2Hy(Ap2e™ ™, Agae™) + 2H,(As 0, Ag ™)
+ 2H,( Ay 2", Aso) + 21?12(213,15"", Az 3%
+ Hy((As1€")?) + 3Ha(@?, Agqe™)
+ 6H3(@, 0, Ag2e™",) + 3Ha(?, Ayp)
+ 6 H3(@, Az0, A33€™") + 6Ha( Az 0672 o, A3 3™)
+ 6H3(@, Az pe™”, Az1e) + 6 Ha( A0, 0, Az1e™)
+ 6Hj(, Az, eV, Ag,zezui') + 3H3((Az0)?, Ag,gez"i')
+ 3H3((A226™"), Az2e™ ™) + 12H,(3?, 9, A3 3e>)
+ 12Hy(@, 0%, Az1e™) + 6 Hy(@2, (Az262)?)
+ 24H,(P, ¢, Azo, A2 ™) + 12Hy( Ay 0672 02, Ay ,e%)
+ 6Hy(p?, (A20)?) + 4Hy(Az 67", 0%)
+ 20Hs(®, ¢°, Az0) + 30Hs(@%, 0, Az ™)
+ 5Hs(Az0e™ 2", o) + 15 He( 32, ).

Assuming A(@) = p(a) + iw(a), the real and imaginary parts of G(q;c,v) = 0

become

0 = pla)c+ Re{M;j(c;v, )} + Re{Ms(a;v,A)}c°
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+ Re{M7(c; v, \)}c" + O(c), (2.12)
v = w(a)+ Im{Mi(a;v,\)}® + Im{Ms(a; v, )}
+ Im{My(c; v,A)}c® + O(c?), (2.13)

for ¢ # 0.
The following theorem (proved by iteration on equation (2.13) and elimination of
variable v) relates the real bifurcation function g of Proposition 2.1 to the complex

bifurcation function G of the previous theorem.

Theorem 2.3 The reduced bifurcation equation for higher order bifurcations is given

by
0 = g(asc) = p(a)e + Ka(a)e® + Ks(a)e® + Ko(a)d + O(c?), (2.14)
where
Ky = Re{Ma(asu(a), \(e)},
Ko = Re{Ms(o;(@), A(@)} + Re{ o (Ma(a 1, A(@))umoter} - w8,
Kr = Re{Mr(o; (@), A(@)} + Re{ o (Ms(a 1, M(@))lmoter} - 03
+ Be{ 2 (03(5,M(@))) hosier} - s
+ LR Z e v, M@t} - (),
and

Wy = Im{M3(a,w(a),/\(a))},
wy = Im{Ms(c;w(a),A(a))}

+ Im{;—V(Mg,(a; v, AM(@)))lv=w(a)} - Im{M3(a; w(a), A(a))}.

The analysis of a particular equation then rests on identifying the critical param-
eter oy and the associated characteristic values and vectors, computing the terms
in the expansion of the bifurcation function G in Theorem 2.2, then the evalua-

tion of the expansion of g from the previous theorem. See [6] for a MACSYMA -
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based implemetation of these formulas for scalar functional differential equations.
A FORTRAN -based approach (numerical evaluation of K3 and Kj) for systems
is described in [2]. Only under very special circumstances can one hope to apply
such a lengthy algorithm by hand calculation. However, in some important situ-
ations, many of the higher order terms H; are identically zero causing significant

simplifications. One such situation is that of equations with odd nonlinearities.

Corollary 2.4 Under the above hypotheses, if H is odd there are ¢ > 0 and C7
functions G(a; ¢, v) (C -valued), y(t,e; c,v) (R™-valued and 2= -periodic in t) defined
forreal ¢, |c| < ¢, |v —w| <€, || —aol| <€, and t € R such that (1.1) has a 27 /v
-periodic solution y(t) with |y| < €, [v —w| < ¢, and ||a — ao|| < € if and only if
y(t) = y(t,@;¢c,v) (up to phase shift) and (a,c,v) solves the bifurcation equation:
G(a; c,v) = 0. Moreover, relation (2.6) holds, G is odd in c, and

G(a;¢,v) = [A—iv]e+ Ma(e; v, A)® + Ms(o; v, ) + Ma(ey; v, M)’ +0(c°), (2.15)
where X = A(@), Ma(a; v, A) = &(a; \) - Na(o;v),
Ny(a;v) = 3H3(¢", @), (2.16)
with ¢(s) = £(a)e™ for s < 0. Similarly, Ms(a;v,\) = €(a; ) - Ns(e; v), where
Ns(a;v) = 3Hs(¢? As1e7™) + 6Ha(p, @, Az ™)
+ 3H3(@%, Asae®™") + 10Hs(0%, &%),
with Ags, Agy the unique solutions of
A(a;3vi)Ass = Hi(e?)
sy = d— (60 (o5 M))dJE — 21" (o5 Na) €M
+ e - [0"(es Ma))elé + S1EA"(a5 A(@))€] [EA' (s Me))dé
1En" (s N@))ale + { (516A"(os Ma))e))
~ A" (s N(@))él | Mag] v = M),
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where d and e are any solutions of

Ala;M(a))d = N;— (A'§)Ms,
Al Ma))e = —A(a;A(@))d + A M@))E[EA" (e Ma))d]

+ {-—%A"(cx; Aa))é + %[éA"(Oﬁ Aa))é]A (e A(a))f} M,

and A* = (0°A)0X) (e Me));1 = 1,2,3. Likewsse, Mi(a;v,A) = £(a; X) - No(a; v),

where at @ = g and Vv = w

No(osv) = 3Hy(@, Asae™) + 3Hs(,p, Asze™)
+ 6Hy(Azae™", 0, Agg, €) + 6Ha(@, Aspe™, Aaz, €)
+ 3H(@, (As1e”)?) + 6Ha(Asre™", p, Az ™)
+ 3Hy(As 67, ¢%) + 20Hs(@°, ¢, Asz)
+ 30Hs(@%, ¢, Az e’) + 5Hg(Asze73", %)

+ 20Hs(@, Asre™, ¢%) + 35 He(@%, %),
and

A(a;3vi)Ass = 6H3(¢,<,0,A3,363”"')
+ 3Hj(%, Asae”™) + 5Hs(@,9%),
. 1., ,
As1 = f—[EA'flE - '2'[€A' €| Ms¢,

where f s any solution of A(a; A(a))f = Ns — (A'€)Ms.



14
Example 2.5

The case of integrodifferential equations

i =en(®)+aa | g(yl))dn(s)

where g(y) = y + hyy? + hay® + ... illustrates the type of results obtainable, and
their complexity. Examination of the previous results one sees that Ki(a;w) =
c1(e, w)hs + e, w)h?, with ¢; and ¢, computable functions of the bifurcation pa-
rameters a = (a1, @;) and frequency w. (See [12] for an examination of the generic
case in greater detail, and a derivation of conditions under which K3 = 0 for all
choices of h; and h3.) Similarly, one sees that K s will be a linear combination of the
coefficient combinations hs, hyhy, hsh}, h3, and h%, while K, will be a linear com-
bination of the eleven terms ks, hshs, hsh3, hshyhs, heh3, h2, h3h3, h3, hahi, hS
and hyhg. These reduce greatly in the case of odd nonlinearities since hy = hy =

h6=0.
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ITI. SCALAR DELAY-DIFFERENCE EQUATIONS In this final section we will

consider the scalar delay difference equation

2(t) = f(a(t),2(t-1)) (3.1)
= az(t)+ Bz(t — 1) + h(z(t), z(t — 1))

where h(z,y) = a2z? + byzy + cpy® + aaz® + baz?y + cazy® + day3 +. . . is assumed to
be smooth. Our goal is to illustrate the results of the previous section and provide
insight into the nongeneric bifurcation structure for this important equation.

The analysis of the linearized equation 2(t) = az(t) + B2z(t — 1) is found in
[7]. With A(e,8;)) = A — a — Be™ one easily identifies the line & + 8 = 0 to
characterize those parameter values at which A = 0 is a characteristic root. Similarly,
substituting A = iw into the characteristic equation and separating the real and
imaginary parts leads to the parametrization 8 = f(w) = —w/sin(w); a = &w) =
—B(w) cos(w) characterizing those parameter values along which there are (simple)
imaginary root pairs A = *ww; w > 0. The interval 0 < w < 27 generates the
remaining boundary of the region Q_ of parameter values at which all characteristic
roots have negative real parts. This region contains the negative half-axisa < 0,8 =
0, and is pictured in Figure 3.1. See Section 2 of [12] for generalizations.

Along the imaginary root curve the usual transversality criteria are easy to verify,
and at (&(w), B(w)) all characteristic roots other that A = +iw have negative real
parts. The representation of the higher order terms A(z(t),z(¢t — 1)) in terms of
symmetric, multilinear functionals is trivial, allowing one to apply Theorems 2.2 and
2.3 directly. The generic bifurcation constant K3 = K3(w) with a = &(w), 8 = B(w)

is seen to take the form

K3(w) = Capay(w)aj + Cazsy(w)azbs + ciypy(w)b3 (3.2)
+Cazer (W)azes + Cczcz(w)cg + Chyey(W)b2c,

+caa(w)a’3 + Cbg(w)b3 + cc;(w)c3 + Cda(w)dS
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where by direct (but symbolically assisted) computation

Cay(w) = 3sin(w)(sin(w) — wcos(w))/ Dy (w)
ch(w) = sin(w)(3 cos(w) sin(w) — 2w cos(w)? — w)/D1(w)
(W) = (—3wcos(w)sin(w) —2cos(w)® + cos(w)® + 1)/ D;(w)
cgy(w) = 3sin(w)(cos(w)sin(w) — w)/Dy(w)
Cazas(w) = 2(cos(w) + 1)[3(2 cos(w) + 3) sin(w)
—w(cos(w) + 2)(4 cos(w) + 1)]/ Da(w)
Cazha(w) = (cos(w) + 1)[3(2cos(w) + 3)(3 cos(w) + 1) sin(w)
—w(8 cos(w)? + 26 cos(w)? + 19 cos(w) + 7)]/ Dy(w)
Chaby(w) = (cos(w) + 1)*[(4cos(w)? + 10 cos(w) + 1) sin(w)
~w(8 cos(w)* + 4 cos(w) + 3)]/ Da(w)
the(w) = —(cos(w) +1)[(8 cos(w)* — 8 cos(w)?
—32 cos(w)? — 19 cos(w) — 9) sin(w)
—w(4 cos(w)® — 20 cos(w)? — 37 cos(w) — 7)]/ Da(w)
Caa(w) = —2(cos(w)+1)[(4cos(w)® — 4cos(w)® ~ 13 cos(w) — 2) sin(w)
~w(2 cos(w)? — 6 cos(w) — 11)]/ Dy(w)
Cazer(w) = 2(cos(w) +1)*[3(2 cos(w) + 3) sin(w) — w(8 cos(w) + 7)]/ Dy(w)

where

Dy(w) = sin(w)? — 2w cos(w) sin(w) + w?

Dy(w) = w(4cos(w)+ 5)(sin(w)? — 2w cos(w) sin(w) + w?).

Along the curve 0 < w < 27 the scalar equation ¢ = pc + K3(w)c® completely
characterizes the generic Hopf bifurcation structure of the equation (3.1). For ex-
ample, as the coeficients ¢qy(w) > 0 and c¢4,(w) < 0 for w in that interval, increases

in the corresponding coefficients a3 and d3 are seen to have destabilizing and sta-
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bilizing effects, respectively, on the equilibrium = = 0 at criticality, as well as on
nearby Hopf bifurcations.
The special case w = 7/2 is of particular importance. With @ = 0 and 8 = —7/2

one computes

Ki(r/2) = 2[2(cs+ 3az) — m(bs + 3d3)]/(x* + 4)
+4[4(9 — 7)aZ + (2 — 37)b; + 2(4 — 117)c)

+(18 — T7)(azb; + 2azcy + bacy)]/(5m(n® + 4))

This extends Example 4.1 of [13]. Again the effects of the coeficients a,, by, .. ., d3
on the stability of Hopf bifurcations can be easily deduced.

Where K3(w) = 0 (a cone in (ay, by, c;) space), one must compute (at least)
Ks(w) to fully understand the bifurcation structure for (3.1). This can be accom-
plished symbolically/numerically without serious difficulty. We illustrate this point

by considering the quadratic delay difference equation
£(t) = az(t) + Bz(t — 1) + a;z®(t) + baz(t)z(t — 1) + cpz?(t — 1). (3.3)

For such an equation, one might consider asking an analogue of Hilbert’s 16" Prob-
lem: How many simultaneous periodic orbits can this equation support? While this
question is clearly difficult, our results of Section 2 shed light on the number of small
periodic orbits that can be created via Hopf bifurcation at z = 0.

Using the quadratic nature of (3.3), we can normalize the coefficients of the
higher order terms as a; = cos(¢) , by = sin(¢)sin(f) and c, = sin(¢) cos(d), with
0<¢< 7% 0<8 <27 nowdefining our parameter space (w fixed). An examination
of the results of the previous section show the K5 and K; are homogeoneous poly-
nomials of degree 4 and 8, respectively, in the variables a,, bs, ¢, the coefficients
of these polynomials again being functions of w. As these polynomials and their
coefficients are quite complicated we will restrict our attention to specific selections

for w, and identify the curves K5 = 0, K7 = 0 by numerical evaluation.
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Figure 3.2 depicts the situation at w = 7/2. Each of the coefficients K3, K5, K
are observed to be positive for ¢ = 0 (corresponding to a; = 1,b, = ¢, = 0). A
careful examination of these curves reveals that there are no simultaneous nontrivial
solutions of K3 = Ky = K7 = 0; thus K3 = K5 = 0 implies K, # 0. Consequently,
at w = 7/2 the complete Hopf bifurcation structure for (3.1) can be described by
the normal equation ¢ = pc + K3zc® + Ksc® + Kqc” with pu, K3, K5 =~ 0; K # 0. We

conclude that the equation
2(t) = Bz(t — 1) + apz’(t) + baz(t)z(t — 1) + cpz?(t — 1). (3.4)

for B &~ —m/2 can support at most three small periodic solution families bifurcating
from z = 0.

A similar numerical analysis at other selected values of w suggests this behavior
to be generic for (3.3). However, by an examination of the crossing orders of the
curves K; = 0; 7 = 3,5,7 and observing their apparent continuity in w, we are lead
to conclude the existence of at least one value of w in the interval (27/3,37/4) at
which K3 = K5 = K; = 0 nontrivially. At such a value, a complete resolution of the
Hopf bifurcation structure for (3.3) would require (at least) the computation of K.
Such a computation, while theoretically within the scope of the alogorithm of [14],
would be a nontrivial task likely requiring careful partitioning of the calculations
and hundreds of hours of cpu time on a current SUN or VAX-like workstation.

See [6] where Corollary 2.4 is used to derive analogous computations for K3, K5

and K7 for (3.1) when A(z(t),z(t — 1)) is assumed to be odd.
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