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ISOSPECTRAL FLOWS: THEIR HAMILTONIAN STRUCTURES,
MIURA MAPS AND MASTER SYMMETRIES*

ALLAN P. FORDY}?

Abstract. We consider a variety of spectral problems, polynomially dependent upon the spectral
parameter. When the polynomial is of degree N, there are (generically) (N +1) locally defined, compatible
Hamiltonian structures which have a universal form, involving some operator J;. The operators Jj have
a particular form for each specific spectral problem.

Examples include spectral dependent versions of the Schrédinger operator and its super-extensions and
of generalised Zakharov—-Shabat problems. Associated equations include the KdV, DWW, Ito, SIT and
the Heisenberg FM equations.

A simple shift in the spectral parameter induces a transformation of the variables, corresponding to
a particularly simple master symmetry. This gives a simple proof of compatibility of the Hamiltonian
structures.

A remarkable sequence of Miura maps can be presented for many of these equations. The modified
equations are also (multi-) Hamiltonian.

1. Introduction. Perhaps the most important property of a ‘soliton’ equation is that
of being an isospectral flow. It is this association with a linear spectral problem which
enables such equations to be solved by the inverse spectral transform (IST) and related
methods. However, for the purposes of this article the associated linear spectral problem
will play another important role: that of the basis for a number of systematic algebraic
constructions associated with the isospectral hierarchy.

In this article we discuss three particular aspects of integrable nonlinear evolution

equations:

(a) Hamiltonian Property
A very simple construction is presented with which (corresponding to a given spec-

tral problem) it is possible to simultaneously derive:

(i) the isospectral flows and corresponding time evolutions of the eigenfunc-

tions,
(i1) an infinite hierarchy of constants of motion,

(ii1) the locally defined Hamiltonian structures associated with the spectral

problem.

(b) Miura Maps
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The emphasis here will be on Hamiltonian Miura maps, which (often) provide
co-ordinates in which a complicated Hamiltonian structure takes a particularly
simple form, analogous to the canonical form in classical mechanics. For the main
examples presented in this paper it is possible to use a generalised factorisation
approach to construct a particularly interesting sequence of Hamiltonian Miura
maps.
(c) Master Symmetries

In all the examples of spectral problem considered in this paper, a simple shift of
spectral parameter induces an invertible transformation of co-ordinates, which can
be used to define a particularly simple master symmetry. The main application of
this is to give a simple proof of compatibility of the Hamiltonian structures of (a).

The general framework of this paper has very wide applicability. The construction (a)
can be used with most (generic) classes of spectral problem. Whilst the ideas of (b) and
(c) are general, the specific constructions have limited applicability.

The simplest and most often studied spectral problems are linearly dependent upon the
spectral parameter. The isospectral hierarchies of such spectral problems (in this paper)
will be bi-Hamiltonian. However, in this paper we present spectral problems which are
polynomial of degree N in the spectral parameter and the isospectral hierarchies of these
possess (N + 1) compatible, locally defined, Hamiltonian structures. The main example
presented here is the energy-dependent Schrédinger operator which contains a remarkably
rich set of examples of mult-Hamiltonian systems: KdV, Harry Dym, Dispersive Water
Wayves, Shallow Water Waves and Ito’s equations are the simplest and best known. It is a
simple matter to give super-extensions of all these equations.

Another important extension is the polynomial generalisation of the Zakharov-Shabat
spectral problem. In the 2 x 2 matrix case, this includes the NLS, DNLS, Heisenberg
ferromagnet and SIT equations.

In all of these examples the Hamiltonian operators take ezactly the same algebraic form
(3.5b) in terms of some operators J;. However, for each spectral problem the operators J;
take a different form. Similar remarks can be made regarding the Miura maps and master
symmetries of these systems.

Before presenting the results we first give a brief introduction to the Hamiltonian
theory of nonlinear evolution equations, referring to [1,2] for details.

2. Hamiltonian Property. In this paper we are concerned with systems of NLEEs
(in (1 4 1)-dimensions) which can be written in Hamiltonian form:

(21) u; = BéH y

where B is a (matrix differential) Hamiltonian operator. éJ{ is the variational derivative

)
of function H and generally a vector : § = 6, = (b, - - - Jon_1) T, 6 = S In the context

.



of analysis and physics one would then deal with constants of motion and Poisson brackets
in their integral form, respectively:

(2.2) H= /f}fdm , {K,H} = /&KB&}Cdm ,

which would involve particular boundary conditions on the functions u;(z). To avoid any
such considerations it is customary to work within the framework of differential algebras.

Roughly speaking, when calculating conserved densities and Poisson brackets we work
modulo ezact x-derivatives. The justification for this is that such exact derivatives con-
tribute only boundary terms in the above definitions of H and {K,H}. Thus, with ap-
propriate boundary conditions, these terms vanish. Furthermore, the total z-derivatives
constitute the kernel of the variational derivative operator. Thus, we may consider two
functions of u; and their z-derivatives to be equivalent if they differ by a total z-derivative.
The corresponding equivalence class (and, by an abuse of notation, any convenient repre-
sentative) is written JH, as it was in (2.1) and (2.2).

Conservation Laws
Let K|u;] be a function on phase space. Then:
dK dF

(2.3a) T K'u; = (6K)Tu, + T2

where K' denotes the Fréchet derivative (operator) defined by K'[u]v = cl_deK [u+ev] _,.
The second step corresponds to an integration by parts. Adding an exact derivative J,
to I{ does not change 6K but does change F' to F = F + J,. Thus we may choose any
convenient representative of the equivalence class X of K. Using (2.1) we find:

& ~
(2.3b) w, =X p K 5

du; i 6_u]
Defining the quadratic form {X,H} by:

(2.4) x,00 = X g, A

5u,~ Y 5u]~ ’

it follows from (2.3) that whenever {K,H} = 0 (mod Imad), we have the local conservation

law:
(23C) g(:t = 3‘-1

where JF 1s the flux corresponding to X.



Poisson Brackets and Hamiltonian Operators.

The quadratic form (2.4) defines a Poisson bracket if and only if it is skew-symmetric
and satisfies the Jacobi identity : i.e. if for any 3 functions H, g, X:

(2.5a) i) {3 +{3,H} € Imd,

(2.5b) i) {{%38L,%} + {({K3H},3) + {{3, X}, e Im O

When (2.4) satisfies conditions (2.5a,b) then B is called a Hamiltonian operator (or Hamil-
tonian structure). Property (2.5a) is guaranteed by choosing operator B to be skew adjoint,

while the Jacobi identity (2.5b) is a much stronger (and much more complicated) constraint
(see [1, 2] for details). Thus, most skew symmetric operators are not Hamiltonian.

REMARK. For two Hamiltonians to Poisson commute wrt (2.4) means that the rhs of
(2.4) is an exact derivative. In the analytic context the rhs is a boundary term which can

only be ‘thrown away’ with an appropriate choice of boundary condition.

A system of evolution equations is said to be bi-Hamiltonian if there exist two Hamil-
tonian operators By and By and two Hamiltonians § and H such that

(2.6) u, = By6G = B, 6K .

It is particularly interesting if the operator By 4+ B; is also Hamiltonian, in which case
By and B; are said to be compatible (in general the sum of the Poisson brackets would
fail to satisfy the Jacobi identity). The importance of compatibility is that it enables
us (under certain conditions) to construct an infinite hierarchy of (Poisson commuting)
Hamiltonians. This important condition was first noticed by Magri [3]. It is now possible
to state a useful lemma (see [1] for a proof).

LEMMA. IfB, and B, are compatible Hamiltonian operators, with By non-degenerate,
and

(27&) B169 = B059'C , B159'C = BoK 5
then there exists a function X s.t. K = 6X.

To prove the existence of an infinite hierarchy of Hamiltonians, H,, related to com-
patible Hamiltonian operators By, By, we need to check that two conditions hold:

(i) 3 an infinite sequence of vector functions Ko, Kj,... satisfying
(2.7b) B,K, =ByK, 41,
(ii) 3 two function(al)s Hp and H; s.t.
Ko = 6Ho, Ki=06H; .
It then follows from the Lemma that there exist function(al)s 3, s.t.

(2.7¢) K,=6H, Vn>0.



REMARKS.

(a) Condition (i) is not always easy to check, although it is for our systems. Indeed,
it may not even be satisfied, as shown by an example of Kupershmidt [4].

(b) Given the existence of the infinite sequence 3, the bi-Hamiltonian property gives
a very simple proof of involutivity wrt both Hamiltonian structures.

For this construction, it is of no advantage for a system to be more than bi-Hamiltonian.
However, the existence of multi-Hamiltonian structures does lead to a rich supply of (multi-

) Hamiltonian modifications.
Recursion Operator.

Suppose we use (2.7b) to define an evolution parameter ¢, by:

(28) Uy = BOKn = G'n .

n

We define an integro-differential operator R by formally inverting By:
(2.9) R = B;B;'.

Then
Ru,, = (B1B; ")BoK, = B;K, = BiK,.41 = u,

n41°

Thus R maps flows onto flows. R is called the recursion operator since it can be used to
generate the infinite sequence of flows (2.8) once we have the first. It is known [1] that R'
satisfies the Lax type equation

(2.10a) R{ =[(-G,)",RT],

where G/, is the Fréchet derivative of the rhs of (2.8). This is the integrability condition

of the spectral problem (squared eigenfunctions):
(2.10b) R'® = )\®
and the linear evolution :

(2.10c) ®, =(-G)'o,

which is just the adjoint of the linearisation of equation (2.8). Thus the bi-Hamiltonian
system (2.8) has the Lax representation (2.10). The next section is concerned with the
reverse problem : given a Lax representation, what are the Hamiltonian structures (and

how many of them are locally defined).



3. Hamiltonian Operators from Lax Equations. This section is concerned with
aspect (a) of the introduction. Since the basic construction is the same for all our spectral
problems I only present the details in the context of the energy-dependent Schrédinger
operator [5-7].

Consider the second order scalar spectral problem:
N .
(3.1a) Ly = (0 +u)p =D N(:0® +u)p =0,
0

with €; being constant and wu; functions of z.

We look for time evolutions of the wave function % of the form:

(3.1b) bo=Py=(5PO+ Q)

where P and () are functions of u; and their z-derivatives, and of the spectral parameter

A. A simple calculation leads to
1 1 R
(3.2a) L —[P,L] =us + eQrr — EP'U,:C + §e(P” +4Q;)0 + eP, 0 .

Evidently, we cannot expect the usual Lax equation to hold. However, the integrability
conditions of (3.1a, b) imply that (L, —[P,L])1) = 0 for eigenfunctions of (3.1a). To match
the coefficient of 9% we must take:

(3.2b) L,—[P,L] = P,L .

This further implies that P, +4Q; = 0, so that (3.2b) takes the remarkably simple form:
1., 1
(3.2¢) U = Ze@ + §(u0+ Ou) | P=JP.

REMARK. On the phase space defined by just one function u, the operator J, defined
by (3.2c) is Hamiltonian, being (when € = 1) just the second Hamiltonian structure of the
KdV equation. The operator J is the basic unit out of which all our Hamiltonian operators

are built.

With e and u defined by (3.1a), the operator J takes the form:

N N
. . [ 1 1
(3.3a) J = E N, = g AF <Z€k33 + §(uk0+8uk)) .

k=0 k=0

6



Equation (3.2¢) then takes the form

N N
(3.3b) > My = (Z ,\ka> P.

In [7] we continued the general development to include both KdV and Harry Dym type
equations. Here we just consider the KdV reduction. This simplifies some of the formulae

and statements:
KdV Case. uy = -1, ¢4 =0, so that J, = —0.

To construct the ‘polynomial’ time evolutions we first seek a solution of:

(3.4a) JP=0,P=) PAF,

k=0

written explicitly as :
(3.4b) JoPr-n+ 1Pr-Nnt1+ -+ INPr =0, VE>0.

A polynomial expansion P(,,) is then defined by:
(3.4c) Py = (A"P)y = Y Pr_i A
k=0

Upon substitution of P(,,) into (3.3c) (with ¢, parametrising the corresponding evolution)
the coefficients of A¥, k > N, are identically zero, whilst the remaining ones give the

equations of motion for ug, ..., uyn_,:
U - Jo P Nt
- ( 0 - - ( - \
(3.4d) ) = '
KUN_I JOI . - - . . . . JN_l Pm

It is a remarkable fact that the scalar recursion relation (3.4b) can be written as an
N x N matrix equation in exactly (N + 1) different ways:

(3.5a) B, P* V=B, ,P® n=1... N,

7



where P(F) = (Pr—N+1,--- ,Pk)T and the matrix differential operators B, are determined
by the following requirement: B, is skew adjoint and the n*t row of each matrix equation
(3.5a) is just (3.4b), the remaining ones being identities. Explicitly, By, are:

( T \

0

(3'5b) Bn: JO----'--']N—I

- n—l—l---'—JN

. e 0 )

and satisfy the formal relation B, = RB,_; where :

0weeeen. 0 —JoJﬁl\
1
-5
0
(3.5¢) R =B;B;' =
0 .
\ Y ey

In [7] we prove 3 basic facts:

(1) The operators B,, are each Hamiltonian and, furthermore, are mutually compatible.

(2) The recursion relation (3.4b) can be solved for all k, subject to the condition e = 0

(3) The vectors P®) given by (3.5a) are variational derivatives of a sequence of func-
tion(al)s Hy (the Hamiltonians).

Then it follows from (3.5a) that the equations of motion (3.4d) can be written in Hamil-

tonian form in (N + 1) distinct ways:
(36) U, = BN(Sg'Cm == B05%m+N .
We refer to [7] for the details. Here, we present one example.

8



Example. Dispersive water waves

We illustrate the above construction by the simplest nontrivial example, N = 2. The
resulting hierarchy is tri-Hamiltonian. Performing the invertible change of variables:

1 1
(3.7a) q=up+ Zu% — §u1x , T =1uy,

changes the second order flow of (3.1a) into the standard DWW form [8] :

1 1
(3.7b) qtl = 5(“‘]1 + 2q7‘)x , 'I'tl = §(r$ _|_ 2q + ,,,.2)I .

The 3 Hamiltonian operators then take the form:

0 9 1 g0+ 0q —-0*+1r0
B, = , Bi=3 ,
d 0 0% + or 20
(r—0)(g0+ 0q) + (g0 + 9¢)(r +9) (r — 9)20+ 2(q0 + 9q)
(3.8) By = 1
A(r 4 0)* 4 2(¢0 + 9q) 2(rd +or)

Numerous other examples can be found in [5]. In particular, with N = 2 and setting

€E= A, ug = ir2 , U1 = ¢, gives a tri-Hamiltonian hierarchy which contains Ito’s equation:

qt = Qzze + GQQI + 2rr,

(39) re =2(qr)y .

REMARK. When € = 0 the spectral problem (3.1a) is no longer valid. However, the
Hamiltonian structures and multi-Hamiltonian hierarchies do survive this reduction, lead-
ing to ‘dispersionless’ versions of our equations. In particular the dispersive water wave
equations reduce to the shallow water-wave equations of Riemann.

Other Spectral Problems

Applying the above construction to other polynomial spectral problems results in anal-
ogous results. We have the same locally defined, compatible Hamiltonian operators (3.5b)
so that the isospectral flows are multi-Hamiltonian of the form (3.6). The only difference is
that the operators Jy take a different form. Whenever the details can be found elsewhere,
I shall just present the spectral problem, together with the corresponding operators Jy.

Super-Schrodinger
We generalise (3.1a) by writing:

(3.10a) (0> +u)p+np =0, €dp+np=0,

9



with
N-1 N N
€ = Zei/\i’ uzzui)\i, 77=Z77i/\i >
0 0 0

where €; are even constants, u; and 7n; are respectively even and odd function of z. In this
case J; are 2 x 2 matrices:

Eka?’ + 2urd 4 20u 277k8+877k
(3.10]3) Jp =
20Nk + N0 €x 0% + uy

This is just a copy of the second Hamiltonian structure of Kupershmidt’s sKdV equation
[9]. The isospectral flows of (3.10a) are just super-extensions of those of (3.1a). The
simplest example is Kupershmidt’s sKdV equation.

(3.10¢) uy = (ugg + 3u? + 120m.)z 5 Mt = 4Ngas + Sugn + Gun, .

In [10] we also present sHD, sDWW and slto equations.

Non-standard Lax Operators In [8] Kupershmidt introduced some special integro-
differential Lax operators, which he termed “non-standard”. These can be written as purely
differential operators, but with A-dependent coefficients. The construction of this section
can be used to give a much simpler derivation of Kupershmidt’s Hamiltonian operators.
The simplest example of this type of Lax operator is second order:

(3.11a) L=ed?+rd+q.
The choice r = r9 — A\, ¢ = qo,€ = 1 corresponds to Kupershmidt’s non-standard Lax

representation of the DWW equations. More generally we may set [2]:

N-1

N-1 N-1
(3.11b) r= Z ridt — AN, q= Z GA', €= Z ei)’,
0 0 0

in which case we obtain the (N + 1) Hamiltonian operators (3.5b) with:

1 ch? + an —ek02 + 70
(3.116) Jp = =

EkaZ + Ory, 2¢;0

REMARK. Since (3.11a) can be gauge transformed onto (3.1a) with 2N components,
we should really have (2N + 1) Hamiltonian structures. The remaining structures can
be obtained through the action of the recursion operator. When N = 1, this gauge
transformation gives rise to the change of variables (3.7a).

Generalised Zakharov—Shabat Spectral Problem

10



Here we consider the spectral problem:

N-1 N
(3.12a) e, = U, €= Z e U= ZU,‘/\i ,
0 0

where ¢; are scalar constants and the potential functions U; are elements of some matrix
Lie algebra g. If the wave functions evolve according to:

(3.12b) Vi = Py Plmy = O Vm—id',
0

then U and P,y satisfy the integrability conditions:

N
(3.12(:) Utm = GP(m)I - [U, P(m)] = JP(m) = (Z Jk)\k> P(m),
k=0

where Ji is the (dimg) x (dimg) matrix:
(3.12d) Ji = exd — adUy .

As in the Schrédinger operator case we have a certain amount of gauge freedom. The
following two choices are particularly convenient and are analogous, respectively, to the
KdV and Harry Dym choices discussed at the beginning of this section:

(i) U, = A, a constant, diagonal matrix ,
(i) Up=0.

Choice (i) includes the NLS, DNLS and (sharp line limit) SIT equations, whilst (ii) includes
the Heisenberg ferromagnet equations. We (mainly) consider choice (i) below.

When g = sl(2), let U; and V; be defined by:

wi g |5
(3-13&) U’L = , ‘/l — ,
i —wi Vi =V
which define vectors:
(313b) u; = (Qiari) wi)T, vV, = (‘/ihv ‘/;+)2‘/iO)T )

so that (3.12c¢) take the form (3.6) with:

0 eka — 2wk qk 0 -2 0
(3.13¢) Jr = | €0+ 2wy 0 -rrx |, Jn=]2 0 0
—qk Tk %eka O O 0

11



and
(3.13d) P = (v N1y V)T = 6Hom
REMARKS.
(a) It is assumed here that the matrices U; are ‘generic’. For instance, setting wy_; =0
constitutes a reduction which is Hamiltonian wrt B,,...,Bx_1, but not wrt By.
(b) This Hamiltonian structure is just the Lie-Poisson bracket modified by the cocycle
€0.
Example. N =1, e=1
This hierarchy is a bi-Hamiltonian generalisation of the usual ZS/AKNS hierarchy and

is discussed in [11].

Example. N =2, e= A\

This is a tri-Hamiltonian hierarchy which includes the (sharp line limit) SIT and NLS
equations as reductions, respectively bi- and mono-Hamiltonian. The SIT system corre-
sponds to the reduction w; = 0. As remarked earlier, w; is a Casimir of By and By, but

not of By. On the resulting 5 dimensional phase space, the two surviving Hamiltonian
structures take the form [12]:

0 -9 —-q¢ 0 2\ /0 —2wy ¢ O 0\
6 0 1 -2 0 2’“)0 0 —To 0 0

(314) Bo = q1 —Try —10 0 0 ; B]

—qo To 0 0 0

o 2 0 0 O o o0 0 o0 2

\2 0 0o o0 o/ \o o0 0 -2 0/

REMARK. Since By is degenerate in the unreduced case, we cannot invert it to form
the recursion operator (3.5c). However, the By of (3.14) is invertible so that a recursion

operator does exist in this case.

Example. Case (ii), N =1, e =1

The best known system which fits into this case is that of the Heisenberg ferromagnet
[11]. With Uy = 0, the Hamiltonian structures take the following form:

B0:J0:3, Bl :_']1 :CldUl.
The symplectic leaves of B are the level surfaces of det Uj.

12



REMARK. By setting € = 0, equations (3.12c) reduce to ODEs, which include (as
reductions) the stationary flows of integrable PDEs, such as the quartic potentials of [13].

4. Miura Maps. Miura presented his famous transformation over 20 years ago [14].
He showed that if:

(4.1a) U= —v, — v’

and v satisfies the MKdV equation (4.1b) then u satisfies the KdV equation (4.1c). The
property of most interest for this paper is that (4.1a) can be used to construct the second
Hamiltonian structure of the KXdV equation out of the single Hamiltonian structure of the
MKdV equation (see [15, 16]). The MKdV equation can be written in Hamiltonian form

53¢
bv ’
If we denote (4.1a) by u = M[v], the Fréchet derivative M' of M is given by (-39 — 2v).

Given any functional H[u] we define H[v] by H[v] = Ho Mv] ( mod Imd). It is then an
easy matter to show that, as a consequence of (4.1b).

- 1
(4.1b) Vf = Vgzg — 6020, = (—0) H= -2—(1;5 + ).

(4.1c) ug = M'(=0) (M"Y 6,3 = (0® + 4ud + 2u)6,H = Uyzy + Buuy

when H = Ju?. For an arbitrary differential mapping u = M [v] this process would take us
out of the differential algebra setting, since the differential operator M'(—9)(M')t, which
has coeflicients given in terms of v and its derivatives, would not normally be locally defined
in terms of just u and its derivatives.

REMARKS.

(a) This remarkable property enables us to deduce that (4.1a) is a map between hier-
archies rather than just between the KdV and MKdV equations.

(b) The Hamiltonian nature of the third order differential operator (4.1c) follows from

that of (—0) through the formula M'(—9)(M")!.

In a more general algebraic setting, let u = (ug,...,un_1)7 and v = (vg,...,vn_1)7
be the (respectively) unmodified and modified variables. Then

~

DEFINITION. The mapping u = M|[v], is a Miura map for Hamiltonian operator B
(acting in the v space) if:

(i) M is not invertible

(i) B = M'B(M')! is locally defined in terms of u and its derivatives.
u=M{[v]

This definition is adopted from [16].

13



REMARK. The Hamiltonian nature of the operator B follows from that of B provided
Miura map u = M|[v] is nondegenerate (injective) (see [16] for a more detailed discussion

of this).

Factorisation of Differential Operators

The relationship of Miura maps to the factorisation of differential operators is discussed
in [15-18]. The map (4.1a) can be obtained from the Schrédinger operator by the following

1dentification:
(4.3a) L=08>+u=(0+2)0—-v).

The spectral problem Ly = Ay for the KdV equation can be used to define that for the
MKdAV equation :

(4.3b) (O —v)1 =X, (9+ )2 =11

This notion is easily extended to higher order Lax operators [15, 16, 18].

We now generalise the factorisation approach described above to the case of the energy
dependent Schrodinger operator (3.1). It is not enough to just choose v to be a polynomial
in A in order to obtain u as a polynomial. We replace the factorisation (4.3a) by a quadratic
form. We present N modifications corresponding to a sequence of N such quadratic forms.

We denote the modified variables by v = (vy,...,vn)7.
Define.
(4.4) Ik =ar0+vr, agconstants, k=0,...,N, I =(lo,...,In).

Let A be any constant, A-dependent, (N 4 1) X (N + 1) matrix, and use this to define
a A-dependent second order differential operator by the quadratic from I A (—It), the \-
dependence being derived purely from that of A. Equating this to our operator L of (3.1)
gives rise to a map between functions v; and u;. Different choices of A give rise to different
maps. Once again we restrict ourselves to the KdV case, referring to [7] for the general

discussion. In this case ay =0 and vy = —1.

The following quantities occur frequently below:

Define.

(45) an = —QgVUpng — QpVky — 2050y, 5

14



and

( I L
0 0
(4.6) Ap= [ A1 ,r=0,...,N.
AT
0 .
0
\ Ar.f......A'N)
Making use of the formula lle + lnl,t = -0, 0% — Vi, one can easily see that the

identification:
(4.7) L=1IA,(-I"
gives rise to the equations:

k
(4.8&) fk:Zak—iai , k‘=0,...,'l‘—1

i=0

N—k-1
(4.8b) €L = Z K4y ON—; ) kZT,...,N—l

i=1

1

(49&) uk:§ ;Vi,k—i ; k=0,...,7’—1
1 N—-k-1

(49b) uk=2vk+§ ; Vk+i,N—i y k=7‘,...,N—1 .

REMARK. The formulae (4.8) are not a priori consistent. For instance, for r > 1, there
is no choice of a which would give ¢ = 0, ¢ = 1. Thus, Ito’s equation is ruled out of
consideration here. Such inconsistencies are, however, exceptional.

When these formulae are consistent, equations (4.9) define a differential mapping from
v; to u;, sometimes invertible, sometimes not. In fact, (4.9b) always defines an invertible
map between v,,...,vn_1 and u,,...,uny_y. The invertibility of M thus rests upon the
map (4.9a) between vy, ...,v,_1 and uo,...,u,—1, which is invertible if and only if €, = 0.

Subject only to the consistency of (4.8a,b) we have the following important proposition.

15



PROPOSITION 1. Under the change of variables u = M;[v] defined by (4.9a, b), the
Hamiltonian operator B,., given by (3.5b), is the image:

(4.10a) B, = M,B,(M,)!
u=M,[v(")]

of the constant, first order Hamiltonian operator ]§r :

(. \

(4.10b) B, == d

\ )
where the diagonal blocks are respectively r x r and (N —7)x (N —r).

Here we have used v(") to denote the modified variables co

rresponding to the map
u =M, [v("],

Proof. The Fréchet derivative of the mapping M, is given by

(mo 0 \

Mpr—1 =« « « « My

(4.11a) M, = MN + &+ o Meyp |,
0 0 .
\ o/
where
(4.11b) mg = —ap0 — 2vy, k=0,...,N,
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(giving mn = 2 when an =0, vn = —1). To obtain (4.10a) we use:
(4.11¢) mkamL + mnam;'c = —2(ara, 8 + Vi, 0 + Vi) -

The formulae (4.9a, b) then give the result.

REMARK. Using (4.11c) one can easily check that the factorisation (4.7) has its coun-
terpart on the level of the third order operator J : J = m(—i@) A mt, where m =
(mo,...,mn). The factorisation of J is, in fact, the only one that survives the super
extension given in [10] and below.

We now concentrate on the case ¢y # 0, so that the map (4.9a, b) is a genuine Miura
map (for r > 0). For clarity, we choose the most interesting case [7] of ¢y = 1, ¢; = 0 for
1> 1.

Miura Maps

Let g =1, a; =0fors>1,sothat g =1, ¢ =0fori> 1. The map u = My[v],
corresponding to Ag, is invertible, whilst those corresponding to all other A,.(r > 0) are
genuine Miura maps. In fact (4.9b) defines an invertible map whilst (4.9a) is the genuine
Miura part. Thus the upper block of A, is the important part when discussing genuine
Miura maps. We therefore consider the map My corresponding to An. In this case the
Miura map u = Mn[v] is given purely by (4.9a). The Fréchet derivative (4.11a) is then:

mo 0

(4.12a) MY . : ,

MN—-1 « =« « « My

with mg = -0 —2vy, m; = —2v;, > 1, and the constant coefficient operator:
( N
0
~ 1
(4.12b) BNy = 1
0

\ -8 ' J

is mapped onto By of (3.5b). It is easy to see that the pre-image of B,, for r < N, is
non-local.

17



The Miura map u = Mn[v(™)] can be decomposed into N primitive ones. Define a
sequence of maps u(®) = M1 u+1] by:

k

1 2 .
(4.132) ) =2 Ul uP =Y g ik,
1=0

where uﬁf) is given by (4.5) but with v; replaced by ugk). We can write u = u(® =
My [u®] = My[v™] as the composition of these maps

u(® = MN[u(N)] = M} o M% o...oMI{‘]’[u(N)] )
The Fréchet derivative MYy is thus the product of N Fréchet derivatives: My = (M})’ x
oo x (MY)', where :

0 0
1
(4.13b) (MX) = | mp_y . . . mg ,
1
0
\ 1/
with mg_1,...,mg on the k! row. It is a very simple calculation to see that the product

of these matrices is just (4.12a).
REMARK. Each of these maps is non-invertible and injective.

Starting with BN = By of (4.12a) define BX; inductively by :

(4.13¢) Bi ' = (ME)BY (M) , k=N,...,1.
ulk =D=Mk [u(k)]
BY; is just our original By of (3.5b).

Direct calculation shows that, as indicated by the notation, each B, is locally defined
in terms of the variables u(®. Thus, each of the maps MI':I is a genuine, Hamiltonian Miura
map.

Let M(") = M}k o M%; 0 --- 0 MY, Explicitly, this has the form

k
1 r
(4.14a) ufj’):§§ w ., . k=0,...,r—1,
1=0

(4.14b) ugco) =u£r) , k=r,....N—1.
M) and M, differ by an invertible map [7]. Thus we have:
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PROPOSITION 2. There exists local Hamiltonian operators B} such that (]\I(r))'B;
(MM =B =By for k =r,..., N. These constitute (N —r+1) compatible Hamilto-
nian structures for the r** modification. The sequence of modified Hamiltonians is defined
by H7, = H,, o M and the r** modified hierarchy is written as:

(4.15) ul’) =BR_ 6% . k=0,...N-r, n=01...

REMARK. The operator B takes the form:

(4.16) Br 1

—Jr41 . . . _JN

\ ~Jn
and is related to (4.10b) through an invertible transformation.

We can represent these modifications and their Hamiltonian structures schematically

as follows:
MY M2 M} M My
u=u®— " @ " e ulm - ™ = (V)
_ 1 N
By=By—By ...........¢ By — — By

Bg = Bg
FIGURE 1
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Modified Spectral Problem

Generalising the derivation of (4.3b) we can use the factorisation (4.7) to obtain the
spectral problem corresponding to each of our modifications (4.14). The modification leads
to :

(4.17a) (@ +ul) (0 = u§ )y + D o AN Y = ANy

Defining 9 by :

(417b) (3 — Itgl))¢1 = A'(/)Q ,
we find :
(417¢) (04 up by = (—u? = = AN TR, ANy

Equations (4.17b, c¢) constitute a 2 X 2 matrix spectral problem for the first modification.
The spectral problems for the remaining modifications are obtained from this one in suc-
cession by a series of substitutions and gauge transformations. This is illustrated by the

example given below.
Example. Dispersive water waves

We illustrate the above construction by our previous example of the DWW equations.
The first Miura map, written in the g, r coordinates is:

1 1
(4.18) ¢ = —Woz — JWis — wp + Zw% , r=w,

and is easily seen to be equivalent to the I{upershmidt’s first modification of DWW hier-
archy [8]. The second Miura map :

(419) Wy =V , Wy = —V1g — 2’00’01 y

however, is not equivalent to either of Kupershmidt’s second modifications. The first

nontrivial flow is:

1 1
2
Vot, = (Zvlrz + —v1voz — VHV1)z

(4.20) 2

2 1
Vit, = (’UQ — VoUy — —2'1)1’01,:)1 .

The spectral problem for the first modification is given by (4.17), which, in this case, takes
the form :

¥y Wo A ¥
(4.21a) =

2 T A—w;  —wo o
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Writing (4.21a) in the variables (vg,v1) (using (4.19)) and gauge transforming with T' =

1 0 :
( " 1) we obtain the spectral problem for the second modification :
=1

b1 vo + Avy A b1

(4.21b) —
$2/ , A1 —v}) —vp — Avy b2

Super-Extension

An analogous sequence of Miura maps exists for the super-extension (3.10a). To obtain
N

these we factorise our basic operator J = Z JeAk as

mgt
(4.22a) J = (mo,...,mn)(=D)A | :
my
0 0
where A is a symmetric (A-dependent) (N + 1) x (N + 1) matrix, D = and:
0 1
—ap0 — 2v,  —0L0+ 0, a0 — vy —6;
(4.22b)  my = , myl =
—9k —aka — Vg —39k - 91” Ozka — Vg

are copies of the Fréchet derivative of the elementary Miura map:
(4.22¢) u=—av, —v:—00,, n=—afb, —vb

given by Kupershmidth [9] for his sKdV equation.

The remaining formulae are the same as in the even case, but with my given by (4.22b)
and many of the 0’s replaced by D’s. The diagram of Figure 1 is not changed. The details
can be found in [10].

REMARK. In order to factorise the linear ‘operator’ of (3.10a) we must introduce odd
space-time variables and thus enter the realm of sypersymmetry.

Other Spectral Problems

The above factorisation approach can be applied to other differential operators such
as (3.11a) [2] and higher order Lax operators [15, 18, 19]. However, other methods [20]
have to be used for Zakharov-Shabat like spectral problems and it is still an open question
whether or not a sequence of Hamiltonian Miura maps can be obtained for (3.12a).
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5. Master Symmetries. The isospectral flows of any of our spectral problems mu-
tually commute and thus give rise to an Abelian algebra of (Hamiltonian) vector fields:

(51) Uy = Xm .

m

This algebra can be embedded in a larger graded Lie algebra satisfying relations of the
type:

(5.2a) [Xm,Xn] =0,
(5.2b) [Vin, Xa] = (n+ 1) Xt ,
(5.2¢) Vi, Vo] =(n —m)Vugm ,

the precise coefficients depending upon labelling and normalisations. Analogous relations
hold when differentiating the corresponding Hamiltonians in the direction of the vector
fields V,,. Since X, and X,, commute, the entire sequence of vector fields X,, are con-
sidered as symmetries for the flow (5.1). The new elements V,, are often called master
symmetries since relation (5.2b) shows that they enable us to generate a sequence of sym-
metries from a given one. This is achieved through commutation relations in contrast to
the action of the recursion operator. On the other hand, the recursion operator can be
used to define both sequences of X,, and V,, from their ‘starting values’ Xy and Vy :

(5.3) X,=R"X,, V,=R"V,.

While the sequence X,, is locally defined, only the first few of the V,, are local. These
are both uniquely defined if we set all the constants of integration to zero. In this article
I shall not further discuss the general properties of master symmetries, turning now to
specific examples.

The spectral problems of section 3 depend polynomially upon the spectral parameter
A. A simple shift A — X\ + s induces a simple, invertible transformation of the potential
functions which is generated by a particularly simple master symmetry vector field (V _;
in the above notation). For simplicity we consider only the energy dependent Schrodinger
operator (3.1a), but the construction can immediately be applied to the other cases.

Let L()) denote the operator of (3.1a):
N N
(5.4a) L) =) N (eid® +us) .
0

Corresponding to the shift A — X\ + s, we have:

oL

5_’_...:"_7

(5.4b) LA+s)=L(A)+s
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which is an operator of the same kind, depending upon new constants €; and new potential

functions u;. Let us denote by B;(s) (= B;) the operator B; when its coefficients depend
upon the barred variables (with B;(0) = B;) (and similarly for J;(s)). Let J(s) denote
the Jacobian of the inverse of (5.4b). If V denotes the infinitesimal generator of the
transformation (5.4b), then the Lie derivative £,B; is defined by:

(5.5) £,B; = 8(s)Bi(s)d7(s)
S $=0
and is proportional to B;_; as will be seen in the example below. Furthermore, the quantity
3(s) Bi(s) J7(s) is an s-dependent Hamiltonian operator which is a linear combination of
B;(0), B;-1(0),...,By(0).

This is a direct greneralisation of the well known example of the KdV hierarchy:

Example. KdV
L=04u—-X, A=A A+s=>T=u—s,
(5.6) Bi(s) = 0 4 4u0 + 2u, = 8® + 4ud + 2u, — 450 = B; — 4sB, .
This example is too simple since J(s) = 1, which is thus rendered superfluous.

Example. Two component case

The two component example is nontrivial. With:

(5.7) LX) = (€0 + €10)0% +ug +uih — A2,
the shift A — X + s induces the transformation:

(5.8a) € =€y + €18, € = €y,

(5.8b) Uy = ug +uys — 8%, Uy =u; —2s,

with infinitesimal generator:

0 0 0
(58C) V—€1'6T0+ula—w—2-a—;; +pT'l ,

where prl denotes the usual prolongation of the vector field.

It follows that:

(59&) Jo(S) = Jo + SJl + S2J2, Jl(S) = Jl + 28]2, J2(3) = .]2 ,
so that, with J(s) = ((1) _1S>, we have:

B(S)BQ(S)gT(S) = B2 — 28B1 + 82B0 s
(5.9b) 8(s)B1()d7(s) = By — sBo,  3(s)Bo(s)d7(s) = By ,
which implies:
(59(:) LVBZ = —2B1, LVBl == —Bo, LVBO =0.
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REMARK. These formulae show, very simply, that the Hamiltonian operators B; are
compatible.

The first 4 Hamiltonians are given by [5]:

1 1 1
Ho = 2uy, Hy; =2up + §u%, Hy = uouy + Zu‘;' - é-elufz ,
(5.10a)
1 3 ) 1 ) 1
%3 = 5“’3 + ZUOU% + ﬁuzll + Zeluoulrz + Ef%u?m - Eelulu%x - '8-607"%:: )

and satisfy:
1
(510b) V(j'f()) = —2, V(f}Cl) = 0, V(g'fz) = —ﬂ-Cl, V(}C3) = —29‘(2 + (Zelululx)x .
We generally have: .
(5.10c) V(H,) = (1 —n)Hp—1 (mod Ker Byb), n>1.

REMARK. The transformation (5.8) acts on an enlarged space, including the constants
€; as well as the functions u;. While some reductions (such as € = ¢;) are invariant under
this transformation, others (such as € = €; \) are not. We thus always consider the general

case in these calculations. (To see the role played by the e; — term in V, it is instructive

860
to calculate V(H3)).

Comparing (5.10) with (5.2) we see that the above V plays the role of V_;. For the
case € = ¢ it is possible to use this as the starting point to define V,, by:

(5.11) V,=R"!V_; =R"V, .
V, just corresponds to the scaling symmetry [1] and is thus locally defined. Generally,

V_; and V, are the only local master symmetries. However, when N = 2, V; is also
locally defined:

1 1 1
J0=103+u08+_2'u0:c, Jl:ula+§ulz’ J2=_87
(5.12a)
0 Jo0! 9 9

R:(l Jla_1>, V_, :ula—uO—Q'a—u; or V_lz(ul,—-Q)T.
Thus:

RV_, — (—-2u0 —xu(n) ~v, .

—U1 — TU1g

(5.12b)

1 1
1 (@UL 2z + BUizs) + uoty + TUQUL, + 593?111501) -V
=V;.

RVo =~ ( 2ug + Tug, + ui + %:Eululz

Only in this case is the second component of V an exact derivative.
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6. Conclusions. In this paper we have discussed the systematic construction of
isospectral flows, Hamiltonian structures, Miura maps and master symmetries in the con-
text of some fairly general classes of ‘energy dependent’ spectral problems. An important
feature is the universality of algebraic form of the Hamiltonian structures, Miura maps
and so on. The spectral problems discussed contain many interesting examples, some
known, many new. Special cases of energy dependent spectral problems are also discussed
in [21-23].

It is also possible to apply these ideas to higher order Lax operators. The simplest such
example is a 4 component, tri-Hamiltonian extension of the Boussinesq hierarchy, which
will be presented elsewhere [19]. The degree of the A-polynomial is limited here since the
second Gelfand-Dikii Hamiltonian structure is quadratic in the potential functions.

It is possible to give the Hamiltonian structures (3.5b) an r-matrix interpretation [24,
25], but such an algebraic interpretation of our Miura maps is still an open question.

Recently, Dorfman [26] and Wilson [27] have presented what they respectively call
Dirac and quasi-Hamiltonian structures related to the KdV equation through a Miura
map. Analogous results can be obtained for the KdV like flows of (3.1a), and are related
to an interesting generalisation of the Schwarzian derivative [28].
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