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1. Introduction. The system
) { ug + (ut —v), =0
vt + (%ug’ —u); =0

is an example of a strictly hyperbolic, genuinely nonlinear system of conservation laws.
Usually the Riemann problem for such a system is well-posed: centered weak solutions
consisting of combinations of simple waves and admissible jump discontinuities (shocks)
exist and are unique for each set of values of the Riemann data [1-3]. The characteristic
speeds Ay and Az of system (1), however, do not conform to the usual pattern for strictly
hyperbolic, genuinely nonlinear systems: although locally separated, they overlap globally
(cf. Keyfitz [4] for a more general discussion of the significance of overlapping characteristic
speeds). In particular, Ay = u — 1 and Ay = u 4 1 are real and unequal at any particular
point U = (u,v) of state space (as strict hyperbolicity requires), and A — A; = 2 is even
bounded away from zero globally, but A; at one point U; may be equal to Ay at a different
point Uy. The corresponding right eigenvectors r; = (1,u + 1) and ry = (1,u — 1) of the
gradient matrix for (1) display genuine nonlinearity, since r; - VA; > 0 for 2 = 1,2 but the
two eigenvalues vary in the same direction: r; - VA; > 0 for ¢ # j, rather than the usual
“opposite variation” r; - VA; < 0 familiar from (say) gas dynamics. As a result, classical
global existence and uniqueness theorems [3,5] no longer apply.

In Section 2, we investigate the Riemann problem for system (1). We find that the
rarefaction curves cover the u,v-plane smoothly, but that the Hugoniot loci are compact
curves. As a result, for each fixed left-hand state Uy there is a large region of the plane
which cannot be reached from Uy, by any combination of rarefaction waves and admissible
shocks, even if we were to admit as shocks jump discontinuities which violate the Lax
entropy condition.
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In Section 3, we introduce a new type of solution to (1), called a singular shock, which
might be used to connect the left state UL to right states Ug in this inaccessible region.
We discuss how singular shocks may appear as limits of solutions to the Dafermos-DiPerna
viscosity approximation

@) { ug 4 (u? — v); = etug,

v + (%u3 —U)gp = €tvg,

Solutions to (2) do not always remain uniformly bounded as € — 0T, but may instead
approach singular distributions similar to modified Dirac é-functions. (Singular solutions
of this type were first found by Korchinski [6] for a nonstrictly hyperbolic system.) We
investigate the asymptotic behavior of these solutions for small ¢ and discuss how their
limits may be regarded as shocks with internal structure. We derive a generalized form
of the Rankine-Hugoniot condition for these singular shocks and introduce two additional
admissibility conditions for them. These conditions allow us to prove our principal result
(Theorem 2), which asserts that the Riemann problem for (1) becomes well-posed for all
Riemann data when the category of solutions is enlarged to include admissible singular

shocks.

Finally, in Section 4 we attempt to show that the admissible singular shocks which we
have defined are actually limits of solutions to the Dafermos-DiPerna approximation (2).
We present some analytic results and some numerical calculations as supporting evidence
for this conjecture, and we describe what would be needed to convert the conjecture into
a theorem.

2. The classical solution and its limitations. Since system (1) is strictly hyper-
bolic and genuinely nonlinear, the Riemann problem

(3) U(z,0) = (D(””’”):{ U, =<0

Ur, >0

for (1) has a classical solution when Ug is sufficiently close to Ur. To describe this classical
solution, we rewrite (1) as

(4) U+F,=U+ AU, =0

with

and



The eigenvalues of A are the characteristic speeds \y = u — 1 and Ay = u + 1 with
corresponding right eigenvectors

1 (1
n=uv1) T L)

The rarefaction curves R; are the integral curves of the r;, namely

1
R, :v=§u2+u+cl

and

1
R2:v=§u2—u+cz.

The Rankine-Hugoniot condition s[U] = [F] defines the Hugoniot locus H (Uo), the set
of U-points which can be connected across a jump discontinuity to Uy, as

(5) b= (22 s VI=GFT2).

where [u] = u — g, [v] = v — vo; the Rankine-Hugoniot condition also determines the
propagation speed s of the discontinuity as

(6) s =wuo + [u]/2F /1 — [u]2/12.

We note that the Hugoniot locus is restricted to the strip |u — ug| < v/12 and consists of
four branches in the neighborhood of (uq, vo) which join to form a figure eight (see Figure
2.1). In particular, the locus is compact, and its compactness places a finite upper bound
on the strength of any discontinuity which can occur as part of a weak solution of (4).



Figure 2.1

To solve the Riemann problem, we need to identify the admissible (+) portions of H

and R; with respect to any state Up, considered to be on the left. For the rarefaction
curves, we have

RF(Uo):v=vp +u?/24u—ul/2— up,uo < u;

7
v RI(Uo) :v =10y +u?/2 —u—ul/2+up,uo < u.

The shock curves S;t (Up) are classically defined as those portions of H(Up) which satisfy the
Lax entropy condition for discontinuities of the i-th family. A straightforward calculation
identifies the S; as those portions of the curves (5) which lie within the narrower strip
up — 3 < u < ug; Sf' has the upper sign in (5) and S;' the lower sign. For a classical
Riemann solution to exist with Uy, = U,, the right-hand state Ur must lie on either
RS (Um) or S§ (Uy,) for some intermediate state Uy, which, in turn, lies on either R} (Up)
or S (Uy), leading to the standard partition of the U-plane into four regions. However, in
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the present case the four “standard” regions do not fill the entire U-plane. Instead, they
cover only the domain @ = Q(Uy) described by

v_(u) < v <vy(u), up — V12 < u < +o0,
with

vot+ [u](3(u+uo) F /1= [u]2/12), uo — V12 < u < up — 3;

vo +u?/2 —ud/2+ [u] + £, u —3 <u< +oo

® =]

(See Figure 2.2). When Up lies in the complement of Q(UL) (which in the curvilinear
R — R; coordinate system occupies approximately three fourths of the plane), no classical
solution to the Riemann problem (1), (3) exists.

no
classical

solution

Figure 2.2



3. Singular shocks. Following the ideas of Dafermos [7] and Dafermos and DiPerna
[8], we consider the viscosity approximation (2), i.e.

(9) Ut+Fz=€tU:m:,

which reduces to (4) when € = 0. This approximation was designed for looking at solutions
to the Riemann problem because it has centered solutions of the form U = U(z/t) which
satisfy the system of ordinary differential equations

(10) il = (A(U) - &)U,

where £ = z/t and "= d/d{. In contrast to the viscosity approximation generally used in
studying classical shocks, system (10) is not autonomous; it depends explicitly on £ (and
also on €). The approximate Riemann problem for (9) provides boundary conditions

(11) U(-o00)=UL, U(+o0)="Ug

for (10).

The classical solutions to (10), (11) can be divided into rarefactions, for which U and
U remain uniformly bounded as € — 0, and shocks, for which U remains bounded but U
approaches infinity. As we saw in Section 2, we should not expect a classical solution unless
Ur € Q(UL). We consider the possibility that singular solutions of (10) exist, in which U
itself becomes unbounded as € — 0 for £ in the vicinity of some value s, which represents
the speed of propagation of the singularity. Following the route which we previously took
in [9], we may try the substitution

with undetermined positive constants p,q and r. For nontrivial solutions to exist we must
balance at least two terms in each equation (after expansion); this leads to the relations

(13) g=1+p, r=2p.

If we then expand @ and ¥ as series in €, their lowest-order terms t and ¢y can be shown
(cf. [9]) to satisfy the autonomous system

~1 ~ ~
Ug :ug — Vg

14
e i = bas
where ' = d/dn, n = (£ — s)/€?. This system was found in [9] to have a one-parameter

family of closed trajectories beginning and ending at (0,0) (cf. Figure 3.1).



Figure 3.1

These trajectories represent functions whose essential support lies in a layer of width
|€ — s| = O(e?) = o(€) by (13). Thus they do not by themselves solve Riemann problems,
since necessarily U (oo) = 0. However, their singularities lie in a zone narrower than a
conventional shock profile, which has width O(e), so that we are naturally led to the idea
of embedding a singular solution within a shock profile of conventional type (Figure 3.2
and Figure 3.3). We shall call such a combination, if it exists, a singular shock.



Figure 3.2



Figure 3.3



The following theorem helps us to determine the precise degree p of the singularity as
well as the propagation speed s.

THEOREM 1. Let W = W(€) be a two-vector defined by

UL7 €<8

(15) Wi(e) = { o e

Let U = U(£) be any solution of (10) and (11). Then
|7 @ Wi = swn - v0) - (F(UR) - P01

Proof. Integrating (10) from —oo to oo, we find

oo

= 0.

—0

/ZA(U)Udg—/:wdg:e/:(}dg:aff

Rewriting £ = s + (£ — s) in the second integral yields
[ @ -styig= [ -y
or (since W = 0 except at £ = s)

(FO©)-0©)| = [ -9 -
-0 -W)| - -W)

- [ w- W)€ — s)e

o0

:0+0—/°°(U—W)d§.

Interchanging right and left hand sides then yields the theorem. [

Suppose now that a singular shock directly connects two states Uy and Ug, where

Ur € Q(UL). Theorem 1 then tells us that

[Cw-wig=(2) =c=s01-17,

a constant two-vector independent of e. Now, Ur &€ H(UL) C Q(Uy), so C # 0. However,
by letting ¢ — 0 we find from (12) and (13) that

(16) ¢ = lim 1 /_o:oﬁ (6;3) df = lime?™? /OO i(n)dn = 0,

e—0 gP e—0 oo

10



so that the speed of a singular shock must satisfy the generalized Rankine-Hugoniot con-
dition

(17) s(up —ur) = f(Ur) — f(UL),

where f(u,v) = u? — v is the first component of the flux function F(U). A similar calcu-
lation applied to the second component shows that

e o]
¢ = lim sq—r/ o(n)dn.
e—0 —00
But ¢, must be a finite nonzero constant (since C # 0 and ¢; = 0), which implies that
g = r, and therefore from (13) we get

(18) p=1 q=r=2.

How large a family of right states can be connected through a singular shock to a
given left state Uy? For conventional shocks, satisfying the full vector Rankine-Hugoniot
condition, Uy together with the shock speed s determines U, so the standard theory yields
a one-parameter family of right states, those on the Hugoniot locus H(Uy). For singular
shocks, the “singular shock strength”

(19) cr= [ st = [ o=,

which measures the amount by which the full Rankine-Hugoniot condition fails to hold,
becomes a second, independent parameter. Hence the states connectible to Uy by singular

shocks form a two-parameter family, which can fill a two-dimensional subset (region) of
the U-plane.

We next attempt to identify this “singular region” more precisely. In doing so, we
temporarily turn our attention away from the internal structure of singular shocks and
introduce a definition of admissibility that depends only on the two states which are
connected. We shall return to the internal structure in Section 4.

DEFINITION. A jump discontinuity propagating with speed s in the z,t-plane is called
an admissible singular shock if its right and left states

U= lim  U(z,t)

r—st+0

satisfy the following three conditions:

1) The generalized Rankine-Hugoniot condition

s(ug —u_) = (vf —ul) = (vy —vo).
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2) The singular shock strength condition
e = s(vg — v_) — %(ui Cud )+ (uy —u) > 0.
3) The characteristic speeds condition
A(U2) > M(U=) > 52 X(Ug) > A (Uy).

This definition can be motivated as follows. Condition 1 is just (17). Condition 2 is
suggested by the first equality in (19) and the asymptotic behavior of ¢ as € — 0: the
closed trajectories for the leading term ¢ all lie in the half-plane 9y > 0 (see Figure 3.1).
Condition 3 might be thought of as a requirement of “over-compression” (cf. Shearer [10]).
It states that four characteristic curves enter the discontinuity and none leave. Since a
conventional (internally bounded) shock has three incoming characteristic curves and one
outgoing, it seems plausible that an additional incoming characteristic should be needed
to provide “energy” (integrated |U|) to maintain a singularity.

Let us denote by Qs(Up) the region of the u,v-plane consisting of those right states
U4 which can be joined to the left state U_ = U, by an admissible singular shock. An
easy calculation shows that Qs(Uy) is disjoint from Q(Uy), shares with Q(Up) as common
boundary the portion J of H(Up) lying in the strip u¢ — V12 < u < ug — 3, and has as its
other two boundaries the ray

E:v=uvy+ (up—1)(u—1up), —oo<u<Lu —3
and the parabolic segment
D:v:v0+u2+(1—u0)u—u0, —oo<u<ug-—3

(see Figure 3.4). The remainder of the plane, not contained in either Qg or @, falls into
two regions, Q'(Up) lying below E and Q" (Uy) lying above and to the right of D.

12
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Figure 3.4

For a singular shock which connects U, to a state in the interior of @s, both inequalities
in Condition 3 are strict. Such a shock is therefore not continuable on either the right or
the left by a conventional wave (shock or rarefaction) of either family. However, a singular
shock connecting to a point (say Un) on E has s = A2(U4) and can be continued on the
right by a rarefaction wave along R} (Un). Note that the curves RS (Un),Um € E, exactly
fill Q', so that all points in @' can be reached from U, by a singular shock followed by a
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rarefaction of the second family. Similarly, a singular shock connecting Uy to a point on D
has s = A;(U-) and can be preceded on the left by a rarefaction wave of the first family;

solutions of this type exactly fill @". [More precisely, such solutions go from Uy to a point
U,, € RT(UO), then to Ug € Qs(Up). |

We have accordingly obtained the following result.

THEOREM 2. A unique solution to the Riemann problem (1), (3), composed of constant
states, centered rarefaction waves, Lax entropy shocks and admissible singular shocks,
exists for every pair Uy,Ugr of Riemann data.

4. Admissible singular shocks as Dafermos-DiPerna limits. In this section, we
investigate more closely the connection between admissible singular shocks and solutions
of the Dafermos-DiPerna viscosity approximation (10), (11).

Conjecture. If Ug € Qs(UL), then for sufficiently small positive € equations (10), (11)

possess solutions
Ue
U— Ue(f) - (ve)

whose asymptotic behavior as € — 0 is described by
ue(€) » Wi(€) + Lio (45°)

(20) ve(€) = Wi(€) + 7300 (%—3)

here (g, D) is a closed-trajectory solution of (14) and s is determined by the generalized
Rankine-Hugoniot relation (17), while W; and W, are the components of the Heaviside
function W(€) defined by (15).

We present three types of evidence in support of this conjecture, and we indicate what
is still needed to convert the conjecture into a theorem.

First of all, we observe that the conjecture would follow from Theorem 3.1 of Dafermos
[7] provided we could verify the hypotheses of that theorem. To do that, we must embed
(10), (11) in a two-parameter family of boundary-value problems
el = (aA(U) - &)U,
o [ T=o-9
U(-b) =aUr, U(b) = aUg,

where 0 < a <1 and b > 1. Dafermos shows that, if all solutions of (21) satisfy an a priori
bound

(22) [U(&)| < M for —b< € <D,

where M may depend on Up,Ug,e and A but not on a or b, then (10), (11) does have a
solution for each € > 0 which satisfies the same bound. Once we knew that solutions to
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(10), (11) existed, we could apply the asymptotic analysis described in section 3 to obtain
(20). Thus an a priori estimate on the maximum norm of U, for each fixed ¢ would be
sufficient to establish the conjecture. While we do not yet have a maximum-norm estimate,
it is suggestive in this regard to note that our Theorem 1 does provide an L! estimate,
which is even uniform in e.

The second bit of supporting evidence arises when we look at the actual maxima (and
minima) of solutions of (21). The Riemann invariants 7 = v — u? +uand p = v—1u? —u
corresponding to these solutions satisfy the equations

er = [a(u — 1) — €]7 — eu?,

3
%) ep = la(u +1) — €]p — eu®.

Hence, for nonconstant solutions of (21), 7 = 0 implies # < 0 and p = 0 implies j < 0.
Thus each Riemann invariant has no (relative) minimum and at most one maximum on
any solution trajectory. From this it can be shown (see [11] for details) that u has at
most one maximum point { = {; and one minimum point £ = £;, while v has only a
maximum at { = {3, and that {; < s < & < &. Thus the trajectory of a solution to the
Dafermos-DiPerna viscosity approximation in the u, v-plane should look like Figure 4.1.
Observe that Figure 4.1 is related to the asymptotic picture of Figure 3.1 in exactly the
same manner as (20) is related to (12), namely by addition of the Heaviside function W(¢).

\'

Figure 4.1
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As our third piece of evidence, we present the results of a numerical solution of a
two-point boundary-value problem similar to (21). We chose U, = (0,0) and Ugp =
(—4.5,10.125), with the Dafermos parameter a = 1 and boundaries symmetrically situated
(at £ = —4 and ¢ = —0.5) with respect to the theoretical singular shock speed s = —2.25.
With a grid size A¢ = .0025, we approximated Uand U by centered differences. We solved
the resulting non-linear system of difference equations by an iteration procedure. At each
step we determined the solution of the linear system which results when A(U) is computed
from the U found at the previous step. Approximately 80 iterations were required for
convergence, and the results did not change significantly when the grid size was halved,
nor when the length of the {-interval was increased or decreased by 50%.

Computations were carried out for three values of €, namely ¢ = .3, = .2 and € = .15,
and the numerical solutions are compared in the accompanying figures. Figure 4.2 shows
the first component u(¢), Figure 4.3 shows the second component v(§), and Figure 4.4
shows the solution trajectory in the u,v-plane. Note the degree of resemblance between
the computed Figure 4.4 and the theoretically derived Figure 4.1. Note further that the
upward and downward “bumps” in u (Figure 4.2) do seem to roughly double in height and
reduce fourfold in width when ¢ is halved from .3 to .15, while the height of the single
bump in v (Figure 4.3) does seem to more than double (though not quite quadruple). This
at least approximately confirms the 1/¢ and 1/e? scalings of (20). Finally, the theoretical
value of the singular shock strength parameter c¢; is 3.09375, while the value computed
from the numerical solution for ¢ = .2, using the trapezoidal rule for the second integral
in (19), was ¢ =~ 3.11.

On all these points, there seems to be sufficient agreement between numerical and
theoretical solutions to support the conjecture, at least for the particular values of Uy,
and Ur € Qs(UL) used in the computation. Computations involving other values of the

Riemann data, including cases where Ug is in Q'(UL) or Q"(Uy), are consistent with this
specimen result.
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