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RICHNESS AND THE CLASSIFICATION
OF QUASILINEAR HYPERBOLIC SYSTEMS

DENIS SERRE*

Abstract. Rich quasilinear hyperbolic systems are those which possess the largest possible set of
entropies. Such systems have a property of global existence of weak solutions, whatever large is the
bounded initial data. Although the full gas dynamics is not rich, many physically meaningful systems are.
One gives below new examples and properties of the fully linearly degenerate case.

Résumé: Un essai de classification des systémes quasilinéaires hyperboliques conduit & considérer
ceux dont |’ ensemble d’ entropies est aussi grand que le permettent des considérations immédiates. Ces
systemes, dits riches, ont des solutions faibles globales pour des données initiales bornées. Bien que la
dynamique des gaz n’ entre pas dans cette catégorie, de nombreux systemes ayant un sens physique sont
riches. On donne ci - dessous de nouveaux exemples et on étudie dans cette famille la dégénérescence
linéaire des champs caractéristiques.

I. Classification of quasilinear systems. Given an integer n > 1, one studies
systems of the form u; + A(u)u, = 0, where t is a time-variable, z a space-variable, u(z,t)
the unknown belonging pointwise to R", and A(u) is an n X n matrix, depending smoothly
on u.

Classically, one is interested with the Cauchy problem for this system. In order to
get accurate properties, we shall often restrict to smooth, local in time solutions. In some
cases, we shall deal with weak solutions, which means that we choose a conservative form
ve + (f(v))z =0, even though we do not specify it; it requires that such a form exists.

1. Diagonalization. Hyperbolicity implies that the matrix A(u) is diagonalizable
for any value of u. In the linear case (A is constant), the system can thus be reduced to
a diagonal form, consisting of uncoupled transport equations. When nonlinearity occurs,
the most that one can expect is an equivalent coupled system of transport equations

(1.1) Diw;=0,1<:1<n, Di:8t+/\,-(w)8z.

In that event, the functions w;(u) are called strict Riemann invariants. The speeds
Ai(w(u)) are nothing but the eigenvalues of A(u), for which grad, w; is a left eigenvector.

It turns out that not all the quasilinear hyperbolic systems (QLH) diagonalize. Assum-
ing for simplicity that Spec (A(u)) consists of n distinct real values, a necessary and suffi-
cient condition for the existence of w; is the well-known Frobenius condition l;{r;,rr} =0
for any j, k # i. Here above, [; and r; denotes the left and right eigenvectors related to A;,
and {.,.} is the Poisson bracket of vector fields in u-space.
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When n = 2, a QLH system is always diagonalizable, but the Frobenius criterion
becomes non trivial as n > 3.

A qualitative way for to introduce diagonalizable system is to consider the interaction
of two incident weak shocks for conservative cases. For n = 2, two transmitted waves are
outgoing. For n > 3, the interaction produces waves belonging to the other characteristic
fields. These waves have strength O(af) where o and # are the strength of incident waves.
The necessary and sufficient condition in order that the strength should be weaker is that
strict Riemann invariants exist. In that event, the strength turns out to be O(aB(|a|+|B])).
A special case is given by B. Temple’s class of systems, for which an i-th and a j-th incident
shocks produce only an ¢-th and a j-th transmitted shock (see [1] and below II.6. for a
description of this class).

2. Physical, over-physical systems. Systems which are given by physics, mechan-
ics, chemistry, . . . are often in a conservative form and possess an extra conservation law
E(v); + F(v), = 0 where E is a strictly convex function. Following Godunov [2], those
systems are hyperbolic and symmetrizable in variables @ = grad, E.

Some of them may possess many more additional conservation laws. Functions as E
are called “entropies” by mathematicians, no matter with their physical sense or their lack
of sense; they are not required to be all convex. Trivial entropies are the components
v; and the constants. An example of infinite dimensional set of entropies is provided by
Eulerian gas dynamics, with E = pf(S), p being the mass density, S the physical entropy
and f any real-valued function.

It turns out that entropies E(u) are the solutions of a linear partial differential system
of the form

(1.2) D;DE = lower order terms, J#k,

where D; = rj - grad,. For n = 2, one can choose D; = 0/0w; and the system reduces
to a single equation for which the Goursat problem is well-posed. Thus the set of en-
tropies is infinite dimensional and parametrized by two arbitrary functions of one variable

F(U)l), G(’wz)

3. Rich systems. Forn > 3, the system (1.2) consists of n(n—1) equations, which can
give rise to other equations by combination of their derivatives. Especially, the difference
between the equations for the choice (j,k) and (k,j) is a first order equation. Thus
generically, a QLH system has not any entropy, except trivial ones in the conservative

case.

A simplification occurs in the diagonal case, where there are only n(n—1)/2 equations:
(1.3) B(AiaE/awi)/Bwj = 3(/\]‘0E/awj)/3wi, 1 ;é] .

Nevertheless, even this system turns out to be overdetermined and generally prevent
the existence of non trivial entropy. Beside the constant coefficient case, where an entropy
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is uniquely specified by its values on an orthogonal set of reference axis Ref, one may
search for nonlinear systems which endow this property. One calls them “rich hyperbolic
systems”. An algebraic characterization is given by (see Serre [3] for a description and
details about those results which will be given below without proof):

(1.4) Di((Aj = A)7'DiN) = Dj((Ak — i)' Dihi)

for distinct ¢, and k. All along this article, D; will denote the derivative with respect to
w;.

We again remark that 2 x 2 systems are trivially rich, so that the theory of rich systems
appears to be an attempt of generalization of the theory of 2 x 2 systems; and actually it is
for almost all points of view. An essential one is the method of compensated compactness,
developed by L. Tartar [4], R. DiPerna [5], M. Rascle and D. Serre [6], [7],[8] in order to
solve the Cauchy problem and to describe the propagation and the interaction of large
oscillations. A fundamental consequence holds for genuinely non linear strictly hyperbolic
rich systems: a bounded sequence of approximate solutions (namely through artificial
viscosity or Godunov’s scheme) should converge strongly in L? for any finite p > 1 to a
weak solution of the system, provided it is given in a conservative form.

The plan of the paper is as follows. The second part is a list of examples and
counter-examples arising in physics, mechanics and chemistry. I am particularly grateful
to Pr. C. Dafermos for to have driven my attention to a system arising in electrophoresis.
It has given me motivation to include the B. Temple’s class. The third part deals with the
case where all the characteristic fields are linearly degenerate. It contains a short list of
formula describing the construction of rich systems and of their entropies, as an abstract
of my previous article [3]. A global existence of smooth solutions is given in that case.
Its proof is essentially different from the genuine nonlinear case. Finally we discuss the
commutability of resolvant operators.

In a forthcoming paper* I shall discuss in more details the linearly degenerate case,
including a description of the propagation of large oscillations as in Serre [8] and M.
Bonnefille [9]. A group action of resolvant operators on the set of solutions of special ODE
systems will be studied. It gives rise to results about (z, t)-almost periodicity or periodicity
of solutions of the hyperbolic system, and z-almost periodicity or periodicity for the ODE
system.

An alternate approach to rich hyperbolic systems is Tsarev’s work [10], where hamil-
tonian systems are considered. However his class is more restrictive than the rich one.
It is essentially due to the definition of symplectic structure: it turns out that naturally
hamiltonian 2 x 2 systems (e.g. isentropic gas dynamics) do not belong to Tsarev’s class.
Subsequent papers developing the Tsarev’s hodograph method or computing higher order

*Systemes d’ EDO invariants sous l’action de systémes hyperboliques d’ EDP. To appear in Annales de
PInstitut Fourier.



densities are due to Y. Kodama [11], Y. Kodama and J.Gibbons [12], P.J. Olver and al.
[13].

I1. Examples of rich and non rich hyperbolic systems. As discussed in the first
section, all the 2 X 2 systems are rich, so that we shall only consider the case n > 3. We
begin with a well-known non rich example.

1) The gas dynamics. This system consists of balance laws of mass density p, mo-
mentum pu and total energy pe + pu?/2. Thus n = 3. A classical result describe all the
extra conserved densities by the formula pf(S) where f is any real-valued function of one
variable, and S is the physical entropy given by the equality

TdS = de + pd(1/p).

Here above, p(p, e) is the hydrodynamic pressure.

On the other hand, the full gas dynamics possesses only one strictly Riemann invariant,
namely S. Thus this system appears to be only “one third” rich. In particular, the
compensated compactness method is not efficient and the Cauchy problem for large initial
data is still open.

Let me give however a consequence of this partial richness related to a linearly degen-
erate field: because of p; + (pu), = 0 and S, + uS, = 0, one finds an infinite sequence
of quantities satisfying the same transport equation than S. They are inductively defined
by Sp+1 = p10:Sn, So = S. Consequently, any function pf(So,S1,...) is a conserved
density. Finally the breakdown of smooth solutions in finite time gives rise to a shock
development, without contact discontinuity. In fact, contacts may appear at positive time
only as a byproduct of the interaction of two shocks.

2) Nonlinear electromagnetic plane waves. The Maxwell’s equations involve four
vector fields B, D, E, H depending on time and on a 3-d space variable:

(2.1) Bi+curlE=0, D;—curlH=0.

Following Coleman and Dill [14], the constitutive laws involve an electromagnetic en-
ergy density W(D, B):
E=0W/0D, H=0W/0B.

Hyperbolicity of (2.1) corresponds to the convexity of W. An important conserved
density is W.

(2.2) W, +div(Ex H) =0
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The system (2.1) is translationally invariant and admit plane waves depending only on
t and one space variable, e.g. * = z;. The components B; and D, are then constant and
(2.1) reduces to 4 equations. A natural choice for W is to assume axisymmetry:

(2.3) W(D,B)=W(r), r* = B+ D?.

With that choice, the plane waves obey to a closed 2 x 2 system, supplemented by two
transport equations of the form

(2.4) (pv)e + (qv): =0, (v is the unknown)

where it is known that p; + ¢, = 0. Thus this system is endowed with the entropies of the
sub-2 x 2 system and of entropies of the form pf(v) for any f. On the other hand, it has
a complete set of strict Riemann invariants: the ones of the subsystem and the unknowns
of the transport equations. We conclude that this system is rich.

A complete description may be found in Serre [15], where a global existence theorem
is proved for large Cauchy data.

Let us point out that two characteristic fields are linearly degenerate, while the two
others may be genuinely nonlinear although the whole system is linear for the most of
electromagnetic media as vacuum.

3) Elastic strings. An elastic string lying in a 2 or 3-d physical space can be described
in Lagrangian coordinates by yy = (T(r)y,/r). where the stretching r is the norm of y,
and T is the (scalar) tension. By using u = y,, v = y;, the balance laws become a QLH
system of 4 or 6 equations. It is one of the worst of the hyperbolic theory: its entropy
set is finite dimensional (6 or 8 independent entropies), while not any strict Riemann
invariant exist. There are two linearly degenerate fields, but the interaction of two contact
discontinuities produces shocks, yielding to energy dissipation! Even a linear stress-strain
relation T(r) = r — 1 has been of no help for the existence theory in spite of the linear
degeneracy of all the fields.

The Riemann problem for elastic strings has been solved by Keyfitz—I(ranzer [16] and
Carasso-Rascle—Serre [17]. Analysis and numerical simulations via the Glimm’s and Go-
dunov’s schemes when the natural type changing occurs have been performed by H. Gilquin,

R. Pego and Serre [18], [19], [20].

4) The KdV limit. The behaviour of the Cauchy problem for the Korteweg-de Vries
equation u; + uuy = €Uzzz, as € goes to zero, has been studied independently by P. Lax-
D. Levermore [21] by means of the inverse scattering method, and by H.F. Flashka, G.
Forest, D. McLaughlin [22] via the formalism of modulated waves. It turns out that the
solution sequence u¢ does not converge in any norm of Lebesque space in general. But
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weak convergence holds, which is described by a finite piecewise constant odd number of
functions w;(z,t), 0 < i < 2p. These functions obey to a diagonal system

Oyw; + Ai(w)0,w; =0, 0<:<2p,

where the speeds are defined in a complicated way by means of hyperelliptic integrals.

Because the KdV equation is known to have infinite sets of independent conserved
densities, it is expected that its limit should be rich, and actually it is. The criterion (1.4)
follows trivially from a formula of D. Levermore [23] which motivated me in this research.
However the relation between the conserved densities of the KdV equation and the ones
of its limit had not been yet enlighted.

These systems were proved to have genuinely nonlinear characteristic fields [23] so
that the convergence result cited in 1.3 would be valid and provide global weak solutions
for convenient conservation forms. However such weak solutions have no meaning for the
description of KdV phenomena as soon as shocks develop.

An other hierarchy of rich systems, consisting of an even number N = 2p of equations,
is the N-reduction of Benney’s moment equation (the dispersionless KP hierarchy), see
D. Benney [24]. It has been studied in details by Kodama.

5) Electrophoresis. The following system arises in electrophoresis
(2.5) Owu; + az(m_laiui) =0,1<:<N,

where a; is a positive constant and m = u; + -+ + uy. The unknowns u;(z,t) should
be non-negative functions. Clearly, (2.5) satisfies the corresponding minimum principle.
Moreover, it will be asked that m(z,t) > 0. This is easily achieved due to the equality

(Zi:ui/a,)t:o.

We shall assume without generality that a; < a; < -+ < ap, otherwise if a; = a;41,
we should replace N by N — 1 and (u;,ui4+1) by ©; + u;41. Thus we may define nonlinear
functions dy(u),...,dy—1(u) by the formulas

(2.6) > uif(a;i —di(u)) =0, ag < dp < apg -

i

-1
Finally, do(u) will denote ((H a,~> Z ui/al) . The d}’s are strict Riemann invari-

ants of the system, which is transformed to

6td0 = 0
@2.7) - ) A
Oydy +m™ " dp0dr =0, 1<k<N-1.
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In order to close the system, it remains to relate m to the di’s. Let us define the
rational fraction of one variable

F(X):XZai'fX =% “"”iX —m.

— a; —
i

One may rewrite F' as a ratio P/Q of two polynomials of degrees not greater than N.
But we know the poles a; and the zeros 0 and dy,k > 1, of F.. Thus there exists a real
constant « such that

N-1 N
F(X)=oX [J(d—X)- JJ(a;i = )7
k=1 k=1

Because of F(00) = —m, a = m. Finally

. N-1 N -1
F'(0) = ﬂ:dek (Ha,) ,
; W k=1 i=2
N-1 N-1
so that m™ = dy [] dk, and \; = dod; [] dr. It is now easy to check by hand the
criterion (1.4). = <

6) The B. Temple’s class. The electrophoresis system, as the one of chromatogra-
phy, actually belongs to the B. Temple’s class. Let me give a rather rigid definition. A
conservative system will be said to belong to the Temple’s class if any point of the u-space
is the intersection of (N — 1)-dimensional linear characteristic manifolds. The existence of
such (linear or nonlinear) manifolds is nothing but the existence of strict Riemann invari-
ants. Their linearity is related to the fact that they will be invariant for weak solutions.

An alternate criterion of algebraic type is as follow. Consider the equation l.u = ¢
of a linear manifold. Then this manifold is characteristic for the conservative system
ut + f(u); = 0 if and only if the function [l.f(u) assumes a constant value b on it. In
electrophoresis, [; = (a; — d)~! is convenient for any d (take ¢ = 0), and this gives N
distinct families of linear manifolds, depending on the position of d with respect to the
a;’s.

For another such system, let w; the Riemann invariants and I!(w;)u = ¢;(w;) cor-
responding equations of the characteristic linear manifolds. Then it is easily seen that
(I'.u — ¢;)T is a non trivial (i.e. non affine) entropy for any choice of 7 and w;. Thus we
can construct N infinite families of entropies, parametrized by 1 — d bounded measures

(2.8) E; o(u) = /(li(w).u —ci(w))tdo(w) ,

with corresponding fluxes
F; o(u) = /(li(w).f(u) — bi(w)) sgn(l*.u — ¢;)do(w) .

We have thus proved the



THEOREM. Any conservative systems, such that all its left eigenvectors l;(u) are nor-
mal vector fields to linear real manifold, is rich.

Q0

For such systems, we shall not pay attention to the nonlinearity of characteristic fields
because the compensated compactness method is superfluous. A global existence theorem
has been proved in the BV class for large initial data by Serre [25], Leveque and Temple
[26]. See Temple [1] for a systematic construction in case N = 2.

The following subsection is devoted to a special 2 x 2 example, for which we use the
formula (2.8) for to exhaust the list of entropies.

7) An example in Temple’s class.

The system u; + (uv), =0, v+ (v2 +u), = 0 belongs to the Temple’s class, because
the trivial entropy E, = u — av — a? is an algebraic divisor of its lux F, = (v — a)E,,
for any choice of the real parameter a. Actually we have to restrict the above assertion,
because the system is hyperbolic only on the zone v? + 4u > 0. It becomes elliptic as
the dependent variables enter inside the parabola v? + 4u < 0. Thus the aforementioned
linear manifolds (straight lines in this 2 x 2 case) cover only the domain v? + 4u > 0.
An important consequence of this remark is that the formula (2.8) will not be usable for
constructing entropies inside the elliptic zone. We thus shall restrict to the hyperbolic one.

The Riemann invariants are clearly the two (real) roots w and z of the quadratic
equation

X*4vX —u=0.
Then E, = (w — a)(a — z), where we assume w > z. A similar idea to (2.8) is that

(w — a)*(a — 2) is again an entropy, so that the following formulae define an entropy and
its flux for any choice of a bounded measure m:

E = /(w —a)(a — z)dm(a)
F = /(v —a)(w — a)(a — z)dm(a) .

We shall keep in mind that v = —w — 2. Defining functions f, g, h, k(w) as the an-
tiderivatives of a?dm(a) , 0 <p < 3, we rewrite E and F as

B(w, z) = —wz f(w) + (1w + 2)g(2) — h(w) |
F(w,2) = (w4 2)wzf(w) — (w? + wz + 2°)g(w) + k(w) .
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The definition of f,g,h and k allows us to introduce a function T'(w) satisfying the
following four equalities:

f=1" E=wT" — 3w?T" + 6wT' — 6T
g — wTIII _ TII h — w2TIII _ 2wTIl + 2TI

So that we get an infinite family of pairs entropy-flux, parametrized by a real function
T of one variable:

(2.9) { E =(w—-2)T"(w) - 2T"(w)

F = (z —w)(z 4+ 2w)T"(w) + 6wT'(w) — 6T (w)

The above formula actually does not give all the entropies of our system because w
and z did not play the smale role in our calculations. We need to supplement it by the
symmetric formula depending on a real function S(z), so that the general entropy would

be
(2.10) (w— 2)(T"(w) — §"(2)) — 2T"(w) — 25'(2) .

It turns out that this formula gives all the entropies of the system, as it can be checked
by hand, using the entropy equation

(2w + 2)Ew); = (22 + w)E,)w -

Conversely, (2.10) does not give any information about entropies in the elliptic zone,
except the case where S = T is a polynomial. Then the formula makes sense and defines
a smooth function on the whole plane. For instance, the choice S = T = X®/10 gives

E = v* + 6v2%u + 6u2.

REMARK. In the formula (2.8), the special entropy (I;.u — ¢;)™ appears to be an ex-
tremal one in the cone of convex entropies, so that E; , will be convex if and only if o is
a non-negative measure. This fact relies to the scalar example where the entropies |u — k|
or (u — k)T, used by Kruzkhov [27] and Tartar [4] generate all the convex functions of one
variable by means of the integrals

/_ ;(u — k)do (k) .

Coming back to the more explicit formula (2.10), we get a convex entropy if and only
if T = —S and T'V is non-negative. The condition T' = —S comes from the fact that
(w — a)*(a — 2z) is not convex, so that we have to apply formula (2.8).

The next subsection is devoted to the compensated compactness theory, applied to this
system, and we shall pay attention to the elliptic zone.
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8) Compensated compactness with an elliptic zone. The compensated-compactness
theory is a tool which has been powerful in the study of the convergence of the artificial
viscosity method for the Cauchy problem:

_ { F), = e,

u‘(m,O) = uO(m)

There are essentially two a prior: requirements in order to be allowed to apply this
theory:

1) to have an L* uniform estimate for u€. In all the known examples, it has been
proved by means of the positively invariant domains of Chuey—Conley—Smoller [28].

ii) to have an entropy-flux pair (7,q) where n is uniformly strictly convex on every
compact set of the u-space.

It is important to notice that none of these requirements occurs for the system in-
troduced in the former section, so that I shall not prove the convergence of (u¢,v¢) to a
solution, but only the following alternative:

THEOREM. Let (u€,v¢) a solution of the Cauchy problem

uf + (uv)e = eug, , vf +((v)" +u)e = evp,

u®(z,0) = up(z) , v(z,0) = vo(z) .
Then, as € — 04, for a suitable subsequence,

i) either the maximal time-interval (0,T(€)) of existence shrinks to zero,
ii) either the solution does not remain bounded in L*°,
iil) either €!/2(uf,vs) does not remain bounded in L? |

iv) either strong convergence in L | 1 < p < oo, holds, so that the limit (u,v) is a

solution of uy + (uv), =0, v+ (v2+u), =0

0

Proof. If i), ii) and iii) do not hold, then we are allowed to apply the compensated
compactness theory. So that the Young measure v, ; which describes the oscillations of the
sequence of approximated solutions has a compact support and satisfies almost everywhere
(z,t) the Tartar’s equality

(2.12) v(erfa — eaf1) = v(en)v(f2) — v(ea)v(f1) ,
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for all entropy-flux pairs (e;, fi), ¢ = 1,2. We shall only deal with the entropies E, =
Ef —E; and |E,| = Ef + E;.

We begin by assuming that for any real number a, Supp v is not contained in the
straight line w — av — a®> = 0. It implies that either v(E}) or v(E;) is positive, so that
v(|E,|) > 0. Due to the equality E}XF, = E; F.F, we get (F* are not equal to positive
and negative parts of Fy)

V(B W(Fy) = v(E Jv(Fy)
so that we may define uniquely a real number ¢(a) by the formulae
W(FE) = o(a)(EE).

By linearity, v(F,) = v(E,;)c(a). Furthermore, ¢(-) is clearly a continuous function

defined on the real line, and v(F} + F; ) = c(a)v(|E,)).
We then apply (2.12) to |E,| and |Es|, with b different from a:

(a = D)v(|Ea| |Bs]) = (c(b) — c(a))v(|Ea|)v (| Eb|)
Letting now b — a, we conclude that ¢(-) is continuously differentiable, with
(2.13) ¢(a) = —(ERw(|Eal)~?

By Cauchy-Schwarz inequality, ¢’ < —1. The second step is to remark that ¢(-) is a
rational fraction, expanding at +oo as

c(a) = —a+ constant + O (—1-> ,

a

so that the non-increasing function c¢(a) + a assumes equal values at +oco. Thus it is a
constant, and ¢'(a) = —1. Returning now to (2.13), we conclude that for any real value a,
the support of the Young measure is contained in the union of three parallel lines u — av
= constant. Using two different values of a, we find a set consisting of 9 points, which
contains Supp v. Then almost all choice of a third value of a will reduce this set to three
points. Now remarking that the aforementioned parallel lines are u — av — a® = 0 or +o,
a fourth choice of a reduces the support to one point. Thus the preclude assumption is
false.

We thus now deal with the case where Supp v is contained in one line u — av — a? = 0.
Then the analysis becomes one-dimensional and is nothing more than that Tartar did in
[4]. Thus Supp v reduces to one point and v, ¢ is a Dirac mass for almost all z, 1.

0
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REMARK. The first part of this proof can be mimic for any system belonging to the
Temple’s class, until a formula similar to (2.13). It would be interesting to consider the
general case. The essential question is to understand the role of the genuine nonlinearity
and to decide how many inflections are allowed in order to get the result that the Young
measure is a Dirac mass.

III. Systems with linearly degenerate characteristic fields.

1) Facts about rich systems. This subsection gathers some facts about the con-
struction of rich systems and their entropies. All of them are proved in [3].

a) Given a rich system, the condition (1.4) gives us a set of positive functions N;(w), 1 <
1t < N, such that

(3.1) DjAi = (Aj — Xi)Dj(Log Ni) , 1 #7j .

Let us define quantities ¢;; = N j_leNi and y; = A;N;. Then one gets the relations
(3.2) Dycij = cikckj , LFEIF kR 1#£ kK,
(3.3) Djy,- = cijyj , ) 75] .

Reciprocally, let us choose functions 7;;(w;,w;) , ¢ # j, then the system (3.2) has a
unique local solution {¢;; , 7 # j} assuming the Goursat data

(3.4) cij(w) = vij(wi,wj) , as wy =wy , k#1,7,

where wj are given constants. This solution is global provided the following norms are
small enough:

Il = Max [ Supd{ s, € R) du
R

The next step is to solve (3.3) and the similar system D;N; = ¢;; N; , ¢ # j. It turns
out that (3.2) is the set of compatibility conditions for this overdetermined system, so that
a global existence and uniqueness result holds for Goursat data:

(3.5) Ni(w) = given n;(w;) as wy = wy ,k#1¢,

and similarly for y. A rich system is then completely defined by the formula A; = y;/N;.

b) The derivation of entropies is as follow. Clearly the transposed ¢’ satisfies (3.2) too,
so that the following system has a global existence and uniqueness property:

(3.6) Djpi = cjip;
(3.7) pi(w) = given ¢;(w;) as wy = wy , k#1 .
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Such p’s are used to construct irrotational fields g; = p; N;. The potential E of ¢ is then
a generic entropy of the rich system. Its flux F is a potential for the irrotational field
hi = piu;.

c) The last feature I want to recall here is the proof of blow up of smooth solutions
in the genuinely nonlinear case. It mimics the Lax’s proof for 2 x 2 systems [29]. It
appeared in details for the KdV limit in Levermore [23]. Let me first define the operator
L; = 0, + X;0;, so that L,w; =0, 1 <i < N. Taking the z-derivative, and denoting 0,w;
by z;, it comes

(38) L;z; + 20,2, =0 .
Let us compute the last term:
Oz \i = ZZ]’D]'/\,' =z;D;\i + Z()\] — /\,')szj(Log N,‘) .
J J
Now, one uses the equality (A\; — A;)z; = —L;wj, which gives

ax)\i = Z,‘Di)\i — Z(Liwj)Dj(Log N,’) = ZiDi/\i — L,-(Log N,')
J

and finally (3.8) becomes
(3.9) L,‘(Z,'/Ni)+Ni_lZ?8i)\i =0

This fundamental equality will be used intensively in the linearly degenerate case below.
With genuinely nonlinearity, it is a Ricatti-like equation along the ¢-th characteristic curves
of the (z,1) plane, for the unknown z;N; . Because of the transport equations L;w; = 0,
a smooth solution takes its values in a fixed parallelipiped of RY, so that the coefficients
N;0; \; are bounded and bounded away from zero. Thus z; N, i_l becomes infinite in a finite
time provided its initial value has the opposite sign to J;A;. It is clearly the case for some
z-point if we assume the initial data w(z) to be compactly supported.

2) Construction of fully degenerate examples.

a) Let us consider a rich system satisfying the degeneracy 0;A; = 0 for all 1 < < n.
We shall assume that none of the \;’s has a critical point, and also the strict hyperbolicity.

We introduce the diagonal entries ¢;; of the C as usual
8,~N,~ = Ci,'Ni .

Then deriving the equality N;\; = u; with respect to w; gives J;u; = c;ju;. Note that
Ai # 0 and u; # 0 almost everywhere.
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Let us choose two distinct integers 1 < 4,5 < n and derive the equality u;0;N; =
N;0;u; with respect to w;. Using the former, one gets

(Aj — Xi)(jcii — cijeji) = 0,

so that

(3.10) Ojcii — cijcji =0, Vi#ue.
Finally, we derive O;u; = c¢;;u; with respect to w;. It comes

ui(0jcii — cijeji) = uj(dicij — ciicij)

so that

(3.11) Oicij — ciicij =0, Vj#1
Finally, we gather all the known equalities in:

(3.12) Okcij = cikcxj for any 7, j, k such that k # 7 .

b) Conversely, we suppose that (3.12) holds, and then we construct a family of fully de-
generate systems related to the matrix C. We first construct a convenient filed (N, ..., N,).
It is uniquely defined by the system 0;N; = ¢;; N; (j # 1) and the prescribed values of
each N; on the i-th axis. In order to satisfy 0;N; = ¢;; N; everywhere, it is sufficient to
impose this differential equation to the prescribed value of N; along the :-th axis, thanks
to the equality

6]'(8,']\7,' - C,',‘N,‘) =0 3 ] 75 7.

We now construct the u;’s. We choose a constant vector (ay,...,a,) and prescribe
the value «a;N; to u; on the i-th axis. Then the equation 0;u; = c¢;;u; is again true on the
i-th axis and thus everywhere, so that 0;\; = 0 for \; = u;/N;.

To summarize these results, let us say that each solution of (3.12) gives rise to an n-
dimensional real vector space of fields (Ny,..., Ny ) satisfying 0; N; = ¢;;N; for any : and
j. Furthermore, any such N; gives rise to an n-dimensional vector space of A’s, satisfying

(3.13) 5,-)\,~ = ()\j - /\,‘)aj Log N,’ , Y i,j .
These A’s defined rich hyperbolic systems with linearly degenerate fields. The above

construction suggest to parametrize the speeds as A* and the systems as (¢®). Note that
the special choice a = (a,...,a) gives the simple decoupled transport equations

Oiw; +ad;w; =0, 1<i1<n.

c) As was shown in [3], the entropies are given explicitly in the linearly degenerate case
by the formula

E:lel(wl)+"'+ann(wn) )
F=uifi(wy)+ - +upfalws),

where fi,..., fn are arbitrary functions of one variable.
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3) An explicit example.

a) A particular solution of (3.12) is

Cij = H(wi_wk)' H(wj—wk) L

(3.14) k1, k#j

Cii = E(wk — ’wi)_l .

ki

A related field N(w) is
(3.15) Ni = [J(wi —wi)™

ki

This field and C are not globally defined, so that we shall restrict ourselves to a
parallelipiped which does not meet any hyperplanes w; = w; , j # i. Then we may
construct solutions of (3.13) by choosing a symmetric polynomial of n — 1 variables P,
being of partial degree 1 with respect to each variable, next defining \;(w) = P(w;). Here,
w; means that we have removed the i-th component w; from w.

b) Knowing that, we see that another choice for N is N! = N;Q(w;) where Q has the
same properties than P. This yields to new speeds A} = (PQ™!)(1;). Finally the following
system 1is rich which all its fields being linearly degenerate:

Q(zb,-)@twi + P(u“),-)ﬁzw,- =0 , 1<:<n
(3.16) with symmetric P and @ s.t. partial degrees
of P and Q) are < 1.

Let us remark that for any @, this gives an n-dimensional vector space of speeds, so
that all the fully linearly degenerate systems related to N = N;Q(w;) belong to the family
described by (3.16).

c¢) Because we know some of the speeds p; = R(w;)/Q(w;) which are related to the
same N' than )/, one would try to use Tsarev’s hodograph formula [10] to find explicit
solutions of (3.16). Here we have to solve

(3.17) P(’Lf),')t = R(ﬁ),) + Q('Lf),').’r , 1<1<n.

In order to keep strict hyperbolicity, we ask for solutions of (3.17) such that w; #
w;(j # 1). Then the difference of two equations of (3.17) gives

Pl(lf),'j)t = R’(’Lf),’j) + Ql(lf),'j).’lt , 2 76] s
where P’ denotes the derivative of P with respect to one of its variables, and w;; has only
n — 2 components. By induction, we get a non-trivial equation with constant coeflicients,
which is absurd. Thus Tsarev’s hodograph formula does not give the expected solution

when applied to speeds p; such that O;u; = 0. However, other speeds are available among
the ones which satisfy d;u; = (u; — pi)0j Log N|, and they generally give nontrivial results.
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4. Global existence of smooth solutions. The analysis carried out in subsection

l.c gives an opposite result for degenerate systems, namely that smooth initial data yields
to globally defined smooth solution, with the same regularity.

The proof consists essentially in four steps: local existence, L> estimate, Lipschitz-
type estimates, C™ estimates. We begin with a C™ initial data w°(z),m > 2, being
bounded on the whole line. Boundedness of the derivatives is not required. An essential
assumption is that the field N is well-defined on the parallelipiped

K = H[Minw?, Max w] ,

and that each of the N;’s assumes positive values on K. We require also that the speeds
A; are smooth functions of w.

The local existence of a smooth solution of the Cauchy problem follows from Kato [30],
where a result is stated in the Sobolev class H".. Thus we get a Clzlc_l/ ? solution. The
transport equation L;w; = 0 shows then that w(z,t) belongs to K, so that each N;(w(z,t))
is bounded by above and bounded away from zero.

Now we use relations (3.9), which reduce here to
(3.18) Li(zi/Ni) =0 y B4 = az’w,‘

By repeating the argument in (1.c), we find a hierarchy of transport equations involving
higher derivatives of w;, namely:

(3.10) L;wk=o,
' W = N7, Wk, WP = w;

This transport equation makes sense for 0 < k < m, because it involves no more that
products of an H™=% function and a H™~k=3/2 distribution, and

1 3
7n—§+1n—k——2-2m—220.

Thus (3.19) propagate the local boundedness of the k-th derivatives of w, up to the
m-th. This is the Lipschitz-type estimate.

It remains to prove the continuity of O™w; (estimates of mixed derivatives 99 w;
follow trivially from (3.19) and the knowledge about the z-derivatives). We have only
to remark that the speeds )\; are locally Lipschitz continuous, so that the :-th transport
equation defines an homeomorphism of the space line at each time 0 <t < T, provided
that the solution exists on (0,7"). Then W/™(T), being the composition of its initial value
by the aforementioned homeomorphism, is continuous. Since W™ = N, ™0 w; +l.o.t, the
continuity of OI*w; is proved up to T'. Using again the local existence result, we conclude
that the solution can be globally defined.

In addition, we remark that uniqueness holds thanks to [30], and that the time may
be reversed because we deal with classical solutions. Thus we have proved:
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THEOREM. Consider a rich system Oyw; + Ai(w)0;w; = 0, 1 < ¢ < n, with smooth
speeds \;, satisfying OX;/Ow; = 0. Assume that the N;’s are smooth positive functions
n

on K = [][w;,w;}]. Then there exists a unique one-parameter group of operators S(t),
=1

acting on C™(R; K), such that for any Cauchy data w® € C™(R; K), the unique smooth

solution of the Cauchy problem is given by w = S(t)w°.

0

REMARK. Let us notice that the strict hyperbolicity is not required, essentially because
weak hyperbolicity always holds. However, it is essential that the N;’s do not vanish. For
instance, Ny = Ny = 0 when w; = ws for the system

Oiwy + w0z wy =0, Oywy + w10, wy =0,

and the Cauchy data wy(z,0) = wa(z,0) = zo(z) gives rise to a solution z(z,t) = w; = w,
of the Burgers equation z; + zz, = 0, for which global existence of smooth solutions does

not hold.

5) Commutability of resolvant operators. In this subsection, we shall fix the
parallelipiped K and the field N as above. Thanks to 2.b, we know about a system (%),
given by speeds A$, for any o € R", such that the above theorem holds. We denote by
S%(t) its group of resolvant operators and we retain S* = S%(1). Any S(t) can be reduced
to S'*, so that it is sufficient to study the S*’s.

THEOREM. For K and N as above, the map a — S is a group homomorphism:
S%0 8P =5F0 5% =5tF

0

Proof. We begin with the commutation relation. Let us fix a C™ Cauchy data w®,m >
3. We define w! = S%w?, w? = SPw!, w? = SPw’, w* = S*w?. Our goal is to compare
w? and w* up to the second order as o and 8 go to zero. Using the fact that ¢ = S7(t)
where t = || and v = t !, one derives from Oyw; = —A;(w)0d,w; the expansion:

w} = w? — A (w")0,w? + 0(a?) .
Combining similar formulae, one gets

(3.20)  w?—wi=>D"[AF = AN — (3] = A))9;A10,w]0:w] + O(lal® + |BI*)
J
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The functions appearing inside the above brackets apply to w®. We now use the
hypothesis that the speeds A* and \? are related to the same field N, so that the brackets
vanish identically. Finally, for |a|,|8| <1, one finds

(3.21) Sup [5% 0 SP(w") - §7 0 S(w°)| < C(laf® +IBP) .

Note that the constant in the left hand side depends only on the C*® norm of w°,
because of the estimates of the former subsection.

The next step is to choose a positive integer r and to write the commutator [S%, S#] as
the sum of 72 terms of the form PAQ, where A is the commutator [/, §8/7] and P, Q
are monomials in S*/7, SA/™ with d°P + d°Q = 2r — 2. Using again the estimates of 2),
one gets a bound valid for each term, with a constant depending on w® but not on r:

ais B3
Sup |PAQ(w%)| <C (l;| + |:| ) .
Summing all these inequalities, we then deduce

Sup [[$*, $7](w")] < Cri(al’ +16°),

which gives [S¥, $#] = 0 by letting r — oo.
The last trick is the proof of the additivity formula. To this end, we first note an
estimate similar to (3.21):

(3.22) Sup (5% 0 §% — S*A)(w")| < C(laf® +18%),

where C' depends only on the C? norm of w®. We next remark that, due to the commuta-
tivity property, S® 0 S# — §2t# can be rewritten as the sum of r + 1 terms of the form P#,
where 8 = §2/7§8/7 _ 5% and P is a monomial in S/t §B/T and 5% with suitable
degree. As above, we conclude that

Sup (5% 0 87 — S***)(w”)| < C(r +1) <|§Iz+ l,—ﬂ,f) |

so that r — oo gives S 0 §8 = §oFh,
O
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