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L. Introduction. In this paper we study solutions of the nonlinear Schrédinger equation

Here u = u(t,x) is a complex valued function defined for t in some subset of the réal numbers and all
x€ R", AeR, and vy is the fixed power 4/n. We frequently write u(t) for the spatial function u(t,-).
One natural point of view in studying solutions of (1.1) is to study the associated Cauchy problem,
where the initial value ¢ = u(0) is specified. This Cauchy problem is formally equivalent to the

integral equation
t
u®) = SM6 - ik [SED[lu(Mu(m)]ds, (1.2)
0

where S(t) is the unitary group e® determined by the linear Schrodinger equation, i.e. when A = 0.

S(t) is given by the well-known complex Gauss kernel,

[S®01x) = (4riy™2 [ exp[—Ix-yR/4it]o(y) dy. (1.3)
Rl'l

The particular power Y = 4/n is especially interesting for several reasons. First, the pseudo-
conformal conservation law assumes a particularly simple form for equation (1.1) with this power;
and solutions of this equation satisfy an additional invariance not satisfied by the equation with other
powers. Moreover, this power is the smallest for which the equation (1.1) has non-global solutions
(if A < 0); and the blow-up behavior of these solutions seems qualitatively different from such
behavior when 7 is replaced by a larger power. Finally, this power appears in several important
physical models, in particular the self-focusing of laser beams; and the self-focusing corresponds
mathematically to the blowing up of solutions. See [15] for a review of some of the theoretical and

numerical work done on the nonlinear Schrédinger equation, as well as some of its physical

applications.



The invariance properties referred to in the previous paragraph give a correspondence between
global and non-global solutions. Our goal is to use this correspondence to learn more about the
asymptotic behavior of global solutions and the blow-up behavior of non-global solutions. Other
authors - Ginibre and Velo [8], Weinstein [30], and Merle [22] - have made important use of the
invariance properties of (1.1). However, it seems that these properties have not yet been exploited to
the fullest extent possible. We propose here a step in that direction.

We begin by recalling the various conservation laws satisfied by solutions (1.1) and (1.2). See
[30] (and [8]) for a more complete discussion, including historical notes. Let E and F denote the

following functionals:

1 2 A
E® = {190l zqm )} + YTz{”‘D”LY*z(R“)}H’ (1.4)
F(¢) = Im IXW'%(X) dx. (1.5)

Rﬂ

Then, formally at least, solutions of (1.1) satisfy the following conservation laws.

Conservation of charge: g-llu(t)lle =0 (1.6)

Conservation of energy: %E(u(t)) =0 a7
ixu@, = 4Fu(D) (1.8)
d L2 )

Pseudo-conformal conservation:

dF@®) = 4E@O) (1.9)

(Actually, what is usually considered as the law of pseudo-conformal conservation is not formulas
(1.8) and (1.9), but rather something which follows from these two relations, and which in fact,

given (1.8), is equivalent to (1.9). We hope the reader is not too disturbed by this departure from

convention.)



Conservation of charge is formally derived by taking the (complex L2(R™)) inner product of
equation (1.1) with u and then taking the imaginary part of the resulting equation. Conservation of
energy is derived by taking the inner product of (1.1) with u, and then taking the real part of the
resulting equation. Formula (1.8) is obtained from (1.1) by taking the inner product with Ix/2u and
considering the imaginary part of the resulting equation. Finally, (1.9) follows from taking the inner
product of (1.1) with (n/2)u + x-Vu, and then taking the real part of the resulting equation. We
remark that it is formula (1.9) that distinguishes the power y = 4/n. For other powers, the right hand
side of this formula has an additional term.

The following theorem summarizes some of the known rigorous results concerning the
conservation laws, and the Cauchy problem associated with (1.1). For convenience, we consider
only positive values of t. Since the equation is reversible, an analagous statement holds for negative

time. (For proofs of the following facts, see [4,5,6,7,8,9,12,23].)

Theorem A. Suppose ¢pe LZ(R™). There exists T* = T*(¢) > 0 and a solution ue C([0,T*),LZ(R™))

N LIY;Z(O,T* :LM2(RM) of the integral equation (1.2) satisfying:

G)  ueL™2X0,T;L¥*2(R") for all T < T*, and is the unique solution of (1.2) in that space;

(ii) IIu(t)IILg(Rn) = “¢”L2(R“) for all te [0,T*), i.e. u respects the conservation of charge law
(1.6);

Gi) If ”¢”L2(Rn) is sufficiently small then T* = oo and ue LY*2(0,00;LY¥*2(R™));

(iv)  If T* < oo, then 'Iu(t)”LY*z(O,T*;LY*z(R")) = oo}

) If T* < oo, u(t) does not have a strong L2 limit as t — T*, not even along some subsequence;

(vi)  If T < T* and if ¢y is a sequence in L(R™) such that ¢x — ¢ in LZ(R™), then for sufficiently
large k, T < T*(¢y); also ux = uin C([0,T];L?) and LY*2(0,T,L¥*?), where u is the
solution of (1.2) with ¢ replaced by ¢k .

Suppose in addition that ¢ H!(R™). Then the solution u stays in H!(R™) throughout its
trajectory and has the following additional properties:

(vii) ue C([0,T*);H(RM) N C}([0,T*);H(R™) and satisfies the differential equation (1.1) in

the sense of H1;

(viii) E(u(t)) = E(¢) for all te [0,T*), i.e. u respects the conservation of energy law (1.7);



(ix)  If T* <eo, then limy 7+ “Vu(t)”Lz(Rn) = oo and there exists a positive number C such that

uvu(t)ui2 ®n) 2 CT*- 07 (1.10)
in particular, if A > 0 then T* = oo for all ¢ H!;
(x) If T < T* and if ¢y is a sequence in H'(R") such that ¢, — ¢ in HY(R™), then ux — u in
C([0,T);H!), where uy is the solution of (1.2) with ¢ replaced by ¢y .
Suppose further that x¢e L%(R™). (We still suppose ¢ € H.) Then xu(t)e L%R") throughout
the trajectory. Moreover:
(xi)  xue C([0,T*);L2(R™);
(xii)  The pseudo-conformal conservation laws (1.8) and (1.9) hold throughout the trajectory;
(xiii) If either ”¢”L2(R“) is sufficiently small or A > 0, then (T* = o and) llu(t)llzj;z+2 R™ < Ct2,
(xiv) If T < T* and if ¢y is a sequence such that ¢y — ¢ in H!(R™) and x¢x — x¢ in L2, then
ux — u in C([0,T;H!) and xux — xu in C([0,T};L2), where uy is the solution of (1.2) with
¢ replaced by ¢y .
Finally, if we suppose that e L2 and x¢e L2, but not necessarily that ¢e H!, then statement

(xiii) is still correct.

We remark that (v) has been proved for H! solutions by Merle and Tsutsumi [23]. For L2
solutions, the result has not appeared explicitly, but follows immediately from continuous
dependence, statement (vi), which has appeared [6]. Indeed, if u(ty) = ¥ in L2 asty — T* < oo,
then lim infx_,.. T*(u(ty)) 2 T*(y) > 0. Thus, u(t) exists for values of t arbitrarily close to ty +
T*(y), which is eventually larger than T*.

The time T*(¢) is the maximal existence time of the (forward) solution starting at ¢; and if T*(¢)
is finite, it is called the (forward) blow-up time of the solution. We denote by T,(¢) < O the
existence time of the backward solution starting at ¢, called the backward blow-up time if T,(¢) >

In addition to the conservation laws, the solutions to (1.1) exhibit other invariance properties.

For example, if u(t,x) is a solution of (1.1) and if



v(t,x) = u(=t,x), (1.1D

then v is a solution of (1.1). In particular, T (0) =-T*(). Also, ifu = u(t,x) is a solution of (1.1)
. ab .
and if A = ( cd )€ SLy(R), i.e.if a,b,c,d € R and ad — bc = 1, then ua(t,x) is likewise a solution,

where
B _ c+dt X iblx/?
ua(t,x) = (a+bt) n/2 u(m , m) exp(m)-) . (1.12)

(See [30] for this precise formulation.) The subgroup (i (1)), ceR, simply gives time translations
of the solution u. The subgroup (8 1(/)a ), a > 0, gives a well-known group of dilation
transformations, which has analogues for other powers. It is the subgroup ( (1) 11) ) be R, which is
unique to this particular equation; and the corresponding invariance was discovered independently
by Ginibre and Velo [8] and Weinstein [30]. (For the linear equation, i.e. with A = 0, this invariance
has been known by physicists for some time.) Also, if ¢ = 0, then time t = 0 is fixed by the

transformation (1.12). In this case if u(0,x) = 0(x), we denote upa(0,x) by
da(x) = a2 ¢(x/a) exp (iblx|¥/4a). (1.13)

If  eH! and x¢e L2, then the same is true for ¢ and also ua(t). (Indeed u(t) has these same
properties.) One checks easily that, as long as it is defined, ua(t) satisfies the equation (1.1) in the
sense of H™1, and thus also the integral equation. Consequently, ua(t), as long as it is defined,
agrees with the solution starting at ¢ . By standard limit arguments, using the L2 continuity result
above, we may draw the same conclusion if ¢e L2,

Throughout this paper we will use the following notation and conventions. The complex space
LP(R™), 1 < p < o, is denoted simply by LP and its norm by Il - ll, . Similarly, H' denotes HI(RM),
and its normis (Il Il% + llV(-)II% )12, Welet X = {¢peH! : xpe L?}. Then X is a Banach space

with the norm (11 - 12 + IV (I + Ix(IZ )12,



In Section 2 we set up the basic correspondence between global and non-global solutions of
(1.1), and thereby derive decay estimates, asymptotic limits, and stability results for global
solutions. In Section 3 we apply these ideas to scattering theory for equation (1.1). We greatly
simplify and slightly extend the known theory in the space X, and we develop an L2 theory, which is
new. In addition, we derive explicit formulas for the wave operators in terms of the Fourier
transform. Finally, in Section 4, we reformulate certain aspects of blow up behavior for (1.1) in
terms of asymptotic behavior of global solutions to the same equation. Also, we make two modest
additions to Weinstein's blow-up theorem [30] for equation (1.1), and generalize a weakened
version of a result of Merle and Tsutsumi [23]. Moreover, we discuss two conflicting conjectures
concerning blow up and propose a specific numerical experiment whose outcome would necessarily

show one of the conjectures to be false.

2. The interplay between global and non-global solutions. In this section we draw some
consequences from the transformation defined by (1.12) and (1.13). For most of what we wish to
do, it suffices to consider this transformation with the matrix A = ((1) t1>) For a matrix A of this
form we modify the notation above to make explicit the dependence on the real parameter b. Thus

we have

_ t X iblxI2
up(t,x) = (1+bt) n/2 u(m , -1-+—bt) exp(m) , 2.1

and

ou(x) = O(x) exp (iblx|%/4). (2.2)

We consider up(t) to be defined a priori starting at t = 0, and continuing in both time directions, as
long as u is defined at t/(1+bt), until the singularity at t = -1/b is reached. In particular, 1+bt > 0
throughout the domain of definition. Also, in this section we will systematically write s = t/(1+bt),

and so t = s/(1-bs), as well as (1+bt) = 1/(1-bs), and similarly for S and T. Simple calculations

show that



lup®1F = () = 112 = ligph? , 2.3)

2
Ilub(t)II:::z = (1 +bt)—2nu(s)|q:,§ = (1 —bs)2llu(s)II3:2, (2.4)
||ub||Ly+2(O,T;W) = nulle(O’S;Lm). (2.5)

We easily obtain the following information about asymptotic behavior of global solutions.
Theorem 2.1. (a) Let ¢e X, ¢ not identically zero, with T*(¢) = . Then

.. 2

lim inf;_,.. (1+s)2 IIu(s)II::z > 0,
where u(t) is the solution to the integral equation (1.2) with initial value ¢.
(b) Let ¢ €X, not identically zero, with T*(¢) = o, and suppose that lim infs_,.. (1+s) llu(s)ll;':i =
0. Then lim_,e (1+s)? Ilu(s)llzg exists, is finite and non-zero. Also, there exists £e X, not
identically zero, such that

X - limg_soo (1+s)V2 u(s,x(1+s)) exp(-i(1+s)Ixi¥/4) = E(x). (2.6)

(©) Let ¢ eL?, not identically zero, with T*(9) = co. If lullp yi2(( .1 y+2y < o, then

lim infs_yee (1+5)2 IIu(s)llzz > 0, and there exists &€ L2, not identically zero, such that
L2 - limg_yee (1+5)2 u(s,x(1+s)) exp(-i(1+s)ixI%/4) = E(x). Q.7

(d) The set of & achieved as the limit in (2.6) or (2.7) is precisely the set of € in X or L2 respectively
such that T,(§) <-1.



Proof. Let ¢e X with T*(¢) = o=, and suppose lim inf;_,.. (1+s)2 Ilu(s)llyyz = 0. We consider v =
u., i.e. we fix b = —1, and we denote y = v(0) = ¢_,. It follows from (2.4) that lim inf,_,, v(Ollys2
=0, and so, by conservation of energy, lim inf,_,; lIVv(t)ll, < oo. Therefore, T*(y) > 1, and v(t) has
a limit in X as t — 1, which we call §&. On the other hand, since, along a subsequence, v(t) — 0 in
LY*2 we must have € = 0. By uniqueness of the (backwards) solution, it follows that v(t) = 0,
which is impossible since ¢ is not identically zero.

Suppose next that e X, ¢ not identically zero, T*(¢) = oo, and lim inf;_,., (1+s) |Iu(s)lg:§ = 0.
Using the same notation as just above, it follows that lim inf,_,; (1-t) IIv(t)H;{:z = 0. Again by
conservation of energy, it follows that lim inf,_,; (1-t) IIVv(t)II% = 0. Therefore, by part (ix) of
Theorem A, T*(y) > 1; and so v(t) has a limit in X as t — 17, which we call &. (§ is not identically

zero by backwards uniqueness.) In particular, IIv(t)IIYJ'2

v+2 2 v+2
2 = lEN and so (1+s) IIu(s)IIY+2 -

v+2 ;
llall:: ; . Formula (2.6) now follows from the definition of v = u_y, i.e. formula (2.1).

Finally, suppose ¢ € L2, ¢ not identically zero, T*(¢) = o, and “u”LY+2(0,°°;LY+2) <oo, It
follows from (2.5) that IIV"LY+2(O,1;LY+2) < o0, and so by part (iv) of Theorem A that T*(y) > 1.
Thus, v(t) has a limit in L2 as t = 17, which we call &, If lim inf, .. (1+5)? Iu()IY} = 0, then
lim inf,_y; Ilv(t)lll‘:f2 = 0, which means that § = 0, which is impossible. Thus

lim infs_,.. (1+s)2 Ilu(s)llw2 > 0, and formula (2.7) follows as just above.
T2

The last statement in the theorem follows easily from the construction of &,

Definition 2.2. Let ¢e L2 with T*(¢) = o, and let u(t) be the solution of (1.2) with initial value
¢. We say u(t) decays rapidly or has rapid (forward) decay if ue L¥2(0,00;LY*2). We denote by &
the set of such ¢ giving rise to rapidly decaying solutions; and R x denotes ® N X. If ¢ L2 and
T*(¢) = oo, but Ilu!ILYJ,g(O,m;sz) = oo, we say u(t) does not decay rapidly . (Such a solution does
not necessarily even decay, as in the case of a stationary state, so we can not say it decays slowly.)
The set of such ¢ is denoted by A/, and Ax denotes AL N X. Finally, B denotes the set of pe L2
with T*(¢) < e, and Bx denotes BN X.

The above theorem gives the precise asymptotic behavior for rapidly decaying solutions, and

incidently shows that the decay rate given by part (xiii) of Theorem A is optimal. Also, for ¢€ X, in



order that ¢pe R, it suffices that lim inf;_,.. (1+s) Ilu(s)llzg = 0, which is slightly weaker than the
criterion given in the definition. Theorem A says that if ll¢ll is sufficiently small, then ¢pe R. Also,
it follows easily from the next propostion that R contains elements with arbitrarily large L2 norm and
that X x contains elements with arbitrarily large X norm. Finally, if A > 0, except perhaps if lI¢ll, is
large and x¢e L2, then ¢e R. In particular, if A > 0, Rx = X.

The proof of the previous theorem uses the fact that if u(s) is a (forward) global solution, then
up(t) might or might not blow up as t = —1/b (where b < 0). The following proposition shows,

among other things, that this is one way to distinguish between X and A(.

Proposition 2.3. (a) Let e L2. Then either T*(¢p) = oo for all real b, or there exists boe R
such that T*(¢p) = oo forall b= bg and T*(¢p) < oo for all b < by. In the former case, ¢pe R for
all real b. In the latter case ¢pe R for all b > bg and ¢y € AN.

(b) A is the set of all ¢e L2 such that T*(¢p) = e for all b > 0 and T*(¢p) < o for all b < 0. If
de A/, then T*(¢y,) = —1/bforall b< 0. If ¢pe R, then T*(¢p) > -1/b for all b < 0.

(c) If T*(9) = oo, then ¢ppe R_for all b> 0.

(d) Suppose ¢e B. If b < 1/T*(9), then T*(¢p) = [T*(¢)~! - b]™! < ee; if b = 1/T*(¢), then
dpe NA[; if b > 1/T*(¢), then ¢pe R.

(e) o B, e N, or pe R, according as T*(¢_p) < 1/b, T*(d_p) = 1/b, or T*(¢_p) > 1/b, for some
(orall) b>0.

(0 B=Ubo{p: pe A}

Proof. We begin with the remark that (¢c)b = Oc+b and (uc)p = uc4p for all real numbers ¢ and b.

(a) Suppose first that T*(¢p) = oo for all real b. If ¢.€ A for some c, then IIucIILy+2 (0,00:L1*2) = oo}
and so by (2.5) ”(uc)b“Ly+2(0’_1 Jb:L¥#2) =°° for all b < 0. Thus, T*(¢¢+p) = -1/b for all b < 0.
This contradicts the assumption on ¢, and therefore shows that ¢pe R_ for all real b. (This, by the
way, also proves the second assertion in part (b).) Suppose next that T*(¢.) < « for some real c.
Again it follows from (2.5), applied with u. on the right side and with S = T*(¢c), that T*(c+b) =
[T*(do)! - b]~! < forall b< 1/T*(0c). Also, from (2.1) with S = 1/b, it follows that T*(¢c+b) =
o for all b > 1/T*(¢.). This proves the existence of bg, such that T*(¢p) = oo for all b = bg and



T*(¢0p) < o for all b < bg. Moreover, it is clear from (2.5) with S = 1/b , that
ll(uc)bllLY+2(0,°°;LY+2) =eo if b = 1/T*(¢c) and '|(uc)b”LY+2((),oo;LY+2) <oo if b> 1/T*(¢.). This
completes the proof of part (a), as well as part (d).
(b) Suppose ¢ L2, T*(¢y,) = oo for all b > 0, and T*(¢p) < oo for all b < 0. In the terminology of
part (a), we have by = 0. Thus, by part (a), ¢ = ¢oe A. On the other hand, suppose ¢e A[. In the
proof of part (a) we already proved the second assertion of part (b); and so in particular T*(¢y,) < oo
for all b < 0. Finally, we can not have T*(¢.) < « for some ¢ > 0, for that would imply by part (a)
that T*(¢) = T*((¢c)—c) < e=. The last assertion in part (b) is proved by contradiction. It is clear from
the definition of uy that T*(¢p) = —1/b for all b < 0. If T*(¢p) = -1/b, then part (d), which has
already been proved, applied to ¢ shows that ¢ = (¢b).b = (Pb)1/T*(s,) € AL. This is the desired
contradiction.

The proof of (c) uses the same kind of calculations as the above arguments, and can safely be
left to the reader. We have already proved part (d); parts () and (f) are restatements of some of the

earlier parts.

Remark 2.4. The following result shows in a precise way that rapidly decaying global solutions
are stable. On the other hand, the previous proposition shows that global solutions which are not
rapidly decaying are unstable: multiplying the initial value by exp (iblx|2/4) for arbitrarily small
negative b results in a solution which blows up in finite time, and multiplying the initial value by
exp (iblxI2/4) for arbitrarily small positive b results in a solution which is global and rapidly
decaying. (See Theorem C in Weinstein [29] for an instability result in a special case.) We therefore

obtain a complete stability analysis for global solutions.

Theorem 2.5. The set R of initial values giving rise to (forward) rapidly decaying solutions is
open in L2, and the asymptotic limit & defined by (2.7) depends L2-continuously on ¢e R .

Similarly, the set ® x is open in X, and the asymptotic limit § defined by (2.6) depends

X-continuously on ¢€ K x.

10



Proof. Note first that the mapping 1 — My is a continuous bijection of L? with continuous inverse.
Let e .. Choose any convenient b <0, and let y = ¢p. Since e R, T*(y) > -1/b. We let v
denote the complete solution starting from y. In particular, we consider v(-1/b), even though
up(-1/b) is not defined. By L2 continuity (part (vi) of Theorem A), there exists an .2 neighborhood
YV of y such that T*(M) > -1/b for all ne ¥ and on which the mapping N = uy(-1/b) is L2
continuous. (un(t) denotes the solution to (1.2) with initial value 1.) It follows from parts (c) and
(d) of the previous proposition that 1_pe K for all ne ¥. Moreover, if we fix b = -1, then £ is
simply v(1) = uy(1). Since uy(1) depends continuously on m, hence on 1M_y, it follows that
depends continuously on ¢. The corresponding statement about R x can be proved in the same way,

but in fact it follows from the statement about &. This completes the proof.

Remark 2.6. It is clear that spatial translation of ¢ does not change T*(¢), or whether ¢ is in A or
R.. The same is true if we multiply ¢ by the function exp(-ix-xg) for any xoe R". Indeed, by
multiplying ¢ by exp(iblx/?/4), translating by x¢, and then multiplying by exp(-iblx|2/4), one can
compute that if u(t) is the solution with initial value ¢, then w(t) is the solution with initial value

dexp(-ix-xg), where w(t,x) = exp(-ix-xq) exp(-itlxql?) u(t,x+2txo).

The results of this section show that studying the blow-up behavior of non-global solutions of
(1.1) and (1.2) is exactly equivalent to studying the long time asymptotic behavior of global
solutions whose initial values are in the set A. In particular, formula (2.4) shows how to translate

between blow-up rates and asymptotic decay rates.

3. Application to scattering theory. Scattering for equation (1.1) has already been studied by
Ginibre and Velo [7] and Y. Tsutsumi [26]. In particular, if A > 0, it is known that the scattering
operator is defined on the entire space X, and is continuous and surjective. If A <0, the scattering
operator is defined and continuous for small data in X.

In this section we show that the transformation (2.1) yields an explicit formula for the wave

operators, Wi(¢) = limi_,+.. S(-t)u(t). This simplifies and extends the existing theory in X. In

11



particular, if A <0, the wave operators each have unbounded domains, which raises the possibility,
as yet unresolved, that the scattering operator has an unbounded domain. Moreover, our arguments
work equally well in X or L2, and so we develop two parallel theories.

In addition to the notation of the previous section, we introduce the dilation operator Dg and the

multiplication operator My, defined respectively by
(Dpd)(x) = B20(Bx), (Mp$)(x) = ¢(x) exp (iblxI%/4), (3.1)
where Be R, B#0, and be R. Using the explicit kernel (1.3), one easily verifies that
S(t)Dg = DgS(B%), (3.2)
S(tMp = Mpja+onD1/1+oyS(/1+b1)), if t # —1/b. (3.3)

In fact, formula (3.3) simply expresses the invariance of solutions of (1.1) with A = 0 under the

transformation (2.1). Moreover, one can rewrite uy(t) using the operators Dg and My, as

up(t) = Myp+onDi/+byult/(1+bt)). (3.4)

Recall that 1+bt > 0 throughout the domain of definition of u,. We mention that in case t = —1/b,

formula (3.3) is replaced by
S(1/b)M_p = i™2MpDyparnF, if b20, (3.5)

where for convenience we have interchanged b and —b, and where ¥ denotes the Fourier transform,

Fow) = [ exp(=2mix-y)o(y) dy. (3.6)
Rn

12



Now we wish to calculate S(—t)uy(t), and for this we use (3.4), (3.3). and (3.2). (We set a =
b/(1+bt), and so a/(1-at) = b and 1/(1-at) = 1+bt.)

S(0up(t) = SOMu/1+byD1/1+byu(t/(1+bt))
= S(—)M, D11 +pryu(t/(1+bt))
MpD146eS (—t(1+bt)) D11 4bryu(t/(1+b1))
MpD 146D 1/(1+60)S (—t/(1+bt))u(t/(1+bt))
MpS(—t/(1+bt))u(t/(1+bt)). 3.7

Renaming uy, to be u, and hence changing u to u_y, in (3.7) gives

S(-tu(t) = MpS(—/(1+bt))u_p(t/(1+b1)), (3.8)

as long as t # —1/b. More precisely, if b > 0, then (3.8) is valid for all te (~1/b,e) for which
up(t/(1+bt)) is defined; and if b <0, then (3.8) is valid for all te (—eo,—1/b) for which u_y(t/(1+bt)) is
defined.

Theorem 3.1. Let ¢e X (respectively L2) with T*(¢) = o, and let u be the solution of (1.2) with
initial value ¢. The wave operator W (0) =gef X-lim;_..3(-t)u(t), (respectively L2-lim; S (—t)u(t)),

is defined if and only if ¢e K, and is given by the formula

WL (0) = i"F "M_yzu_yn(1/4m), (3.9)

where, by abuse of notation, u_4x(1/47) = lim;_,1/4x u_4n(t), (Which exists since ¢ X ). In
particular, ne X (respectively L2) is in the image of W, if and only if ,‘T_n € R,and W, : Rx >
Fl (Eé_x) (respectively R —» F -1 (_ﬁ_ )) is a bicontinuous bijection.

Let ¢e X (respectively L2) with T,(0) = —o, and let u be the solution of (1.2) with initial value
¢. The wave operator W_(¢) =ger X-lim—,_.S(-t)u(t), (respectively L2-lim_,_o.S(~t)u(t)), is defined

if and only if ¢e R, and is given by the formula
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W_(9) = i2F Mynusn(-1/4m), (3.10)

where, by abuse of notation, ugg(-1/41) = lim(—,_1/4x usr(t), (Which exists since oe i). In
particular, e X (respectively L2) is in the image of W_if and only if F'ne ®, and W_: R x —
F (Rx) (respectively R — F (R_)) is a bicontinuous bijection.

Proof. We give here the proof in X. To obtain the proof in L?, it suffices to replace X by L2
throughout the following argument.

Let ¢ X with T*(9) = oo, and let u be the solution of (1.2) with initial value ¢. If b > 0, then
u_p(s) is certainly defined for 0 < s < 1/b, and so formula (3.8) is certainly valid for all t > 0. If

0 R, then u_p(1/b) =gef limg_, 15 u_p(s) exists; and so

W) =get X-limiee S(-)u(t) = MpS(~1/b)u_p(1/b)

exists. Choosing b = 4n, we immediately deduce (3.9) from the (inverse of) formula (3.5). On the
other hand, if W.(¢) =ger X-lim, S(-t)u(t) is well-defined, then from (3.8) we see that
X-limg_, 16 u_p(s) exists. Thus T*(¢_p) > 1/b, and so ¢pe K.

Suppose 1 = W,(¢). Then 1 = i"2M_gru_sn(1/4m). It is clear that T, (uszn(1/47)) < —1/4n,
and so M_4ru_4n(1/41) € _17-(-_ Since multiplying an initial value by a constant of modulus 1 has the
same effect on the entire solution, it follows that ¥ n e 9—(, On the other hand, if Fn e ﬁ_ then
T,(M4zF M) < -1/4n. We let v(t) be the solution of (1.1) with v(0) = MyzF 1, and we set ¢ =
i™2Mynv(-1/47). Since T*(v(~1/47)) > 1/4m, it follows that ¢ R.. Also, i™?u_4n(1/47) is none
other than v(0), which shows that 1 = i"2F "M_4mu_sz(1/47), i.e. N = W.(4).

Continuity of W, and its inverse follows from the continuous dependence properties of
solutions to (1.1).

The proof of the corresponding facts for W_ is entirely analagous.

Corollary 3.2. F'W_FW,: Rx — Rx (respectively R — R) is the identity mapping.
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Proof. This is an immediate consequence of formulas (3.9) and (3.10).

Remark 3.3. The scattering operator W.(W_)"! in X is a continuous bijection from W_(R x N
ix) onto W (Rx N E{Zx). We have already seen that X x and _‘ix are each unbounded in X. It
would be very interesting to know, in the case A < 0, if in fact Rx N Rx is also unbounded. (See
Proposition 4.10 - part (d) - below for a condition which implies that R x N 'J_{x is indeed
unbounded.) Of course, if A > 0, then R x = X, as we have already remarked just before

Proposition 2.3.

In view of the above results, it would certainly be interesting to give an independent
characterization of the set F (R x)when A < 0. The following result is a step in that direction, and

we find its proof at least as interesting as the result itself.

Proposition 3.4. If A <0, then F (Rx)is not a subset of Rx, and F (R )is not a subset of R..

Proof. We first derive a formula involving the Fourier transform. From the definition of S(t) in

terms of the Fourier transform, we know that

S®) = F Mg (3.11)

Formula (3.11) with t = 1/4n and formula (3.5) with b = 4% combine to give

V2Mgn FMar FMan F ' = identity. (3.12)

Now we assume to the contrary that  (Rx)< Rx. We clearly also have ! (R x)c Rx; and
soin fact F (Rx)= Rx. Let ¢e Rx. Since F,F ', and Myy all preserve Rx , it follows that y =gef
™2 F Mgr F ManF ~'0 € Rx. In other words, every ¢pe Rx is of the form Myny for some ye R..
This is clearly false since M_4 does not preserve R x. (That M_4x does not preserve R x follows
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since if A < 0, there exist non-global solutions, and N is non-empty. This is well-known; and we

will recall the proof in the next section.) The proof in L2 is the same.

4. Energy and blow up. With the exception of Proposition 4.9 below, throughout this section
we consider solutions to (1.1) only in the space X. Also, we assume that A < 0, and to simplify the
formulas, that A = —1. Let ¢€ X and u(t) the resulting solution of (1.1) with u(0) = ¢. We continue
with the same notation defined by (2.1), (2.2), and (3.1).

It follows easily from the conservation laws (1.7), (1.8), and (1.9) that
Iku@IB = Ixolly + 4tF(@) + 82E(}) (4.1)
throughout the entire trajectory. This law gives the standard proof of the existence of non-global
solutions: indeed, if the quadratic polynomial on the right side of (4.1) is ever negative, which

occurs if for example E(¢) < 0, then the solution u(t) must blow up before it reaches that point. (See

Glassey [10].) Also, the law (4.1) immediately gives a necessary criterion for a function ¢ to be in

R.

Proposition 4.1. If € X x is not identically zero, then E(¢) > 0.

Proof. From the inequality (Weinstein [29], page 573) Ilwllg < 2/m)IVylialixyll; and the
conservation law (1.6), it follows that HVu(t)II%Z (n2/4)ll¢lli/|lxu(t)llg. If now we also assume that
T*(¢) = o and E(¢) =0, then (2/(y+2))nu(t)|q3 > (n2/4)lII2/[1Ix¢I2 + 4tF(9)]. In particular,

. 2
lim infi e (1+DIWOI, > O,

and so u(t) is not rapidly decaying.
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It turns out that the polynomial in (4.1) is of interest even for values of t at which the solution

u(t) is not defined. Thus, for ¢e X, we define the associated polynomial P[9](t) by
Plo](t) = nx¢u§ + 4tF(0) + 8t2E(¢). (4.2)

We note that F(§) = -F(¢), and so P[¢](t) = P[¢](-t). Also, one naturally wonders how this

polynomial changes when ¢ is replaced by ¢y,. Routine calculations show that

F(9w) = F(®) + 2ol , (43)

and

E@w = E@) + 2F@) + Sl = Epio1d), (4.4)

where of course the very last equality above only holds for b # 0. From (4.3) and (4.4), it is a

simple matter to verify that

P[ou](t) = (1+tb)2lIx¢IZ + 4t(1+tb)F(9) + 8t2E(9), (4.5)
P0u](®) = (1+tb)?P[0)(Trp), if t = ~1/b, (4.6)
PI0ul(-1/b) = E(0). @7

We immediately deduce the following consequences.

Proposition 4.2. If ¢e X, not identically zero, is such that ¢pe R_for all be R, then P[¢](t) > 0
for all te R.

Proof. Since ¢pe R x it follows from Proposition 4.1 that E(¢p) > 0. Since P[$](0) > O, the result

now follows from the right most part of (4.4).

This result is interesting in that the hypothesis seemingly concerns only the forward asymptotic

behavior of solutions, yet implies something about the associated polynomial for all real t. Since
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P[](t) = P[¢](-t), one is led to ask if the condition "¢ X is such that ¢pe K for all be R" is
equivalent to the same condition for . (See Proposition 4.10 - part (d) - below for a condition

which implies just that, at least for radially symmetric functions ¢.)

Proposition 4.3. (a) Let ¢e Ax, and let b <0. Then leub(t)llg — 0 as t = T*(¢yp) if and only if
E(9) = 0.

(b) Let ¢e By and let b = 1/T*(¢), the unique real number such that ¢ppe NA'. Then leu(t)ll% — 0 as
t — T*(¢) if and only if E(¢p) = 0.

Proof. In view of Proposition 2.3, the two statements are equivalent, and so we prove (a). Since

oe N'x, we know that T*(¢p) = —1/b. The result is now an immediate consequence of (4.5).

Proposition 4.4. (a) Let ¢ A x be such that F(¢) = 0 and E(¢) = 0, and let b < 0. Then there

exists a positive number C such that
IVup@®IZ > CT*(0p) - 2. 4.8)

(b) Let ¢ Bx and let b = 1/T*(¢), the unique real number such that ¢pe AL, If F(dp) = E(dp) = 0,

then there exists a positive number C such that
IVu@®)liZ > C(T*(9) - )2 (4.9)

Proof. As in the previous proposition, the two statements are equivalent, and again we prove (a).

We start by repeating the proof of Proposition 4.1, using uy in place of u. This gives
2 (2 2 2
IVup(®)I; 2 (n“/H)lidll/lIxup(DIL; .

Since T*(¢yp) = —1/b, it follows from (4.5) that
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Ixup(®IZ = (T*(@p) — DXOWIZT*(0p)2,
from which the result follows.

Note that Proposition 4.4 gives a sufficient condition under which the lower blow-up estimate

(1.10) can be significantly improved.
Proposition 4.5. A(x # Nx.

Proof. We observe first that if ¢ and ¢ both belong to A'x, then T*(dp) = oo for all b > 0 and
T4 (dp) = —oo for all b < 0. Therefore, E(¢p) 2 0 for all be R.

Now choose ye X with E(y) < 0. Clearly T*(y) < oo, and so there exists a unique b > 0 such
that ype Nx. If also yye _ﬂx, then by the observation just above, we would have E(y) = E((Wp).p)
> (0. Thus, ype Nx, but ype Nx.

Next we show that the continuity properties of the blow-up time T* are strongly related to the
structure of the set A'x. By Theorem A, T*: X — (0,e] is lower semicontinuous. Moreover, it is
not continuous. Indeed, if e X has small L2 norm then by Theorem A, T*(¢) = . Furthermore,
an example of Weinstein [30], which we will discuss below in more detail, shows that there exists
¢ By of minimal L2 norm. Clearly, T* is not continuous at such a ¢. On the other hand, one might

hope that T*: Bx — (0,%), or perhaps T*: Bx U N'x — (0,], is continuous.
Theorem 4.6. (a) Let B be a closed ball in X such that W = B n Ax is closed. Then
T*: UpeR[MpW] = (0,00] is continuous. Furthermore, the rate of blow up is continuous in the

following sense. Let ¢y — ¢ in X as k — oo, where ¢, ¢ € Ub<o[MpW]; and let ug and u denote

the solutions of (1.1) with initial values ¢x and ¢ respectively. Then for all te (0,T*(¢)),

IVu(T*(03) — OIE = IVu(T*(9) — Il (4.10)
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as k — oo,

(b) Suppose N x is closed. Let m > 0 be arbitrary but fixed, and denote by A/, the closed set
{¢e Alx : F(¢) 2 -m}. Then T*: UpeRr [Mp(A(m)] = (0,e<] is continuous; in particular, T* is
continuous on the open set {¢0e X : T*(¢) < e and P[9](t) < O for some t > 0}. Moreover, the rate
of blow up is continuous on Ug [Mp(ANm)] in the sense described in statement (a).

(c) On the other hand, suppose ¢y is a sequence in Nx, ¢x — ¢ in X, but ¢ A'x. Then T*(9) < oo,
and T*: Uper [Mp(Nx)] = (0,0°] is discontinuous at ¢y, for all b < 1/T*(¢), i.e. for all be R such
that T*(dy) < oo.

Proof. (a) Let ¢x, 9 € W, and let by, be R, such that (0b, = ¢vin X, as k — e, By parts
(b) and (c) of Proposition 2.3 , we need to show that by — b as k — . Multiplying by
exp(-iblx|%/4), we may assume b = 0. Thus, (¢)b, — ¢ in X. We observe next that the sequence by
is bounded. Indeed, the sequence ¢y is bounded in X, as well as bounded away from 0 in X (since
small data are in & x); and so if (a subsequence of) by is unbounded, it follows easily that
lIV(¢k)bkll§ is unbounded. This contradicts the assumption that (¢x)p, — ¢ in X.

Since the sequence by is bounded, we may assume, by passing to a subsequence, that by — c.
We must show that ¢ = 0, independent of the subsequence. Since (¢x)p, — ¢ in X, it follows that
0x = ¢_ in X. Moreover, since ¢xe W and W is closed, we see that ¢_. e W c N'x. However,
de W < Nx; and thus by Proposition 2.3, ¢ = 0.

Next suppose ¢y — ¢ in X as k — oo, where ¢y, ¢ € Up<o[MpW]; and let uy and u denote the
solutions of (1.1) with initial values ¢x and ¢ respectively. Let 0 <t < T*(¢). By what we have just
proved, it follows that T*(¢y) — t converges to T*(¢) — t as k = oo. Now 0 < T*(¢) —t < T*(¢), and
so there exists T > 0 such that T*(¢y) —t € [0,T] for sufficiently large k. Moreover, by statement
(x) of Theorem A, we know that Vuy — Vu in C([0,T],L?). It follows ;hat Vup(T*(dy) - t) =
Vu(T*(¢) —t) in L2 as k — o, which in particular implies (4.10).

(b) We begin with the same proof as in part (a), with W replaced by A m. However, we need a
different argument to show that the sequence by is bounded. Since (¢x)n, — ¢ in X, where ¢x and ¢
are all in Ak, lower semicontinuity of T* implies that lim infy_,.. by 2 0. Thus, if the bx do not

form a bounded sequence, we may pass to a subsequence and assume that by — +eo. Next, formula
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(4.4), first with b replaced by by and ¢ replaced by ¢x, and then with b replaced by by and ¢
replaced by (Ox)y, , gives respectively

E(00y,) = E@) + (BW/2F(@0 + (b/8)lixoyl.
E@0 = E(0Wy,) — (bw2)F((0n,) + (b/8)lx(@n, 2.

Adding these two formulas, and noting ||x¢k||§ = IIx(¢k)bklI§, we see that

(BFIxGIb 2 = Br/2)[-F@0 + F(@s)] < (bw2)[m +F(@ww)].  (4.11)

Since F is continuous on X and since (¢)b, = ¢ in X, it follows that F((¢x)p,) and IIx(q)k)bkllg
converge as k — e, Thus, (4.11) implies that the by form a bounded sequence. We then continue
with the proof exactly as in part (a).

Finally, we show that if T*(¢) < e and P[¢](t) < O for some t > 0, then ¢pe Up<o[Mp(No)]. Let
b = 1/T*(¢), so dpe N'x. We need to show that F(¢p) 2 0. By (4.6) P[0p](t) < O for some te R;
and since T*(dp) = o, this can happen only for negative t. It follows that the polynomial P[¢y](t) is
non-decreasing for t 2 0, and so its derivative at t = 0 is non-negative. In other words, F(¢y) 2 0.
(c) Suppose ¢ is a sequence in Ax, 0x — ¢ in X, but ¢ Ax. Since R is open, 6 Rx; and so
o€ Bx. If 0 <b < 1/T*(), then T*((dx)b) = oo, but T*(dp) < oo, so T* is discontinuous at ¢y. If b <
0, then T*((dp)p) = —1/b, but T*(dy) < —1/b, so again T* is discontinuous at ¢y,

It is well-known that (1.1) admits a family of standing wave solutions of the form u(t,x) =
y(x)exp(iot), where ® > 0. For a solution u of this form the function y must satisfy the semilinear

elliptic problem
Ay — oy + lyMy = 0. (4.12)

The reader can consult [1,2,3,11,20,25] for a rather complete accounting of the existence of such

standing waves. (One can easily show that H! solutions of (4.12) are in X, although we are not sure
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if this result appears in the literature.) We note in passing that for different values of the parameter
©, the corresponding stationary functions y are related by a dilation of the form (3.1) with B = w!/2,
One observation which can be made immediately is that a standing wave solution is global in both
directions; and since leu(t)llg is constant, it follows that F(y) = E(y) = 0. In particular, ye N'x N
E[x . By Propositions 4.3 and 4.4, this gives a whole family of non-global solutions such that
leu(t)ll% — 0 as t approaches the blow-up time, and which satisfy the estimate (4.9) as well. In fact,
since IIWexp(i(ot)ll;(:; is constant, it follows from (2.4) that the corresponding non-global solution
satisfies IVu(t)lZ = C(T*(¢) - t)2 at blow up.

Of particular interest are the ground state solutions, i.e. radially symmetric standing wave
solutions for which y(x) >0 on R™ For a fixed value of ® > 0, such a solution is unique. (See
McLeod and Serrin [19] and Kwong [13].) Since the dilation transformation (3.1) preserves the 1.2
norm, all the ground state solutions (for different values of ®) have the same L2 norm, which we
denote by G. It is known (Weinstein [29]) that if lipll; < G, then T*(9) = e=. Since, lidplly = lipyll; for
all real b, it follows from Proposition 2.3 that if li¢ll; < G, then ¢ R N 'J_( Moreover, starting from
the ground state solution, yexp(iwt), the solution with initial value Wy, with b < 0, blows up in finite
time and has L? norm equal to G. (This example first appeared in Weinstein [30].) In addition,
Weinstein has proved the following theorem concerning non-global solutions to (1.1) whose L2

norm is equal to G.

Theorem B. (Weinstein [30], Theorem 1, page 553.) Let ¢e H! such that T*(9) < e, and
suppose that ll¢ll; = G. Let u(t) be the solution of (1.1) with initial value ¢. Let y be the ground
state solution of (4.12) with @ = 1. Set B(t) = IVyllp/IIVu(t)ll;. Then, there are functions y(t)e R"

and a(t)e R such that as t — T*(¢), Dgu(t,s + y(1))e'*® tends strongly in H! to .

As we have just observed, the example given by multiplying the ground state by exp iblxI%/4, for
some b < 0, blows up at the rate lIVu(t)II% X C(T*(¢) - t)2. For any non-global solution satisfying
the hypotheses of Weinstein's theorem, we can show at least that the lower bound (1.10) is not

sharp.
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Proposition 4.7. Suppose ¢ satisfies the hypotheses of Theorem B. Then,

Lim,_y(o) (T*(@) = 1) IVu(®)IlZ = oo, (4.13)

Proof. For notational convenience, we let v(t) = Dgpu(t,s + y(t))el®Y, as in the statement of

Theorem B. On the one hand, we clearly have

T*u(®) = T*9) -,
THu(t: +y(®) = TH®) -,

T*Dpgutt, +y(1)) = (T*©) - /B,

THV(®) = (T*(®) - 0/B? = IVu®IXT*(9) — IV,

On the other hand, since v(t) — vy in Hlast — T*(9), and since T*(y) = s, it follows from
statement (x) of Theorem A (continuous dependence) that T*(v(t)) — e as t — T*(¢). This proves

the result.

In addition, if there is an example of blow up which satisfies the hypotheses of Weinstein's

theorem, and which is not the same as the example already noted, it has a rather interesting feature.

Proposition 4.8. Let ¢e X satisfy the hypotheses of Theorem B. Suppose that ¢y, where b =
1/T*(¢) is the unique real number such that o€ Al is not a solution of (4.12). Then qu(t)ll% does

not converge to 0 as t = T*(¢).

Proof. By Proposition 4.3, it suffices to show that E(¢p) # 0. Suppose to the contrary that E(¢p) =
0. We repeat part of the proof of Theorem B in [30]; and we refer the reader to that proof to fill in
the details of our argument. Since lippll; = G, and since E(y) = 0 for all ye H! with Ihyll, =G, it
follows that ¢y, is a minimizer for the energy functional E on {ye H': Ilyll, = G}. As a minimizer, it
satifies the Euler-Lagrange equation, which is precisely (4.12). This contradicts the assumption that

Op does not satisfy (4.12).
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In two recent papers, Merle and Tsutsumi [23] and Tsutsumi [28] show that for radially
symmetric non-global H! solutions of (1.1), there is a certain amount of L2 concentration at blow
up, i.e. forall R >0, lim inf_,7+() “u(t)”Lz(lxI <R) > G. It follows that if y is a weak L2 limit point
of u(t) as t — T*(9), then ll\;fll% < II¢II§ — G2. The next proposition generalizes this last result to

arbitrary L2 non-global solutions.

Proposition 4.9. There exists p > 0 such that Il\yllg < Ilcj)lb2 — p? whenever 6e L2, T*(¢) < oo,

and y is a weak limit point of the resulting solution u(t) of (1.2) as t — T*(¢).

Proof. By Proposition 1 in [5], there exists & > 0 such that if IIS(»)&IIL}‘,,Z OLH2) < §, then T*()
> 1. Applying this to an arbitrary point in the trajectory u(t), we see that for all te [0,T*(¢)),

IS pi2g T gy L142) 2 O

Also, it is well known [9,12,5] that ”S(')é”LY“z(O,oo;LY*z) <KIll,. Thus, for any ye L2,

5

IA

HSC)(u(t) - W)”LY’“Z(O,T*((D)—t,LY'*z) + |IS(‘)WI|LY+2((),T*(¢)_LL‘Y+2)

IA

Kllu(t) =Wl + ISOWI 12 (g 1142y

and so lim inf_,+(g) llu(t) — \|!||§ > (8/K)2. Now suppose that u(ty) converges weakly to y in L2,

where ty — T*(¢). The result follows easily by multiplying out llu(ty) — wﬂ% and passing to the limit.

Finally, we indulge in some speculation. The proof of the existence of non-global solutions to
(1.2) formally suggests that leu(t)llg converges to zero at the blow-up time. This is clearly not true
in general: it suffices to translate spatially any non-global solution, so at least either the original or
the translated solution will fail to satisfy this condition. Moreover, Merle [22] has recently given an
example of a non-global solution, none of whose translates verifies leu(t)llg — 0 as t approaches

blow-up time. However, it seems to be an open question as to whether or not every radially
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symmetric non-global solution has this property. (See [14,16,17,18,21,24] for additional recent
work on blow up for equation (1.1).) Note that Proposition 4.8 shows that any radially symmetric
solution in X satisfying the hypotheses of Theorem B, other than the example discussed above, fails
to have this property. However, it is not clear if such a solution exists. Thus, we are led to the

following conjecture.

Conjecture I : 1f ¢pe X is radially symmetric and T*(¢) < oo, then IIxu(t)II% — 0ast— T*(¢). In
other words, T*(¢) < o if and only if P[$](t) has a positive zero, and T*(¢) is the smallest positive

zero of P[](t).

Although we are not yet able to prove (or disprove) this conjecture, it is amusing to look at some
of its immediate consequences. First we establish some notation. X4 denotes the set of radially
symmetric functions in X; Rrad = R N Xrads Noad = NN Xrag, and Bag = B M Xpaq. Recall
that by Proposition 2.3, Bag = Ub<ol Mb(Nrad)]-

Proposition 4.10. Suppose Conjecture I is correct.

(@) Aiaq = {0€Xraq : ¢ is not identically zero, E(¢) = 0 and F(¢) = 0}.

(0) Alrag N Niad = {0€ Xraa : ¢ is not identically zero, E(¢) = 0 and F(¢) = 0).

(€) Rrad = {¢€Xraq: E(0) >0 and P[¢](t) >Oforall t 20} U {¢ =0}.

(d) Rirad O Reag = (06 Xpaa: E(9) > 0and P[9](t) > O for all te R} U {$ =0} = (9€Xraa: ove R
for all be R}. This set is unbounded in X;.4. In particular, the scattering operator is defined on an
unbounded set.

(€) T*: Uper [Mb(ANrad)] = (0,00] is continuous; in particular T*: Brag U N rad = (0,0] is
continuous. (Note that Brag U N raq is an Xag-closed set since its complement R ;.4 is open.)
Moreover, the rate of blow up is continuous on B,4 in the sense described in Theorem 4.6.

(f) T*: X,aq = (0,00] is discontinuous precisely on {¢p : ¢ is not identically zero, E(¢) = F(¢) =0,
and b <0} = {0p:0€ Naa N 9—\[rad, and b < 0}. Moreover, T*(y) = o= for some Y& X4

arbitrarily close to such a Qp.
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Proof. (a) Suppose ¢ N ;ag. It follows from Proposition 4.3 and Conjecture I that E(¢) = 0.
Also, we clearly must have F(¢) 2 0, since if F(¢) <0, then P[¢](t) will be negative for large t, and
$0 T*(¢) < oo. On the other hand, if ¢ X,q is not identically zero, and E(¢) = 0 and F(¢) > 0, then
by Proposition 4.1, ¢& R. Moreover, P[¢](t) > O for all t > 0. Therefore, if T*(¢) < oo, then
IIxu(t)II% cannot tend to zero at blow-up time, which violates Conjecture 1. Thus, ¢€ Naq.
(b) This is an immediate consequence of statement (a), applied to both forward and backward
solutions.
(¢) Clearly R a4 © {¢€ X1ad : E(0) > 0 and P[¢](t) >0 for all t > 0} U {¢ =0}. On the other
hand, if ¢€ X ,q and P[¢](t) > O for all t 2 0, then by Conjecture I, T*(¢) = . Furthermore, if
E(¢) > 0, then by statement (a), ¢& Nraq; and so O€ R raq.
(d) The first equality is a consequence of statement (c) applied to both forward and backward
solutions. For the second equality, we have already seen in Propositions 4.1 and 4.2 that if de X, .4
is not identically zero and ¢ne R_ for all be R, then E(¢) > 0 and P[¢](t) > O for all te R. Suppose
instead that ¢e X .4, E(¢) > 0, and P[9](t) > O for all te R. It follows from (4.6) and (4.7) that
P[¢p](t) > O for all real t and all real b. Moreover, by (4.4) E(¢p) > O for all real b. It now follows
from statement (c) that ¢pe R for all be R. That this set is unbounded is easy to see since it includes
{d€ X;aq : E(9) > 0 and F(¢) = 0}. See Remark 3.3 to see how this applies to the scattering
operator.
(e) This is an immediate consequence of part (a) above and Theorem 4.6, part (b), applied just to
radially symmetric functions.
(f) We recall first that T* is certainly continuous on the open set & 1,4, since it is identically oo there.
Furthermore, if ¢pe X;,q is not identically zero, E(¢) = 0, F(¢) > 0, (and b < 0), we claim that ¢y, is in
the interior of Uper [Mb(A rad)], and so T* is continuous there. To prove the claim it suffices to
consider b = 0. We must show that if y is sufficiently close to ¢, then Ye Upe R [Mbp(Nrad)]. Since
E(¢) = 0 and F(¢) > 0, it follows that P[$](t) < O for large negative t. If y is close to ¢ in X, the
same must be true for P[y](t). By Propositions 4.2 and 2.3, ype Arad for some real b. This proves
the claim.

Next we consider ¢e X;a4, not identically zero, such that E(¢p) = F(¢) = 0; and so T*(¢) = e=. If

& = ¢ in Xaq, then each ¢y is either in & rag, in which case T*(¢y) = oo, or in Brag U N rad, in which
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case T*(¢x) — oo by statement (f). Finally, if ¢ is not identically zero, E(¢) = 0, F(¢) = 0, and b <
0, then T*(¢p) = —1/b. However, there exists y arbitrarily close to ¢ in X4 such that E(y) > 0 and
F(y) = 0. (Indeed, let y = (1-€)¢.) By statement (d), ype R fof all real b, and in particular all b <
0. Since yy is arbitrarily close to ¢y, and since T*(y,) = oo, it follows that T* is not continuous at

Oy.

In particular, the above proposition shows (assuming Conjecture I) that the initial values in X ,q
which lead to 'stable’ blow up, i.e. such that nearby initial values also lead to blow up and at
approximately the same time, are precisely those functions of the form ¢, where ¢ is not identically
zero, E(¢) = 0, F(¢) > 0, and b < 0. Moreover, (still assuming Conjecture I) the non-global
solutions described in Proposition 4.4 are precisely those which exhibit unstable blow up, as
described in statement (f) of the proposition. Thus, any properties of such unstable blow up might
be hard to observe with numerical calculations. In particular, if we further conjecture that the blow-
up rate given by (4.9) is unique to unstable blow up, this explains why such a blow-up rate has not
been numerically observed. (See Section 6 in [15].)

There is another conjecture which has a bearing on these questions.

Conjecture Il : F (Nx) € Nx , orless generally F (Nad) © Norad.

(We use the Fourier transform as defined by (3.6).) One asks immediately why this is a reasonable
conjecture, and, if true, of what interest it would be. The second question is easier to answer.
Indeed, Conjecture II implies that Conjecture I is false. To see this (or rather its contrapositive), it
suffices to exhibit ¢e X;aq such that E(¢) = 0, F(¢) 2 0, and E(F ¢) # 0. Then ¢e A;aq by statement
(a) of Proposition 4.10, but F ¢ cannot be in 9_\(,ad, also by statement (a) of Proposition 4.10. (We
will exhibit such a ¢: see property (Pp) below.) Moreover, if Conjecture II is true, it seems likely
that also F (Rx) € ®Rx. This would provide new sufficient conditions for blow up: for example,
if E(F ¢) <0, then T*(¢) < eo.

As to whether or not this conjecture is plausible, we explain first that we came to it via the

considerations in Sections 2 and 3 of this paper. For example, A (as well as R ) is invariant under
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both spatial translations and multiplication by exp(ix-Xo), which certainly is suggestive of the
Fourier transform. Moreover, the Fourier transform enters into the scattering theory for (1.1) in a
somewhat surprising way; and Proposition 3.4 (whose negation was our first version of Conjecture
IT) and its proof hint at something else.

Perhaps more convincingly, however, Conjecture II is in fact true for a significant class of
functions in A'x. First of all, if ¢e Ax is a (real) eigenfunction of F, then certainly F ¢e Nx. In
addition, if ¢ = k exp(—cnix[2), where Re ¢ > 0, then F = (c/ Ic)¥?Dy;c(§). Since the dilation
operators Dg and multiplication by a constant of modulus 1 both preserve R[x, it follows that if
o€ N x, then F dpe ﬂx. More generally, functions ¢e X such that F ¢ = aDgd for some oe C of
modulus 1 and some B > 0 clearly satisfy Conjecture II, i.e. if such a ¢ is in Ak, then F ¢e 57_\[)(.
This class of functions contains certain complex polynomials multiplied by complex exponentials,
but it is not clear if its intersection with N;44 is in fact dense in Apag.

If we take the point of view that Conjecture I is false, Conjecture II suggests a good place to
look for a counter example: we look for an element ¢ of N rad Which does not satisfy F ¢ = aDBJ)_ as
described above, and in particular such that E(¢) = 0, F(¢) =2 0, and E(F ¢) # 0. However, since if
Conjecture 1 is false, it is not completely clear when such a function is in A(;a4, and since Apq is an
unstable set, we need to be a little more clever. We are looking here for an initial value ¢ for a
numerical experiment which would provide strong evidence for or against Conjecture I (and II).

Let ¢e X,4 be such that F(¢) = 0, (for example if ¢ is real valued). If k > 0, then by (4.4)
E(koy) = K2{(1/2)IVOIZ + ®Z/8)lIxolZ} — {kY+2/(y+2)II¢|IYy:§} . (4.14)

Thus, the condition E(kdy) = O determines a one-to-one correspondence between k > 0 and b > 0.

Suppose for all b > 0 that ¢ has the following property:
(Pp) If E(kop) =0, then E(kF (¢p)) #0.

We consider the solutions to (1.1) starting from two specific initial values. For the first of these two

initial values we take k¢, where k is chosen sufficiently large that E(k¢) < 0. Such a k is now fixed,
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and we describe the second inital value as follows. Let b > 0 be the unique positive number such

that E(k¢p) = 0. (Note that F(k¢yp) > 0.) Let y = aDgF (¢p), where a is a complex number of
modulus 1 and B > 0. (We are free to choose such o and B as we like.) Property (P,) implies that
E(ky) # 0. We take ky_y, as the second inital value. Let u(t) and v(t) denote the solutions to (1.1)
with these respective initial values.

Suppose first that Conjecture 1 is correct. Then kdpe Nrag and leu(t)ll% — 0 at blow up. Also,
if T*(ky_p) <O, then Iva(t)Il% — 0 at blow up.

Suppose next that Conjecture II is correct. If llxu(t)llg — 0 at blow up, then kdpe N ;ad, and so
F (k) € Nzag. Therefore kye Nrag, and T*(ky_y) < e. Since E(ky) # 0, it follows that lixv()I
does not converge to 0 at blow up.

In other words, if one of qu(t)ll% and Iva(t)II% does not converge to 0 at blow up, then certainly
Conjecture 1 is false, and there is some evidence for the truth of Conjecture II. If both leu(t)llf and
|va(t)||§ converge to 0 at blow up, then certainly Conjecture II is false, and there is some evidence
(rather strong we feel) for the truth of Conjecture 1.

More specifically now, let ¢(x) = IxI2exp(-anix|?), where a > 0 is fixed. Then ¢4np(x) =
IxI2exp(—cmix/2) and

[F damp] (%) = < V2[(1x1?/c?) - (n/27c) Jexp(=mixI?/c),

where ¢ = a —ib. First taking the complex conjugate, then applying the dilation operator Dy, and

finally multiplying by (¢ /lch®™2*2, we arrive at

y(x) = [xI? - (n2nc)]exp(—cmixi?),
Ymb(X) = [ — (n/2nc)Jexp(-anix[?).

We note in passing that if k > 0, and thus also b > 0, are large, then Y_4np is close in X to ¢; and so
E(kd) < 0 will imply E(ky_4znp) < 0. Thus, even in the case where Conjecture I is correct, v(t) will
necessarily blow up in finite time.

It remains to investigate property (Py) for this choice of ¢. Since E(kF ¢4np) = 0 if and only if

E(ky) = 0, we see that (P4np) holds precisely when
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Iyl IVyii2

" , 4.15)
ncpujji an22Ixl2 + IV QI3

where we have used (4.14). Since

Vy(x) = (-2rclxi? + n + 2)x-exp(—cmix/?),

IV = 4n2b2lixol; + IVOIE — 4mnaligl + n2il o/ix! 12,

the right side of (4.15) is given by

n21¢/(x I — 4nnallgl2

1+
4r2b2Ux I3 + IV 112

Moreover,
n? — 4manix/? ]1+(7/2)
4n2(aZ+b?) :

| k2 — (n/2me) P2 = [ixi4 +
In particular, if yis an even integer (i.e. if n = 1 or 2), then the left side of (4.15) is a polynomial in
(a2+b2)-1 of degree at least two. Therefore, (Py) holds except at perhaps a finite number of values
of b. For higher dimensions, the left side of (4.15) always converges to 1 as b — «~. However,
subtracting 1 from both sides of (4.15), multiplying by b2, and letting b — o, we obtain different
limits for the two sides of (4.15). Therefore, (Py) holds for b sufficiently large.
Thus, at least if n = 1 or 2, the initial values kix?exp(-anix/?) and k[IxI2 — (n/2rc)]exp(-amix/?),
where k is large, b is determined by the condition E(kdp) = 0, and ¢ = a — ib, provide a good test of

Conjectures I and II. (The possible values where (P,) might fail will be avoided with probability

one.)
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