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DYNAMICS OF MEASURED VALUED
SOLUTIONS TO A BACKWARD-FORWARD
HEAT EQUATION*

M. SLEMRODY

Abstract. This paper examines the asymptotic behavior of measure valued solutions to the initial
value problem for the nonlinear heat conduction equation

%::Voq(Vu), z€N, t>0
ot
in a bounded domain © C RY with boundary condtions of the form
u=00n8Q or q(Vu)-n=0ondN.
In particular, use of the Young measure representation of composite weak limits allows proof of a general
trend to equilibrium. No linearity or monotonicity is assumed for q; the only major restriction on q is that

it satisfies the Fourier inequality q(\) - A > 0 for all A € RY. Applications are given to problems where q
is not monotone.

0. Introduction. The purpose of this paper is to investigate the dynamics of the
heat conduction equation

%zV-q(Vu) t€N, t>0 (0.1)

in a bounded domain @ C R¥. The boundary 9 of Q is assumed to be smooth. On 9
impose either homogeneous Dirichlet boundary values

u=0 on 092, t>0 (0.2)
or no flux insulated boundary values
q(Vu) n=0 on 09Q,t>0 (0.3)

where n(z) denotes the exterior unit normal at z € 9. Also u will satisfy the initial
condition

u(z,0) = up(z), z €. (0.4)

For convenience call system (0.1), (0.2), (0.4) Pp and call (0.1), (0.3), (0.4) Px.
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The main interest of this paper is that q will only be assumed to satisfy smoothness
and growth conditions and Fourier’s inequality

A-q(X) > 0. (0.5)

No monotonicity requirements such as (q(A;) —q(A2)) - (A — Ag) > 0 for A, Ay € RN will
be imposed.

Inequality (0.5) is consistent with classical Clausius-Duhem inequality (Truesdell, 1984,
p. 116). For example when N = 1 the Fourier inequality says ¢ must have its graph in
the first and third quadrants. Thus (0.5) does not preclude ¢' being negative for values of
A, A # 0. In such cases (0.1) becomes a backwards-forwards heat equation. Examples of
two such possibilities are given in Figure 1 and 2.

Other assumptions on q are that
(i) qis (at least) a continuous map : RY — R satisfying growth conditions
(if)
[aM) <ea(l+ A7), 1<y<2 (0.6)
(iii)
ca|AF =5 < A~ q(N)| (0.7)

for all A € RY; here ¢;, 3, c3 are positive constants.
(iv) q is the gradient of a C'(R";R) potential ®, i.e.

q(A) = V&(\) (0.8)

for all A € RV,
(v)
def N
ker{X- a0} € RV A - q(0) = 0)
C{Ne RN\ < po} forsome py > 0. (0.9)

We note that in the case N =1 equation (0.1) becomes

which was studied by Hollig (1983) and Hollig and Nohel (1983). In his paper Hollig

showed that if ¢ was piecewise affine then weak solutions exist to the Neumann problem
associated with (0.10).



The approach taken here is in no sense as subtle as Hollig’s. In fact it is rather
straightforward and physically natural. First imbed Pp, or Py respectively in the singularly
perturbed systems

5@’? _ V. (q(Vu)) - Ay, zeQt>0, >0, (0.11)
with boundary conditions
u=0,Au*=0 on 0, t>0 (0.12)
or P
q(Vu®) - n=0, E(Auf) =0 on 09, t>0, (0.13)
1
and initial data
u(z,0) = uo(z). (0.14)

System (0.11), (0.12), (0.14) is termed Pp  while system (0.11), (0.13), (0.14) is termed
Py . The regularization (0.11) is not ad hoc and is in fact based on a higher order theory
of heat conduction due to J. C. Maxwell (1876, eqns. (53), (54)); see also Truesdell and
Noll (1965, p. 514).

Problems Pp . and Py . admit two natural “energy” estimates which motivate an
attempt to pass to a weak limit as e — 01 and hence obtain a weak solution of Pp and
Pyn. Unfortunately the presence of the nonlinear terms q(Vu€) prevents the success of
this venture. However in the spirit of the work of L. Tartar (1979, 1982) and later work
of R. DiPerna (1983 a, b, ¢, 1985), M. Schonbek (1982), and R. DiPerna and A. Majda

(1987a, b) the following information on the sequence {q(Vu€)} is known. Namely if for
0<T < oo,

Vut - Vu in L*Qr),

Qr = (0,T) x Q, where — denotes weak convergence then for ¢ continuous satisfying
growth condition (0.5) there is a subsequence {Vu} so that

Q(Vuek) - (Q(/\)7Vz,t()‘)>

weakly in L'(Qr) for a probability measure Vg t(A),

(@m0 = [ a0

and v is called a Young measure.

The above representation of weak limits of q(Vu®) permits a passage to weak limits
in Pp . and Py . These limits satisfy a measure theoretic version of Pp and Py and the
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associated % is called a “measure valued” solution of Pp or Py (in the sense of DiPerna
(1985)). The function % lies in L>((0, 00); V) when V = Hg(Q) for Pp and H'(2) for Py.
Moreover it inherits a natural “energy” inequality from the regularized problems Pp . and
Py . This inequality can be exploited to establish the trend to equilibrium as ¢ — oo of
U (see also Slemrod, 1989a, b, ¢). The main tools used here are elementary concepts from
topological dynamics and a careful study of sequences of Young measures borrowed almost
verbatim from the paper of J. Ball (1988). For example it will be shown that for the case
N =1 and q possessing the graph shown in Figure 1 that the measure valued solutions u
of Pp converge to zero weakly in Hj(Q2) as t — oo whereas the measure valued solutions
of Py converge weakly in H(2) to the set x € H*(Q2) which are measure valued equilibria
and satisfy 0 < %(w) < ¢ ae. in Q.

Two further remarks are in order. First as regards nonhomogeneous boundry condi-
tions. Consider for example the cases when the homogeneous boundary conditions (0.12)

and (0.13) are replaced by nonhomogeneous boundary conditions )

u(z)=M-z+ K, Au®*=0 on 00Q,t>0 (0.12")

and

q(Vu®)-n=q(M) - n, %(Auf) =0 on 00,t>0 (0.13")

where K is a real scalar and M is a prescribed constant N-vector. It is then readily
seen that M - z + K is an equilibrium solution of (0.11), (0.12") and (0.11), (0.13') and

hence the dependent variable w¢(z, t)dgfuf(a:, t) — M -z — K will satisfy the homogeneous
equations (0.11), (0.12), (0.14) or (0.11), (0.13), (0.14) with u® replaced by w¢, u, replaced
by uo(z) — M-z — K, and q(\) replaced by q(A + M) — q(M). For example in the case
N =11if g has the graph shown in Figure 2 with ¢(M) = ¢(¢*), ¢'(¢*) = 0, imposing the
boundary conditions (0.10") or (0.11") ¢ has the effect of reducing our problem

q ' A

: > ¢
/ 3

Figure 1 Figure 2

to the study of the ¢ given by Figure 1. Of course, this procedure allows us to consider
nonhomogeneous boundary value problems for the original ¢ = 0 system (0.1) - (0.4) as
well, i.e. with (0.2) replaced by

u(z)=M-z+K on 0Q, t>0, (0.2")
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or (0.3) replaced by
q(Vu) - n=q(M)-n on 0Q, t>0. (0.3")

The last observation is that in the case N = 1, = (0,£), the change of variable
u§ = s¢ and differentiation of (0.11) with respect to z yield the Cahn-Hilliard equation

ds¢  d%*q, . o*se
ot :w(s)—éaxli, IL'EQ,t>O. (015)
The boundary conditions
q(s€) =0, 85, =0,z2€0Q,t>0 (0.16)

are equivalent to (0.13). Hence the procedure given here is capable of computing the long

time dynamics of measure value solutions of
Js 92q(s)

ot Ox?

g(s)=0 z€09Q,t>0

z€eEN t>0

which are obtained as an € — 0 limit of solutions of the Cahn-Hilliard system (0.13), (0.14).

On the other hand no-flux boundary conditions

q(s%)s =0,85,, =0 z2€9Q,t>0 (0.17)
are equivalent to
q(ul); =0, ul,,, =0 z€0Q,t>0

which from equation (0.11) means

ou®
ot

=0forz € 00, t > 0.

Hence u®(z,t) = uo(z) for z € 9Q, ¢t > 0 and we see u¢ satisfies the Dirichlet boundary
condition

w(e,t) = uo(e) = [ so(E)de +ua(0)
so for 2 = (0,¢) we have
(0, ) = uo(0), (0.18)

£
uS(6,1) = uo(0) + / so(£)de

which is of the form u¢(z,t) = M -z + K.



Also since we want g(u); = 0 on 0N the additional restriction
ut, =0 (0.19)

is sufficient though not necessary. Hence (0.11), (0.17) can be associated with a Dirichlet
boundary value problem Pp ..

The paper is divided into four sections after this one. The first section introduces the
definition of measure valued solution. The second section reviews Ball’s 1988 presentation
of the fundamental theorem for Young measures. The third section establishes the existence
of measure valued solutions for Pp and Py and the basic energy “inequality” for measure
valued solutions. Finally the fourth sections obtains the long term trend to equilibrium of
measure valued solutions of Pp and Py for q obeying the Fourier inequality (0.5).

Notation:

We endow L*() with the usual inner product
(u,v) = / u(z)v(z)dz for u,v € L*(Q),
Q
lull* = ().

Qr denotes the cylinder Q x (0,T) and for u,v € L2(Q7)

(%, v)12(Qr) =/ u(z,t)v(z,t)dzdt,

Qr

[ullZ2gp) = (4, u)12(0q)-

For problem Pp we denote

V = Hj(Q) where H}(Q) is endowed with the inner product

(u,v) =/QVu -Vudz  for wu,v € Hi(Q),

lullf = (u,u)s.

For problem Py we denote

V = H'(Q) where H'(Q) is endowed with the inner product

(u,v); :/QVu~Vvd:c+ (/Q ud:c) (/Q vdac) for u,v € H(Q),

lull = (u,w)?



(see Temam (1988)).

For Pp we set

Ou dv
(u,v)p = —— + Vu - Voudzdt,

[ullf(@ry = (W ¥)H1(Qr):

For Py we set

Ou Qv
(u, 'U)Hl(QT) = 0 E?’)_t- + Vu - Vodzdt

+/(;T</Qudac) (/Qd> dt,

lullt@ry = (W H (Qr)-
The subscript b will denote a uniformly bounded subset of an indicated set.

For the problem Pp we denote the space of test functions W = C§°(£2).

For the problem Py we denote the space of test functions W = {w € C°(Q); g—i‘]’ =0}.
Let L2 (Qr; M(RYN)) denote the space of weak x measurable mappings p : Qr — M(RY)
that are essentially bounded with norm

[[4lloo,pr = ess sup |lu(z;)llm < oo.

,tEQT

(Recall p is weak * measurable if (u(z,t), f) is measurable with respect to z,t € Qr for
every f € Co(RM).)

M(RY) is the Banach space of bounded Radon measures over RN. For v € M (RM)
we write
ol = [ b
RN

Prob (RV) is the Banach space of probablity measures over RY. For v € Prob (R")

we write
HV”M = / dl/.
RN

Co(RY) denotes the Banach space of continuous functions f : RN — R satisfying
[ fllcomny = sup [f(A)].
AERN

* .
The arrows —,—, — denote strong, weak, and weak * convergence respectively.
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1. Measure valued solutions. An elementu € H(Q7)NC([0,T]; L*(Q))NL>(0,T); V)
is a measure valued solution of Pp or Py on Qr if there exists a measure valued map

v:z,t— vy € Prob (RN)

from the physical domain Q7 to Prob (RY) the space of probability measures over the
state space domain RY so that

%(a,w) + ({g(V), 2(V), V) = 0 (1.1)
for all w € W a.e. in (0,T);

Vu = (A vz (M) ae. in Qr; (1.2)
u(z,0) = uo(z) z € Q. (1.3)

An element u € V is a measure valued equilibrium solution of Pp or Py if there exists
a measure valued map v : z,t = vy ; € Prob(RY) from Q x [0, 00) to Prob(R") so that

((‘.Z(/\)a Vz,t(A), VU)) =0

for all w € W a.e. on (0,00) and
Vu(z) = (A, v (X)) ae. in Q x [0, 00).

2. The fundamental theorem for Young measures. We state the fundamental
theorem for Young measures as given by J. M. Ball (1988).

THEOREM 2.1.. Let S C R" be Lebesgue measurable. Let K C R™ be closed and
let 20) . S+ R", j =1,2,... be a sequence of Lebesgue measurable functions satisfying
z(j)(-) — K in measure as j — 00, i.e. given any open neighborhood U of K in R™

lim meas {y € ;29 (y) ¢ U} = 0.

J—0o0

Then there exists a subsequence z(*) of 29 and a family {vy}, y € S, of positive measures
on R™, depending measurably on y, so that

(1) ”V?IHM = me dVy S 1 a.e. in Y € S,‘

(ii) supp vy C K for almost all y € S;
(iii) f(z0) 5 (vy, f) = [gm F(N)dvy(X) in L®(S) for each continuous function f € Co(R™).

Suppose further that {z(#)} satisfies the boundedness condition

klim sup meas{y € SN Br: |z (y)| >k} =0 (2.1)
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for every R > 0 where Bg = {y € R™;|y| < R}. Then |lvy||lpr = 1for y € S (ie. vy is a
probability measure) and given any measurable subset A of S

f(z®™) = (v, f) in L'(A) (2.2)

for any continuous function f : R™ — R such that { f(2(M)} is sequentially weakly
relatively compact in L*(A).

As noted in Ball (1988) condition (2.1) is very weak and is equivalent to the following:
given any R > 0 there exists a continuous nondecreasing function gg : [0,00) — R with
lim;— 00 gr(t) = 00, such that

sw/ gr(12) (y))dy < oo. (2.3)
I SNBgr

Furthermore Ball notes that if A is bounded, the condition that {f(2(*))} be sequen-
tially weakly relatively compact in L!(A) is satisfied if and only if

s?waNm@<m (2.4)

for some continuous function 9 : [0,00) — R with lim;_, o, ﬂtﬁ = 0o (de la Vallée Poussin’s
criterion; cf. MacShane (1947), Dellacherie & Meyer (1975), Natanson (1955)).

We can use Theorem 2.1 to prove the following lemma which will prove useful.

LEMMA 2.2.. Let @ C RN and let {z(9} be a sequence: S(= Rt x Q) — RN which
lies in a bounded subset of L>°((0,00); L?()). Then the following are true:

(i) There exists z € L>=((0,00); L?(€Y)) and a subsequence {z("} of {z())} so that z(®) Xz
in L*°((0,00); L%(£2)).

(i) {29} satisfies condition (2.1),
(iii) For every f(\) satisfying
|f(AM)] < const. (L+|A\|]"), 0<y<2, Ae RV,

and every bounded set A C R* x Q (2.2) is satisfied for some probability measure
ver, T €8,t€RT.

Proof.

(1) Thisis a statement relative sequential weak + compactness of bounded sets in L>((0, co); L*(R)).
(ii) Check instead the equivalent condition (2.3) with gr(t) = t?/R. Then

R
Su.P/ gr(129 (y))dy < sup/ = ERARES
SNBr 0 R

J

< const.



(iii) Apply de la Vallée Poussin’s criterion (2.4) with ¥(t) = t2/7 to conclude {f(2(M)} is
sequentially weakly relatively compact in L'(A). Now use Theorem 2.1.

Existence of measure valued solutions.

Before discussing the existence of measure valued solutions to Pp or Py we must
ascertain the existence of solutions to Pp  and Py .. Since it is not the object of this paper
to obtain “optimal” existence results for these regularized problems we will be content
here to note that if q is “locally” nonlinear, i.e. q is smooth with several bounded partial
derivatives on RY then Pp ¢ and Py possess global smooth solutions for smooth data.
Sharper results could certainly be obtained using the methods of R. Temam (1988) and B.
Nicolaenko, B. Scheuer, and R. Temam (1988). We note the results of this section do not
use (0.5), (0.6), (0.7), (0.9).

We follow the discussion of Pazy (1983, p.195). Consider the abstract nonlinear evo-
lution equation

@ + Au :f(t7u)7 (31)

dt

’U,(t()) = Ug. (32)
4t on a Banach
space X, |le™4|zx) < M for some positive constant M for ¢t > 0, and that —A is
invertible. (Of course if —A is in the infintesimal generator of an analytic semigroup for
A > 0 large enough —A — AI is invertible and generates a bounded analytic semigroup.

We assume —A is the infinitesimal generator of an analytic semigroup e~

Hence we can always reduce the case where —A is the infinitesimal generator of an analytic
semigroup to the case where the semigroup is bounded and —A is invertible.)

Under the above assumptions on A we can define the fractional power A%* for 0 < a < 1
and A® is a closed linear invertible linear operator with domain D(A%) dense in X. The
closedness of A% implies that D(A%) endowed with graph norm of A%, i.e. the norm
llull = |lullx + ||[A%u|x is a Banach space. Since A® is invertible its graph norm || ||
is equivalent to the norm |lullo = ||A%u||x. Thus D(A®) equipped with norm || ||« is a
Banach space denoted by X,.

The main assumption on f in (3.1) will be:

Assumption (F). Let U be an open subset of R™ x X,. The function f : U — X satisfies
the assumption constants L > 0, 0 < # < 1 such that

1f(t1,u1) = fta,u2)llx <L (Jt1 —t2|® + |Jus — uzlla)

for all (t;,u;) € V.

The following proposition is essentially due to Fujita and Kato (1964) and may be
found in Pazy (1983).
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Proposition 3.1. Let 0 € p(—A) (the resolvent set of —A) and let —A be the infinitesimal
generator of an analytic semigroup e~4! satisfying |e™4|| < M for t > 0. Let f :
[to,00) X Xo — X satisfy (F). If there is a continuous nondecreasing real valued function

k(t) such that
£t u)llx < k@)L + [[ufo) for ¢2>1o,u € Xa,

then for every uy € X,, the initial value problem (3.1) has a unique solution u which
exists for all ¢t > t; where u € C([ty,00); X) N C*((tg,0); X). By solution we mean a
function u which is differentiable a.e. on [tg, 00) such that % € L((to,T); X) for each
to < T, u(ty) = uo, and %% = Au + f(u(t),t) a.e. on (o, 00).

THEOREM 3.2. There are positive integers sg,s; so that if ¢ possesses at least sg
continues bounded partial derivates on RN and ug € C*1*2(Q) with ug = Aug = --- =
A®1uy =0 on 0N then Pp . possesses a unique classical solution on [0, c0).

THEOREM 3.3. Let q be such that A-n = 0 implies q()\) - n = 0 for A € RN, n the
exterior unit normal to OS). Then there are positive integers sg, s so that if q possesses
at least so continuous bounded partial derivatives on R and ug € C“'l+3(§) with

a’LL() _ 8(AUO) L B(ASIUO)

on on on 0 on 9

then Py . possesses a unique classical smooth solution on [0, c0).

Remark. The extra assumption on q for Py arises from that fact that the proof of
theorem will only assert % = 0 on 0Q. An example of a case where the extra assumption
is satisfied is when

q(A) = go(A)A

for some scalar function ¢o : RN — R. Of course the extra assumption is always satisfied
when N =1 since ¢(0) = 0 is that case.

Proof. We will consider the Dirichlet problem Pp .. (The Neumann problem follows

analogously by setting u(t) = u(t)e™*!, A > 0 sufficiently large.) First define the linear
operator

Au = eA*u, D(A) = {u € H*(Q) N HL(Q); Au = 0}, on O9.

Hence (Au,u) = €[|Aul|* and A is self adjoint on its domain. A well known result (see
for example Kato (1966, p. 491)) implies —A is the infinitesimal generator of an analytic
semigroup e~ 4! on L?(Q), |[e~4!|| < 1. \

Now let s be the smallest positive integer so that

N
43>4+5.
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In this case the Sobolev imbedding theorem implies H4*(Q) C C*4(R2). Now set X = D(A*)
so that X/, = D(A“’+% ). From the Hille-Yosida-Phillips Theorem and the above remarks
on generation of analytic semigroups we know —A is the infinitesimal generator of an
analytic semigroup e~4! on X with |e=4%||x < M for t > 0.

Set
f(t,u) = div q(Vu) (3.3)

for u € D(A®). In this case (F) will hold if there is a constant L so that

|div (q(Vu1) — q(Vuz))|pcasy < Lllur — uz| (3.4)

DAY

Since the graph norm of D(A?) is equivalent to H**(Q) and the graph norm of D(A+1/2)
is equivalent to H**t2(Q) application of the chain rule and mean value theorem shows
that when q possesses a sufficiently large number of bounded continuous derivatives on
RY such a constant L exists. Also setting u; = u, u; = 0 in (3.2) shows that all the
conditions of the proposition hold and u is a classical smooth solution in

C([to, 00); C*()) N C¥([to, 00); C*())

for data ug € D(A®). Finally the standard trace theorem (see for example Temam (1988))
asserts the boundary conditions u = Au = 0 on 0 hold for Pp .
For the Neumann problem Py . we again set Au = eA%u but with

D(A) = {u € H*(Q); % = 8—811(Au) =0 on O00N}.

LEMMA 3.2. Let u® be a classical smooth solution of either Pp . or Py .. Then for all
t, 7 e RT:

st + )" = flu (D) =~ 2 /OT((AU'E(S +1),a(Vu(s +t))))ds

—26/ | Aue|2ds (3.5)
0

and

e||Auf(t)|l2—I—/Q<I>(Vuf(:v,t))d:z:

L Ou(s) 2
+/0 ||_%|| d:c:e||Au0||2+/Q<D(Vu0(:v))dx. (3.6)

Furthermore for Py .
/ue(s,t)da::/uo(ac)d:c (3.7)
Q Q
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forallt € RT.

Proof. First, multiply (0.11), by u¢, integrate over (2, apply the divergence theorem,
and then integrate from ¢ to t 4+ 7; (3.5) then follows. Second, multiply (0.11) by aa—lf and
apply the same procedure; (3.6) follows. Finally, integrate (0.11) over Q and apply the

divergence theorem; (3.7) follows.

LEMMA 3.5. Let u¢ be a classical smooth solution of either Pp . or Py .. Then for
any T'> 0

{u} € LP((0,00); V) N HE@Qr),
'y L3((0, 00); LX), (3.9)

{ ot
{e'?Au} C L§((0, 00); L*(2)).

Furthermore there exists a subsequence of {u¢} also denoted by {u‘} and u,

@ € L*=((0,00); V) N HY(Q7) N C([0, T]; L*(2)),

TT 200 oo 12
o € I((0,00); L*(2),

so that
(a) u¢>w in L=((0,00); V);
(b) Vu5V7 in L®((0,00); L*(Q));
(c) &5 — 5t in L*((0,00); L*(Q)); (3.9)
(d) u* —= 7w in HY(Q7);
(e) u* = u in C([0,T); L*(Q));
(f) u(t) = uo in L*(Q) ast — 0F;

Proof. The growth condition on ® and energy equality (3.6) imply supy>g || Vuf|| <
const.. For Pp, this implies sup, [|uf]|; < const. while for Py, we use in addition
(3.7) to see sup;>q [[uf[ly < const.. Also from (3.6) we see {3} C L?((0,00); L2(Q))

and {e!/2Au} C L$°((0,00); L%()); (3.8) then follows. Extracting subsequences in the
standard fashion we see (3.9a, b, ¢) follow immediately.

We now show {u¢} is a Cauchy sequence in C([0,T]; L?(f2)). To see this let U =
ut —u?. Note U(z,0) =0 and hence for 0 <t < T

t t 1/2 ¢ 1/2
Uz(:c,t):2/ UUtdt§2</ U2ds) (/ des> :
0 0 0
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Integrate over 2 to find
1/2

l[u(t)]® sz/ﬂ (/Ot U%)l/2 (/Ot des> dx

which the Schwarz inequality shows

sup [lu (t) — u?()]|* < 2)lu® —u?|| 2@ lu® — u®|m1(Qr)- (3.10)
0<t<T

From (3.9) we know ||u® — u®||gi(g,) < const. and ||ut — u®||2(g,) — 0 via the
compactness of the imbedding H*(Qr) — L*(Qr). Since {u¢} C C([0,T]; L*(R2)) (3.10)
shows {u¢} is Cauchy in C([0,T]; L*(2)) and hence T € C([0, T]; L*(2)).

Finally note
Jim ([7(2) — ol < Jim, [F(t) —w(2)]| + lm [lu(t) — wol
< sup () —uS(R)]| + lim [|us(t) - wol. (3.11)
0<t<T t—0+
Given § > 0 arbitrary we have just shown that we can find €(§) > 0 so that the first term
on the right hand side of (3.11) is less than §. Next for this e = €(é) the fact that u€ is

classical smooth solution of the initial value problem shows the second term on the right

hand side of (3.11) is zero. Hence lim, o4 ||u(t) — ug|| < & and since § is arbitrary (f)
follows. :

LEMMA 3.6. Let {u‘} be the subsequence obtained in Lemma 3.3. There exists a
further subsequence again denoted by {u‘} and a probability measure v, ¢, (z,t) € QxRT,
so that for every bounded subset A C 2 x R and every f()\) satisfying

|f(V)] < const.(1+ A7), 0<vy<2, Ae RV

we have
f(Vu®) — (vpy, f) in L*(A), (3.12)
and

Vu = (vy,A) ae in A. (3.13)
Proof. Apply Lemma 2.2 to the sequence {Vu*}.

THEOREM 3.7. Let u be as given in Lemma 3.3. Then U is a measure valued solution
of the relevant initial-boundary value problem Pp or Py. Furthermore if

A-q(A) >0 for |A|>a
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set

def.
g M)EN-q\) M <aq

XA-q(N)a®
—_ )\ > ,
ap . e
then U satisfies the “energy” inequality
T
[+ TP~ O < =2 [ [ (000, e e, (3.14)
0 Q

Proof. Since the u¢ are smooth solutions of the appropriate regularized initial-boundary
value problems we know

(ué(t),w) — (uo,w) + /(; ((a(Vu®), Vw))ds (3.15)
+ e/t(Aue,Aw)ds =0

for all w € C$°() for Pp . and for all w € C*(2) for which g—‘r‘l’ =0 on 0N for Py .. By
Lemmas 3.5 and 3.6 u¢ — @ in C([0,T]; L*(R)) as € — 0+;

| (v, s = [ (a0}, T

as € — 0+; and

t
e/(Auf,Aw)dSHO as e€—0+.
0

Hence u satisfies

(u(t), w) — (o, w) +/0 (2,5, a(A)), Vw))ds = 0. (3.16)

Since the above integral defines an absolutely continuous function (3.16) may be differen-
tiated a.e. on (0,T) to conclude u is a measure valued solution of Pp or Py.

Finally if A- q(A) > 0 for |A] > a > 1 then g(A) < A-q()) and (3.5) implies

T
e+ DI = IOl < =2 [ [ o(Fut(e+ s))dods. (3.17)

Since u¢ — @ in C([0,T); L*(R2)) for any T the left hand side of (3.17) approaches ||w(t +

T)|I? = [lu()||* whereas [g(A)] < const.(1 4 |A["™1), =2 f¢ [o(9(A), vz e4r)dzds. The the-
orem is thus proven.

Remark. The idea of minorizing A - q(A) by g(A) was given to the author by Professor
E. Zuazua. It allows the application of the fundamental theorem on Young measure to the
energy inequality (3.5) without putting additional growth restrictions on q.
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4. Asymptotic behavior of measure valued solutions. In what follows we shall
assume (0.5) - (0.9) hold.

For problems Pp(Py) let ug be as given in Theorem 3.2 (Theorem 3.3). Then O (ug) =
Us>o U(t;ug) defines the positive orbit in V' through uo. From Lemma 3.5 we know u €
L*=((0,00); V) and so OF(uy) C B C V, with a metrized weak-V topology with metric d.
Define the w-distance between two sets By, B; C B by

W—diSt(Bl,Bz) = bl]él}f; d(b],bg).

ba€Bjy

Finally define the weak w-limit set of OF(ug) by ww(uo) = {x € V;u(tn; ug) — x in V as
n — oo for some sequence {t,}, t, — co}.

THEOREM 4.1. For ug as given in Theorems 3.2 or 3.3 wy,(ug) is non-empty and
w-dist(u(t; ug),ww(ug)) — 0 as t — oo.

Proof. Since O%(ug) C B and B is weakly sequentially relatively compact in V', wa,(ug)
is non-empty. Furthermore if w-dist(u(¢, up),ww(uo)) does not approach zero as t — oo
there exists {t;}, wy(ug)) > € > 0 for some e. But since {u(t;,up)} C B we may extract
a further subsequence {tx}, tx — oo so that d((tx,u0);X) — 0 as k — oo for some
X € wy(ug). This contradiction proves the theorem.

LEMMA 4.2. Let x € ww(uo) and u(tn,uo) — x in V and t, — oco. Then for any
T > 0 the sequence

Tn()) 5t + £0; u0)
satisfies
{un} C L§°((0,00); V) N H} (Q7), (4.1)
Tin}  L3((0, 00); X(9).

Furthermore there exists subsequences of {t,} and {u,} also denoted by {t,} and {u.}
and v,

v € L*=((0,00); V)N H'(Q7) N C([0,T); L*(Q)) (4.2)
ov

S € L(0,00); *(%),

so that

(a) up— v in L=((0,00); V);

(b) Vun,—Vu in L®((0,00); L2());
(c) Ba — 22 in [2((0, 00); L2(9));

16



(d) up — v in H(Qr); (4.3)
(e) un, — v in C([0,T]; L*(Q));
(f) v(t) — x in L*(2) as t — O+.

Proof. Since @ € L®((0,00); V), we see {un} C L§°((0,00); V) N H}(Qr), Extracting

appropriate subsequences we see (a), (b), (c), (d) follow immediately. To prove (e) we
write

U(t) = u(t +tn) — u(t + tm)-

¢
/U2(t)dw:/U2(0)d:v+2// UU.dtdz
Q Q QJo

and hence by the Schwarz inequality

/Q U?(t)dz < /Q U?(0)dz

+</Q/OTU2da:dt>l/2 (/Q/OTdexdt)

Then we see

1/2

Therefore we see

uf(t +tn) = w(t + ta)|| < flu(tn) — u(tm)ll+ (4.4)
20u(- +tn) — (- + tm)ll 2@ [[w(- + 1) — €(- + tm) |l 1 (Qr)-

Since {u} C L§>((0,00); V), then {u(-+£n)} C Li*((0,00); V), { B (++ta)} C LF((0,00); (%))
and hence {uf(- +t,)} C H{(Qr). Now let ¢ — 0+. We know since u* — ¥ in
C([0,T"); L?*(Q)) for any T" > 0, (4.4) implies

S0P [a(t + tn) =t + tm)l| < [[2(tn) —u(Em)l (4.5)

+const. lim (- +ta) — w (- + tm) 2200

Now since {u¢(- +t,)} C Hj(Qr) we see there is a subsequence also denoted by {u¢(- +

tn)} C H}(Qr) which converges weakly in H'(Qr) and hence strongly in L%(Q7). Taking
the limit on this subsequence in (4.5) we see

lim  sup |[(t+t,) —u(t+tm)|| =0
n,M—00 o<t T

so {u,(t)} is Cauchy in C([0,T]; L?(£2)). Hence v € C([0,T]; L?(£)). Since T,(0) — x in
L2(Q) we see v(0) = x and so lim;—,0+ v(t) = x in L%(Q). This proves the lemma.
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LEMMA 4 3. Let {t,} be the subsequence given in Lemma 4.2. Define the sequence

of measures 1/ (A)d—efvx t+1,(A). Then {V ") } belongs to the space L2(Qr; M(RY)). Fur-

thermore there exists a subsequence {1/ } of{l/(n)} and an element 7, ; of L(Q1; M(RYN))
so that

(i) Uz ¢ >0 ae. in Q;
(i) 07 in L(Qr; M(RV));
(iii) for every f € Co(RN), (l/ikt), ) 2Ty t, f) in L®(Qr) as k — oo.

Proof. The proof is taken from an argument of Ball (1988). First since the fundamental
theorem for Young measures tells us ||1/ HM = [an~ dvint) =1 and (f, int)) is in LY (Qr)
for f € Co(RYN) when {V(n)} C LfD"(QT,M(RN)).

Next note that under the norm || - ||oo,ar, L(Q7; M(RYN)) is a Banach space. Since
Co(RN) is separable there is an isometric isomorphism between the dual space L'(Qr; Co(RY))
and L2(Qr; M(RY)) obtained by associating with each u € L(Qr; M(RY)) the linear
form

1/;»-)/ (u(z,t),¥(z,t); Ydzdt (4.6)
Qr

on LY(Q1; Co(RN)).

Since Co(RY) is separable so is L!(Q7; Co(RY)) and hence by weak * precompactness
of bounded sets in L (Q; M(RY)) (see for example Dunford & Schwartz (1958, pp. 424-
426)) there exists a subsequence v¥) of (") and an element 7 = Vg1 of L(Qr; M(RM))
so that v(® 57 in L(Q7; M(RYN)). This proves (ii).

By (4.6) this implies

/ W& (et N dedt — [ (a0t ) dudt
T Qr

as k — oo for every 1 € L'(Qr;Co(RY)). In particular taking Yz, t; X)) = ¢(z,t)f(N)
where ¢(z,t) € L' (Q7) and f € Co(RY) we find

$(z,t)(vY), frdedt — ¢(z,8) (Vg 4, f)dzdt
Qr Qr

ie. ( l(ct), ) (Vz,t, f) in L®(Q) as k — oco. This proves (iii). Also since 1/( ) >0 a.e. in

QT we see Uy ¢ > 0 a.e. in Qr as well.

LEMMA 4.4. If \- q(A) > 0 then

suppVy ¢ CkerA-q(A) ae in Q.
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Proof. Set t =t, in (3.14), i.e. we know

T
(T + t)|? — [[E(ta)]2 < —2 / /Q (9(N), Ve ape, )dads. (47)

Now since g(\) > 0, |[@(t)||* is a nonincreasing real valued function of ¢ bounded from
below. Hence lim;_,o |[u(t)|| exists. Let n — oo for {t,} the sequence in Lemma 4.2. We
see the left hand side of (4.7) goes to zero as n — oo and hence

T
lim / /(g()\),z/z,sﬂn)dmds = 0.

Since g € Cy(RY) we can use Lemma 4.3 to see that

/oT /Q<g()‘)’7z,t()\))d:vdt = 0.

Since g > 0 we see supp U, C kerg a.e. in Q7. But kerg = ker A - q(A) and the result
follows immediately.

LEMMA 4.5. Assume (i) f is continuous: RN — R satisfying |f(\)] < const.(1 +
A7), 0 < < 2. Then (f(\), vS)) 2 (F(X),s,e) in L®(Qr).

Proof. Since we do not assume f € Co(RY) we cannot appeal to Lemma 4.3 (iii).
Instead we again paraphrase an argument of Ball (1988).

Define the function ©(P)()\) as

1 Al < p,
0PN =q 1+p—Al p<P<p+1,
0 Al >p+1.

We now show that for any ¢ € L*°(Qr)
Jim ¢(f(>\)9(”)()\) vi))dzdt =
/ S(F(0), X)) dzdt (4.7)

uniformly in k.

We prove (4.7) as follows: Set p(P)(A) = f(A)(©2()\) — 1). Since [p(”(A)| < const. (1+
|A[7) and 0 < v < 2 the fundamental theorem on Young measures implies p(*)(Vu(z, ¢ +
tn)) = (PP (N), Vg 144, ) in LY(Q7) as € — 0+.
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Hence for any ¢ € L>®(QT)

[ s(FO) = F)OW (), i) dzdt|
Qr

=| lim ¢p P (Vus(z,t + ty,))dzdt]
=0+ Jor

< sup const./ P (Vus(z,t + t1))|dzdt
0<e<1 T

< sup const./ leuf(x,t+tk)|’7dmdt,
Eg

0<e<1 o

for 0 < 4 < 2 where .
ESF = {z,t € Qr; [Vu'(z,t +1x)| = p}.

Therefore we see
[ (FO) = F(NOP (), ) dwdt]
Qr

< sup sup const./ k|Vu€(:v,t+tk)[7d:vdt. (4.8)
ES

0<e<1 &k »

Since {Vu¢} C L§°((0,00); L2(Q)) we have {Vu(-,- + tx)} C L;°((0,00); L*(2)) and
hence {Vu¢(-,- +tx)} C L2(Qr). But a bounded subset of L?(Qr) is weakly sequentially
precompact in L'(Qr) and hence we may apply the Dunford-Pettis Theorem to {Vu(-,-+
tr)}. We recall:

DUNFORD-PETTIS THEOREM. (Dunford and Schwartz (1958), p.492). A subset K of
LY(S, %, u) is weakly sequentially compact if and only if it is bounded and the countable
additivity of the integrals [, f(s)u(ds) is uniform with respect to f in K. The statement
that the countable additivity of the integrals [, f(s)u(ds) is uniform with respect to f
in K means that for each decreasing sequence {E,} in ¥ with void intersection the limit

limp oo fEn f(s)p(ds) = 0 is uniform for f € K.
To apply the Dunford-Pettis theorem to (4.8) we must show

lim sup meas{(z,t) € Qr; |Vu(z,t +tx)| > p} = 0.
&

p—0

But by the argument given in the proof of Lemma 2.2 (ii) this is known to be true and
hence (4.7) is proved.

Now to conclude the proof of the lemma we write for ¢ € L*>°(Qr):
[ GO 7ea) = 6450, 48t (49)
T
< I(p) + TT(p, ¥) + ITT(p, )
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where

I(p) = | /Q F(N),Ta) — SUF(NOD(N), 7o)z,
IT(p,k) = | / SUFNOP(A), Ta) — SF(NOP (), M) dad],
Qr

I, k) = [ (f(NOPN),vR)) — d(F(N), v"))ddt|.
Qr

Without loss of generality assume p > po (given by (0.9)). Then I(p) vanishes since
by Lemma 4.4 supp U, C ker A - q(A) € {X;]A] < po}-

Now from (4.7) we know given § > 0 there exists p(6) so that I1I(p,k) C 6 for p >p
and all k. Set p = p in (4.9) and use Lemma 4.3 and (4.7) to see limy_.oo ITI(p, k) = 0.
Hence

] (A Tan) — (FOA), ) dadt| <6 as k — oo
Qr

Since §é is arbitrary Lemma 4.5 is proven.
LEMMA 4.6. 7, , € Prob(R") a.e. in Qr.

Proof. Take f(A\) = 1 in Lemma 4.5. We then see meas E = fE fRN Uy tdxdt for
every measurable set E. Hence fRN dv,;=1ae. in Q.

LEMMA 4.7. Vo = (\,7, ) ae. in Qr and (q(A), v{%))2(q(N), Tas) in L=(Qr).

Proof. We know from (4.3) that Va,>Vuv in L*®((0,T); L*(Q)) and since Va, =
(A Vg trtn) = (A, 1/( )) we have (A, ,/(")>va in L*°((0,T); L?(Q)). But by Lemma 4.5
(A, V(k)> —(\,Vg¢) in L®°(Qr) and hence Vv = (\,7;¢) a.e. in Qr. Similarly we see
(a(N), izt)) —(q(A),Vz,¢) in L=°(Qr) by again applying Lemma 4.5.

LEMMA 4.8. kerA-q(X) = ker q(A).

Proof. Clearly kerq(\) C ker A - q(A) so we need to prove the reverse set inclusion
holds. First since A - q(A) > 0 for all A € R by setting all A\ = 0 but one shows that
Aigi(A) > 0 for all ¢. Hence ¢;(A) > 0 for A\; > 0 and ¢;()\) < 0 for \; < 0. By continuity
of q this implies ¢;(A\) = 0 when A; = 0 for all . So if A - q(\) = 0, we know for each
¢ Aigi(A) = 0 which means either A\; = 0 (which implies ¢; = 0) or ¢; = 0. Either way we
have A € kerq.

THEOREM 4.9. Let x € ww(uo). Then x is an equilibrium solution of the generalized
evolution equations (1.1) - (1.3), i.e. there is positive probability measure v, ; with

supp U, + C kerq (4.10)
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hence satisfying

(A(A),7s4) =0 ae in Qr (4.11)

and
Vx(z) = (\Vz4) ae in Q. (4.12)

Moreover if ker q; C [ai, bi], ¢t =1,...,N then
a; <(Vx)i<b; ae in Q, 1=1,...,N. (4.13)

Proof. We know

4 ) + (a0, 0), ) = 0

for all w € W a.e. in (0,T). Hencefor 0 <t < T

/0 (66_tk >d3+/( a(A), vE(N), Vw)ds = 0.

Now use (4.3c) and Lemma 4.6 to pass to the limit £ — oo to obtain

/t (‘Z; )d5+/(q(A 24(\), Vw)ds = 0.

Since supp 7,,+ C kerq = ker A- q(\) we see (4.10), (4.11) trivially hold and g—f =0 a.e. in
Qr. But (4.3f) and Lemma 4.7 imply Vv(t) = (), 7, ) a.e. in Q7 and v(t) — x in L*(Q)
as t — 0+. Hence v(t) = x on (0,T) and (4.12) follows. Finally the fact that 7, ; is a
probability measure yields (4.13).

LEMMA 4.10. For problem Pp if for some:,1 <t < N, (Vyx); =0 a.e. in Q.

Proof. From Theorem 4.2 we know either (Vx); <0 a.e. in Q or (Vx); > 0 a.e. in .

Now apply the divergence theorem (see for example J. P. Aubin (1984), p. 289) to the N
vector J(z), Jr =0, k #1, J; = x to see

/ axd:c—/dled:c
Oz;
:/ J-nda:/ xnido.
Ely) a0

As x € H}(R) the last term above is zero and hence (Vx); cannot be non-positive or
non-negative a.e. in €.

THEOREM 4.11. For Problem Pp: if for eachi kerq; C R~ orkerq; C RT,1<: < N,
then wy(uo) = {0} and for any uo u(t,up) — 0 as t — oo in Hy (Q).

Proof. By Lemma 4.10 Vx = 0 and hence since x € Hj(Q) we must have y = 0. Now
use Theorem 4.1.
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THEOREM 4.12. For Problem Py: if kerq = 0 then w,(up) = ¢ (a constant),

¢ = (meas Q) /Q uo(z)dz,

and for any ug u(t,up) — c as t — oo in H}(Q).

Proof. By Theorem 4.9 Vx = 0 a.e. in  and since [, v(z,t)dz = Jo vo(z)dz, t >
0, v = x we see x = c. Now use Theorem 4.1.

Examples.

1) Consider the case N = 1 and ¢ possessing the graph shown in Figure 1.
For Problem Pp: Theorem 4.11 applies and u(t,u¢) — 0 as t — oo in HL(Q).

For Problem Pp: Theorem 4.9 applies and weak dist(u(t, uo),ww(ug)) — 0 in HY(Q) as
t — oo where w,,(ug) € {x ; measure valued equilibrium solutions of Py, 0< %(a:) <&

a.e. in Q}.

2) Consider the case N = 1 and ¢ possessing the graph shown in Figure 3.

For Problems Pp(Py): Theorem 4.9 applies and weak-dist(u(t, ug); wy(ug)) — 0 in
V as t — oo where w,(ug) C {x; measure valued equilibrium solutions of Pp(Py), & <
%(n) <& ae. in Q}.

Figure 3
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