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SOME QUALITATIVE PROPERTIES OF 2 x 2 SYSTEMS
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H. HOLDEN* anxDp L. HOLDEN{} AND N. H. RISEBRO}

Abstract. We study qualitative features of the initial value problem z; + F(z)s = 0, z(z,0) = zo(z),
z € R, where z(z,t) € R?, with Riemann inital data, viz. zo(z) = 2z; if # < 0 and zo(z) = 2z, if z > 0.
In particular we are interested in the case when the system changes type when the eigenvalues of the
Jacobian dF become complex. It is proved that if z; and z, are in the elliptic region, and the elliptic
region is convex, then part of the solution has to be outside the elliptic region. If both z; and z, are in the
hyperbolic region, then the solution will not enter the elliptic region. We show with an explicit example
that the latter property is not true for general Cauchy data. This example is investigated numerically.
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1. Introduction. In this note we analyze certain qualitative properties of the 2 x 2
system of partial differential equations in one dimension on the form

0 (u 0 (f(u,v)
1.1 9 9 _
(1.1) ot (v) + Oz (g(u,v) 0
with v = u(z,t), v = v(z,t), = € R. In particular we are interested in the initial value
problem with Riemann initial data, i.e.

u(z,0)\ (::), forz <0
(12) (’U(:L‘,O)) B (:"):), forz >0

where uj, u,, vy, v, are constants.

The system (1.1),(1.2) arises as a model for a diverse range of physical phenomena from
traffic flow [2] to three—phase flow in porous media [1]. Common for these applications is
that one obtains from very general physical assumptions a system of mixed type, i.e. there
is a region E C R? of phase space where the 2 x 2 matrix

(1.3) IF — (fu(u,v) fv(u,v))

gu(®,v)  gu(u,v)
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has no real eigenvalues. The system is then called elliptic in E.

Consider e.g. the case of three—phase flow in porous media where the unknown func-
tions u and v denote saturations, i.e. relative volume fractions, of two of the phases, e.g. oil
and water respectively. A recent numerical study [1] gave as a result with realistic physical
data that there in fact is a small compact region E in phase space, and quite surprisingly

the Riemann problem (1.1),(1.2) turned out to be rather well-behaved numerically in this
situation.

Subsequent mathematical analysis [25], [9], [16], [27] showed that one in general has to
expect mixed type behavior in this case. Also in applications to elastic bars and van der
Waal fluids [14], [28], [22], [23], [24] there is mixed type behavior. See also [20], [10], [11],
[12], [13], [15], [17], [18], [19].

Parallel to this development there has been a detailed study of certain model problems
with very simple flux functions (f,g) with elliptic behavior in a compact region E which
has revealed a very complicated structure of the solution to the Riemann problem [7], [8].
In general one must expect nonuniqueness of the solution for Riemann problems, see [5].

We prove two theorems for general 2 x 2 conservation laws of mixed type. Specifically
the flux function is not assumed to be quadratic. The first theorem states that if z; is in
the elliptic region E, then z; is the only point on the Hugoniot locus of z; inside E provided
E is convex. In the second theorem we show that one cannot connect a left state outside
E via an intermediate state inside E to a right state outside E if we only allow shocks
with viscous profiles as defined by (2.21).

This latter theorem has also been proved independently by Azevedo and Marchesin
(private communication).

Combining these two theorems we see that if z;, z, ¢ E then also the solution z(z,t) ¢
E for all z € R,t > 0. Finally we explicitly show that this property is not valid for the
general Cauchy problem. The consequences of this for the Glimm’s scheme is discussed
by Pego and Serre[21] and Gilquin[3]. For the most recent result on conservation laws of
mixed type we refer to the other contributions to these proceedings.

2. Qualitative properties. We write (1.1) as
(2.1) 2+ F(z), =0
where z = (:) and F = (g), with Riemann initial data

, forz <0
(2.2) z(m,O)z{z' o

zr, Tfor z > 0.

We assume that f and g are real differentiable functions such that the Jacobian dF has
real eigenvalues exept in components of R?, each of which are convex. Let

(2.3) E= {zeRZ:Aj(z)ng}.
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A shock solution is a solution of the form

(2.4) (21) { z;, forz < st
. z(z,t) =
zy, for z > st.

where the shock speed s must satisfy the Rankine-Hugoniot relation [29]

(2.5) s(z1 — z) = F(z1) — F(zr).

The Hugoniot locus of z; is the set of points satisfying

(2.6) H, = {z€R2 :ElsER,s(zl—z)zF(zl)—F(z)}.
For z € E we let E, denote the convex component of E containing z. Then we have
THEOREM 2.1. Let z; € E and assume that E,, is convex, then

(2.7) : H, NE, ={z}

and if z, € E and E,_ is convex, then

(2.8) H. NE, ={z}.

Proof. We will show (2.7), (2.8) then follows by symmetry. Let 2z, € H,, and assume
that

(2.9) zr € E,,.
Then the straight line connecting z; and z, is contained in E;,, viz.
(2.10) a(t) =tz; + (1 —t)z € E,,

for t € [0, 1] by convexity. Let

(2.11) B(t) = F(a(t)).
Then
(2.12) B'(t) = dF (a(t))(zr — 21).

We want to show the existence of k € R and of £ € [0, 1] such that

(2.13) B'(t) = k(z, — z1).
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Assuming (2.13) for the moment we obtain by combining (2.12) and (2.13)
(2.14) [dF(a({)) . I.,] (20— 2) =0

which contradicts (2.10).

To prove (2.13) we consider the straight line passing through F(z;) in the direction
z1 — z,. By assumption

(2.15) s(zr — z1) = F(zr) — F(z1).

Using this we see that this line passes through F(z,) and that there is a £ € [0,1] such
that B'(f)||(z, — 21) proving (2.13). 0

This implies that if z; € F and {2, 2.} are the initial values of a Riemann problem,
then, the state immediately adjacent to z; ( z,) in the solution will be outside of E,, ( E,,).
This is so since this state must either be a point on a rarefaction or a shock. Rarefaction
curves do not enter E, and we have just shown that neither does the Hugoniot locus.

The other basic ingredient in the solution of the Riemann problem is rarefaction waves.
These are smooth solutions of the form z = z(z/t) that satisfy (2.1). The value z(£) must
be an integral curve of r;, j = 1,2 where r; is a right eigenvector of dF' corresponding to
Aj. € is the speed of the wave; £ = Xj(z(z/t)), therefore A; has to increase with ¢ as z
moves from left to right in the solution of the Riemann problem. Note that no rarefaction
wave can intersect E since the eigenvectors are not defined there.

For a system of non-strictly hyperbolic conservation laws, the Riemann problem does
not in general possess a unique solution, and by making the entropy condition sufficiently
lax in order to obtain existence of a solution, one risks losing uniqueness. It is believed,
see however [6], that the correct entropy condition which singles out the right physical
solution is that the shock should be the limit as € — 0 of the solution of the associated
parabolic equation

(2.16) zi + F(2%), = ez, e> 0.

We then say that the shock has a viscous profile. Let now z;, z, be two states that can be
connected with a shock of speed s. We seek solutions of the form

— st
(2.17) z¢ = z‘(x - i ) =z%(¢)
and then obtain

(2.18) —s—=2z°+ =F(2%) = =—=z¢



which can be integrated to give

d
1 € _ €\ _ o€
(2.19) d{z F(z¢) —s2*+ A

where A is a constant of integration. If z2¢(£) converges to the correct solution we must
have

(2:20) Jim #(6) = = Jim 24(6) = =

(provided the derivatives decay sufficiently fast) which implies

d
(2.21) d—gz6 = (F(z%) — F(z1)) — s(2 — z).
We see that z; and z, are fixpoints for this field, and if it admits an orbit from z; to z, we
say that the shock is admissible and has a viscous profile. The associated eigenvalues of

this field are
(2.22) CAj(2) —s j=1,2.

THEOREM 2.2. Assume that we have two admissible shocks, one connecting the left
state z; with a state z, with speed s; and one connecting z,, with z, having speed s,. If
2z and z, are in the hyperbolic region, i.e. 2,2, ¢ E, then

(2.23) zm € E.

Proof. Assume that z,, € E. In E the eigenvalues constitute a pair of complex con-
jugates. zp is a source (sink) if Re(Aj(zm)) — s1 > 0 (Re(Aj(2m)) — sr < 0 ), hence we
obtain

(2.24) s1 > Re(Aj(zm)) > sr

which contradicts the fact that z, is to the right of z; unless s; = s, in which case there is
no Zm;,. [
Combining Theorem 2.1 and Theorem 2.2 we obtain

COROLLARY 2.3. Consider an admissible solution z = z(z,t) of (2.1) with Riemann
initial data (2.2). Assume that E is convex. Then

(1) If 21,2, € E, then also z(z,t) ¢ E forallz € R, t > 0.
(2) If z; € E or z, € E and 2(%,t) € E for some #,t, then z(%,t) € {2, 2.}

The corollary states that if the initial values in a Riemann problem are inside the
convex elliptic region, then the solution will contain values outside this region if the entropy
condition is based on the “vanishing viscosity” approach. Furthermore if the initial values
are outside the convex elliptic region, then the solution will not enter this region.
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3. The Cauchy problem — a counterexample. Based on the results of the
Riemann problem in the previous section it is natural to ask whether the same property
is true for the general Cauchy problem: If

z+F(z), =0

(3:1) z(z,0) = zo(z)

and forall z € R
(3.2) zo(z) € E
(3.3) 2(z,t) ¢ E

forallzeRandt>07?

The following example shows this not always to be the case. Let

u?

(3.4) f(u,v) = %(—2— + v2) +v g(u,v) = uv.
Then

3.5 E= Re | Ly 1
() _{(u,v)e 1—6+(’U+§) <Z}

Making the ansatz

(3.6) u(e, ) = a(@)Bt)  v(z,t) = ()

we easily find

(3.7) u(z,t) = % oz, t) = (qt—i‘*cﬁi
for constants ¢; € R, 7 = 1,...,4. Choosing

(3.8) cp =c3 =1, cp =0, cy = —2,

we find

(3.9) | uo(z) = 2z, vo(z) = -2,



and

2z
t+1’

—2
(t+1)%

(3.10) u(z,t) = v(z,t) =

For this choice (3.2) is valid but (3.3) fails for some z € R for t > /2 — 1, see figures 1
and 2. This and other [21] examples of solutions entering the elliptic region do however
have the property that the solutions u and v are also solutions to the viscous equations
since uz, = vz, = 0, as well as to hyperbolic equations without any elliptic regions since
we have that v, = 0.

Comparing the general properties of the Riemann problem and the example just pre-
sented, it is clear that the Glimm’s scheme [4] will be highly unstable when the system is
of mixed type since one in this scheme replaces the general Cauchy problem by a series
of Riemann problems. This has recently been discussed by Pego and Serre [21], where
another counterexample is provided and by Gilquin [3].

It was found that difference schemes also exhibit instabilities in this mixed type prob-
lem. The scheme used for the numerical examples was itself a mixed scheme: If both
eigenvalues had positive (negative) real part a upwind (downwind) scheme was used, else
a Lax-Friedrichs scheme was used. A pure Lax-Friedrichs scheme will have the same kind
of oscillations, but they appear at a much small Az.

In figures 3-5 we see the numerical solution to the initial value problem

(3.11) uo(x) = % vo(z) = —1-%1
at times t = 0.0, ¢t = 1.5 and t = 3.0 respectively. This is (3.7) with ¢; =1, ¢2 =0, ¢3 = 10
and ¢4 = —110, and the exact solution enters the elliptic region at ¢t = V110 — 10 =~
0.4881. In all the examples Az = 0.01 and At = 0.002. In figures 6-7 we see numerical
solutions to initial value problems with perturbations of these initial values at ¢ = 2.0.
Figure 6: vg = vo — 0.022, 4y = uyg.
Figure 7: vy = vo + 0.03 sin {5z, iy = uo.

These examples indicate that the solutions do enter the elliptic region, but this is difficult
to determine due to the oscillations.
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Fig. 1 The solution at t=0 and t>SQRT(2)-1 in the
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