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ON THE 0-1-MAXIMIZATION
OF POSITIVE DEFINITE QUADRATIC FORMS

PETER GRITZMANN{ AND VICTOR KLEE}

Introduction. We are concerned with the complexity of the problem of maximizing
a positive definite quadratic form over all 0-1-vectors. This is a problem in Pseudoboolean
Programming, whose general task may be described in decision form as follows.

PSEUDOBOOLEAN PROGRAMMING.

Instance: n € IN; a function f : {0,1}" — IR; an integer A.
Question: Does there exist a vector ¢ € {0,1}" such that f(z) > A?

Obviously, for practical purposes one has to impose some conditions on the function f
which imply that f is computable in the underlying model of computation.

A wide variety of problems, including many of great practical importance, can be for-
mulated in terms of pseudoboolean programming [HR68]. This includes many optimiza-
tion problems on graphs, and also the problems of linear or quadratic integer programming
which are known to be NP-complete. Thus, on the one hand, pseudoboolean programming
provides a rich framework for optimization, and on the other hand, many of its problems
are algorithmically very hard. For these reasons it is of interest to

- identify broad classes of functions that can be maximized over {0, 1}" in polynomial
time.

Some such classes of quadratic functions are given in [PQ82], [Ba86] and [HS86]. It is also
of interest to

- identify narrow classes of functions for which the maximization over {0,1}" is

NP-hard.

Hammer and Simeone [HS80] show that such a class is formed by the quadratic functions
of the form 7 Az, where A is an upper triangular matrix that has at most one negative
entry in each row. We show here that the positive definite quadratic functions also form
such a class. Thus we focus on the following problem.

PosDEF-0-1-MAX.

Instance: n € IN; a positive definite symmetric integer n X n-matrix B; a positive
integer A.
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Question: Does there exist a vector € {0,1}" such that 2T Bz > \?

Pseudoboolean programming for positive definite quadratic forms has been discussed
previously in [Ko80], [Ph84] and [PR87].

Since we plan to discuss the computational complexity of POSDEF-0-1-MAX and some
related problems, we must specify the model of computation that will be used. It is the
binary or Turing machine model, in which the input data is encoded in binary form and the
performance of an algorithm is measured in terms of the number of required elementary
operations as a function of the input size. In particular, the size of the input of POSDEF-
0-1-MAX is the encoding length of n, B = (f; ;) and X in the binary encoding scheme.
That is

(14 [logn]) + Tp; ;20 (24 [log|Bi;l1) + (1+ [logA]),

where the logarithms are to the base 2 and [z] denotes the integer ceiling of z. The input
size is defined similarly for the other problems discussed here.

It is easy to see that the problem POSDEF-0-1-MAX belongs to the class NP. The
guessing algorithm simply guesses a vector z € {0,1}"; the checking algorithm computes
T Bz and compares it with A\. The time required for checking is bounded by a polynomial
in the size of the input.

One of the purposes of this note is to show that the problem POSDEF-0-1-MAX is NP-
complete. The other purpose, perhaps even more important, is to explain how methods
and results from Computational Convezity come into play to establish this result. (We have
coined the term Computational Convezity to denote computational results and methods
that grow out of Convexity Theory.)

What we will actually do is to outline arguments showing that POSDEF-0-1-MAX is
polynomially equivalent to a certain geometric problem, SIMPLEX-WIDTH. The latter is
shown elsewhere [GK89a] to be NP-complete, so that establishes the NP-completeness of
PosSDEF-0-1-MAX. The equivalence is perhaps surprising, since the flavor of POSDEF-0-
1-MAX is so combinatorial while that of SIMPLEX-WIDTH is so geometrical. However, the
polynomial transformations between the two problems are quite direct and have applica-
tions beyond the one presented here.

For a polytope P in Euclidean n-space and for a unit vector u € R" the breadth b,(P)

of P in direction u is defined as

- _nT
bu(P)—gl%(x y)’ u,

and the width w(P) is then defined as

w(P) = Illlflni;ll bu(P).

SIMPLEX-WIDTH is essentially the problem of computing the width of a simplex. More
precisely, it is the following decision problem.

2



SIMPLEX-WIDTH.

Instance: n € IN; an n-simplex S given either as the convex hull of n 4+ 1 vectors
in Z" or as the set {xr|Az < b}, where A is an integer (n + 1) X n-matrix and
be Z"*!; a positive integer 7.

Question: Is w?(S) <~7?

Before proceeding, let us answer two questions that might occur to the reader. First,
since it is generally a major computational task to pass from one sort of representation of
a polytope to the other ([Mc70], [Dy83], [Sw85], [Se87]), why don’t we distinguish between
the two ways of representing a simplex? The reason is that this passage is easy in the
case of simplices. We can, in polynomial time, pass back and forth between the two
sorts of representation, and since we are concerned only with establishing polynomial-time
computability or NP-hardness there is no need to distinguish between the two sorts.

A second question is why we consider w?(S) rather than the width w(S) itself. That is
because w(.S) may be irrational and hence not computable in our binary model. However,
w?(.9) is always rational and of size bounded by a polynomial in the size of the input. In
fact, candidates for a strip of minimum width that contains S are only those for which the
union of the two parallel bounding hyperplanes contains all vertices of S. This makes it
easy to compute the square of the width of any such strip, and also to show that SIMPLEX-
WIDTH belongs to the class NP.

For further background material on various aspects of computational geometry, con-
vexity theory, complexity theory, and mathematical programming that are touched here,

we mention [AHU74], [EA87], [Eg69], [GI79], [GLS88] and [PS85].

The Transformation. Let us say that two decision problems PROB1 and PROB2 are
equal if their sets of instances coincide and an instance is a “yes”-instance for PROB1 if and
only if it is a “yes”-instance for PROB2. We say that PROB1 is transformable to PROB2 if
there is a polynomial-time algorthm that converts an instance of PROB1 into an instance
of PROB2 such that these are both “yes” instances or both "no” instances. And the two
problems are polynomially equivalent if each is transformable to the other.

When B is positive definite, the functional z7 Bz is convex and hence its maximum

on any polytope is attained at some vertex of the polytope. From this it follows that
PosSDEF-0-1-MAX is equal to the problem

CUBEMAX.

Instance: n € IN; a positive definite symmetric integer n X n-matrix B; a positive
integer .

Question: Does there exist a vector = € [0,1]" such that 2T Bz > \?

CUBEMAX is the decision version of the problem of maximizing 7 Bz on the standard
unit cube C = [0,1]" = Y1 [0, 1]e;, where e; is the ith standard unit vector.
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Let us now apply LDU-factorization to express B as the product LDU of a lower
triangular matrix L, a diagonal matrix D and an upper triangular matrix U. This is
done essentially by Gaussian elimination and thus works in polynomial time. Since B is
symmetric and positive definite, L = U7 and all elements of D are positive. Thus, with
V = /DU, where v/D denotes the matrix obtained from D by taking the square root of
all entries, we have B = VTV. It is due to the v/D-step that V cannot be computed in
our binary model. However, it turns out that a suitable approximation will do and that
CUBEMAKX is polynomially equivalent to the following problem.

PArRMAX.

Instance: n € IN; linearly independent vectors vy,...,v, € Z"; a positive integer

A.

Question: Does there exist a vector ¢ € ., [0, 1]v; such that 2Tz > \?

PARMAX is just the decision version of the problem of finding a point of the paral-

lelotope Y0 ,[0,1]v; that is farthest from the origin. It is a special case of the following
problem.

ZONMAX.

Instance: m,n € IN; vectors wy,...,wy, of Z" a positive integer \.

Question: Does there exist a vector x € .-, [0, 1Jw; such that 2Tz > \?

In ZONMAX, the vectors w; are not required to be linearly independent and the sum
Yo 1[0, 1]w; is the sort of geometric figure known as a zonotope — the Minkowski (or
vector) sum of finitely many line segments.

Zonotopes play an important role in several contexts, partly because of their close
relationship to arrangements of hyperplanes (see e.g. [Ed87]). However, in connection with
PosSDEF-0-1-MAX and SIMPLEX-WIDTH we are concerned with the special zonotopes in

IR" that are generated by n + 1 line segments [0, 1Jw; such that the w;’s sum up to 0. In
fact, it turns out that PARMAX is equal to the following problem.

ZEROSUM-(N+1)-ZONMAX.

Instance: n € IN; linearly independent vectors vi,...,v, € Z"; a positive integer
A
Question: With vg = — Y., v; does there exist a vector z € Y.« [0, 1]v; such

that 2Tz > \?

Let us now study the problem for a fixed such zonotope

Z= Zn:[O, 1]v;, with i:vi =0.
=0 =0
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The vertices of Z, which are the points of interest in maximizing 27z, are of the form
Yiervi with I C {0,...,n}. Let us fix I for a moment, and suppose that ) ;. ;v; is a
vertex of Z. If we normalize our vectors and set
v V;

o’

D= v; = —— for 1=0,...,n,

[ oi |l
then of course

loll=vT0=73" |l v | oTo.

el

A crucial step in our transformation is now the geometric interpretation of the real number
| vi || 9. Let Q; denote any (n — 1)-dimensional polytope in IR™ whose affine hull is
orthogonal to 0; and whose (n — 1)-dimensional volume is || v; ||. Let L denote the linear
subspace orthogonal to . Then || v; || 59 is the (n — 1)-dimensional signed volume of the
orthogonal projection of ¢); onto L.

Now, can we unify this interpretation to be able to deal with all projections simulta-
neously, and thus with 37, || vi || 99; i.e., can we construct a polytope which is related
to all the @;’s? The answer (at least from the theoretical point of view) is contained in
Minkowski’s classical theorem [Mi03] on the existence of polytopes with prescribed facet
normals and facet volumes.

MINKOWSKI’S THEOREM. Let z,...,z, be (mutually different and spanning) unit
vectors of R", and let vy, ...,vn be positive reals such that E:’;O v;2; = 0. Then there
i1s a polytope P, unique up to translation, that has zg,...,zy as the outer normals and
Vo, -..,Vm as the (n — 1)-volumes of its facets.

Application of this theorem with m =n, z; = v;, v; =|| v; | (t = 0,...,n) yields a
simplex S with facets F; (this is of course a special choice for the polytopes Q;) such that
v; is the outer normal of F; and || v; || is the (n — 1)-volume of F;. This result is not
directly useful for our purpose since Minkowski’s theorem is not algorithmic. However,
it turns out that it is possible to design a polynomial-time algorithm which determines S
approximately. The tools for that are Brunn-Minkowski theory and the ellipsoid algorithm.

The last crucial step in our transformation uses an observation employed in [Eg69] to
prove a result of Steinhagen [St20], [St22]. With the aid of the projection interpretation
of | v || one can show by means of an elementary dissection argument that

[l 8(S) = nV (),

where V(S) is the volume of S. This relation indicates that maximizing the norm over
vertices of Z is equivalent to minimizing the breadth of S over all directions ¥ associated
with subsets I of {0,...,n}. But as indicated earlier, this minimum is the width of S.
Clearly the last transformation can be reversed (the reverse direction does not require
use of Minkowski’s Theorem) and we conclude that POSDEF-0-1-MAX is polynomially
equivalent to SIMPLEX-WIDTH.



Concluding Remarks. The previous section shows that the the problems POSDEF-
0-1-MAX and SIMPLEX-WIDTH are related by means of a two-way polynomial-time trans-
formation. In [GK89a], the NP-completeness of SIMPLEX-WIDTH is proved by a transfor-
mation from PARTITION, so it follows that POSDEF-0-1-MAX is also NP-complete. The
transformation between POSDEF-0-1-MAX and SIMPLEX-WIDTH also makes it possible to
transfer heuristics and approximative algorithms from either problem to the other [GK89b].
Moreover, the auxiliary problems ZONMAX and PARMAX are of interest in their own right
and are also NP-complete. For ZONMAX, this is established in a different manner (trans-
formation from NOT-ALL-EQUAL 3SAT) by J. Bodlaender and J. van Leeuwen (private
communication).

Finally, we want to point out some applications that involve the problems considered
here. We have already mentioned the importance of zonotopes in computational geometry,
due in part to their relationship with arrangements of hyperplanes. However, they are
useful in other ways as well. For example, in [MS85] they play a role in finding the
minimum of areas of a polytope’s orthogonal projections.

The problem of computing the width of a general polytope is of interest in connec-
tion with certain problems in robotics and in the sensitivity analysis of linear program-
ming [GK89a]. And in connection with computer vision, there has been some interest in
Minkowski’s theorem (see [Li85]) — that is, in constructing polytopes from their facet nor-

mals and facet areas. Extensions of our algorithmic approach lead to further applications
in this area.
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