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Introduction

A sequence of real numbers {ay }g<x<y is said to be unimodal if there exists m, 0 <m <n,
such that

(0.1) aOSalS...Samaamﬂa...?_an

The sequence is called log-concave if

0.2) Y18 S ak2 :
forallk, 1£k<n-1.

Unimodal and log-concave sequences are fairly frequent in combinatorics and in other
branches of mathematics, and numerous methods of proof, some of them quite sophisticated, are
available (see [Stl] for a recent survey). For example the three following basic combinatorial
families of integers are log-concave (in k) and consequently unimodal, for all fixedn=0:

the binomial coefficients (@

the (signless) Stirling numbers of the first kind c(n,k),

the Stirling numbers of the second kind S(n k).

These facts can be established combinatorially, for example, by constructing injective
mappings between appropriate sets (see [Sall):

(03) Ak-l X Ak+1 E— Ak X Ak

Many of the combinatorial sequences {ax} admit g-analogues, that is polynomials ai(q) in a
variable q such that ay(1) = a,. In particular, we will consider the following g-analogues of the

previous three families:

the well-known g-binomial coefficients ['i‘c]q, defined by




(0.4) n] [l
[k]q_ [Kilg K1,
where
(0.5) [nllg = 1]y [2]; . .. In], 021 5 [O]tg =1
with
0.6) ], = leqr .+ = 29 n1q0] =0
. nq—+q oo Q = I_qsn—: ]q"'

. the g-Stirling numbers of the first kind cq[n,k], (see [Go]), defined inductively by

cq[0,0]= 1, cq[n,k]r-O for k<O or k>n,
0.7

cq[n,k] = cq[n-l, k-1]+ [n-l]q cq[n-l, k], n=1

the g-Stirling numbers of the second kind Sg[nk] (see [Ca, GaR, Go, Mi, WWJ;
notations vary!) defined inductively by

§q0001=1, Sgnkl=0 for k<O or Ik>n

©.8)
Sqlnk] = Sqln-1,k-1] + [klq Sqfn-1, k], n21

It is then natural to introduce the finer concepts of g-unimodality and g-log-concavity for
polynomials in q. This is done simply by interpreting the inequalities in (0.1) and (0.2) (see
[Bull, [Bu2)) as coefficient-wise inequalities. In other words, for two polynomials f(q) and g(q),

we have

0.9 flo<gl@) < g(@ -f(q) has non-negative coefficients

At the 840th meeting of the American Mathematical Society in East Lansing, Michigan, Lynne
Butler presented a beautiful injective proof of the g-log-concavity in k of the g-binomial coefficients
[rf:]q and announced the conjecture that the sequence of g-Stirling numbers of the second kind
Sq[n,k] is q-log-concave in k (see [Bu2]). In the following weeks a number of combinatorialists




visiting the Institute for Mathematics and its Applications in Minneapolis settled this conjecture and
related open questions concerning q- and p,q-Stirling numbers (see [WW]) of the first and second
kinds. Vartous methods of proof were proposed, in particular mathematical induction [Sa2], the
theory of symmetric functions [Stn], and injections. The purpose of this paper is to report on these
results and more particularly to present injective proofs, using an appropriate extension of
L. Butler's method which is based on involutions on pairs of Ferrers diagrams [Bu2].

For this purpose, we introduce a new combinatorial model for set partitions that is inspired from
reduced matrix representations [Le2, Le3] of restricted growth functions. It consists of special 0-1
fillings of Ferrers diagrams that we call 0-7 tableaux , from which the q and p statistics "number of
inversions” and "number of non-inversions" can be easily read (see §2 for more details), thus
providing new combinatorial interpretations for the polynomials in p and q Spqln k] and Cpglnik] 5
setting p=1 gives the usual g-analogues of the Stirling numbers.

In §3 we adapt the involutions "arm" and "leg" of [Bu] to pairs of 0-1 tableaux and apply them
in §4 to establish various pg-log-concavity results by describing weight preserving injections of the
form (0.3). Other results, proofs, counterexamples and conjectures are given.

We first briefly describe in §1 various classes of reduced matrices, closed under matrix
muliplication, and some generalizations, that are of interest in combinatorics and that gave rise to
the concept of 0-1 tableaux.
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§1. Categories of Reduced matrices.

Let 0<k<n be integers and K be a field. We will call a kxn matrix over K reduced if it is
row-reduced echelon, of rank k. We conveniently assume the existence of a unique Oxn reduced
- matrix for all n=0. It is a well known and widely used fact (see e.g. [Kn, NSW]) that reduced kxn

matrices R can be used to codify k-dimensional subspaces W of KN (take W = W(R), the

row-space of R) and to enumerate them when K is a finite field GF(q). Indeed we can remove,

without loss of information, the pivot colurns of a reduced kxn matrix (the remaining 0's to the

left of the leading 1 of each row are also removed) to obtain a Ferrers diagram (in the third qua-

drant, for the moment) which fit in a k by n-k rectangle and is filled with arbitrary elements of X
- (stars, in Fig. 1). When K = GF(q), the number of such subspaces is given by (0.4) and hence
. we find -

(1.1) [, = Ny

A F (k.n-k)

where & (k, n-k) denotes the set of partitions A = (Aps Az, .o AR, withnk2Ah 120 2...2
Ax 20, and Al = A,

1 % 0 * ( % % % % (0 #* # d | 4 | %] % | 2| % | x| %
0 0 1 = 0 * =* * % ( * * w | k| k| k| ok | % | %
—>
0 0 0 0 1 * * % % (O * * | k| % | % | % | %
6 0 0 0 0 0 O 0 0 1 =*= = % | %
M A=(8,7,6,2)
Figure 1.1

It is however less often observed that reduced matrices are closed under matrix multiplication
(see e.g. [Led, exer. 2.19]) and that this multiplication contains all the information about the
inclusion of subspaces: if R and T are reduced kxn and mxn matrices resp., then W(R) € W(T) if
and only if there exists a (unique) reduced kxm matrix S such that R = §+T. Since the identity
matrices are the only reduced square matrices, we see that the reduced matrices constitute, with
matrix multiplication, arrows of a triangular category, denoted by Red, according to the following




definition [Le2]:

1.1 Definition. A category G is called triangular if the set ob(G) of objects of G is
equal to N= {0, 1, 2, . .. } and the cardinalities A(k,n) = |G (k,n)l of sets of arrows (k, ne IN)
constitute a triangular family of numbers, that is

(1.2) k>n > "Atk,n) =0,
(1.3) A(nn) =1 , forallnelN,

Most of the basic combinatorial triangular families of numbers can be represented by
triangular categories and many of them occur as subcategories of Red (i.e. classes of reduced
matrices closed under matrix multiplication) or as generalizations of Red. There is usually an
induced partial order on each set C(n) = Uysg B(k,n), determined by the factorizations of the
arrows (i.e. the reduced matrices) as in the case of subspaces of K0, Moreover the incidence
algebras of these posets and their Mobius functions are closely related to those of the triangular
category (see [DoRS, CLL, Le2]).

A first example is the poset Sse(n) of subsets S of [n] = {1, 2,...,n}; these can be
represented as reduced matrices M with all stars equal to 0 (take S = set of pivot columns of M). If
M = [mj] is of format kxn, then M can also be seen as the row to column matrix representation of
the unique injective and increasing mapping f: [k] — [n] whose image is S, that is

my; = X(j = 1))
where % is the usual truth function. Writing M = M(f) one has also

(1.4) M(gf) = M(f) M(g)

This triangular category of reduced matrices, denoted by Sse, is isomorphic by (1.4) to the
category A gace Of injective increasing mappings of finite sets of the form [n], n>0. We have

(1.5) Isse Gem)l = (1)

Another example, most important for the present paper, comes from the lattice Par(n) of set




partitions of [n]. Given a partition 7 of [n] into k blocks, written in standard form (asinFig. 1.2,
where n = 12 and k = 4), that is where the blocks are ordered according to their smallest elements,
we can define a surjective function g = gn: {n] — [k] by

(1.6) g(j) =i iff jbelongs to the ith block of 7 .

This function g is of restricted growth, that is satisfies the condition

a.n g() = max;.j g() + 1, forall je[n].

n=1,2,4,7/3,9,12/5,6,8,11/10

&n
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Figure 1.2

The column to row kxn matrix representation C(g) = [cy;] of a mapping g:[n] — [k] is
defined by (see figure 1.2)




(1.8) cij = x(i=g(@)).

It is an elementary fact that the mapping g is of restricted growth and surjective if and only if
C(g) is reduced and also that ‘

(1.9) C(g) C() = C(gh

Thus we obtain a triangular category, denoted by Par, of reduced matrices of the form
C(w) = C(gg), where % is a partition, such that

(1.10) {Par (k,n)l = S(n,k)

and for which the order relation induced on Par(n) by the factorizations is the usual order by
refinement. Reduced matrices of the form C=C () can be characterized by the following facts:

C is reduced,
all entries of C are O's or 1's.
there is exactly one 1 in each column,

Now again we can remove, without loss of information, the pivot columns of C(r) to obtain
a so-called 0-1 tableau T(r) (see fig. 1.2) which represents the given partition ®. This is the
model that will be used in the following sections.

Other triangular categories of reduced matrices include Comp, consisting of compositions of
integers, which can alternatively be described as set partitions whose blocks contain only
consecutive elements (see fig. 1.3) and Parge (from French "partage"), consisting of integer
partitions, which can be described as compositions whose parts are decreasing. As triangular
categories, we have

(1.11) Parge © Comp & Par S Red.

Many other triangular families of numbers involving combinatorial objects (e.g. partitions
with ordered blocks, permutations, bipartite graphs) can be represented as triangular categories
(see [Le2]) often using generalized reduced matrices.




§2. p.g-Stirling numbers

The first combinatorial interpretation of the g-Stirling numbers was given by S. Milne [Mi] in
terms of inversion numbers of partitions or of restricted growth functions. M. Wachs and
D. White [WW] have recently introduced a second statistic on partitions which could be called
non-inversions. The generating functions in two variables p and q for the joint distribution of these
two statistics are then called the p,g-Stirling numbers of the second kind and will be denoted by
Sp.glnk]. Using the bijection between partitions m and 0-1 tableaux T(x) described earlier (see
fig.1.2), these statistics are easily defined as follows:

the inversion number of &, inv (7), is equal to the number of 0's below a 1 in T(x) (stars in
fig.2.1);

the non-inversion number of 7, nin (%) is equal to the number of 0's above a 1 in T(m)
(plusses in fig 2.1).

11+ |1 |+ |+]|+]|+
* * + 11
* 0 10 %] 11 %
% | ok
Figure 2.1
We then set, for n2k,
(2‘1) Spq[n:k] = Z p'u."(TE) qiﬂ'ﬂ(n)’
’ " mePar(k,n)

and obtain immediately, from the combinatorial model (try to add a new column), the recurrence
(2.2) Sp,q[n,k] = Spqln-1,k-11 + [Klp 4Sp q[n-1, k], n21,
which, together with the boundary values

2.3) Sp’q[0,0] =1; Sp,q[n,k] =0 for k<0 or k>n
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characterize these polynomials. Here the notation [n]y, g is used for the p,g-analogue of n, defined
by

@4 [0],q=0; [m]pq = P+ pr2q+tght = 2L 1>

and can be seen as the p,g-generating function for 0-1 tableaux having one column, of height n.

Setting p=1 in (2.1) means ignoring the statistic nin(r) and yields the g-Stirling numbers of
the second kind Sg[n,k] defined by (0.8). Of course, setting p=q=1 gives the usual Stirling
numbers of the second kind.

The main result of this paper is the following theorem which will be proved injectively in §4:

Theorem 2.1 The p,g-Stirling numbers of the second kind are p,q-log concave in n, that is
satisfy, for n21 and 2<k<n-1, the inequality

(2.5) Spglns k-11 Spgln, k+1] <0 (Sp q [nKD?
where f <, o g is to be interpreted as "g - f is a polynomial in the variables p and q with non-

negative coefficients”,

For p =1, this is the conjecture of Lynne Butler; this result, as well as the more general
theorem 4.1, has been proven independently by Bruce Sagan [Sa2] using induction.

010;0;,01 1
1100170 0
01;0
00

Figure 2.2

In order to follow more closely L. Butler's proof of the g-log-concavity of the Gaussian
coefficients, we will now adopt the Anglo-Saxon representation of Ferrers diagrams in the fourth
quadrant of the plane and give an intrinsic description of 0-1 tableaux (see fig. 2.2). Indeed a
0-1 tableau can be seen as a pair ¢ = (A,f) where A =(A;2A,2...)is a partition of an integer
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m = IAl and f = (f;;) is a "filling" of the corresponding Ferrers diagram with 0's and 1's, with
exactly one 1 in each column. Let #in() (resp. ino(¢)) denote the number of 0's that are located
above (resp. below) a 1 in the 0-1 tableaux ¢. We also denote by I the set of all 0-1 tableaux and
by < (k,r) the set of all those ¢ = (A,f) € U such that the number of (non-zero) parts of A is at
most k and that Ay = r (we insist that the largest part be equal to r), for k=0, r>0. By convention,
there is one 0-1 tableau ¢ € ¥}, with nin(@) = in() = 0, for k=0 but I (0,r) =0, forr >0, It
should then be clear that for r = n-k, we have

(2.6) _ nin(Q) _ino(¢)
Spalnkl= > p q

9 T (k,n-k)

Two properties of Sp,q[n,k] are immediate consequences of this combinatorial definition: the
symmetry in p and q and Gould's formula.

Proposition 2.2 The p,q-Stirling numbers of the second kind Sp ¢[n.k] are symmetric
polynomials in the variables p and q.

Proof. This fact is already obvious from the recurrence (2.2), since [n]p’q is a symmetric
polynomial in p and q. An explicit involution ® on & which interchanges the statistics iz and inv
can be described as follows: restricted to single columns, @ is the obvious involution which yields
the symmetry of [n], 4 (see fig. 2.3); for a general 0-1 tableau, apply this involution separately to

each of its columns. 0J
0 0
1 0
0 > 0
0 1
0 0
Figure 2.3
In particular we have
(2.7) S],q[n:k] = Sq,l[nsk]

and we see that the two statistics nin(¢q) and inx(¢) have the same distribution, for ¢ € T k,n-k).




I1

Proposition 2.3. The polynomial Sy 5[n,k] admits the two following equivalent expressions
which, for p = 1, correspond to H.W. Gould's [Go] original definition of the ¢-Stirling numbers
of the second kind:

(2.8) Spqnkl = ¥ IV
re F (k,nk)

l]piq - [A, n-k]P,q i
where A' denotes the conjugate partition of A,

(2.9 Spqlnkl = Z G1p.q - Onadpa
ISJIS s_]n_ks k

Proof: These expressions simply describe the construction, column by column, of 0-1 tableaux.
(M

Note also that f‘oi‘muia (2.9) can be translated in terms of generating functions:

(2.10) Y Skt kx= —L L
s Flllpgx 1 Tpgx

or of the homogeneous symmetric polynomials h,:
@.11) Sp.qmkl = h (1], q.- - Kl 9

We now turn to p,q-Stirling numbers of the first kind. Inspired by Gould's formulas [Go],
we set

Qe Td (n-1,n-k)

where 9 d (h,r) denotes the subset of I (h,r) consisting of 0-1 tableaux with distinct columns .



12

Equivalently we have
(2.13) clnk] = i<, ...2<:jn_k.<—n- 1 Uylpg - Upadpag
(2.14) ;2:0 cln, nr] X = (L+[1], 0% ... (0 +[0-1], 0 %)
(2.15) clnkl = e (1l qs---, 011, 9

where e, denotes the elementary symmetric function of degree n.

It is left as an exercise to the reader to find a bijection between 0-1 tableaux in ¥'d (n-1,n-k)
and permutations of the set (1, ... ,n} which factorize into k disjoint cycles, and to interpret the
statistics nin and inv accordingly.
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§3. The involutions "arm" and "leg"
As a tool for constructing injective proofs, L. Butler has introduced in [Bu2}, for m>1, weight
preserving involutions "arm" 4= 4, and "leg" £ = £, on the set & x & of pairs (A1) of Ferrers
diagrams, the weight being defined as

(3.1) wp) = M+l

The purpose of this section is to extend these to weight preserving involutions of the set &' xJ°
of pairs (¢,v) of 0-1 tableaux, with weight

(3.2) w(Q,y) = prin@) + nin(y) qino()+ iny)

We will use an alternate description of L. Butler's involutions which has a Gessel-Viennot
lattice path flavor [GeV].

> _
1 1|1 1 1 1 r—>
1 1 1 1 1
1 1 1 1 1
1 1
I
w -
C(A) 1
1 J
1 ]
o=(A 1) ! y=(H,g)
Figure 3.1

1

Let ¢ = (A,f) and y = (u,g) be 0-1 tableaux and let m>1. The construction of
(6,{;;) = Ay (@,y) is illustrated in the figures 3.1, 3.2 and 3.3, in the case m=2. With any partition
A, we associate the infinite lattice path ¢(A) in the plane that goes upward along the negative y-axis
until it reaches the Ferrers diagram of A, follows the south-west boundary of the diagram to the
x-axis and then goes right to infinity on the x-axis (see fig. 3.1).
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0
-
|
|
—
Ca(M) M
~a |
‘__J
l—_’ “~
el
’___l
|
|
|
Figure 3.2

To define (a, \TI) = An(9,y), we first shift the path c(A) m steps to the left and superimpose the
resulting path, denoted by c.,(A), over c(i) (see fig. 3.2). These two paths must intersect; let M
denote the first point of intersection. The involution 4;; then interchanges the two sections of
paths that start at M, giving a pair of new shapes (i’, ﬁ); to obtain the new fillings, we simply
interchange the columns of @ and y that are to the right of the point M (see fig. 3.3). This

'produccs the new pair ((ﬂpl, i;vr) = A (0, y).

1 1 1
1 1 1
1 1 1
1 1
1
1
@ v
(('ﬁ,lTl) =4, (o W)

Figure 3.3
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Proposition 3.1 The endofunction A, described above on 9 X U'is involutive and weight
preserving. Moreover we have

(3.3) A, (T 1) x T (ks)) S T(h,s+m) x T(k, r-m)

whenever r2 s+m and h<k .

Proof. The first part of the proposition should be evident. Now if (p,y) € T (h,r) X I '(r,5) we
have A; =rand y; = s so that if r = s+m, then the point of intersection M will appear before the
X-axis. This means that an "arm” interchange will effectively take place and that Ay = Hyrm and
{1 =A;-m. Concerning the legs, we will have A} =2} <h and either pj=p!<k or RIS

h £k, when M lies on the y-axis. In any case (3.3) holds. 0
- ———
1
1 base line
1
! |
1
1 1
! ¢=(Af) M y=(Hg)
Figure 3.4

The construction of the "leg" involution £y, is similar, but crucial changes must be made in
Butler's construction. It will be illustrated, again with m=2, by the figures 3.4 - 3.9, Let (¢ =
(A.) , ¢ = (1,2)) be a pair of 0-1 tableaux. We introduce a horizontal line, called the base line,
which is m steps below the top of the Ferrers diagram of pt (see fig. 3.4). The section of y which
lies below the baseline will be called the sub-tableau of . The involution £, will somehow
interchange a number of columns of ¢ with the corresponding columns in the sub-tableau of .
We naturally want to preserve the property that there is exactly one 1 in each column.

Assume for the moment that ¢ and y each contain only one column. There are two cases:
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Case 1. There is no 1 above the base line . Then ¢ and the sub-tableau of y are simply
interchanged by £, (see fig. 3.5).

base line

Figure 3.5

_ Case 2. There is a I above the base line in y. We then introduce a second horizontal line,
called the cut line, h steps below the baseline, where

h=min (A} , p'y - m)

(see fig. 3.6 & 3.7). Here again A' denotes the conjugate partition of A so that A"} is the size of the
first (and only) column of ¢. Two subcases can occur:

Subcase 2.1 There is no I below the cut line . In this case, Ly, simply moves from left to
right, or from right to left, the cells that lie below the cut-line (see fig. 3.6).

| base line 1

cut line

Figure 3.6
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Subcase 2.2 There is a I below the cut line, necessarily in ¢ (fig 3.7). Such a pair of
columns is called untouchable and is left fixed by £, . Note thatin this case, A'y > 'y -m .

1 base line

cut line

Untouchable pair of columns

Figure 3.7

Now in the case of a general pair (¢, ) we first locate the untouchable pairs of corresponding
columns, if there are any (5P and 8t columns in fig. 3.4). Let d(A) denote the path associated
with the Ferrers diagram of A obtained from c(}) simply by reversing its direction. We then super-
pose the paths d(A) and d_g, (1), obtained by shifting d(it) m steps upwards. This gives a first
intersection point M but more interesting in our case is the first intersection point P to the left of
which lies no untouchable pair of columns (see fig. 3.8).

dy(p)

d(A)

Figure 3.8
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The involution £, then interchanges the two sections of paths that originate at P and the new
fillings are obtained by applying to successive pairs of columns left of the point P, the rules
described earlier in cases 1 and 2.1. This gives (¢, Y) = L, (@, ) (see Fig. 3.9)

(9, ¥)=L(0,¥)
Figure 3.9

Proposition 3.2 . The endofunction £, on U x T is involutive and weight preserving.
Moreover, we have

(3.4) L, (T x Tks) & T(km,1) X F(htm,s)

whenever h+m<kandr=s.

Proof. Only the second part requires explanation. Let J be the column of the first (from left to
right) untouchable pair of columns, if there is any, and J = e otherwise. Then as observed before,
the path d(A) must lie strictly below d_g, (1) at the column J. Now if A'y < l'; - m, then the point
of intersection P must lie to the right of the first column and a "leg" interchange will effectively take
place. In that case we will have

(3.5) A =p.'1~mSk-m and ﬁ'1=l'1+mSh+m.
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If no leg interchange takes place then necessarily A; 2 { -m and we have

(3.6) Ay=A <h<k-m and p)=p, <A, +m<h+m.

When A} =12 s =}y, then £, could cause an arm interchange only if P=M was on the x-axis
and A; > 1. But this is impossible since this situation creates untouchable pairs of columns.
Hence A =A; =rand p; =} =s. Inany case we see that (3.4) holds. |

There is a variant of the arm involution which is adapted to 0-1 tableaux with distinct columns
denoted, for m21, by

3

(3.7) ad,;: TdxTd— TdxTd

It is defined as follows, for (¢,y) e Td x Td, with ¢ = (A,f) and y = (L,g): let J be the
first column for which A'y m.1 > W'y, else, if no such column exists, let J = «; recall that A’
denotes the conjugate partition of A and that A'; is set equal to 0, for j 2 A; . In terms of the
superposed paths ¢_p,(A) and c(u), we look for the first vertical segment in their intersection, if
there is any. The function A4, then transposes the columns to the right of this segment, that is the
columns J+m, J+m+l, . . . of @ are interchanged with the columns J, J+1, ... of y. If J = oo,
then A4, leaves the pair fixed.

The proof of the following statement is similar to that of proposition 3.1.

Proposition 3.3. The endofunction A4y, described above on 9°d x 9'd is involutive and
weight preserving. Moreover, we have

(3.8) 4 (Td () x Tdhs) € Tdh, s+tm)x Tdh, r-m)

whenever r 2 s+m,
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§ 4 Results and conjectures

In this section we present a summary of results (with proofs), counterexamples, and
conjectures, dealing with log-concavity and unimodality of g- and p,q-analogues of Stirling
numbers. Recall that inequality between polynomials means coefficient-wise inequality.

Theorem 4.1 For n 21, 2€k<2<n-1 , wehave

4.1) Spglm k=17 Spgln, £ +11 <54 Spqln. k] S gln, £]

Proof: There is a weight preserving injection

42y Tk-Ln-k+D) xTL+1L,n-L-1) > Tkn-k) x T(L,n-L)

which can be described as the composite Ly © Ay, where m = £ -k + 1. Indeed, since Ay and
Ly, are both weight preserving bijections, their restriction to any subset will be injective and weight
preserving, and so will their composite. Moreover it follows from (3.3) and (3.4), since k < £ and
m=2-k+1,that

(43) A4,(T&-1Ln-k+DxTRL+1,n-£-1) & Tk-1L,n-k)xT(L+1,n-2R)
and
4.4) LT k-Ln-K)xTL+1L,n-8) € Tkn-k)xT(Ln-2L)

This establishes (4.2) and hence (4.1), by virtue of (2.6). a

This theorem was proved independently by Bruce Sagan using induction {Sa2]. In fact he
proves a slightly more general result, required for the induction hypothesis, where a factor of pigJ,
with i and j in some range, stands in the left hand side of (4.1). Of course, the case k = £ is exactly
the p,g-log concavity result (Theorem 2.1).

Sagan was the first to prove the analogous result for the Stirling numbers of the first kind
(see (4.5) below). He gave two proofs, by induction and also (for k = £) by observing that his
injection g, in [Sal] preserves weights (by contrast the injection h, of [Sal] does not preserve
weights and cannot be used for g-Stirling numbers of the second kind).
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We will give two other proofs of theorem 4.2, one using the arm involution adapted to
tableaux with distinct columns, Ady,, and the other, suggested by D. Stanton {Stn], using the
Jacobi-Trudi identity for the Schur symmetric functions.

Theorem 4.2 For n21, 2<£k<2<n-1,wehave

(4.5) cp,q[n, k-1] Cp,qlts 2 +1] Spaq cp’q[n, k] cp,q[n, 2]

Proof 1: A direct application of (3.8), with m=2-k+1, h=n-1, r=n-k+1,
s=n-£-1, gives the required weight preserving injection, bearing in mind (2.12).

2, (Suggested by D. Stanton). Let A denote the conjugate partition of (n - k, n - 2), i.e.
A = (2m-%£ 14-K), Then the dual form of the Jacobi-Trudi identity (see [Ma], Ch.1, 3.5) expands

the Schur function $,(x), in the variables x = (x4, ..., X.1), in terms of the elementary symmetric
functions ej(x) as follows:

(4.6) H(x) = epiX) eq p(X) - en.p.1(X) €ppe1®)
After the substitution x; — [i]p g, fori=1, ..., n - 1, we get, by virtue of (2.15),

47 cpqln, Kl cpqln, £] - cogln k- 1] cpgln, £+ 1] = $[Llpg, .. [n- 1] 0)

1\

P4 0
since the Schur functions and the [i]p,q have positive coefficients.
[

The next natural question to raise is that of the p,q-unimodality in k. However this turns out
1o be false, even for p = 1; indeed, contrarily to the case of the g-binomial coefficients (see [Bul]),
L. Butler and myself observed that the g-Stirling numbers of the first and of the second kind fail to
be q-unimodal in k, in general. For Sqin, k], this first occurs at n = 9, where between k =4 and 5,
some coefficients increase and some decrease. For Cqln, kI, this first occurs at n = 5, between
k=2 and 3.

It is also natural to consider the sequences Spgln. k] and ¢, g0, k|, n2k , for a fixed k.
These sequences are easily seen to be p,g-increasing and hence p,g-unimodal. The question of
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p,q-log-concavity in n is solved differently for Sp'q[n, k] and cp’q[n, k]. In the first case, the
following more general formula holds.

Theorem 4.3 For k21, k+1< .2 <n, we have

4.8) Spgl® - 1.kl Spgln+1,kI $5q Spgl2, k] Spqn, k]
Proof: This follows simply from proposition 3.1, that is, withm=n- £ + 1,

4.9 ﬂm(ﬂ'(k,n%l - x Tk, L-1-%) € Tk,n-k) x Tk, £-k)
O

This result was first proved by D. Stanton. Similarly to the proof of theorem 4.2, he used
the formula (2.11) and the Jacobi-Trudi identity expressing the Schur function in terms of the
homogeneous symmetric function. Stanton's method confirms the fact that the arm involution is
closely related to the Gessel-Viennot combinatorial proof of the Jacobi-Trudi identity. This method
however doesn't seem to be applicable to theorem 4.1, where both the arm and the leg involutions
are needed.

Surprisingly, the analogue of (4.8) for ¢, g[n, k] is false, even for £ =nandp=q = 1.
Hence the p,q-Stirling numbers of the first kind are not p,g- nor g-log-concave in n. The degrees
do not even fit. Numerical evidence however incite us to formulate the following:

Conjecture 4.4 For1<k , r+1<n,

(4.10) Cpgln- 1Kl cpgln+ Lkl S50 (+0) (cpgln, k)2

The most interesting questions about the g-Stirling numbers that are still outstanding are the
internal unimodality and log-concavity, that is unimodality and log-concavity of the sequence of
coefficients of each of these polynomials in q.

There is a general conjecture by Garsia and Remmel that the generating polynomial Ry (A, g)
in q, of placements of k rooks in a Ferrers board A according to the number of inversion, is
unimodal (see [GaR], p. 250). This covers the polynomials S[n, k] and cqln, kl; however in this
case numerical evidence point out to the stronger property of log-concavity. Note, in contrast, that
the g-binomial polynomials, for example, [5‘ 1=1+q+2qg2+q3 + g4, are not log-concave.
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Conjecture 4.5 The polynomial Sq[n, k] is log-concave, forany 1 £k <n,

This conjecture was first stated by M. Wachs and D. White [W W] who tested it for n < 20
on the computer. They observed, moreover, that the sequence of coefficients of Spglm k] asa

polynomial in q is not p-log-concave, in general.

Conjecture 4.6 The polynomial cy[n, k] is log-concave, forany 1 <k <n,
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