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MACDONALD CONJECTURES AND THE SELBERG INTEGRAL

LAURENT HABSIEGER{

Abstract. In 1962 Dyson proposed the value (nk)!/k!® for the constant term in the expansion of
the product H.. £i (1 -z /z,—)". In 1980 Macdonald stated several conjectures that ge:nera.lize'Dyson’s
conjecture, by considering some products associated to root systems. We will present various forms of
Macdonald’s conjectures and describe the results obtained so far. A useful too)l in this study is Selberg’s
integral, a multivariate extension of the beta integral. We will also give the connections between Selberg’s
integral and Macdonald’s conjectures, and explain some other extensions of Selberg’s integral.

First Part: Dyson’s conjecture. __
A. Presentation. In statistical physics Dyson [6] was led to consider the following

integral: '
1 1
f .. / H lthrO,- _ e2ir9.|2zd91 L dem
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1<j<k<n .
for which he conjectured the value I'(nz 4 1}/T(z + 1)". Noticing that |¢2i78% — 2im8s|2 —
(1 — e2im(8i—0k))(1 — e2i7(85—8;)}  this is equivalent to

1 1
. . I'(nk + 1)
- 2ur81,“. 2:in8, dgﬂ .”den — .
./o fo fle ) T(k+ 1)

where f(zq,...,z,) = Hls:'aéjsn(l - f:-)"

So his conjecture may be stated as:
X \*  (nk)
CcT H (1 - "—') =TTt
© 1<#i<n X i

where CT f(z1,...,z,) denotes the coefficient of 2123 ...z, in the expansion of f(zi,...,2,).
More generally he conjectured that

2 \* _ (a1 4+ an)!
¢r H (1_1'_,-) eyl lay!

1<i#j<n

This was proved by Gunson (1962, [10]), Wilson (1962, [21]), Good (1970, [9]), Zeilberger
(1982, 22)). |

tThis work has been done on a postdoctoral position of the Institute for Mathematics and its Appli-
cations, University of Minnesota, 514 Vincent Hall, 206 Church St. S.E., Minneapolis, MN 55455, during
the academic year 1987-88.



. B. The g-analogue
Let us put (3‘:)00 = (2 @)oo = H(l - xqi)

and (m)n—(z,q)..-—H(l wq)—(“”)f

' .'._In 1975 Andrews [1] proposed the followmg q- analogue of Dyson’s con_]ecture :

. AndreWS was able to prove the cases n = 2,3 and Kadell (1983, {14]) the case n = 4.
- ‘The general case was proved by Zeilberger and Bressoud (1984, [26]), and Bressoud and .
Goulden (1985, {5]). . . 3
Remarks. 1) As usual, when ¢ tends to 1, one gets the ordinary Dyson conjecture.

2) Bressoud and Goulden’s proof is just an improvement of Zeilberger and Bressoud’s _
proof, which itself extends Ze:lberger s proof of Dyson's con_]ecture ‘

-The main idea that occurs in Bressoud and Goulden s proof is the notlon of tournament :

DEFINITION A tournament T on n vertices is a set of ordered pairs (1,7) such that

1<i#j<n,and (i J) € T if and only if (§,i) ¢ T. Moreover if the condition G,j))eT

‘and (j,k} € T) implies (i,k) € T, for all 1 < t,7,k £ n, the tournament is transitive.
_ Otherwise T is non-transitive.

Equ:va]ently a transitive tournament may be vzewed as {(a(z), (7)) : 1 <i<j<n},
for some permutation o of {1,...,n}.

Bressoud a.nd Goulden 5 “master theorem states that
] T T o
er 11 (2) (:2), =
- (,5yeT I/ a; a;—1 7 .

Cf T is &4 non-transitive tournament. _
7 When T is a transitive tournament we may suppose, up to permutation, that ¢ = id
. and then we have

Zi z; (Q')a +...a = 1— g%
T G, (), -
]SI-I;‘J[SR mJ a; Ty a;j—1 (q)ﬂl T ‘(q)ﬂn g 1 - qa1+m+ai

_ ThIS has also ‘been proved by Bressoud and Goulden but was alrea.dy conjectured by
Kadell in his paper about the case n'= 4,




C. Connection with the root system A,._;. For 1 < i < n let us denote by ¢; the
i-th vector in the canonical basis of R™ and let us put

Apy={ei—e;: 1 <i#j<n}

We have dim A,_; = n — 1, which explains the choice of the index. Let us also denote by
A the lattice spanned by A,,_,, i.e.

A:{a:ia;eg:a; EZ,Z”:O!.'=O}.

i=1 i=1

For a € A, we will represent by e® the corresponding element of Z[A] : if z; = €%/, then

eneittanen — M gdn,

The Dyson conjecture with equal parameters may be written as

cr [ a- ("’“)',

'ﬂ
a€An_1

where CT ) o4 aa€® = ag is the coefficient of e¥¢1++0¢n ig the expansion of the product.

The g-case may also be written as

or I (genieye = (nk,

aEA"’ ( k

where A"" 1={o=¢—-e;€A_;:7—i> 0}; the set A,_; is the set of all the roots
ahd A}_, is the set of positive roots.

Those formulations suggested to Macdonald other conjectures, related to other root
systems than A, _;, that we will describe now.

Second Part: Macdonald’s and Morris’s conjectures.

A] Root Sjrtems. Let V be an Euclidean vector space of dimension n, with the scalar
product {,). For each non-zero vector a in V we definea¥: V > Rand w, : V — V by:

2(a, B)

a¥(B) = Taa) and wa(B) = § — a¥(B)a,

for any vector 8 in V. The linear map w, is the reflection associated to a.
A root system of V' is a subset R of V that satisfies the four following axioms:

(RS1) R spans V and does not contain 0;
(RS2) Ifa € R, then wo(R)=R

(RS3) Ifa,B € R,then aV(p) € Z;

(RS4) R is finite.



If for each a in R we have {8 € R : § proportional to a} = {a, —a}, the root system'

- R is said to be reduced.

- - If R is not the disjoint union of two non-empy orthogona.l sets, the root system R is
sdid to be irreducible. :

e There is a classification for reduced irreducible root systems:

.e four infinite families: A,,, B,,, Cn,D,.
¢ the “exceptional” root systems: Eg, E;, Eg, Fy, Gs.

A set of positive roots of R is a subset R+ of R such that:

i)Va€R aeR e & —a ¢ Rt
il) V(a,8) € R* x R*,a+ € R a+f € R+,
The group spanned by the wa(a € R) is denoted by W and is ealled the Weyl group -
of R. The group W acts naturally on the symmetric algebra of V and the subalgebra of )
the invariants under W is spanned by n algebraically independent homogeneous elements
whose degrees d; are uniquely determined by R.

L ,.,The reader who would like more details. about root systems may refer to Bourbaki [4].

_ B] Macdona]d’s conjectures. We are now abIe to state the sunplest of the Mae-
donald’s conjectures. As in the A,_, case we will denote by e“ the element of Z(A)
correSpondlng to a, for each element a of A, the lattice associated to R.

r__.-Con_)ecture. IfRisa reduced root system, then

o (MAé) | . ‘ .- oT H(l;ea)k____ﬁ (k:,v), o

a€ER i=1-

g - for any non-negative integer k.

_ There are n parameters in the Dyson conjecture and only one in thlS one. So Macdonald
~[17] proposed also a several parameters conjecture for any root system (un.fortunately not
_ eqmva.lent to the Dyson conjecture when R = A,_,).

Con_;ecture Let Rbea (non -necessarily reduced) root system and, for each a € R, let -
. kja| be a non-negative integer depending only on @’s norm. Putting py = 1/2 Yaert Klajo
and koo =0 if a/2 ¢ R we have: :

e = I (a®(pr) + kja) + 1/2k 0 2))!

' (BIG MAC) cr H (1~ (@ (pe) + 172Hia7a)

. o€ER aER

In the same way there are ¢-Macdonald’s conjectures.
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Conjecture. Let R be a reduced root system and k an element of NU {+co}. Then we

have:

(aMAC) o or e =TI[4],

atcRt

where [:] denotes the ¢-binomial coefficient (¢)n/{@)x(¢)n—k.

There is also a g¢-version of the (BIG MAC) conjectures but it requires some more

tools.

C. Affine root systems and Morris’s conjectures. Let F be a finite dimensional
‘affine euclidean space, with translation space V and let F' be the vector space of the affine
forms on E. So each element f of F' may be defined on E by f(a+v) = f(a)+{Df,v), for
any scalar a and any vector v, and denoting by {, ) the scalar product on V; the vector of V
denoted by D f is called the gradient of f. Then one can define on F a semi-definite positive
symmetric bilinear form by (f, g} = (Df, Dg). For f non-constant, the real number {f,
is non-zero and so the linear form fV (defined as above by fY(g) = 2(f,g)/{f, f)) and the
isometry wy (defined by ws(g) = g — f¥(g)f) are well-defined.

An affine root system is a subset S of F satisfying the four following axioms:

(ARS 1) S spans F and does not contain any constant;
(ARS2) I feS, thenws(S)=9

(ARS3) If f,g €S, then fY(g9) € Z;

(ARS 4) The group W(S) acts properly on E.

As above W(S) denotes the Weyl group of S, spanned by the w; and it acts on E via
wy(z) =z — 2f(z)/(f, f)Df. One can notice that each axiom (ARS i) is the exact affine
analogue of the axiom (RS i), fori =1,2,3,4.

An affine root system will be said to be reduced if and only if two proportional roots -
are equal or opposite, and irreducible if it cannot be written as the disjoint union of two
non-empty orthogonal subsets.

Let 5 be an affine root system, with gradient root system 3" (i.e. > ={Df:feS&}).
A basis B of § will be a basis of F such that the coordinates of any element of S are
either all non-negative or all non-positive. The existence of such a basis is insured by the
theory of infinite dimensional Lie algebras. For a given basis B we define a chamber C by
C={z€E:bz) >0, Vbe B}. Foreach fin S, let us define uy to be the smallest real
number such that f +ay € §. This number us depends only on Df and so we can talk
about ua, for a in 3. Let us put again:

Yo={a€X:2 €L},
Y={a€X:2a¢5},

Tt =8nxt
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- where E+ is t.he set of the pomtwe roots of ), relatwely to C. Let us also denote by xg

~the characteristic function of 20

A labelling of 5 will be a function & : § — N such that k( F) = k(g) whenever Df = Dg" |
Cor ( f£) = {9,9). As k depends only on the gradients, we can also defineit on Y ;0n 3,

the function k is constant, sa,y ko. Then let us put p; = EE+ k{a)a and
. o S

Sy={f€ S :0 <  flz) < ufk(f),QEz €C}.

B 'we dre now able to state the most generai conj'ect;ure

Con_}ecture IfSis 1rreduc1ble and reduoed then we have:

(MORRIS) |
o CT Hu-ef)

.fESh

H (q '3 g ")a"(m’i+k(a)+xu(a)kufq “;q "‘)QV(p,) k(a)-!-ku. R

(939)‘ (q¥=; 9“")aV(p.,)(<1"°' gha )a"(p;,)+ko :

: The reader who Wuuid i:ke to get more tesults about affine root syst.ems or mote
aex;;lanatmns about this last conjecture should refer to Mortis’s thesm {18]..

D. Exampies For 3 = A,-;, Morris’s conJecture reduces to the equal pa.ra.meters"- E

version of the Dyson conjecture. However, related to this root system, he stated a.nother"_" :

' congecture, for which he was able to prove the case ¢ = 1:

el (3). (3 ),,1<.<,<,,(z,)( )

=1

(MORRIS)

n~1

(Datd4ie{@)j41)e
H (9) n+;c(9)b+3c ('Q)c

3=0

.'ﬂis'conjecfure isan’ n‘termedla,te conjecture” between A,,_; And An is the sense tha.t“" B

‘thecase @ = b = 0 gives the {g-MAC) con_]ecture for A,,_I a.nd the case a ='b = C gives -
' '-the ’(q -MAC) conjecture for A,,. '
§ in order to illustrate the differences between the several forms of. the Macdonald’ '
, 'con]ectures, let us study the root system G, the only root system of dimension 2 (so
' graphmally representable) for which the solutions are non-trivial, -




The conjectures related to G; have the following forms:

(BIG MAC)
CT(1-2)*(1 —=71)*(1 —2®y)* (1 -z 2™ ) (1 —2y)*(1 — =~y ")"
1=y’ -y’ -2’ (1 — =2y P(1 - 2%y?)P(1 ~ 273y~ %)
_ (3a+3B)\(3B)(2a)(2B)! |
" (22 +3b)(a + 2b)!(a + b)lalb

(q¢ BIG MAC)
CT(z; )al92 ™ 0)a(2y3 0)algz "%y~ Q)alzy; Q)algz 'y~ ¢)a
(s Ds(ay™ )Py (a2~ (2 y% @)elgz 3y 25 q)s
= (60)8a435(9 9)2a(@ Dr(t3 D)
(0 9)20+35(q3 Qat25(2; Dat(0; 0)a(g; 9)}’

(MORRIS)
CT(z;9)a(92™ " 0)a (Y Da(92 7257 0)a(zy; O)a(g2 ™y~ @)a
(@ (@ ¢ =y 6 )u(@* 22y a2 v% (P22 s
= L% 9Dsa+35(g5 )20 (4 D36(6%5 ¢ )a+35(0% *)28(¢%5 %)
4 0)2a+35(2 Da+36(; D2(0%; 6*) a+26(3%; 6®)ats(g®; )2

7



E. Results;

" 'General results: In February 1988, Tom Koornwinder claimed that Enk Opda.m

. from the University of Utrecht just proved the {(BIG MAC) conjecture, by using the shift -
_ opera,tors developed in his Ph.D. thesis. Unfortunately none of the spema.’usts we talked -
" with about it has received a copies of this paper.

In his original paper [17] Macdonald proved the cases k£ = 1,2 or oo of the (¢-MAC)
conjecture. Since september 1987 a rumor spread that Feigin, a Russian mathematician,
was able to prove it for all k but again no paper reached us.

. In 1983 Phil Hanlon {13], cons:dermg the Macdonald’s conjectures for the infinite
families of root systems, proved they were “asymptotically” true.

_ . The root system A,: Consndermg Macdonald’s conjectures in this case as part
of Dyson conjecture allows us to collect all the results from the first part at this point,.

- - However Stembridge (May 1986, [20]) gave a direct proof of the (a-MAC) conjecture, which
" is not connected to the Dyson conjecture,

The (q-MAC) conjecture may also be viewed as & special case of the (MORRIS) con-
Jecture given in the previous section. Morris {1982, [18]) was able to prove his conjecture
when ¢ = 1 and in January 1986 Habsieger [11] and Kadell [15] gave independently a proof
of the g-case. Later Zeilberger (May 1987, [25]) extended Stembndge s proof to Morris’s
conjecture

The infinite families B,,C,,D,: They are considered as special cases of a larger

(non-reduced) root system called BC,,. Macdonald (1982, [17]) was able to prove the (BIG
- ‘MAC) conjecture for the root system BC, and Kadell (1986, [16]) gave the proof of the
. g-case.
The exceptional root systems: There are not any spemﬁc results for the root
. -systems Eg, E7 and Eg; only the “general results” apply. In -‘August 1987 Garvan [8] gave
~a'direct computer-proof of the (BIG MAC) conjecture for Fy. The root system (G, was the
- most successful: Habsieger (1986, {12]) and Zeilberger (1986, [23]) gave independently and
- > simultaneously a proof of the (¢-BIG MAC) conjecture, later followed by Garvan (1987,
- {7]). A proof of the (MORRIS) conjecture related to G, was also d15covered by Zellberger
(1987, [24)). |

. The natural question that occurs after this enumeration of results is: what is remain-
mg" ‘Taking for granted the two claims given among the general results, the only open
cases remaining are the (¢-BIG MAC) and the (MORRIS) conjectures for the exceptional
root system Fj.

THIRD PART: Selberg’s integral.

- A The ordinary case. In an almost forgotten paper [19] Selbﬁerg‘ evaluated the

8
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following integral:
1 1n
/ f Htf_l(l—t,-)y'—l H |t,' —tjlzzdtl coodty
0 0 =1 1€<j<n

_ "ﬁ Tz + j2)D(y + i=)D((j + 1)z + 1)
B T E T R TS

=0

Recently Aomoto (1983, [2]) gave another proof of this result.

Macdonald {17] used this evaluation to prove the BC, case of his conjecture as fol-
lows: replace each basis vector by €™ and integrate on [0, 1]? for the Lebesgue measure
df ...dby; in this integral do the change of variables ¢; = sin? 78; to get Selberg’s integral.

Selberg’s integral may be also used to prove Morris’s identity when ¢ = 1 by using the
following trick.

" We have f tAldt =1 / A for ReA > 0. Then, by analytic continuation, you can deﬁne
for A € C\{0} the qua.nt:ty fo t*~1dt and you have for every integer n

. 1 if n=0,
lim e/ te-1gndlt = {
€—0 0 0 if n :,é 0,

Thus CT f = limege€ fol f(#)t1dt and the connection between Selberg’s integral and
Morris’s identity is established.

The g-analogue.

Let us define T'y(a) = ((q))m (1-¢)'™, foraeC\Z

wnd [ syt =01-0) Y e
n=0
Askey (1980, [3]) proposed the foIlowmg g-extension of Selberg’s integral:

21 (tiq)oo 2k (t_, 14:)
Ailleo g2k (g doty...d,t,
/ / (tiqy)oo H i 2k a1 7

1<i<j<n

= g*2(3)+2¢°(3) ﬁ Lo(z + 58)Cy(y + 5E)Te((j + Dk + 1)
Ty +u+(nt 7~ DRy 1)

=0

As usual we get the ordinary case by letting ¢ tend to 1. This conjecture was proved in
1986 by Habsieger [11], by adapting Selberg's proof, and Kadell [15], by adapting Aomoto’s
proof. Both of them were able to deduce Morris’s identity from this g-integeral. Indeed
the same trick works, for f (t*~'dgt = (1 — ¢)/(1 — ¢*) and thus we have CTf = lim,_,,

(1-¢9/(1—¢q) _[;3 t¢~1 f(t)dgt. Another application of this integeral is the G-case of the
Macdonald’s conjectures. !
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