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Abstract
The problem of a single, polarized, laser pulse propagating as a travelling wave in an anisotropic
cubically nonlinear, lossless medium is investigated as a Hamiltonian system. This Hamiltoniaﬁ
s-ystemrdcscn'bcs the travelling-wave dynamics of two nonlinearly coupled complex laser modes.
Invariance of ﬁc Hamiltonian forction under changes of phase of the complex two-component electric
field amplitude reduces the phase space to the two-sphere, 82, on whick the problem is completely -
integmble. The fixed points and bifurcations of the phase portrait on 52 are swudied as the beam
intensity and medium parameters are varied, and homoclinic and heteraclinic connections are identified
in each parameter domain. Horseshoe chaos is analytically shown to arise when the optical parameters
of the medium are perturbed due to spatially periodic inhomogeneities, by using the Melnikov method.
The resulting sensitive dependence on initial conditions has implications for the control and

predictability of nonlinear optical polarization switching in birefringent media.

1. Introduction.

This paper treats optical poiarization dynamics, using the Stokes description Wfora single laser pulse
propagating as a travelling wave in an anisotropic cubically nonlinear lossless medium. Hamiltonian methods
~ are used 10 reduce the phase space c? (the two-componeﬁt, complex-vector electric field amplitude) for the
 travelling-wave dynamics to the spherical surface §? (the Poincaré sphere). Bifurcations of the phase portrait on
2 are determined, and homoclinic and heteroclinic orbits connecting hyperbolic fixed points are identified.
These homoclinic and heteroclinic orbits are separatrices, i.e., stable and unstable manifolds of hyperbotic fixed
points, which separate regions on s? having different types of (periodic) behavior. Under spatially periodic
perturbations of the medium parameters, the stable and unstable manifolds are shown to tangle and produce a
Smale horseshoe in the Poincaré map induced from the periodic perturbation. The presence of this tangle is
diagnosed via the Melnikov method, which identifies intersections of these stable and unstable manifolds and
estimates the width of the tangled region on $2. The analysis presented here characterizes the location of the
chaotic set, or stochastic layer, on the Pomcaré sphere and the dependence of its width on the material

parameters, spatial modulation amplitude and wavelength, and the optical beam intensity.

t: Permanent address: Center for Nonlinear Studies & Theoretical Division, MS B258,
Los Alamos National Laboratory, Los Alamos, NM 87545.



1. Problem Jormulation. -

Propagation of an optical travelling wave pulse in a cubically nonlinear medium is described by the

fdllowing system of equations (2, 3],
IE = X%+ Il | @

where 7 is the independent variable for travelling waves, j,k,l,m = 1,2, and the complex two-vector e = (eg e2)T
e C? represents the electric field ampiimde. The complex susceptibility tensors x(l?jk and x(s)jklm parametrize
the linear and nonlinear polarizability, respectively. Far from resonance and in a lossless medium, the
sﬁscép_tibility tensors are constant and Hermitian in each e-e* pair and x(3) possesses a permutation symmetry:

(1) = (1)* 23 =y ) R )
%K _xE:j)’ Xjidm = Xigmr  Xjkim = ¥mij = % itk 22

Hence, we may write the system (2.1) in Hamiltonian form as

ae.ld'c= [e., H] . = -iBHJBe*.,
(23)

=& x(l)" O

In'addition, the intensity, 1 = lel? = Ieli2 + Ie.zlz. We introduce the three-component Stekes vector, u, given by
{(seeref. 4 u = e*j(cr)jkek, with 0 = (74, Oy, 03). the standard Pauli matrices. The travélling wave equation
(2.1) then becomes

giz(b+W-u}xu, b=a+lulc=a+re, (2.4)
T

where the constant vectors a and ¢, and the constant symmetric tensor W, are given by

a= (O)ijgllr)' o= %<°)ijEi%1- W= 2(0), ﬁ%m(")lm = diag(Ry, Ay Ay). 235)

The material paraméters a, ¢, and W are all real. According to equation (2.5), the parameters a and ¢ represent
the effects of linear and nonlinear anisotropy, respectively. They lead to precession of the Stokes vector u with
(vector) frequehcy b. The tensor W is symmeltric, so a polarization basis may always be assumed in which W is

diagonal, W = (Xl, A4, A3), in analogy to the principal moments of inertia of a rigid body.

In terms of the Stokes parameters, u, the Hamiltonian function H in equation (2.5) may be rewritlen as

H=bu+ -;—u-W-u (2.6)

and the equations of motion {2.9) may be expressed in Hamiltonian form as du/dt = (u, H}, by using the
Lie-Poisson bracket {F, G} :=u . VF(u) x VG(u) written in triple scalar product form, just as in the case of the
rigid body. The intensity r = lul is the Casimir function for this Lie-Poisson bracket. That is, T Poisson-
commutes with all functions of u when the above Lie-Poisson bracket is used; so the intensity r in the Stokes
description of Tossless polarized optical beam dynamics mziy be regarded simply .as'a constant parameter. (See
ref, [5] for discussions and references concerning Lie-Poisson brackets and their usage, for example, in the study

of Lyapunov stability of equilibrium solutions of dynamical systems.)



Solving the system (2.4) when 1wo eigenvalues of W coincide, and one or more of the components of b
vanish, can be done easily for two cases which arc inequivalent under cyclic permutations of indices of u. In the
first case, we set W = wdiag(l, 1, 2 and b= (bl, bz’ 0); equations (2.4) then read

dulld*l: = (b2 - u)uz)u3. duzld‘r = (mu1 - bl)u3, du3/d’t = blu2 - bzul. 2.7

Hence, a Duffing equation emerges for u,
- B-u2
d%u4/de2 = Auy(B - 1),

A:..l_.mz_ =EH— - 1’2 -
2_ : w m2

2@% + b%} (2.8)

The other two components of u may be detcrmined algebraically from the two constants of motion r and H.
When B increases through zero, the Duffing equation (2.8) develops a pair of orbits, homoclinic to the fixed
peint uy (see, e.g., refs. [6] and {71}, Likewisc, in the sccond case, we set W = cdiag(l, 1,2) and b = (®,, 0,
b3); cquation§ (2.4) then become

du]/d‘t = -bau, - GU,U,, duzld‘c = @uu, + b3ul - b1u3’ du3/d1: = blu’[ 2.9

Hence, provided bl # 0, we find

dhu /a2 = A" + By, + CuZ + D3,
3 3 3 3
- L 22 b2 b2 X . (2.10)
|= 1 n= .- - - |=__ |=__ 2
Al b3(H S or ), B'=wH 7O by - b3, C 20)!13. D S 02,
Thus, the polarization dynamiés for this case reduces to the motion of a particle in a quartic potential, whose
solution is expressible in terms of elliptic integrals. Again, the components u, and u, may be delermined
algebraically from the two constants of motion, r and H. We shall return to these two cases later, when we
discuss the effects of perturbations. For now, these cases suffice to demonstrate that the system (2.4) possesses

bifurcations in which homoclinic orbils are created,

The system of equations (2.9) further reduces the Poincaré sphere I, of radius r upon transforming to
spherical coordinates _(ul. 1, u3) = (rsinBsing, rcosd, rsincosy). In these coordinates, the reduced Hamilionian
function (2.6) and the symplectic Poisson bracket on I, are expressible as '

H= %rz(llsinzﬁsinz(p + lzcoszﬁ + l3sin290052cp) + rsinB(blsin(p + b3coqu) + bzrcosﬁ.

] : (2.1
(F.G)=13FE 3 1 F 36
r 09 dcos®  r dcos@ do

and the equations of motion are
d0/dt = b, cos@ - b sing + (A, - A )rsinfcosgsineg,
1 3 1 73 @.12)
dp/dt = b, - (b,sing + b,cosg)cald - r(llsinz(p + l3cosch - ?Lz)cose. '
The system (2.9) is completely integrable, since it is a one-degree-of-frecedom Hamiltonian system. Its solutions

in general are expressible in terms of elliptic integrals.



3. Bifurcation analysis.

We now specialize to the case of a non-parity invariant material with C, rotation symmetry about the axis
of propagation (the z-axis), for which material constants take the form W = (11, 1,2 7.3) and b = (0, by, 0). (see
ref. [8] for details of what follows.) We also introduce the following parameters

B=hyohy A=Qy oAy -R), B=by/lih, - AL (B
In this case, the Hamiltonian .in (2.1 lj and the equations of motion become
H= 1462 - oo + Au + 2fnul + 14,2, (322)
dufdt = p(2 - uz)goscpsim. (3.2b)
dep/dt = pPr - (cos?q - Aul, (3.2¢)

where u = rcos®. We construct the phase porirait of the system and explain how this portrait changes as the
parameters in the equations vary. The fixed points of (3.2b,¢) are easily located and classified, using standard

techniques. We list them in the following table, for p # 0,

Coordinates Consu_'aint

cosd = B/t - 1)

cost = B/l - 1)

o=m2 s = /A

(p = -1/2 sh = ‘B/A.

cos?p=A + B Be(h1-2)fBe(ri-n

cos’p=1 - B | Ber-1.2 | per-1,1

Table. The fixed points of system (3.2) and their types.

The special case where u =0, ie., A3 =y, requires a separate analysis. In that case, the right-hand side of
(1.4a) vanishes identically so that the set of fixed points of the system is the circle cos8 = by/r(hy - Aq) = BrA.
The phase portrait depends on two essential parameters, A and f, or cquivalently, A, - Ay and b,/r. Bifurcations
of the phase portrait occur when the inequality constraints in the third column of the above table become

cqualities; hence we observe that the pairs of fixed points (F, B) and (L, R) appear or vanish as the lines B=11




- A) and P = th arc crossed in the (A, [}) paramcter planc (sce Figure 1):

b Lod

Figure 1. The parameter plane and its bifurcation lines.

The (A, B) parameter plane is partitioned into nine distinct regions separated by four critical lines that intersect
in pairs at four points. Typical phase portraits corresponding io each of these regions are shown in Figure 2.

Note that the phase portraits of the unperturbed system (3.2b,c) are invariant under the following discrete

ransformations:
= QTR o0t 8->n-6,p—>-B;
oot Ao1-ALp-o-5 P2 eEn/2,A->1-4,06-31-0

Thus, as far as the configurations of critical orbits on the phase sphere are concerned, it will be sufficient 10
consider the quarter plane given by A < 1/2 and 8 > 0, i.e., to restrict atention 1o regions i, 2, 4, jd 5.
Although no bifurcations occur when the A-axis (B = 0 in the parameter plane) is crossed (except for A = 6,La=and
A =1, the set of fixed points does not change), this line is nevertheless special. Indeed, in the interval re 0,
1), i.e. within region R5, both poles are hyperbolic, each onc of them being attached 10 a pair of homociinic
loops. When P vanishes, these homoclinic loops merge together o0 as to form four heteroclinic lines (and thus
four heteroclinic 2—cyéles) connecting the north and south poles together. On the A-axis the polarization
dynamics reduces to that of the rigid body. In that case, the phase portrait consists of the poles N and §, and the
four other points are located on the equator of s? (this configuration of fixed points distributed on the equator is
obtained only on this line). Two of these, (N, 8) or (F, B) or (R, L), are unstable while the other four are stable;
which pair is unstable is decided bj the value of A = (A, - ll)/(lg - ll). The pair (F, B} is hyperbolic when A
<0, {N, §) are hypérbolic when 0 < A < 1, and (R, L) are hyperbolic whenever A > 1; in each of these cases,

the unstable direction is specified by the A; which is neither the smallest or the greatest among the three.
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Figure 2. Phase portraits of system (3.2)




Bifurcations taking place as the beam intensity is varied are those occuring along a verticat line in the parameter
plane; we present a list of the seven possible sequences (sce ref. [8] for a exhaustive list of the bifurcations that

may take place in the phase phase when travelling along these lincs):

8y A<O Rl R2< R4 &@R7R9
S5t A=0 " Rle&R2&R7T<RY

S3: 0<A<l2 Rle&R2eR5«:R7«R9
S40 A=1R2 Rl R5&R9

Sg: 12<i<i RleeRIORS5<R8oRY
Sg: A=1 RloRI<RI RO

S, A1 Rl & R3 & R6 <3 RR < RY

4. Homoclinic chaos.

In this section, we consider spatiaily periodic modulations of either the circular-circular polarization
self-interaction coefficient 12 in W or the optical activity by. In each case, when the unperturbed medium
satisfies the additional condition A, = A4, the Melnikov technique (6.7.9] Jeads 1o an analytically manageable
integral for the Melnikov function, which is shown to have simple zeros. In this way, horseshoe chaos is
predicted for this case in the dynamics of the single Stokes pulse. We also discuss the physical implications for

measuring this horseshoe chaos in an experimental situation.

We concentrate on the north pole uy = 1, ¢ = @, with casztp0 = )L + B, and cvaluate the conserved

Hamiltonian at this point to find a relation between u and ¢ on the homoclinic orbit,

u, =1 - 2bMu(cos’ - &), . @.n

2
which, when substituted into the equation of motion for ¢, gives

do/dt = ur[césztp - coscho]. 4.2)
Upon integrating (4.2) wé obtain {with T = z + vi, the travelling-wave variable)

tang = tangftanh((r), L= Shrsin(29). | 4.3)
Substituting this formala into (4.1} gives an analytical expression for u on the homoclinic orbit:

2b,[1 - cosztposcchz(ﬁ't)]

uy=-r- . (4.4)
u{coszqnotanhz(gr) -AQ - cosztposechz(c,‘:)]}
We consider a periodic perturbation of the eigenvalue A, and the optical activity by, that is,
?Lz' = 7\,2 + g, cos(vz), b2' = b, + £,c08(vz), 4.5)

where £) 5 << 1 and v is the modulation frequency. Then from (2.6) the perturbation Hamiltonian is

1_1 .
H = ;uz(slu2 + kz)@s(vz). ) 4.6)



and we easily calculate the Poisson bracket of this perturbation with the unperturbed Hamiltonian:
(HO, H'} = -ysingcosp(r? - uducos(vz), @

which when formally integrated becomes the Melnikov function

M(zy) = | [ sing(t)cosg(n)(r? - wd(w))(eu, + g,)eos[v(x - T)ldr, “8)
& !
where T, = vt. In the particular case Ay = 13 this integrable is manageable and can be found in standard tables.
Hence, '
5 .
M(t;) = 2": teyr +e) + 2e Ploos’g + (v/2b2)2]]csch[VItlp.rSin(Z_cpo)]sin(wO), @9)
b S -
2 .

whlch clearly has simple zeros as a function of 7. implying horseshoe chaos (see, ¢.g., refs. [6] and {7}) When
N - ihe Melriikov function has simple zeros, the dynamical evolution of a rcctzmgu!ar region near the homoclinic
- pomt shows (under iteration of the Pomcaré map induced from the periodic permrbauon) that the regton is
| fo!ded stretched, contracted, and evenmally mapped back over itself in the shape of a horseshoe. This horseshoe
map is the underlying mechanism for chaos. As the horseshoc folds and refolds, the rectangular region of phase
points initially lying near the homoclinic point develops a Cantor set structure whose asociated Poincaré Map
can be shown to contain countably many unstable periodic motions, and.unc'ohntably many unstable
nonperiodic motions. (See ref. [7] for the methods of proof of these statements and further descriptions of

hamoclinic tangles.)

5 . Conclusions. _
Physically, the horseshoe chaos in the case of a periodically periurbed single Stokes pulse corresponds to
. intermittent switching from one elliptical polarization stale, to another one whose semimajor axis is
aﬁproximately orthogonal to that of the first state, with a passage close to the unstable t:‘ircﬁlar polérization state
during each switch. This intermittency is realized on the Poincaré sphere by an orbit which spends. most of its
' time near the unperturbed figure eight shape with a (homoclinic) crossing at the north pole (circular polarization)
in Figure 2. Under periodic perturbations of either the W-eigenvalues or the optical activity Dby, this orbit
switches deterministically, but with extreme sensitivity to the initial conditions, from one lobe of the figure
.cight to the other each time it returns to the crossing region near the north pole where the homoclinic tangle is
located. Thus, for the one-beam problem we predict intermittent and practically unpredictable switching under
- spatiaily periodic perturbations of the material parameters, as the optical polarization state passes through a

. homoclinic tangle near the circular polarization state.

From considerations of the special case in which the Duffing equation (2.8) appears, one could have

expected homoclinic chaos to develop for nonlinear opticat polarization dynamics. Indeed, a related special case




is studied numerically by Wabnitz 101 a5 opposed to such numerical studies, our analytical treatment explored
the bifurcations available to the polarization dynamics under the full range of material parameter variations,
demonstrated that the horseshoe construct is the mechanism driving he chaotic behavior, and characterized the
location of the chaotic set, or stochastic layer, and he dependence of its width on the material parameters,

modulation frequency, and intensity.

in the cases under consideration, this stochastic layer is bounded by KAM (Kolmogorov-Arnold-Moser)
curves on the Poincaré sphere, inside of which the travelling-wave dynamics is regular (orbitally) and stable. For
a given choice of beam and material parameters, those KAM curves define phase space regions where chaotic
behavior (for example, sensilive dependence on initial conditions, or orbital instability) may be found, and

complementary regions where chaso is absent and only regular, predictable behavior may be found.

The strong dependence on intensity of the phase-space portraits reported here indicates that control and
predictability of optical polarization in nonlinear media may become an important issue for future rescarch. In
particular, the sensitive dependence on initial conditions in nonlinear polarization dynamics found here 10 be
induced by spatial inhomogeneities may have implications for the control and predictability of optical
polarization polarization switching in birefringent media. For instance, an output-output polarization experiment
input cenditions lying in the stochastic layer for some set of material and beam parameters will show essentially
random output after sufficient propagation length, depending on the size of the material inhomogeneities and the
type of (transparent) maferial used for the experiment. Effects on optical polarization dynamics of dissipation and

driving, as well as more general material description are presently investigated and will appear elsewhere.

This paper was written during our stay at the University of Minnesota Institute for Mathematics and its
Applications during fall, 1988, and we wish to thank the IMA for their invitation and their hospitality. We
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