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Abstract

The problem of two counterpropagating optical laser beams in a nonlinear medium is investigated
as a Hamiltonian system. The phase space for travelling-wave solutions is the manifold c?x Cz,
coordinatized by two complex two-component electric field amplitudes, one for each beam. Invariance
of the Hamiltonian function under various actions of the rotation group allows for reduction of the
phase space to the two-sphere 82, on which the reduced Hamiltonian system, being twe-dimensional,
is completely integrable. We determine all the fixed points of the system and deseribe the
bifurcations of the phase portrait which occur as parameters are varied. Among the various orbits in
the reduced phase space, those connecting the hyperbolic fixed points are special and corzespond te
soliton-like and kink-like travelling-wave solutions. We also investigate how chaos, in particular
Horseshoe chaos and Arnold diffusion, arises when the system is subjecied 1o certain types of

pertubations.

1. Reduction of the problem to the sphere.

We examine two counterpropagating optical laser beams in a lossless, nonlinear, Kerr like, parity invariant
homogeneous medium with small nonlinearities, e.g., laser beams in an optical fiber, characterized by a
fourth-rank susceptibility tensor x(3). Such a configuration can be described in terms of a quasi-monochkromalic

electric field is given by

i A1 -1,
E@z = [e(z’ t)elkoz_i_ ;(z, e z]e 0 +c.c. (1.1

where the "bar" distinguishes between the electric fields associated with each of the two counterpropagating
beams; the two e's are complex, two-component vectors in c2, Inserting the above prescription (1.1) inlo
Maxwell's equations leads via standard assumptions 15 the following set of equations on €2 x €% (the r's arc

the preserved magnitudes of the e’s, the kappas are intensity parameters, and 1 is a scaled space-lime

characteristic variable):
de. .
1_11( (3) :_nc MO
3 - xukl[e e.e* +2ee e *, —81: = ukl{e e * + Ze, ek i *], (1.2)
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where i,j,k,1 = 1,2 and X(S)ijkl = X(B)*jilk for lossless media. These equations describe travelling-wave
solutions, to which we will restrict ourselves here; the analysis of the more general case when (1.2) assumes the
form of a pair of partial differential eguations, thereby defining an infinite-dimensional dynamical system, will
be presented elsewhere. Furthermore, this system is Hamiltonian on the symplectic manifold Cc? x C2; indeed,

the Hamiltonian function and the Poisson bracket are defined by

_1® cvees s
H= Exijkl[ei*ejekel* tereeer + 4ei"ejekei*],

o iE[26 9 F 6] i [36 9 9F 3G
(F.G) =563 " Jex de | V7| de® de  de* e |

(1.3)

and, as usual, the evolution of a dynamical quantity f is given by df/dt = {f, H}.

A tremarkable featre of this Hamiltonian is that it is invariant under a diagonal acticn of the group U(1):
this permils us to apply the Marsden-Weinstein reduction procedure for Hamiltonian systems with symmetry

12,31 and show that a cascade of Lie-Poisson maps reduces the system to the 2-sphere sZ,

Theorem 1. For isotropic media, the Hamiltonian system (1.2) is reducible to a 2-dimensional sysicim on

S with one additional quadrature.

We give only a sketch of the proof and make some comments; for details see ref, [4]. The first step of the
reduction consists in restricting the initial phase space to $3 x 33; this is done by rewriting the system in terms

of bilinear forms in the electric field amplitudes,
- - 4
(e,e) —— (U= e Te, u=e oe), W= E“‘Ijxg’lzlﬁld = Diag(h, &y, Ay). (1.4)

This map is sometimes refered to as the Stokes map. It proves convenient to introduce the parameters A here,
we will consider isotropic media for which A5 =4, and we also mention that there always cxists a choice of
coordinate frame such that the tensor W is diagonal as in (1.4). The next step consists in noting that the norms
of the u's (the r's) are Casimir (or distinguished) functions for the reduced Lie-Poisson bracket in these variables;
they are in fact invariant under the action of the group SO(2). This invariance induces a Hopf map which brings
down the phase space to a product of two sc-called Poincaré spheres; $3 x 83 5 $% x §2, which may be
coordinatized by spherical angles:

(1, u)—— (8, 0, 8, ). (1.5)
The Poincaré sphere provides a very convenient way of describing the polarization states of a beam; points on
the poles represent the two opposite circularly polarized states, those on the equater correspond 1o lincarly
polarized states, and all other points describe elliptically polarized states (4, Note that going once around the
Poincaré sphere, parallel to the equatorial plane, yields a phase advance by % of the original polarization state.

Going twice around the Poincaré sphere along a latitude however restores an initial state; this is a remnant of the




spinorial quality of the two-component complex electric field amplitudes. Furthermore, the Stokes map
eliminates an inessential (non-measurable) absolute phase in the complex amplimde deseription. The change of
variables C2xC2 > $Txs?is analogous, in the study of the motion of a rigid body, to the reduction from

the Cayley-Klein parameters to the body angular momentum variables.

When AS = J\.I is assumed, a further SO(2) symmelry exists, leading to the conservation of the quanlity ©
defined below which is physically interpretable as the net angular momentum (per unit length} of the beams in
the direction of propagation. This symmetry implies a further reduction of $2x 5210 $2, coordinatized by
angles W and o which are defined through the following formulae:

a=6-9, P=0+0, G = Kcos0 + Kcosh,

- - (1.6a)
o(y) = xcos - kcosh = Wy + Rcosy,
In the definition of o, the values of the constants @ and R depend upon the magnitude of ¢ as follows:
6 2 Ixl - Il @y =Iki-Il,  R=lki+kl-o;
IKi-KISoSiK-I:  ©y=-0, R = 2ix; (1.6h)
o < Ikl - Ixl: @ =iki-1x, R=ii+id+o.

These three choices ensure reduction to a smooth manifold, generically. A special situation arises, however, for
which the reduced space will be singular, namely when the ¢ is equal to the difference of the magnitudes of the
K's; in that case, one of the poles, say P, will be a singular point and the reduced phase space may be vicwed as
S2\PB. In addition, if o = 0, then both poles (N and S) are singular and the phase space can be viewed as S2\
[N, $}. That causes no difficulty for analyzing the motion; in fact, interesting dynamical bifurcations 1ake place
in these singular cases, as we will see below. On S'2, the Hamiltonian function, the induced Lic-Poisson

bracket, and the equations of motion are

H= gll[r’- +1° + O[T ? + Ac? + 2Ecw + f(w)?(w)cosa]f

oxx | 9F 36 3G oF . {BF 3G 3G BF}
F,G}=— — —= - —— + 2Rs - === |
(£, 6} nRsiny] 9y da oy da T ooRsiny af dc B do

an
Ay = A FOy)f (y)sina/Rsiny,
303t = 24, (Tw + Eo) + A, (0 - 0)FW)/FW) - (0 + @) fy)/f(w)cosae
3B /3t = 2),(Ac + E@) - 1, 1(0 - o) f(W)/f(y) + (0 + w)f (W) f(w)lcosa,

where @ is given in (1.6b) and



I=-L-Dp,-L, =L@L-Dp +L, E=HL-Dp, L=A,A,

pp=witrern), S =va2-Grol, Fwy=Val-@-ol.

Note that the right-hand side of the equation for [ depends only on the variables y and . This is why the above
system can be considered as a system on the sphere for the latier variables (with Lie-Poisson bracket given by
the first two terms of that given above); [} can be recovered from the solutions of this system by performing a
quadrature, Since the reduced system is defined on a two-dimensional manifold and derivable from a Hamillenian

function, there immediately follows the
Corollary 1, The system (1.2) is completely infegrable.

We now formulate a theorem to the effect that the above reduction procedure causes no loss of information,
in the sense that the {travelling-wave) solutions of our initial system (1.2) can be recovered up Lo an overail
phase determined from the initial conditions by using the solutions of (1.7). In other words, once the Cauchy
data has been specified, the system is forced to evelve on a two-dimensional sphere, and the reduction procedurce

{unlike a projection) preserves the information needed to reconstruct the solution in the original phasc space.

Theorem 2. The solution manifold of the Hamiltonian system (1.2) is completely determined by that of the

reduced Hamiltonian system on 52,

This statement may be proved by going backwards through the proof of Theorem 1. First, by integrating for B.
and inverting (1.5) we construct the solu'tion to the sysiem on the product s?x s2. Then, inverting (1.5)
permits us to find the solutions defined on s¥xs3, Next, we invert the transformation (1.4) and usc the fact
that the preserved intensities of the beams define an immersion into the initial phase space €% x €% nis
defines the solution of the initial system, up to a phase, for each field. Finally, these phascs arc reconstructed by

substituting in (1.2); this yields equations for these phases, which we integrate o get their space-time profiles.

2. Fixed points, bifurcations, and special solutions.

The reduced system {1.7) for ¥ and o on 2 exhibits scveral interesting bifurcation sequences. To
appreciate these, one begins by determining the set of fixed points of the system, as wcli as their existence
conditions (or definition domains in the parameter space) and stability conditions; these fixed points arc
physically inierpretable as steady state solutions of the system. Bifurcations are then observed to occur upon
crossing certain critical hypersurfaces in the parameter space where fixed points are created or destroyed, or where

their stability changes. For our problem, the parameter space is of dimension five (for instance, L, ¢, the K's,




and the ratio of the intensities are sufficient to span the parameter space) and therefore one might ¢xpect rather
complicated bifurcation sequences. We present here a few special cases which, although they do not provide a
complete picture (see ref, [4] for a more detailed description of the various bifurcation scquences of both the
one-beam and the two-beam problem), are the most interesting as far as dynamics is concerned, The generic
phase portrait, i.e.‘, that which occupies the major portion of the parameter space, corresponds to two stable
fixed points, opposite to each other, migrating on the great circle described by siny = 0; thus all solutions of
the system are periodic in the generic case. A more structured phase portrait is obtained, e.g., cither when 6 = 0
and the «'s have different magnitudes, or when the ¥'s are equal but ¢ = 0; this sifnation is depicted in Figure 1,
below. When [T is sufficiently large, the portrait consists of a center as well as a triplet formed by a saddie
point with two centers enclosed within a pair of homoclinic loops. These loops collapse as Lhe parameter T
passes through some critical values I';, at which point the portrait undergoes a pitchfork bifurcation, resuliing

in two stable centers on the equator with a family of periodic orbits.

o

e

Figure 1. The phase portrait and its pitchfork bifurcations for o = 0
and IxlfIxi= 1, or o+ 0 and Ixifixl = 1.

The second case of interest occurs for the case of a mirror symmetry between the two beams, when the

kappas have equal magnitudes and ¢ = Q, This symmetric situation gives rise 1o what we term the Butferfly



bifurcation, which is presented pictorially below in Figure 2. The pictures show how the phase space portrail
changes as the parameter I is varied. Two asymptotic bifurcations take place when {I'l — <, as the poles which
are stable fixed points (centers) have homoclinic orbits encircling them which merge to form a circle of unstable
fixed points on the eqha!or. Two other bifurcations occcur at [I'T= 1 when the two homoclinic orbits collapsc 1o
a half great-circle of fixed points which then opens up into a pair of heteroclinic orbits connecting unstable
(saddle) fixed points at the poles while the saddle point on the equator changes into a center. This casc may be
- obtained from the preceding case by taking an appropriate limit. In this limit, the two centers within the
- homoclinic loops are located exactly at the poles independently of the value of T; the poles are therefore always
fixed points so that the pitchfork bifurcation cannot take place.

Figure 2, The Butterfly bifurcation happens when ¢ = 0 and ikl = 1,
It is degenerate and both poles are singular points on S°.

The third case that we are presenting here is for ¢ equal to the difference of the magnitudes of the kappas, The
previous case is the limit of this one when both kappas have the same magnitude, which forces 6 10 vanish. In
this third case, only one of the poles is a singular point of the reduced phase sphere. Ini Figure 3, below, the
parameters are such that the singular point is the north pole. The phase portrait is characterized by the occurence

of a bifurcation which we have termed the Teardrop bifurcation. As the pictures show, when [ is sufficiently




large, the phase portrait consists only of periodic orbits. The bifurcation occurs when II'l falls below a certain
critical value. As this value is attained, the north pole develops a singularity and a single homoclinic foop is
created, encircling the top fixed point of center type and meeting with finite angle at the singularity; notc that
this contrasts with the usual phenomenon, for smooth manifolds, where homoclinic loops come in pairs (one
also observes that the Euler index jumps from 2 to 1, which is another indication that the reduced phase space
possesses a singular point). This loop then proceeds to stretch, migrates under the sphere and cventually
contracts back 10 a single point where the bifurcation undoes itself as the singularity at the north pole disappears

and yields, once again, a single family of periodic orbits.

Figure 3. The Teardrop bifurcation occurs when 6 = Il - Ikl A single
homoclinic loop is connected 1o a singular point at the pole,



We now give a few examples of special travelling-wave solutions. These solutions are best vizualized on
- the Poincaré sphere. Thus, we integraté the system on the relevant homoclinic or heteroclinic orbits in S2 and
then Kift back to S° x S>. We illustrate the u-part of the solutions on the pictures in Figure 4, below (recall
that u takes its values on a 82 surface embedded in S¥ because its magnitude is preserved), where the curves
represent the time-trajectory of the polarization vector. Consider first the heteroclinic orbits belween the north
and south poles in figure 2, above. As shown on the left-hand picture in Figure 4, as t — —es, the beam is
circularly polarized, As time increases, the solution curve spirals out of the north pole (its latitude deereases) and
thus the beam is characterized by an elliptical polarization. At t = 0, the curve crosses the eqisator (the beam is
then linearly polarized) and subsequently proceeds to spiral again, in a symmetrical manner, towards the south
pole, which it reaches asymptotically as t — ee, so that circular polarization is recovered, but in the oppositc
sense. This solution is reminiscent of a kink. Other types of special solutions can also be constructed. For
instance, the homoclinic orbits in Figure 2 give rise to a continuous family of kinks with lincarly polarized
asymptotic states {(middle picture below); soI‘iton-l@ke, solutions arise, as special cases among these, when the
asymptotic states coincide (right-hand picture below). Notice the existence of a winding index, taking any
integer value, indicating the number of complete tums accomplished about the circular polarization stale, so that
each of these solutions is characterized by this index as well as its shift in azimuthal angle; soliton-like

solutions are thus those solutions with null shift,

T\

Figure 4. Some kink-like and soliton-like solutions u on the Poincaré sphere,

3. Generation of chaotic polarization.

Perturbing a completely integrable dynamical system which possesses either homoclinic or hetcroclinic
orbits may, when certain global properties of the dynamics are persistent, yield chaotic behavior, This is indeed
the case for our system and the existence of complex dynamics may be analytically demonstrated for certain
classes of perturbations. These perturbations are physically relevant in applied fields such as communications
using fiber optics technology and polarization switching; for instance, perturbations may be created during the

manufacturing of fibers, as when twists occur upon winding them onto spools. Specifically, we report the




existence of Smale horseshoe chaos for periodic perturbations preserving the reduced phase space S2, as well as
for perturbations breaking the invariance of o, implying that the phase space for the system can only be reduced
to S x 82, Othef symmetry breaking perturbations imply the existence of Arnold diffusion. The method we

use to demonstrate the existence of chaos is known as the Melnikov procedure. This method relies on showing
that transverse intersection occurs between the stable and unstable manifolds of a given hyperbolic poing; this is
done by calculating a so-called Melnikov integral function, which is defined as a signed measurc of the distance
separating the stable and unstable manifolds of this fixed point. When that function posscsscs simple zcrocs, in
the two-dimensional case, the Poincaré-Birkhoff-Smale theorem then implies that the Poincaré map of first
return possesses 2 horseshoe construction (in higher dimensions, Arnold diffusion is implied); the underlying
mechanism for generating this type of chaos being that the Poincaré map induces both a stretching and folding
of the phase points initially nearby the hyperbolic point. See refs (5, 6] for details about the Melnikov methed

and recent generalizations of it.

The types of perturbations we consider are characterized by (small) deformations of the matrix W (sce

formula [4]), corresponding to spatially periadic impurities in the nonlinear medium, namely:

W= diag{ll. 12 + £cos[v(t - to)], ll}, (3.1)
W=diag{ll+£. 12, 11] 3.10)
W= diag[?L1 + ecos[v(t - 1y)], 12, ll}, (3.1¢)

where ¢ is small. We examine the consequences of these perturbations on the dynamics of the system near the

heteroclinic orbits appearing in the Buiterfly bifurcation (see the middle row in Figure 2).

Perturbations of type {3.1a) preserve S2 as the phase space of the full system. In addition, the Melnikov
function is the usunal one, i.e., it takes the form of the line integral of the Poissen bracket between the
unperturbed (HO) and perturbed (Hl) Hamiltonian functions (H = HO + EHI) along the heterochinic or

homeoclinic orbit:

M(r) = I[HO, H!j ot + 1) QT + 1T, (3.22)
R
where HU is defined in (1.7) and Hlis given by

H! = 2¢[@/0)(0 + ©)? + [@x)(o- w)? + 4(rr/ki) (62 - ©2)lcos(vr). (3.2b)
The Melnikov function integral is shown to be proportional 1o sin(vty); because of the very complicated {orm

of the objects involved in the computations, we present a case for which the ratios of the r's and the K's imply

more simple expressions (recall that the heteroclinic orbits in the Buiterfly bifurcation exist for 6 =0):
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2 . . - -
M(z,) = _dvim csch[vnldllrsinao]sin(vro), rir=1=-x/x, (3.2¢)
Sl%sinzcxo

where o, is defined by cos(ty) = -(1 + L)/2. Existence of simple zeroes for M(1) on 52 yields horseshoc chaos.
The type of physical behavior implied by the horseshoe is random, or intermittent, switching belween two

states of polarization ¢here the two circular states); this phenomenon is identifiable with binary symbalic shifts.

Perturbations of type (3.1b) lift the phase space of the system to 52 x S2. For this second case, the form
of the perturbed system falls within category 11 studied in ref. [6] and the Melnikov function can be wrilten as

1
M(Bp =- j%%— [0, 0,0, B+ B,ldt, 330
R

where H! is given by (the f's are the same as in (1.7)):
gl= -:;—[(icf/r)z[l + cos(er + B)] + (FA)TL + cos(at - B)] + (4rr/x)(cosa +cosB) ). (3.3b)

This integral is easily shown to be proportional to sin(f3); choosing the same special ratios for the r's and the

's, we get (¢t is as before)

T2 - cosasinBy)

A 15in%ty @30

M@y =

As in the previous case, existence of simple zeroes implies horseshoe chaos; the distinction being that, here, the
geometry of the stable and unstable manifolds are toroidal objects embedded in $% x $2. For both of the above
cases, the phase space is partitioned into stochastic dynamical layers separated by invariant tori, or KAM

surfaces which form impenetrable barriers for the polarization: the polarizatiort vectors wander within these tori.

Type (3.1c) perturbations, in contrast to the first two cases already considered, yield Amold diffusion; the
phase space of the perturbed system is the five-dimensional manifold $2x 82 xR and it can no longer be
partitioned into disconnected chaotic regions: the stochasticity domain forms what is called an Armnold's web and
solutions diffuse among the invariant tori. The system again belongs to category III of ref. [6]; however the

relevant Melnikov functicn is now a two-compenent vector function given by:

or® a!  aH’ am!  aH® aﬁl] ir 4 oH°[aH!

= - d !
MI(TO’ ﬁo) j'l: Jdm do Jdo. Jm oG aB Jo aB ’
R R (3.4a)
aH!
MZ(TO’ BO) =~ _aB dt,
R

Integrating these (for the same ratios of thrr's and K's), we find that M, and M, have the form
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3vZra[L - cosacosfy]

M, (x5 BO) = " csch[vn/ctllrsinao]sin(vro),
16A2sin o ‘
1 0 {34
-vxfl - -','COS%]SinBO
M, (7, By = csch[wrmllrsinao]cos(vto).
47&%51:12(10

Here, we have two families of simples zeroes; the existence of these is the necessary criterion for the oceurence
of Amold diffusion. Physically, this diffusion means that polarizaticn can be transferred back and fonh among
the nonlinear modes of the system in an erratic manner. More details can be found in ref. 14]; the determimation

of the form of the Melnikov function for various types of perturbed systems can be found inrel. [6].

5. Conclusions.

In this letter, we reported some new properties and aspects of polarizations dynamics resulting from the
application of methods of Hamiltonian dynamics to the two-beam problem, In particular, we presented a low
bifurcations with degeneracies and demonstrated analytically that chaos occurs, under certain classes of pericdic
perturbation, in the form of Smale horseshoes or Amold diffusion. A detailed analysis of similar questions [or

the one-beam problem will be presented elsewhere.
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