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1. Introduction. The classical uncertainty principle asserts that

a function and its Fourier transform cannot both be larpely concentrat-
ed on intervals of small measure. D. Donoho and P. Stark have shoun
recently [1] that both cannot be concenirated on any sets of small
measure. They consider three separate cases: i) Fourier transforms on
the line with concentrations measured in Lz; ii}) Fourier transforms on
the line with concentrations measured in Ll; iii) Fourier transforms on
finite cyclic groups with concentrations measured in Lz. It turns out
that, after simple modifications and additions, their preof in case i)
applies to most locally compact abelian groups with concentrations mea-

sured in-Lp, 1<p<?2.
In the L2 case Donocho and Stark say that a function f is €-concen-

trated on a set T if HF—XTﬁI < ENFl (YT dernoting the characteristic
function of the set T) and state their uncertainty principle as follows.

Uncertainty Principle, If f # @ is € -concentrated on T and f is
S~concentrated on W, then ITHiIWI 2 (1-€ - 5)2, where T1 denotes the
measure of T.

The main inequality of Donoho and Stark, which immediately implies
this uncertainty principle, is an inequality for the norm of +the pro-
duct of the operators

L'
Pf = X and QF = (x, (1.1)
T W

"

where and ¥ denote the Fourier transform and its inverse.

For the Lz case their ineguality is as follous.

nopiZ < (Tiiwi ' (1.2)

Donohe and Stark provide many intriguing examples and applications
of their uncertainty principle, among them the anomaly that the uncer-
tainty principle implies that uncertain signals often can be recovered

with certainty! The applications are not reproduced in this note.

This research has been supported by the National Science Founda-
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Applications, and the Alexander von Humboldt Foundation.
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2. Siandard definitions and facts. Let 6 be a 1locally compact
abelian group written additively. The character group @ consists of

the contirnuous homomorphisms of & into R/Z, the reals mod the integers.
& has a natural addition and a natural topology relative to which it is
also a locally compact abelian group. The value of the character X€ 6
at the point x € 6 is written <x,Ex»>. 5See, for example, [3]. To avoid
measure theoretic patheology it is assmued that non-discrete groups and
character groups have 0 -finite Haar measures.

The Fourier transform of a Haar integrable function f on 6 is the
function ? on g defined by

Ty = Se‘z“‘i“’l’?} F{x) dx | S (z.1)

the exponential having the obvious meaning and dx being Haar measure.
When the Haar measures are normalized properly (one can be normalized
arbitrarily, then the other is determined), the inverse Fourier trans-

form is given hy

g(x) = 5 e <X B> oegy g, ' (2.2}
and the follouing holds.

i, = U, (Plancherel formila) T3

N
The Plancherel formula, the obvious inequality Hfllg < “flu , and
Riesz-Thorin interpolation give

" . . L]
Hfﬂp. < Hpr . 1 «p<2. (Hausdorff-Young inequality) (2.4}

(f course, |j ”p denotes the norﬁ in LP and t/pti/p’ = 1.)

Convolution is defined by

frgix) = Jf(x-y)g(y) dy . (2.5)

It follows immediately from the Plancherel formula that

(feg” = fg, (2.6)
The inequality

liE*ah, < NfNgllal (Young's inequality) (2.7
is proved in the classical way.

In some typical cases the Haar measures are normalized as fellous.
If 6 is discrete, each point is given measure 1. Then Plancherel ap-
plied +to X0y requirei !3! = 1. When 6 is finite of orde:_N, this
means that each point in G has measure 1/N. If G is Rn, then 6 = R" ’
and on both sides the normalized Haar measure is Lebesgue measure.
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Sometimes the character group is defined to be the group of con-

tinuous homomorphisms of G into R/{ZT). Then +the Fourier 4ransform

. . -7 . .
involves e 1<x, 3> instead of e Zmiex, 8> and the normalizations are

different. In the case of R" the Haar measures are (279_n/2 x Lebesgue

measure. (This is the convention in [4].)

3. Norm inequalities. Let T and W be measurable sets of positive
finite measure in 6 and é, and define the cperators P and @ by (1.1},

Theorem 3.1 For 1 €« p< 2 and g 21!

0 L)

npPafl | < iTiif/ e t/e lifily hence liPQN, < ¢ITUM1/P
Proof.

Paf(x) = xr(xyjjezﬂi “X B> ¥ (e ML 4YIE> £ey) dy ug

= Xgtx) S{-‘(y) S X (516l <XV E> g gy,
Therefore,
. 4
PQf(x) = <‘F,kx7 with kx(y) = )(T(x) Xu(y—x) (3.2)
Holder ‘s inequality and the Hausdorff-Young ineguality give

v
IPFEl < Helly e dl - o= 0Fl Xt 1 Xl

. ' - i/p
éllf‘ltp }CT(x) il){.ullp = ltﬂlpr(x) I Wi .

The result follows from integration of the g-th power.

Theorem 3.2 For q>2 and p < g’

Hapen, < ATH/Aw i Purn ), and WGP, < TP npen

Proof. As ahove,
' v
QPf{x) = <f,k > with k (y) = XT(y) Xu(y-x)

By Holder's inequality

while, by Young's inequality

(j"kx"g' d") . (j(fxr‘sr)lxu‘y-x)tp' dv) q;p'dx)“q

= ML xe yiP N < (Mg NIXITHL) P



The first inequality in the thecrem follows from

1/p° . i/q ; R V5 - R v - 1/p
“}{T“q/p' = TV and [{1X1 i\ 1 [lxullp. ‘;IIXUHD = 1]

The second ineguality follows easily from the first.

4. The uncertainty principle. When p = 2, ? is & ~concentrated on
W if Hf-Qflt< UFIL, In this case Qf is the closest function to f with
Fourier transform supported on W. For arbitrary p {actually p = 1),
Donoho and Stark say that f is 3-bandlimited to W if there exists a
function g with a supported on W, i.e. fig = g, and Hf-gﬂp 5;5ufup. When

p =2, if there is any such g, then g = Qf is also one.

Theorem 4.1 (The uncertainty principle) If there exists f # 0
in Lp, p £ 2, which is €-concentrated on T and §-bandlimited to W, then

atnunt/P > WPQU, = (1-€-%)/(1+8) (4.2)
When p = 2, the 1+% is unnecessary.
. - < IE-PQFt
Proof anp MPQ-FHp < f-PQf A
< - _ - :
< ¥ Pfllp + UPF F’gllp + iiPQg FQFI!D < (&€+ 8+ suPan)uFup,
So WPQfll, > (1- E-S-ShPQHp)Hpr. If p =2, g = Of and PUg-PQFf = 0.

5. Cases of eguality when p = 2. When p = 2 the operators P ana

@ are orthogonal projections in Hillert space, and there are many stan-
dard characterizations of the norm of a product of two projections. In

this section p is aluways Z and the subscript Z is dropped.
5.1 If P and Q are orthogonal projections in Hilbert space, then

a) #pPQi? = ugPn? = WPGPI = NIGPQN = the cosine of the angle
between the ranges of P and 0. .

b} When PO is compact, HPQNZ is the largest eigenvalue of both
QPQ and PQP, and if f and g are the corresponding eigenvectors
NPQFI = HPQUIFN and lQPgIl = 1IIPQNIgH.

c) IfP'D P and Q° 2 Q, then P Q12 HPQW,

Some facts about locally compact abelian groups are needed: a)-
¢} are classical results of Poniryagin [2], chapter B; d) seems to be
hard to find, so a quick proof is included for completeness. '

5.2 a> (6) = 6.

b)Y 6 is compact if and only if % is discrete.

c) Let H be a closed subgroup of G and let Hl be the set of char-
acters that vanish on H. Then H, H;, G6/H, and EIH* are all
locally compact abelian and the following relations hold
(6/H)" = H*, = /W, and (WY = H.

d) If H is a closed subgroup with @ <{HI<% | then H and H™ are
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are compact and open, )LH = lHiXH-‘-, and HLWHT =1,

Proof of d). Let C C H be compact, (C| % @, V a neighborhood

of @. B8ince the sets (x+V)NC, x € C, cover C, some such set, hence

some (x+V)NH = x+{(VNH) must have positive measure. Therefore, V AH
has positive measure. If H is not compact there are a neighborhood V of
@ and a sequence X, € H such that the sets xn+(v(\H> are disjoint. Ais
these all have the same positive measure and are contained in H, H can-
not have finite neaéure. It 1s obvious that if £&HY, then XH(§) =1iHlt,
If %4 H'I', E+ 0 in GrH* = H, so there exists y € H u1'th <y,E> ¥ 0.

X () = o ZRILY 6> Ie‘z’“""y’b Xyix) dx = @ LMY 2R,

by the translation invariance of the integral and of H, ‘which implies
that ¥H(§) = @. IHUIH V=1 is obtained'by taking L2 norms. This im-
plies that @ < | H"1< %, hence that H is compact. It follows that G/H

is discrete, therefore that H is open.

Theorem &.3 The equality HF‘QNZ = \THY!L holds if and only if
there exlstx eT and§ €V so that <x-x_,¥-%57 = 0 a.e. on T x W, If
I¥f G or G is d:lscr'ete or if either is separ'able metric this holds if
and only if there is a compact open subgroup H such that T is almost
contained in a coset of H and W is almost contained in & coset of H<L.

- Proof. Let T = T-xo. U = u- 0" It is immediate that if <x,x» =
@ a.e. on T' x W', then F'Q'F')’-T. = (IT'HY X7y so that WP Q'P ' 2 Tv LWL
= ITT1 WY, Moreover, WP Q'L = HP QU =LiGP'Nl = HQPIH = QPQI . This
proves part of the theorem and shows in passing that for any measurable
set T, {TIIT*l € 1. Indeed, if either measure is @, the left side is
interpreted as @ and there is nothing to prove. If T'C Tard W & T
have finite measure, the above gives {TH WY = llF"C}i'liZ < 1. Since
this holds for all T’ and W' it follows that IT1iT+l < 1.

Now suppose that HPQHZ = {TU{Wi, let g be an eigenfunction in
5.1b, and choose X, € T so that F'QF'g(x } = leIUIg(x ) # @. SinceiQPgil
= 1 PQiiighl, equality, 2o,k >{ Hgihk Il, holds for almost all x in the

application of the Holder (Cauchy-Schuarz) ineduality in the proof of
Theorem 3.2, and since both sides are contimious, it holds for all «x.

For x = Xs this implies that (up to a constant multiple) pl{y) = kx (y)
v o
XT( y))(.u( y-xo). Therefore,

_ f _ -ZRicy-x_, E> A
ITIIUIQ(KO) = PQPg(xD) = ‘ffe ot xu(g)l-r(y))(u(y xo)dydg .

Since the maximum of the absolute value of the integrand is 14! = g(xo)
- v
it follous that e 2™“* 32X (x) = (Ul a.e. on T-x, x W. Fix E € u
5
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s0 that ,Xu_g (x} = e ZHIQK*EQ’ Xu(x) WY a.e. on T-xo. Then
o

9_2ﬂi<x’§>zﬁ-§o(§)d§ = Wi lW-§ 1 a.e. on T-x_

reguires e-Zﬂ1<x.§> =1 a.e. on T-x_ x W-£, .

Replace T by T-xo, W by W- 0" It will be shown that with the extra
conditions there exist T" € T and W € W with |{T-T'l = iW~-Y't = @ and
<x,E> = @ everyuhere on T «x W. Then H = U'* is the compact open sub-
group. H has positive measure because it contains T’ and has finite
measure because W'l 1W' 1 € 1, with I1W') # 8. Because of the symmetry,
the conditions "discrete" or “separable metric" can be imposed en G or
8 at will. '

The fact that <« x,3% =0 a.z. on T x ¥ means that the set W' of
€ € W such that <x,Z> = ® a.e. on T satisfies 1W-UW'\ = @. If & is
discrete, each point has positive measure, so T = T Qill do. If g ig
separable metric, let En be a dense sequence in W', let Tn be the set
of x in T such that <x,§n> = @, and let T° he the intersecticon of the
the Tn.‘ Then IT-T1 = @ and for each x ¢ T', <x,§n> = @ for all n. By

contimuity, <x,¥> =8 for all § & V',

The theorem shows that the equality llPQ"z= ITI{Wl is pretty rare.
For example, if G or & is discrete or separable metric and E is
connected, it holds only when § is discrete and T is a single point.
Indeed, +the only possibility is Tl a, therefore H = {@}. If G is
discrete and contains no element of finite order, then (see [31) @ is
connected, and the above holds. If 6 is discrete and does contain
elements of finite order, such elements provide compact open subgroups,

therefore nontrivial sets T and W with eguality.

Since HPQU <1, if [TIIW) > 1, the relevant question is when PQW
= 1. (The applications of Donoho and Stark to signal recovery depend
on the condition IPQH < 1 which allows inversion of 1-PQ by a Neumann
series. ITHIWI €1 is one means of ensuring UPQW < 1.)

From 5.1¢, 5.2d, and Theorem 5.3 it follows that PR = 1 if there
is a compact open subgroup H such that T contains a coset of H and W
contains a coset of HJL In some groups this is the only possibility
for equality, in others it is not, and in general we do not know how to
decide. A start is as follous. I¥f equality holds and g is the
eigenfunction, then Pg = g and Gg = g, i.e. g has support in T and g in
W so it can be assumed without loss of generality that T is the support
of g and W is the support of § and that both contain @. In this case,
g and a are constant on cosets of W' and T*, so W* and T* have finite
measure. If e 9, then H = " is compact and open and T is a finite
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union of cosets of H, so
- A —Z2Mi¢x ., 5>
g = ch__XH,,xj ' g = 1Hl XH ch“-" j' 5
If the trigonometric pelynomial
- —IMi<x, 4 &>
al(E) Zicje Jj

# © a.e. on HA, then the support of a is HJ and the situation is as
sbove. If q = 0 on a subset A of positive measure in H equality holds
with W = H -, and the situation is not as ahove.

Lemma 5.4 If Gl and EZ have the property +that no non trivial
trigonometric polynomial vanishes on a set of positive measure, then so
does G = GI @ Gz.

A

Proof. G = (31 @ éZ' and <x, 5> = (xl,‘gl} + (xz,gz> ; S0

- 1 e ool =2
q(E) = Zi Zﬂlgx yE > e 2n:<xj,§ >

If g = @ on a set A of positive measure, then for some El. q(fl,Ez) =
@ on a set ﬂz of positive measure in GZ' Since the exponentials are #

b, this requires c; 3 2,

Example 5.6 If 6 = Z", hence 8 = (R/2)™, then PQUl= 1 if and

A

only if W = 6.

Proof. In this case all subgroups of 6 have positive measure, but
the only one with finite measure is H = {G} 80 the proof reduces to
showing that no trigonometric polynomial vanishes on a set of positive
measure, and by the Lemma it is sufficient to show this for 6 = 7. If
the trigonometric polynomial (&) = zicJe‘Zﬂin'g vanishes on a set of
on a set of positive measure, then the polynomial p(z) = ZZc zj wvan-
ishes on an infinite set, and all cJ are @,

Example 5.6 Let 6 be finite of order N. If T has n elements and
W has m, then IPQN = t if n+m > N. If 6 is cyclic and T is an interval
the condition n+m > N is also necessary.

Proof. et T = {x ,...,xn) Since §~u has N-m < n elements,
there exist CyseeeaCy not all ® such that zic e-z"i<xj‘§> vanishes on
8-u. Ifgs= Eic * y, them g has support in T, ©§ in V. If G is

{xj}

cyclic and T is an interval, then by the translation invariance of lIPQ

it can be assumed that T = {8, ... yn-1}, in which case

n-|
o(E) = p(e_znlng), p{z) = chjzj .
Jj=0

The polynomial p cannot vanish at N-m > n points.




Example 5.7 iIf 6= R", then IPQIl = 1 never holds if either T or
W is bounded because the Fourier transform of a function with bounded
support is analytic. (We de not know if there exist unbounded sets T, W
of finite measure that support f.? in Lz. One would expect the answer

to be well known, but we have not found it.)

For the case where T and W are intervals in RI, Landau, Pollak,
Slepian, and Sonnenblick have made a detailed analysis of the operator
OPQ, and, in particular, have computed the eigenvalues. They show that
JIPQ# depends only on the product ITIIWl, and that, while IPQN is never
1, it is close to 1 as soon as ITIIWl is a little larger than 1. E.g.
they show in [4] that if ITOIW = 1,2,3,4,5, then IPQN = ,757, .839,
.988, .9%8, .994. '

Example 5.6 shows that when G is finite cyclic UPRl depends on the
sum m+n, not just on the product mn, even when T and W are intervals.
For example, let m = nld, n = nld, m = nlnld, n"=d. Thenmn =m'n’,
while if SRR 2 Z,dz2 1, min < m+n', so if G has order m+n, then
iIPQNE <1, while UP'Ql = 1. 0On the other hand, after examination of
some 38000 cases, Donoho and Stark have found ((PQil 2.899 if ITI Wl > 3.
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