APPLICATIONS OF COMBINATORIAL DESIGNS
IN COMPUTER SCIENCE

e

By

Charles J. Colbourn _
and

Paul C. van Oorschot

IMA Preprint Series # 400
March 1988

i

Applications of Combinatorial Designs in Computer Science

_Charles J. Colbourn and Paul C. van Oors_EﬁJt

Department of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

ABSTRACT

The theory of combinatorial designs has been used in widely dif-
ferent areas of computation, in the ‘design and analysis of both algo-
rithms and hardware. Combinatorial designs capture a subtle balancing
property which is inherent in many difficult problems, and hence can
provide a sophisticated tool for addressing these problems. The role of
combinatorial designs in solving many problems which are basic to the
field of computing is explored in this paper. Case studies of many appli-
cations of designs t0 computation are given; these constitute a first sur-
vey which provides a representative sample of uses of designs. More
importantly, they suggest paradigms in which designs can be used profit-
ably in algorithm design and analysis.

1. The Background

The interaction between mathematics and computef science has proved fundamen-
tal to the vitality of both fields over the last thirty years; nowhere is this more true
than in the area of combinatorics and graph theory. Graph-theoretic tools arise in vir-
tually every area of computational study: network design and analysis, database
theory, artificial intelligence, complexity theory and matrix computations are just a few
of the areas where sophisticated graph-theoretical tools are routinely used. By the
same token, computational studies have focussed much research attention on graph
theory; the area of combinatorial optimization ‘provides a host of examples of combina-
torial theorems which are both elegant mathematically and practical computationally.
In one sense, the fruitfulness of this interplay is to be expected, since graphs are
natural models of the finite structures which computers by their very nature manipu-
late. '

The role of combinatorics in computer science, however, is not limited to the role
of graph theory. Many problems involve finite structures which are highly constrained;
the mathematics of such structures then comes into play. One very active area of

February 9, 1988

o

combinatorics which deals primarily with systems of sets satislying some ‘‘balance”
constraints is combinatorial design théory. The study of combinatorial designs dates
‘back over a century and a half. In the 1930’s, combinatorial design theory was driven
‘largely by applications in experimental design theory; this close connection remains
today (see, for example, Raghavarao (1971)).- In the 1950’s, a multitude of other appli-
cations arose in the theory of error-correcting codes; designs remain fundamental in
coding theory (see, for example, MacWilliams and Sloane (1978)). These connections
are for the most part well understood and widely used.

At present, the role of combinatorial designs in computer science is less well
appreciated. However, this role is both more substantial and more varied than one
‘might first expect. OQur thesis is that the tools of combinatorial design theory form an
integral part of the equipment needed to solve problems of computation effectively. In
* fact, we shall see that computer science and combinatorial design theory have many
areas of intersection, and ‘that each profits by using results from the other. The large
role which ‘algorithms play in combinatorial design theory is well documented in a
recent survey by M.J. Colbourn (1985). However, the role of combinatorial designs in
computation has typically been underestlmated at least in part due to the lack of any
survey on this subject. A SRR

Our aim is twofold. ‘A primary goal is to survey applicaﬁioné which have appeared
in the computing literature, with emphasis on f_c-he_"‘bre'ad'—‘and-butter” problems of
computation: sorting, searching, selection, and the like. More importantly, we use case
- studies to suggest paradigms for problems in which designs prove useful. Our intent
here is not to solve new problems using designs, nor is it to completely characterize
. problems where designs are useful. Rather, it is to provide a framework for under-
: standlng the use of designs as a tool in algorithm design and analysis. ' '

i - In the remainder of the paper, we proceed as follows. First, a basic 1ntroduct10n
1o combinatorial design theory is presented. Then we explore problems of computstion
m which' designs have been profitably employed in the past; while each case is tied to a
;pa;rticular'application, each illustrates a class of applications in which similar design-
r.vfﬁt'heoretic techniques are useful. We explore applications to the design of access
_.switches (section 3), threshold schemes (section 4), authentication codes (section 5), fil-
mg schemes (section B), parallel sorting (section 7), design and analysis of algorithms
(sectlon 8), lower bounds for complexity (section 9), interconnection networks (section
. '10) distributed algorithms (section 11), and relational databases (section 12). Finally,
we conclude with a discussion of paradigms Whlch arlse from the case studies, and

' thereby suggest further applications for designs.

February 9, 1988

- 3-

2. Combinatorial Design Theory: An Introduction

In this section, we provide enough background in‘combinatorial design theory to
enable the reader to appreciate the role of combinatorial designs in the problems which
we explore in subsequent sections. A complete understanding of the applications
requires a somewhat more detailed introduction; we defer this to the appendix, to
which the interested reader can refer as needed.: Much fuller treatments of combina-
torial design theory appear in recent texts by Beth, Jungnickel and Lenz (1985), by
Hughes and Piper (1985), and by Street and Street (1987).

Let V be a finite set of v elements. A set system B on V is a collection of subsets
of V; the set system is simple when B does not contain any subset more than once.
Set systems are widely studied under the name hypergraphs. We are interested in set
systems which exhibit various kinds of “‘regularity’” or “balance”; to be specific, we
require some further definitions.

Sets in B ‘are called blocks; the number of blocks is denoted b = |B|. K denotes
the set of blocksizes {|B{:B € B}, When K =:{k}, the set system is called k-uni form.
Each element £ €V appears in some subset 8, € B. The replication number r, >0 is
[8; |, and the set of replication numbers is R = {r,:x €V}. Every subset S CV
appears as a (not necessarily proper) subset of a number of the sets in 8; the number
of sets in B containing $ is denoted A\(S) and is termed the fndex of S in B. We
define the t-indexr set of a set system (V,B) to be the set {\(S):|S|=t,5CV}. A set
system is called t-balanced if the t-index set contains a unique value A; and X, >0. A
1-balanced set system is simply one in which there is a single replication number r, and
hence r=>\1.._ Every set system is O-balanced, with b=\, Observe that any
t-balanced k-uniform set system is also (t—1)-balanced. B

Let us consider a small set system. Let V= {0,1,2,3} and
8 = {{0,1,2},{0,1,3},{0,2,3},{1,2,3}}. This set system has v=4, b=4, K={3} and R={3}.
It is, in fact, 2-balanced (with 2-index 2) and also 3-balanced (with 3-index 1). This
small set system illustrates that it is possible to have a unique block size, a unique
replication number, and a unique ¢-index. Such set systems provide the most basic
type of combinatorial des1gns

A (balanced incomplete) block design is a pair (V,B) where B is a k-uniform set
system on V which is 2-balanced with index A. (V,B) is typically termed a (v,k,))-
design; it is an easy exercise to see that the (unique) replication number r is deter-
mined, as is the number & of blocks. Block designs are set systems in which the appear-
ance of unordered pairs is uniform; the natural extension is to set systems which are
t-balanced. A t-design (V,B), or more precisely, a t—(v,k,\) design, is a k-uniform set
system with |V |= v which is ¢-balanced with t-index set {\}. Trivial t-designs arise
by taking v=Fk or k=t; hence our small example is a trivial 3-design (but it is a non-
trivial 2-design or block design).

February 9, 1988

-4 -

These very regular set systems are the main topic of study in combinatorial design
theory. Main topics of research in design theory which are used in the applications to
follow include necessary -and sufficient conditions for existence, symmetric designs,
duals of designs, generalizations of designs (packings, coverings, and pairwise balanced
.designs), resolutions of designs and automorphisms of deésigns. Each of these topies is
discussed in a subsection of the appendix. We summarize a few of the most. basic
points here.

The basic existence question is to decide for which parameters ¢, v, k, \ there
exists a t—(v,k,A\) design. -Numerical necessary conditions rule out many parameter
sets. ‘For those remaining, existence is established for ¢=2 and k,\ fixed as v—roq
other than this, many sporadic examples and infinite families are known, but existence
-remains far from settled in general.

Designs must have at least as many blocks as elements, and hence the designs
with the same number of blocks as elements are widely used: these designs are sym-
metric. Special cases which we wuse -are for A=1 (projective planes),
A=(¢""'~1)/Ag—-1) for g a prime power (projective geometries), and k={v—3)/4
‘(Hadamard designs). S :

Designs are closely related to other combinatorial objects which we also encounter.,
Packings and coverings relax the balance requirement on subsets, so that each ¢-subset
‘appears at most (for packings) or at least (for coverings) X times. Pairwise balanced
“designs relax the requirement that the block size is uniform, and allow a number of dif-
ferent block sizes. Set packings balance the sizes of intersections of blocks, by requir-
ing that blocks not intersect in more than A\ elements; exact set packings require inter-
section in preeisely X elements. These variants all arise in part because existence of
t-designs remains unsettled.

© A vast number of properties of designs have been studied; we émploy two in a
‘substantial way. The first property of interest is that for some designs, one can parti-
“tion the blocks into parallel classes, which are sets of disjoint blocks whose union is
the set of elements in the design. A design with such a partitioning is resolvable. “We
also employ designs with non-trivial automorphisms (symmetries). '

- ~ This thumbnail description of design theory is sufficient to appreciate the main
ideas in the applications to follow; readers desiring a better understanding can find the
required design-theoretic definitions and background in the appendix. :

February 9, 1988

3. Magnetic Core Access Switches

In this section, we explore the use of block designs and pairwise balanced designs
in the design of magnetic core access sw1tches thlS applxcatlon xllustrates the use of
designs in many selection problems.’ B '

Memory de51gn was dominated for h’lany'"' years by magnetic core memories. Min-
nick and Haynes (1962) provide a comprehe:ﬁsiw?e ‘survey of the design of access
switches. We recall the main points here. There are n magnetic cores ¢y, * -+ ,c,,
which are primitive bistable memory devices. There are m wires which are capable of
carrying a current; each wire can be “wound through’ a core, either positively or nega-
tively. We let p;; bel,-1lor0 accordihg'tb whether w; winds ¢; positively, negatively,
or not at all. When each wire w; carries current o, core ¢; receives the signal
Z;”_lajp,-j. Core ¢; is selected if and only if the signal received exceeds a specified
activation threshold A. Notice that since a core is wound by many wires in general,
there is a load-sharing permitted, by which each wire need only deliver a portion of
the activation current A; the load-sharmg factor is sunply A d1v1ded by the largest g,
used, j<m. : :

Nonzero signals of strength less than A "ére ‘termed':hoise. The operation of a
memory requires that we be able to select each core separately (in order to read its
value or write a value into'it)_"~-Henee, for each «core ¢;, we require a set of wire activa-
tions o = (4, " * * ;04) 50 that 37 auipp; > A if and only if £ =+. Variations in
the physical wires used cause a difficulty here, in that noise may be mistaken for an
activation signal. One ‘therefore introduces a noise threshold N < A and requires that
the signal received at core ¢, when ¢; is'selected does not exceed the threshold N,

The basic goals in this problem are easily stated.
1. The number of wires is to be minimized.
2. The noise threshold V is to be minimized.
3. The load-sharing factor is to be maxinized.

The third goal is intended to reduce electrical interference, and allow wires to be
placed closer together in the actual circuit.

Naturally, these three goals are conflicting; this leads to a number of important

tradeoffs. A number of variants of this basic scenarlo have been studled we examine
some of them here :

3.1. Positive Windin'g

In this case, we require that p,; G{O 1} and that ¢ o; €{0,1}. Let X = {¢;, " " ,c,}
be the set of cores. Since each core is wound only p051t1ve1y, we let B; be the set of
cores wound positively by wire w;, and B = {B, - m} Dually, if

= {wy, -+ * ,w,, } is the set of wires, we let C; be the set of wires wound through
core ¢;, and € = {C,, - ,C,, }.

‘February 9, 1988

Y

Now let us suppose that the activation threshold is 4, and the noise threshold is
- N. (X,B) is then a partial PBD with replication number at least A, and index at most
" N. Dually, (W C)is a set packmg with block size at least A and intersection numbers
at most IN. One primary goal is to minimize m for fixed n, or equivalently to maxim-
ize n for fixed m. Since (W, C) is a set packing, n is maximized as a functlon of m
. ‘when (W,C) is in fact a symmetrlc block de51gn ' '

In the practical setting, notice that a core now receives a 81gna1 of at least A 1f it
. is selected, but can receive any signal in the range [0 N] when it is not selected. In the
Jextreme case, we may not be willing to tolerate any noise. The only zero-noise switch

under the present assumptions requires that each wire wind exactly one core. . Natur-
ally then no load-sharing is occurring.

___3 2 Positive Wlndmg Wlth Bias

In this case, only one change is made: a bias wire w, ., is wound negatwely
~through each core. We allow the bias wire to carry a (possibly) larger current, the bias
" 8ignal; all other wires still carry signals of 0 or 1. With the simple addition of one bias

wu'e it is possible to construct zero—ncnse load-sharing sthches

Let (X B) be, as before, a part1al PBD with minimum replication r and index at
_ most X\; using a bias signal of \ and an activation threshold of »—X shifts all noise into
- the range [—\,0]. This scheme is zero-noise if and only if (X,B) is a PBD. Hence we
..can meet the minimum noise goal by takmg any PBD here. Having decided on a PBD,
'__'We now want to minimize the number of wires, [B | and to maximize the load-sharing
factor. This is accomplished by taking (X,B) to be a symmetric design.

Blachman (1956) describes a similar scheme based on projective planes His
rationale for choosing planes over other symmetric designs is that the number of wind-
ings per core remains physically realizable; it is the replication number, plus one for
the bias wire. Singleton (1982) later described this scheme in more generality, and
explored the fault tolerance that the scheme supports.

- Naturally, one may not always be fortunate enough to have the required sym-
metric design for constructing the switch. Hence two relaxations are of interest. First,
.we shall retain the zero-noise property, which (as observed above) is done provided
_that we select (X,B) to be a PBD, but now allow the load-sharing factor to be reduced.
" The load-sharing factor is the minimum replication number minus the index. In order
to avoid reducing the load-sharing factor too far, suitable PBDs are those having only
small variation in block sizes (and hence small variation in replication numbers), while

. ~ still keeping |B | acceptably small. PBDs of this sort have recently been studied by

- 'Erdds and Larson (1982), who develop solutions by omitting points of a projective
* plane. '

February 9, 1988

7=

A second relaxation is to tolerate a small amount of noise. For example, if we
take (X,B) to be a partial PBD with constant block size in which each pair appears
either A—1 or X times, we can use a bias signal of (2A—1)/2 to bound thie noise to 1/2
while retaining good load-sharing properties. Any partial PBD with the two possible
indices A—1 and X would serve here, but the best will have largest minimum replication
number. The scheme supports generalization to 'more allowed indices, with a conse-
quent increase in noise. A particular scheme ‘of interest here is obtained by selecting
some number p of parallel classes from the affine plane of order n to form {X,8). This
leads to an activation threshold of p—% and a noise threshold of 1/2. When p = 2,
this is the widely used ‘“‘square switch” (Minnick and Haynes (1062)). -Singleton (1962)
described many variants of this strategy; he considered the dual problem, that of form-
ing set packings with given minimum block size and few allowed intersection numbers.

3.3. Positive and Negative Winding

In this case, p;; €{—1,1} and o; €{0,1}. We let B; = {¢;:p;; =1} and form
(X,B) as before. Suppose that (X,B) is a symmetric block design with parameters
(v,k,2). Selecting all blocks containing c; delivers a signal of » to ¢;, and a signal of

A—(r—A} to all other cores. Hence the addition of a bias wire w1th bias signal r—2X
gives an activation threshold of 2r—2X\ and zero noise.

Any symmetric block design leads to such a scheme; to maximize load-sharing, we
would opt for a design with 2r—2X\ as large as possible (for fixed v). Hence, in the
practical context we would prefer Hadamard ‘designs. Constantine (1958,1960) first
suggested this basic approach, and Marcus (1958) and Chien (1959,1960) refined it.
Singleton (1962) recast much of their work in the context of block designs, as described
here.

3.4. Other Switches

Once we depart from the requirement that all wires except the bias carry a unit
signal, there is a multitude of possible switches.. Many of these are also based on block
designs. In fact, Singleton (1962) develops a scheme based on designs which is zero-
noise without requiring a bias wire. He also explores the use of set packings in the
event that more wires are allowed.

The practical consequence of this work is limited to the design of small memories,
primarily because the zero-noise schemes require each core to be wound with a large
number of wires, Moreover, there is a difficult geometric problem of realizing the
windings in circuitry, which imposes strong constraints on the number (and pattern) of
windings. The primary practical merit of the design-theoretic approach is in the
description of low-noise switches.

February 9, 1988

4 Threshold Schemes

_ In this section, we explore a different use of block designs in solving a selection
'ﬁ.problem In transaction-based systems, it is often desirable to have the capability to
control the execution of certain important operations (e.g. authorization of cheques
-W1th1n a corporation) or restrict access to secret information (e.g. eryptographic keys).
'In partlcular, suppose one wishes to divide an aecess privilege among w people, such
-that by acting in unison, any ¢ of these w can gain access, but any t—1 or fewer can-
" not. Suth a system is called a threshold scheme. Threshold schemes were first dis-
cussed by Blakley (1979) and Shamir (1979). '

- Formally, let X be a set of v shadows (corresponding to partxal pr1v1leges), K be a
set of m keys (to which access is desired), and B be a'set of b distinct w-subsets of X.
A (t,w,v)threshold scheme is then a pair (B,K) together with a mapping f:B—K
such that for every t-subset T of X, for all blocks B € B such that T C B, f(B)=K
for some fixed X' € K (i.e. T distinguishes a unique key), but for s <t—1I, no s-subset
S of X determines a unique key (i.e. for no S C X is. f(B) unique for all B € B con-
~ taining §). To “‘share” a secret key K among w people, a block B €8 is selected such
that f(B) = K, and the shadows in B are distributed among the w people. _,Then any
group of ¢ of these w people can uniquely determine K via f. | '

, As noted by Beutelspacher (1987), t—(v,k,1) designs (i.e. Steiner systems) yxeld
'(t k v) -threshold schemes directly, as each t-subset of their point set distinguishes
-exactly one block of the design. Symmetric designs with index X also yield threshold
schemes directly; since any two blocks intersect in exactly)\ points, any A+1 points
.determine a unique block {or no block), and hence yield threshold schemes with
t = A+1.

In a t-threshold scheme, although no group of s <t—1 people can determine a
unique key, it is possible that through collaboration, such a group is able to rule out
certain keys from the key set. With this in mind, a (¢,w,v)-threshold scheme is said to
be perfect if no set of s <t—1 shadows from a block gives any partial information as
~ to which key that block determines. More formally, the probability that an s-subset §

~of X distinguishes any key K €K must equal the a priori probability that key K is
~ distinguished, i.e. the requirement is prob(K [$) = prob()K). Stinson and Vanstone
(1988) determine an upper bound on the number m of keys in a perfect (t,w,w)
',threshold scheme to be ' .
v — !t—l! = M,
=% — (1)

‘and prove that m = M if and only if there exists a ¢t—(v,w,1) design which is parti-
tionable into (t—1)—(v,w,1) designs.

Stinson and Vanstone go on to actually construct several classes of such optimal
threshold schemes by making use of several known classes of partitionable Steiner sys-
tems. For p a prime congruent to 7 modulo 8, optimal (3,3,p+42)-threshold schemes

February 9, 1988

-9 -

can be constructed by employing a partition due to Schreiber (1973) and Wilson (1974)
of a 3—(p+2,3,1) design into p 2—(p+2,3,1) designs. A second infinite class of optimal
threshold schemes with parameters (3,4,22™) ¢an be constructed using a partition due
to Zaitsev et al. (1973) of a 3—(2*",4,1) design into 2°™~1—1 2—(22™ 4,1) designs.
These schemes allow more keys than do previously known threshold schemes fort =3
and w = 3,4,

As with the design of core access switches, the balanced appearance of subsets is
exploited here to ensure that no partial information (“noise’) results.

5. Authentication Codes

Suppose two parties wish to communicate remotely but there is some fear that an
“enemy’’ may attempt to either alter a message in transit or insert a message of his
own, passing it off to one party as a message from the other. Authentlca.tlon codes can
be used to minimize the chance of such deception going undetected.

Let the information to be communicated be represented as one of & states from a
state set S. The legitimate parties in the communication use some set V of v >k mes-
sages to represent these states, along with a set E of encoding rules. Each encoding
rule provides a one-to-one mapping of the elements from some subset of S to those of
some subset of V. The set of states, messages and encoding rules define an authentica-
tion code. The parties agree (ahead of time) to use some encoding rule e €E; then to
communicate some state s €5 contained in the domain of e, the message ¢(s) is sent,
It is assumed that the enemy is unaware which particular rule e is selected, but knows
E.

Simmons (1984) notes two probabilities of interest: the probability p; that an
enemy is able to insert a message without the receiver detecting the illegitimate source,
and the probability p, that an enemy is able to alter a legitimate message without
detection. Since the legitimate parties agree beforehand on a particular encoding rule,
and not all messages are valid under a given rule, an enemy’s insertion (alteration) will

be detected if the message he inserts (substitutes) is invalid under the encoding rule in
use.

Authentication codes which minimize p; and p, are desirable. It can be proven
that in an authentication code with k states and v messages, p; 2 k/v and p, >
k—1/v—1; see Stinson (1988). In fact, a (v,k,7\) design with b blocks and replication
value » can be used to construct an authentication code which provides & states and v
messages using b encoding rules, and meets these bounds with equality, under the
assumption that the states are equally probable and each rule is selected with equal
probability. The points of the design correspond to messages, and the blocks specify
encoding rules, with each element of a given block determining a unique state. p; then
corresponds to the probability that an inserted message appears as a point in the block
corresponding to the selected encoding rule; this probability is therefore r /b, which by

February 9, 1988

- 10 -

the standard relations governing design parameters is equal to k /. p, corresponds to
the probablhty that the original message m and that substituted for it by an enemy
" both occur in the block corresponding to the selected encoding rule, a block known to
contain the point m; this probability is thus A/r = k—1/v—1. This simple construe-
tion suggests a natural connection between designs and authentication codes.

An authentication code may in addition provide some degree of secrecy — protec-
tion against an enemy extracting state information from an observed message. Authen-
tication without secrecy may be acceptable — for example, for cheque authorization.
An authentication code in which a message uniquely identifies a state provides zero
secrecy; such a code may actually be required, for example, in certain diplomatic situa-
tions. In an authentication code providing perfect secrecy, sight of a message provides
no information about the state it encodes.

Using (v,k,\) designs, Stinson shows how to construct authentication codes which
provide perfect secrecy and meet the bounds on p; and p, with equality. These codes
provide £ states using v messages and bk encoding rules, where & is the number of
blocks in the design. Actually, he gives a more general result, using a particular class
of ‘set. systems known as group divisible designs, which are a generalization of block
designs. :

Stinson also generalizes an earlier result of Brickell {1984), which employs a class
of group divisible designs known as transversal designs to construct -zero secrecy
‘authentication codes which provide & states and usé kn messages. These codes have
- p; = 1/n = p,, hence meeting the bound on p; with-equality and very nearly attaining
the bound on p,. -

'In addition to minimizing p; and p, and achieving the desired secrecy properties,
it is desirable to find authentication codes which use a minimal ‘number-of encoding
rules. Stinson (1987) considers authentication codes' which meet the bounds on p; and
p, with equality, use a minimal number of encoding rules, and provide perfect secrecy
‘in the situation in which an enemy observes two messages encoded under same ‘encod-
"ing"'i‘ule'; Employing a type of design called a perpendicular-array, he establishes the
existence of such codes and describes their construction and implementation.

-6. F11e Organization

‘A -file is a collection of 'recorcls, each record has a number of attributes, and we
retrieve records by specifying their attributes. A primary requirement for any file
:"drgatiization is the support of partial match queries; here, values for some of the attri-
butes are given and the remainder are left unspecified, and all records matching the
values in the specified attributes are to be retrieved. Normally, records are relatively
.'Space-consuming objects; hence they are stored on a slower secondary storage device
and an accession number records their address on this device, Our task, given a par-
“tial match query, is thus reduced to providing a list of the relevant accession numbers,

February 9, 1988

11 -

We consider the situation here in which there are n binary attributes on which
searching is being performed. Moreover, we consider queries which request those
records which do possess certain attributes; the extension to the case in which we
further stipulate that the records not have certain other attributes is not essentially
more difficult. In a typical retrieval system, queries are relatively simple, in that they
involve relatively few of the attributes. Hence, we first consider the case where partial
match queries on up to ¢ attributes must be supported, but queries on more than t
attributes need not be. ' h '

The usual inverted filé'system creates a list of accession numbers for each attri-
bute, and intersects these lists to reply to a partial match query. This requires the
examination of very many accession numbers which do not form part of the final
answer. At the other extreme, an ertended inverted file system creates (in advance) a
“bucket" of accession numbers for each partial mateh query. Redundancy is incurred
in this scheme, but can be limited by only placing an accession number in a bucket
when the partial match query is a maximal query which matches the record. The
redundanecy in storage pays off in retrieval, because in this scenario only the relevant
accession numbers will be examined. The impracticality of this approach arises from

the very large number of buckets required, and a correspondingly large requirement for
redundancy.

A compromise solution is to amalgamate many possible queries into a single
bucket. Each bucket remains associated with a subset of the attributes, but may now
contain information about many maximal partial match queries. The essential feature
of the bucket subsets is that each query subset be contained in at least one bucket
subset. ‘

Now we are in a position to introduce combinatorial filing schemes, as introduced
in Bucholz (1963) and developed by Abraham et al. (1968) and Ray-Chaudhuri (1968).
We need one further definition: a t-covering is a set system (X,B) in which every
t-subset appears in at least one block in B.

Let A = {a;, - * * ,a, } be a set of attributes. Let (A,B) be a t-covering, and write
B = {B,, '+ *,B,,}. Each B; has an associated list, or bucket M;. Not all subsets of A
appear in blocks of B, but we are guaranteed that all t’-subsets with ¢/ <t are. A
subset A’ C A which does appear may appear in many blocks; we write f(A') =1 if
the “first’’ block in which the subset A’ appears is B;. Now many subsets are associ-
ated with bucket M;, and hence we partition this bucket into subbuckets; in particular,
for each A’ C A with f(A') = 7, we form a subbucket M; 4.

To enter a new record with attributes R, we place its accession number in sub-
bucket M; 4 provided that RNB; = A’ and f(A’) =+¢. Each accession number thus
appears in at most one subbucket of each bucket, but may appear in many different

buckets. To answer a partial match query @, we determine ¢ = f{Q) and only exam-
ine bucket M;. The relevant accession numbers are then listed, each exactly once, by

February 9, 1088

-12 -

catenatmg all of the subbuckets M; 40 with @ c A

If only one bucket is used, this scheme reduces essentlaily to extended inverted fil-
; lng ~In fact, within each bucket, the scheme is like extended inverted filing, with one

important difference. Subbuckets M; 4 exist even for sets A’ which are too large to be
'.part1al match queries themselves; this eliminates redundancy within a bucket. - The
- main advantage of first partltlonmg into buckets in this way is that the filing problems
remaining within a bucket are intended to be of manageable size.

- Two competing goals affect the selection of t-covering to be used. Flrst the
_'redunda.ncy incurred by storing accession numbers in many buckets dictates that the
t-covering should have few blocks; intuitively, fewer blocks lead to less redundaney.
Second, larger blocks lead to more subbuckets per bucket, and hence leave larger filing
problems within a bucket; intuitively, one ‘prefers smaller blocks. The tradeoff
between having few Iarger blocks or many smaller blocks is very application dependent.
When ¢ = 2, Ray-Chaudhuri {1968) observes that the first goal suggests the use of pro-
jective planes; Koch (1969) develops closely related t-coverings for the cases when
planes are not known to exist. If the second gdal is taken into account, block designs
with small blocksize are preferable (Ray-Chaudhuri (1968)). When t >> 2, the designs
to be used are not as readily available, especially in view of the requirement that the
index be 1. For t <5, many suitable designs are known to exist, but as noted earlier,
¢xistence is far from settled in general.

. A most profitable direction to extend this research has been considered by Bose
and Koch (1969) and Ray-Chaudhuri (1968). On each bucket, we can develop a second
combinatorial filing scheme, and thereby develop an overall method which is multi-
stage. To do this, on each block of a t—(v,k,1) design, we place a copy of a t—(k,k"1)
design.. The operation of the filinig scheme is to first find the relevant block of the
t—{v,k,1) design, and then within that block find the relevant block of the t—(kk’,1)
design; this could naturally be repeated to form a filing scheme with any desired
number of stages. In practical terms, the lack of known Steiner systems with large ¢
dnd & limits the usefulness of this idea, however. Even when appropriate systems are
“known, one might argue that the result is just a t—(v,k’,1) design. Of course, it is
such a design, but has the advantage that we need not search all blocks of the design
in order to locate the relevant bucket. One would employ two mappings here, one to
16cate the relevant block of the t—(v,k,1) design, and the second to locate within that
subset the relevant block of the t—(k,k’,1) design.

A second profitable direction is to generalize the scheme to handle multiple valued
attributes. The extension of the design-theoretic approach to this problem has been

" -studied by many authors, notably Bose and Koch (1969), Bose et al. (1969), Ghosh and

~ Abraham (1968), Chow (1969), Takahashi (1973) and Berman (1976).

February 9, 1988

- 13 -

Rivest (19742,1976) points out two major practical limitations to the combina-
torial filing schemes. The first is a lack of available designs for larger ¢, which makes
the schemes impractical for £>>3, at least at present. The second is the large redun-
dancy introduced by storing accession numbers many times; while this may be quite
acceptable for small files, one would require a very large difference in the sizes of
records and their accession numbers before the storage for buckets would be less than
storage for the file itself. Nevertheless, combinatorial filing schemes remain useful
when the cost of retrieving a record from the secondary storage is so large that one is
unwilling to retrieve any record which may prove irrelevant to the query at hand. In
the absence of such a prohibitive cost, however, we need only ensure that “most™ of
the records retrieved prove relevant; Rivest’s scheme, which we explore next, has this
property. '

Rivest {1976) considers partial match queries of any size on a file with » binary
attributes; a query specifies records which do possess certain properties, do not possess
certain others, and may or may not possess the remainder. In this case, records are
placed in buckets; however, here the buckets partition the records, i.e. no redundancy
is permitted. A record R is placed in a bucket M; by evaluating a hash function A; if
h(R) =1, R is placed in M;. The hash function is therefore a function which parti-
tions all possible records into & buckets M, - -+ ,M,. To answer a partial match
query @, we determine (in a manner as yet unspecified) all buckets which could con-
tain a record matching @, and then linearly search all of the selected buckets. (Notice
that if accession numbers rather than actual records are stored, this means we must
access the secondary storage to retrieve all of the records in these buckets.)

The essential ingredient here is the selection of the hash function. It must have
two properties. We must be able to easily determine whether records in a given
bucket could possibly match a given query. In addition, we want to examine as few
buckets as possible (either on average or in the worst case). Notice that these deci-
sions are not affected by the file itself. Rivest’s main theorem here shows that if we
have b = 2% buckets, to minimize the average number of buckets examined we choose
a function which hashes a group of records to the same bucket if they are “close” in
the following sense. For bucket M;, there exist sets S? and S} for which all records
which have attributes in S,p set to O and attributes in S} set to 1, and no others, are
hashed to M;. Moreover, the number of specified attributes |S?US!|is w. Hence the
set of records hashed to bucket M; can be easily encoded as an n-vector with entries
{0,1,*} containing w digits and n—w *'s; we call these vectors signatures of the buck-
ets. The asterisks denote ““don’t care'’ positions.

An easy example when n > logob simply uses the first logyb bits of the record to
determine the bucket. While this easy method has optimal average case performance,
in the worst case it may require the examination of all buckets. To illustrate this, the
simple scheme with w = 2, n = 3 and b = 4 uses signatures:

February 9, 1988

- 14 —

0 0 *
O 1 *
o .
11 *

The query (* * 1) examines all buckets, while the query (0 * *) only examines the first
two. A better worst case is achieved by using signatures:

0o 0 @ *
0o 1 ¥
1+ 0
11

The improvement results from distributing the *’s more uniformly across the columns.
-What yields the best worst-case complexity? Rivest (1974b,1976) addresses this ques-
~ tion by considering a novel type of designs. An associative block design ABD(nw) is
‘a2 2¥Xn array with entries from {0,1,*} so that
(1) “each row has w digits and n—w *'s, _
(2) for every pair of rows, there is a column in which they éontain different’ digits,
_ ‘and ' "
(3)} '_every column contams the same number, 2w(n—-—w)/n of *'s
| Conditions (1) and (2) ensure that the signatures (=rows) form a partltlon of the file,
which when used as a hash function delivers optimal average _caSe performance. Co_ndl-
tion (3) is designed to ensure that worst-case performance is also good. Rivest explores
_th_e existence of ABDs for many parameter sets, and employs a number of product con-
structions borrowed from more standard design existence problems. Brouwer (1976)
establishes the existence of many ABDs, but existence remains far from settled. The
lack of appropriate ABDs led Rivest (1976) to explore various relaxations of ABDs, by
- allowing signatures with more than w bits specified, allowing more than one signature

,per bucket, and allowing redundancy. In the latter case, we obtain what we might call
’ assoc1at1ve coverings’.

Burkhard (1976a, 1976b) also considers the deveiopment of de51gns when no ABD
is avaxlable he employs a more general class of de51gns, which drops the third requ1re~
meént in the definition of associative block designs. He develops a simple recursive con-
_'.structlon for this more general class of designs; however, Burkhard’s file desxgns seem
to be only peripherally related to block desxgns

In the area of filing schemes and partial match retrieval,/the balanced appearance
-of subsets once again plays a key role; for filing schemes, the balancing minimizes
~redundancy, while for partial match retrieval, the balancing underlies good worst-case
- retrieval.

February 9, 1988

- 15—

7. Sorting in Rounds

In this section, we consider some applications of design theory to the problem of
sorting in rounds. Given n distinct elements in some order, the linear order of the ele-
ments is to be established through binary comparisons. Each comparison (question)
establishes the relative order (answer) for a pair of elements, and having determined
the relative ordering of several pairs of elements, additional orderings may be deduced
by implication. For example, if £ >y, y >z and z>w, we can deduce that z >w. This
is an example of a 3-step implication; a- 2-step implication is a direct implication.
Given n elements and a positive integer &, the problem of sorting in rounds involves
determining the complete order of the elements in k rounds. In each round, a number
of questions is answered simultaneously, and the questions asked within one round can
be formulated on the basis of answers from all previous rounds; the object is to ask as
few questions as necessary. One application of the problem is in situations where com-
parisons are made via correspondence for example, in testing consumer preferences;
see Higgkvist and Hell (1982).

The connection between sorting in rounds and parallel sorting is immediate: if »
questions are asked in a round, then by assighing one comparison to each of r proces-
sors, each round can be completed in one time unit. Under the comparison-cost model,
the cost is determined to be the number of comparisons made (number of processors
required); work involved in formulating questions to be asked in succeeding rounds,
communication between processors, data storage, and so on, is not considered. It is
well known that O(nlogn) comparisons are necessary and sufficient to sort n elements
using standard binary sorting; this corresponds to asking one question per round, using
k = O(nlogn) rounds. At the other extreme, if sorting is to be accomphshed in a sin-

gle round, all (2) questions must be .asked. "The ‘cases of interest are hence for 1 <
k <nlogn.

Consider sorting in two rounds. Let V be the set to be sorted. A question (com-
parison) is an unordered pair of elements from V. Let E be the set of questions asked
in the first round, and observe that G =(V,E) is an undirected graph. Now an answer
for the question {r,y} is either (z,y) or (y;z), -according to whether z>y or not.
Replacing each e={z,y} €E by the answer (z,y) or (y,r) transforms G into an
ortented graph. In fact, the sets of possible answers correspond precisely to the acyclic
orientations of G.

The [d-step] transitive closure of an oriented graph G is the oriented graph with
the vertex set of G and an arc from vertex v to vertex w if and only if there is a path
[of length at most d] from v to w in G. A 2-round sorting algorithm using r proces-
sors to sort n elements corresponds to a graph G with n vertices and at most r edges,
such that the transitive closure G° of any acyclic orientation of G contains at least
(;)—r arcs; the edges of G correspond to the questions asked in the first round, and

the (at most r) edges nmot in G° are the questions which remain to be asked in the

February 9, 1988

-~ 16 -

second round.

Higgkvist and Hell (1981) establish the existence of a 2-round sorting algorithm
using O(ns/glogn) processors. Unfortunately, their proof is non-constructive, and relies
“on the existence of graphs with the specified property. Informally, what is required is
~a'sparse graph G with the property that the transitive closure of every acyclic ‘orienta-
“tion of G is dense. In an attempt to actually construct such a graph (i.e. explicitly
“exhibit an efficient 2-round ‘sorting algorithm), they make use of a known ‘class of
Steiner systems: for all n» =1 or 10 (mod 90) and sufficiently large, (v,k,\) = (n;10,1)
~‘designs can be employed, yielding an O((13/30)(n®—n)) 2-round sorting algorithm.
However, such an algorithm is ensured only for values of n which are toolarge:for
practical application; an improved existence result for the requlred des1gns would likely
“make the scheme practical.

- Alon (1985) employs the points and hyperplanes of the projective geometry of
dimension 4, PG'(4,q), to construct explicit algorithms for sorting n elements in two
rounds using only direct implications. As noted above, a graph G corresponding ‘to an
-efficient 2-round sorting algorithm using direct implications only is'a sparse graph G
for ‘which the 2-step transitive closure of every acyelic orientation of @ is dense. Now
the ‘points of PG(m,q) can be put into one-to-one correspondence with the hyper-
-planes, with say point zy corresponding to hyperplane H, such that the following
“graph G is well-defined.” G has one vertex vy for each point xy of PG(m,q), with vy,
| _jo’ined to vy, in G if and only if =y, C H,. Then for m = 4, from the above parame-
‘ters, it follows that G has (140{1))n"* edges, for n=scowith m fixed, and it can be
proven that the 2-step transitivé closure of any acyclic orientation of G has at most
'O(n-"/ %) edges missing. This gives an algorithm for sorting n = (§°—1)/g=1) elements,
for any prime or prime power ¢, in 2 rounds. This uses only direct implications. - Only
r = O(n7/ 4) processors are required, considerably improving on the algorithm exhibited
by Haggkvist and Hell. The algorithm is evidently close to optimal, since a lower
. bound establishes r = ﬂ(ns/s) If the number n of elements to be sorted does not have

~the form (¢°-1)/g —1), then ‘‘virtual elements” can be added and handled appropri-
ately, without increasing the complexity of the sorting scheme. |

In an earlier paper, Bollobds and Rosenfeld (1981) use the same construction for
m =2 (i.e. projective planes) in- their analysis of the related problem of ‘‘almost-
sorting’” in a single round: they consider the number of comparisons required in one
. round such that ‘*almost all”’ comparisons can be deduced from the results of these by
~direct implications. Alon (1985) relates that using the points and hyperplanes of the
--projective geometry of dimension m = 3, Pippenger has produced an algorithm with
__compiex:ty O(n%/ls) for sorting n elements in two rounds using implications of arbi-
~trary length; moreover, combining his own work with a construction due to Higgkvist
and Hell (1982), explicit k-round sorting -algorithms which are more efficient than the
‘best previously known can be constructed for all constant k& 2> 4. A recent paper

-February 9, 1988

~-17 -

discussing the problem of sorting in rounds under the parallel computation model, con-
taining further results on the complexity of parallel sorting, is given by Azar and Vish-
kin (1987); see also Pippenger (1987).

8. Probabilistic and Deterministic Algorithms

We now turn our attention to the use of block designs in the design and analysis
of algorithms. First, we discuss some connections between block designs and the prob-
lem of finding roots of polynomials over finite fields we then mention the use of block
designs in constructing an algorithm to solve the maximal independent set problem.

Given a finite field F = GF(q), where g is a prime or prime power, and a polyno-
mial f(z) € Flz] which factors into distinct linear factors over F, the root-finding
problem is to determine the roots of f(z) in F. The problem is important in algebraic
computation and arises in the areas of algebraic coding theory (see MacWilliams and .
Sloane (1978)) and cryptography (see Zierler {1974) and Odlyzko (1985)), among others.
For example, in coding theory, the roots of the error-locator polynomial determine the
coordinate positions at which errors in a received vector have occurred. Some relations
between block designs and root-finding as explored by van Oorschot and Vanstone
(1987) are outlined below, particularly the inherent appearance of block designs in two
known root-finding algorithms. S

A probabilistic root-finding algorithm for ¢ odd was ‘introduced by Berlekamp
(1970) and further discussed by Rabin (1980) Given f(z), select’ a random ¢ € F and
compute

ged((2), (z+ ™2 —1) : ®
If the ged is trivial, repeat the computation with another random ¢ EF. Otherwise, a
factorization f(z) = f;{=)fo(z) has been discovered, and the method is applied recur-

sively to f{(z) and fo(z) until the linear factors of f(z) are found.

For ¢ =0, (1) separates the roots of f(z) which are quadratic residues from those
which are not, and in general separates roots p; and p jonly if p;+e and p,;+¢ are not
both quadratic residues or both quadratic nonresidues. To relate this algorithm to
block designs, we require some notation. Let R be the set (block) of quadratic residues
(even powers of a generator) in F, and let /N be the set of quadratic nonresidues.
Define devy(R,N), the development of {R,N} by F, to be the set of ¢ near-resolution
classes {R+0, N+8}, B €F, where for example R+ = {r+B: r ER}. It is then well-
known that devge(R,N) is a (g, (g—1)/2, (¢—3)/2) block design. - This implies that a
pair of roots {p;,po} of f(z) appears together in precisely (¢—3)/2 of the g classes.
Selecting a random ¢ € F for (1) essentially corresponds to selecting a random class in
this design; two roots remain. unseparated if they appear in the same block of this
class. (To be precise, the corresponding design is actually devp(R, N U {0}).) The
recognition of this underlying design provides one method for analyzing this root-
finding algorithm, In particular, the probability p that a given pair of roots is

February 9, 1988

~ 18 -

separated via a random choice of ¢ in (1) can be precisely determined: for g =3
modulo 4, p = (g+1)/2q, and for ¢ =1 modulo 4, p = (g+3)/2¢ or (g—1)/2q, depend-
ing on the quadratic nature of the difference of the roots.

This analysis technique using block designs is particularly convenient in that it
generalizes to handle the modified version of this root-finding algorithm which makes
use of a multiplicative subgroup of F\{0} of index n (in place of the quadratic residues)
and its cosets, and can also be used to establish the exact probability that three roots
of f(x) remain unseparated by (1). In addition, the underlying designs can be used to
establish bounds on the size of factorizing subsets as introduced by Camion (1983), in

relation to the existence of a deterministic version of a related probabilistic general fac-
torization algorithm.

- A second algorithm introduced by Berlekamp (1970), for finding roots over exten-
sion fields GF(¢™), m>1, makes use of the following result. Let o be the root of an
irreducible polynomial of degree m over GF(q), and let tr(z) = 275 =129 be the stan-
dard trace function over finite fields. Then the set of greatest common divisor compu-
tations ,

ged(f(z), tr(c/z)—B), (2)
where j = 0,1, - - ;m—1 and £ runs over all elements of GF(q), separates all roots of
f(z). This gives a deterministic root-finding algorithm. Furthermore, for fixed j and
B ranging over GF(q), the exact probability that (2) separates a pair of roots of f(z)
can be determined in a manner similar to that used above. Here, it can be established
that the underlying design is given by the points and hyperplanes of the affine
geometry AG(m,q), 2 (¢™,¢™ ', (¢™'=1)/(¢—1)) design with replication number
(g™ —1)Ag—1). Again, selecting a random j corresponds to selecting a random resolu-
tion class of this design, and the probability that such a class contains a given pair of
Aroots among one of its blocks (and hence fails to separate that pair) is \/fr =
(™' =1)Aa™—1) < 1/q. This analysis further motivates a generalization of this root-
finding algorithm employing the block design defined by the points and subspaces of
dimension { <m—1 of AG(m,q), i.e. AG;(m,q); see Beutelspacher et al. (1987).

‘We now discuss another use of block designs in algorithm design and analysis: the
establishment of a complexity result for the maximal independent set problem. Given
a graph G = (V,E), an independent set in G is a subset J CV such that u,v el
implies {u,v}ZE. A mazimal independent set is an independent set that is not a
subset of any larger independent set in G; the mazimal independent set problem is to
produce a maximal independent set I in G.

For § &V, the neighbourhood of § is N(S)= {w €V | for some u €S8,
{u,w}€E}, and Ng(S)=N(S)NK. § is then an independent set if
S N N(S) =, and § is a maximal independent set if furthermore § U N{(S)=V. A
simple sequential algorithm to find a maximal independent set I starts with I = %
and then for each vertex v; €V, 1 <17 < n, simply adds v; to the set [if v; & N(I).

h

February 9, 1988

Karp and Wigderson (1985) present a randomized parallel algorithm for the maxi-
mal independent set problem that runs in expected time O((logn)®) using O(n?) proces-
sors, and a deterministic parallel algorithm that runs in time O((logn)!) with
O (n®/logn)®) processors, where n = [V} An outline of the algorithm follows. Start
with sets / = ¢ and H = V, and proceeding until H = (7, repeatedly

(i) find an independent set § in the subgraph induced by 7 ...

(i) update T to T U S |

(iii) delete from H all vertices in Su NH(S) _

At termination, I is a maximal independent set. Step (i) in this: algorithm admits
parallel computation. '

Karp and Wigderson show how to find S in step (i) in time O((logn)) such that
[SUNgS) | = ﬂ(|H|/Iog |7 [), (3)

leading to a requlrement of at most O((Iogn)z) iterations. In greater detall given a
subset T C H, if one vertex from each edge in the subgraph induced by T is deleted
from T, then the remaining vertices in T form an independent set S§. For good sets
T C.H, i.e. sets T carefully selected as outlined below, the resulting .§ satisfies (3).

For K CH CV, let d be the maximum degree of any vertex in the subgraph
induced by K, and call a vertex u €K heavy if the degree of u .in K is at least d/2.
Karp and Wigderson establish that if M C K is a set of heavy vertices'in K, then for
t =m /8d, where m = IMI, there exist t-sets T C M such that independent sets S,
constructed from T as in the preceding paragraph, satisfy |S U Ng(8) | = Q(m). To
establish (3), given a set H CV, they then show how to construct a subset K CH
which contains a set M C K of heavy vertices with m = Q(|H | /log{H |. Then
with K",-M and t fixed, what remains is to find, among all t-sets of M, a good set T.

At this point, the randomized version of the algorithm proceeds by randomly
selecting subsets T € M of cardinality ¢ until a géod set T is found. The deterministic
version systematically employs a particular class of Hadamard designs to replace the
random sélections by a deterministic (parallel) search procedure.

The properties that make block designs useful in the deterministic algorithm are
precisely the constant index and existence of a (unique) replication number (for all
points). Although the randomized version is strongly recommended if the algorithm is
to be programmed, the use of block designs is required to establish the deterministic
complexity result., Karp and Wigderson:(1985) state that their main contribution is
“introducing combinatorial design theory as an algorithmic technique”. They note
that the use of block designs, to replace random sampling by deterministic sampling, is

precisely the reason that block designs were originally studied in agriculture and statis-
ties. They go on to say

We believe that combinatorial designs will find many applications in the design of efficient
deterministic algorithms, and particularly i_n parallel algorithms, where they seem to fit so

February 9, 1988

- 90 -
naturally.

Karp, Upfal and Wigderson (1985) consider a generalization of the maximal
independent set problem for graphs. An independence system is a set X, together
with a set € of subsets of X; whenever C €C and ¢! C C, C' €C. For example, the
set C of independent sets in a graph forms an independence system on the set of its
vertices. Karp, Upfal and Wigderson consider the following problem for an n-element
independence system (X,C): given an oracle for deciding whether ¢ €€ for ¢ C X,
find a mazimal set in C. They give a randomized parallel algorithm for this problem
in O(\/TT) time; once again, designs (in this case, t—(v,k,\) packings) are used to
replace the random sampling by deterministic sampling. For a special class of indepen-
dence systems (matroids), this gives a deterministic parallel algorithm in O('\/;;) time.
Restricting further still, they consider the independence system obtained by consider-
ing all subsets of the edge set of a graph which contain no cycle (this independence
system is the *graphic matroid”). Using t—(v,k,\) packings, they obtain an O(logn)

deterministic algorithm for finding a maximal set. In concrete terms, suppose that we
~are to find a spanning tree in a connected graph G, but are not allowed to “‘see’” G
we can only ask an oracle whether a subset of edges contains a cycle or not. Their
algorithm using packings finds a spanning tree of G in O(logn) time, using a subex-
ponential number of processors. '

9. Lower Bounds for Algorithms

In the previous section, the use of designs in developing algorithms was illustrated;
in this section, we explore an application of designs to establishing a lower bound on
the performance of an algorithm. We consider the set covering problem: given a set
system (V,B), find a set X C V which is a set cover, i.e. XNB % ¢ for all B €8, so
that |X [is minimum. This problem arises, for example, in choosing sites in a radio
broadcast network to serve as repeater stations (Van Slyke (1982)). The usual method
by which set covering problems are solved is to use an “integer programming” formula-
tion with “implicit enumeration”; Fulkerson, Nemhauser and Trotter (1974) describe
these methods in detail. In order to avoid introducing new terminology, we recast
their method in the context of set systems. '

- . The algorithm operates by maintaining a list of candidate partial solutions, along
with a size of the smallest set cover found thus far, At each step of the algorithm, a
partial solution is eliminated from the list, if it can be seen not to lead tc a set cover
smaller than the current best, or smaller than one arising from a different partial solu-
tion.

To be more precise, we view a partial solution as a partition (I,0,U) of V; I con-
tains elements which we have decided to place in the set cover, O contains elements
which we have decided not to place in the set cover, and U contains elements about
which we must yet make a decision. We let R(I) be the set of blocks not covered by

February 9, 1988

- 91 -

I. Initially, we take (V,(J,() as the smallest known solution, and the initial set of
partial solutions is {(Z5&5V)} Given ‘a list of partial solutions, we employ three
phases: augmentatnon, ehmlnatlon, and branching. In augmentation, we check
whether, for any partial solution (IO U), there is a u €U and B €8 f‘or which
BN(IUU) = {u}. If so, then u must be placed in the set cover in order to cover the
set B; hence we replace (I,0,U) by (IU{u},0,U\{u}). Elimination of partial solutions
is done in two ways. Elimination by dominance is based on the observation that for
two partial solutions (I,0,U) and (I',0",U") with R(I") C R(I), |I'l< [I|and I # 7 a
set cover extending ([,0,U) can never be better than one extending (I',0",U’); thus
(I,0,U) can be eliminated from the list of partial solutions. To deseribe elimination by
fathoming, ‘we recast the set covering problem as the determination of weights from
{0,1} for each element so that every B €B has elements whose weight totals at least
one. In a partial solution, I contains elements whose weight is fixed at 1, O those
whose weight is fixed at 0, and U those whose weight is yet to be determined. Elimi-
nation by fathoming then determines the best (non-negative) fractional asmgnment of
weights' to the elements of U, so that each set of B obtains total weight at least one
(i.e.; it solves a “linear programming relaxation’). If the total weight assigned, even
allowing fractional weights, is at least the weight of the current best set cover, the par-
tial solution can be eliminated from consideration.

Once ea’ch-partlal solution is augmented ‘as'much as possible, and all those which
can be seen to leéad to unusable solutions are eliminated, we perform’a branching; that
is, for some partial solution (I,0,U) and some u €U, we replace this partial solution
by the two partial solutions (TU{u },0,U\{z}) and (I,0U{u },U\{u}).

A lower bound on the complexity of such an algorithm is obtained by examining
the number of partial configurations which it considers. Avis (1980) observes that for
set systems (V,B) which are Steiner triple systems ((v,3,1) designs), the algorithm
deseribed can take exponential time. In partxcular, it performs poorly on Steiner triple
systems whose smallest set cover is’ large; de Brandes and R&dl (1984) have demon-
strated the existence of Stelner triple systems whose minimum set cover has size
v — O(v"®). '

To develop the lower bound, form a binary computation tree whose nodes are the
partial solutions examined; the two children of an interior node in this computation
tree are the two partial solutions obtained by branchmg Avis (1980) shows that this
binary tree is full to a depth of at least ¢= V2v/3]. To see this, consider a partial
solution (I,0,U). Let j, be the number of elements in O (placed there by branching).
Let j, be the number of elements placed in by branching, and let 5, be the number
placed in I by augmentation. :

In a Steiner triple system, no two blocks intersect in more than one element.
Hence every pair of elements added to O can be responsible for the addition of at most
one element to I by augmentation. Thus we have j, < ¥%jo(jo—1). Now if jo+7; < g,

February 9, 1988

—99 —

a fractional solution simply assigns weight % to all elements of U; the weight of the
-“solution” is then at most 2v/3. Since the weight of the best integer solution is
v = ¢v”®, these partial solutions are not eliminated by fathoming. They are also not
eliminated by dominance, for the following reason. If (I,0,U) is eliminated by
(1,0",U"), then R(I"YCR(I) and there is some & €7\'. But then each of the blocks
containing x must intersect I’ in the partial solution (I',0',U"); this requires
|I'] = r = (v—1)/2, which is a contradiction for jy+3; < g. Thus there is no elimina-
tion of partial solutions by dominance.

._The key feature of the designs used is the small intersection of blocks; however,
the other essential observation is that Steiner triple systems exist having large
minimum set covers. '

.. -More recently, properties of Hadamard designs have been used to establish lower
bounds in the theory of probabilistic communication complexity. Chor and Goldreich
(1985) obtain a linear lower bound on the worst-case probabilistic communication com-
plexity for computing functions which are representable by Hadamard designs. To do

_this, they exploit a remarkable property of Hadamard designs: in a Hadamard design of

order v, let X be a set of 7 elements and Y be a set of 5 blocks. Let ¢(X,Y) be the
total number of occurrences of elements of X in blocks of Y. Then %(:7 ——\/zg_v) <
e(X,Y) < %(s j-{-\/z'jT)) (see Frankl, RGdl and Wilson (1987)). This (relatively) uniform
distribution of elements in blocks leads to the lower bound; we do not attempt to
sket_ch the details here, but refer the reader to Chor and Goldreich (1985) and to
Babai, Frankl and Simon (1988). '

10. Interconnection Networks

_ In this section, we examine interconnection strategies for computer networks, The
generic ¢nterconnection problem is to establish communication paths between input
nodes Vi and output nodes Vp; we allow the case that the input nodes and output
nodes are the same. Switch nodes Vg may be used; these simply relay a message from
one communications channel to another. Our task is to connect the ~nodes in
V =VjUV,UVs using some communication medium. Two main media are bidirec-

- tional peint-to-point links, and (multipoint) buses. Ignoring implementation issues, a
link 'is just a 2-subset of nodes, while a bus is a k-subset of nodes, for £>>2. We can
therefore view a network as a set system (V,B), where B is the collection of links or
buses; for simplicity, we treat links as a special case of buses.

The physical realization of a network imposes some basic constraints:
The number of buses should be small.
Each node should connect to a small number of buses.

The number of switch nodes should be small.

February 9, 1988

4. Fach bus should involve a small number of nodes.

The first three constraints address the construction cost, while the fourth is to ensure
that each bus carries an acceptably small amount of traffic. The network must also be
connecting, in that there is 4 communicationi ‘path from each input node to each out-
put node. The distance from an input node to an output node is the number of buses
in the shortest communication path connecting them. The diameter or depth is the
maximum distance from an input to an output.- To ensure small delay in communica-
tion, we also require:

5. The diameter should be small.

Naturally, these five goals are conflicting, and any network design is a compromise
solution. Let us consider first a network (V,B) with diameter one, and V = V; = V.
In this case, no switch nodes are required. For the diameter to be one, every 2-subset
of V must appear in some block of V; hence (V,B) is a 2—([V |K,1) covering. Micku-
nas {(1980) observes that minimizing the number of buses, and also the number of buses
meeting each node, we take (V,B) to be a projective plane. If there'is'no plane on |V}
elements, Mickunas suggests simply omitting points from a larger plane to obtain a
pairwise balanced design which meets the criteria. :

Bermond, Bond and Saclé (1984) and Bermond and Bond (1086) consider the prob-
lem of building networks with specified maximum bus size &, in order to meet the
requirement for small buses. Such a network is a covering with small block sizes; the
minimum number of blocks is achieved by a 2—(v k,1) desagn when there is such a
design on the required number of elements.

Thus far, we have considered networks in Whlch any single input node can reach
any single output node (when inputs and outputs are equal, we require that any pair of
nodes can be connected by a path). More generally, we may require that the n input
nodes can simultaneously communicate with the n output nodes, given a specified
mapping of inputs to outputs. This. requires .disjoint communication paths, which
share no common bus or intermediate node. A good example of thls situation arises in
the design of shifting networks. '

A barrel shifter is a network whose nodes are {0,1,...,n—1}, the integers modulo
n. Given a shift distance s, 1<s<n, every node must transfer a value to the node
whose label-is s larger; more precisely, for each 0<¢ <n, node ¢ must establish a con-
nection to node i+s (modulo'n), and all # communication paths are to be disjoint.
Kilian, Kipnis and Leiserson (1987) develop a barrel shifter which has diameter one; as
they remark, when implemented in VLSI, this means that the shift is accomplished in a
single clock tick.

As we have seen, a network of diameter one is a 2—(n,K,1) covering; if we require
in addition that each node ¢ has a (disjoint) path to node i+s (modulo), the n pairs
from the set D, = {{{,(t+s)modn}:0<i<n} must appear in n distinct blocks. At
first, this seems to be a complicated requirement, but a widely studied class of designs

February 9, 1988

— 94 —

always has the desired property; we introduce them here. A set system (V,B) with
V={0,, - ,n-1}is cyclic if, whenever {b;, - * + ,b; }EB, {b+1, - - - by +1}€B (arith-
metic modulo n is used here). Colbourn and Mathon (1980) survey results on cyelic
designs; we introduce only those features which are essential for our purposes. The
orbit O(B) of a block B is the set {B+s(modn):0<s<n}; it is full when [O(B)|{=n.
When all orbits are full, the set system is full-cyclic. It is easy to see that the pairs of
D, appear in at least n distinet blocks of a full-cyclic covering.

Any full-cyelic covering can then be used to design a barrel shifter, Each node
finds the first orbit in which {0,s} appears, say in block B. Node z now writes its
value to the bus B+z (mod n), and reads its value from the bus B-+z—s (mod n).
In this way each node z reads the value node z —s (mod n) wrote, and each communi-
cation path corresponds to a unique block in the orbit. Kilian, Kipnis and Leiserson
(1987) observe that to minimize the total number of buses and the number of buses
incident at a node, the covering chosen here is a eyclic projective plane (i.e. projective
“plane which is eyclic).

The actual operation of a barrel shifter based on a cyclic projective plane is
remarkably simple. To see this, we consider the structure of cyclic projective planes.
Since there are only n blocks, any two blocks B, B, satisfy B;=B,+s (mod n) for
some 0<s<n. Consider a single block B = {6, - - ,b;}. Now for each element d,
1<d<n, {0,d} appears in exactly one block. Hence B must contain exactly two ele-
‘ments b;, b; for which b;—b; =d (mod n). Every d, 1<d<n, is the difference of two
elements of B; such a set B is a difference set for {0,1, - - * ,;n—1}.

Using the difference set representation of the cyclic projective plane, the opera-
tion of a barrel shifter is straightforward. To shift a distance of s, each node finds the
two elements b;, b; in the difference set with b;~b; =s (mod n). Node z then writes
onto bus « +b;, and reads from bus z+b;.

When no cyclic projective plane on n elements exists, this very simple control
logic can be retained nonetheless. To do this, note that this scheme requires only a set
which covers all differences from 1 to n—1; hence we can use a difference cover, in
which each d, 1<d<n, is the difference of at least one pair of elements. Babai and
Erdds (1982) establish the existence of ‘small’ difference covers, and Kilian, Kipnis and
Leiserson (1987) observe that they produce optimal barrel shifters of depth one. They
also use difference covers to design ‘permutation architectures’, which realize permuta-
tions other than just cyclic shifts.

We now consider an even stronger connection property of networks. An
n-superconcentrator is a network with n inputs and n outputs in which disjoint com-
munication paths can be established from the inputs to the outputs in any of the n!
possible orderings. We restrict superconcentrators to have only links, and no larger
buses. A superconcentrator of depth one requires all n? connections (i.e. each input
connected to each output); hence superconcentrators of depth greater than one are of

February 9, 1988

— 95 -

interest. Nevertheless, superconcentrators are typically constructed using special types
of depth-one networks in which every set of inputs is directly connected to a relatively
large set of outputs (see, for example, Chung (1979)). More’ formally, a network
(ViUVp,E) with ViNVo=J is a (n,0,0) -ezpander if every set of & inputs is directly
connected to at least B output nodes. ' :

Any depth-one network with VNV, =(can ! be equivalently written as a set sys-
tem (Vy,B), where B = {{v;:{v;sv,}€E}: v,EVp}. In this setting, an (n,0,8)-expander
is a set system with n elements and n blocks, so that every set of o elements intersects
at least A of the blocks. Intuitively, 8 is largest when the blocks intersect each other
as little as possible. At the same time, however, for B to be large, each element must
appear in a large number of blocks. As one would expect, to maximize the expansion,
we choose to balance the block sizes, and balance the sizes of block intersections.
Hence we consider symmetric designs.

Alon {1985) proves that one class of symmetric designs, obtamed from the points
and hyperplanes of the projective geometries PG(d,q), provides good expansion proper-
ties. More precisely, he shows that in this design from PG(d,q) on n elements, every
set of o elements intersects § > (an)/(a+g—1) blocks. Hence for all a=o(n), a=o(f);
such a network is termed highly expanding. Moreover, Alon remarks that these
expanders have essentially the smallest number of links of any network with equivalent
expansion properties. Using projective geometries for expanders, Alon establishes the
existence of n-superconcentrators of depth three with O(n4/3) links; we refer the reader
to Alon’s paper for further uses of the expanders and superconcentrators.

The design of interconnection networks employs design-theoretic tools in =2
number of ways. The use of designs to cover all pairs of nodes is prevalent in diameter
one networks; on the other hand, the balanced intersection of blocks is shown to lead
to high expansion factors, and hence to highly connecting networks.

11. Distributed Consensus

In this section, we discuss a network topology and message-passing protocol pro-
posed by Lakshman and Agrawala (1986) which allows for efficient computation of cer-
tain associative functions in a distributed network. The scheme is based on the use of
finite projective planes. '

Consider a database distributed over n sites {e.g. computers) which are to be
linked in a decentralized communication network. A function which depends on the
contents of the database is to be computed, and the value is to be made known to all
sites. We assume that the evaluation is to be symmetrie, and each site acts identically
to all others; there is no site hierarchy. A naive method to compute the function is to
have each site send its own data to all other sites; then each site can carry out the
entire computation. This method involves O(n®) messages, and a single round of mes-
sage passing. o ' '

February 9, 1988

— 96 —

The situation can be improved to a total cost of O(n\/rT) messages over two
rounds of message passing, with each site sending O(\/TT) messages per round, as fol-
lows. Assume first that n = m?$m-+1 and that a projective plane on n points exists;
we discuss how to modify the scheme to handle general n below. 'Let the sites
correspond to the points of the plane. The lines (blocks) of the plane can be put into
one-to-one correspondence with the points, such that each point is associated with a
unique block containing it. (This ‘“system of distinct representatives’’ can be found
using a bipartite graph matching algorithm.) The point ¢ associated with each block B,
is the leader of block B;. Each point ¢ sends messages to all other points in block B;
and to the leaders of all other biocks in which point ¢ occurs. Then at each round,
each point ¢ receives exactly 2m messages, one from each of the 2m (distinct) points it
sends messages to. Relying on the fact that the index in the corresponding design is
A=1, the communication paths outlined above provide a “backbone” in this topology
such that two successive rounds of communication suffice for the propagation of data
from each site to every other.

As an application, consider the use of this set-up and these communication paths
to solve the decentralized extrema finding problem. Each of the n sites contains a
value; the goal is to determine the maximum of the values, and to make this maximum
known to all sites. Let v(¢) be the value at site ¢, and let each site 7 in the network
carry out the following steps: :

send v(?) to the sites on its communication paths

await receipt of 2m values (messages)

compute the maximum M; of these received values and v(z)
send M; to the sites on its communication paths

awalit receipt of 2m values

compute the maximum M of these values and M.

I S

It is easily proven that the value M computed by each site in this last step is the
desired maximum. To verify the protocol on the projective plane of order 2, the reader
may wish to simply use wv(i) =4¢. We list the blocks here for convenience; block
leaders are distinguished in boldface.

124 235 346 450 561 802 1013

As mentioned earlier, if n = m%+m+1 for some m = pk, then a projective plane
on n points exists and can be used. Otherwise, a projective plane with point set of
smallest cardinality exceeding n can be employed; “virtual sites’ are then used in
addition to the original n sites; and the communication scheme can be modified
appropriately, affecting its complexity by only a constant factor. For consensus prob-
lems using symmetrie protocols with no site hierarchy, as in the model discussed above,
it is easily shown that O(n\/;) is a lower bound on the number of messages required

February 9, 1988

97 —

to reach consensus. It follows that the protocol discussed above is optimal. We note
that similar results can be obtained by more direct methods.

Decentralized extrema finding is of use, for example, in the coordination of distri-
buted checkpoints. Other applications of this communication protocol include the
computatlon of associative functions Whlch have ‘inverses, and commit protocols in dis-
tributed database systems. '

‘

12. Keys in Relational Databases

In this section, we consider another selection problem which has been solved using
designs. A relational database can be viewed as an mXn matrix, with rows indexed by
individuals 7 and columns indexed by attributes: 4 of the individuals. Suppose that
the values of the attributes A C A4 are known for an individual; it may then happen
that the value for an attribute b € A is determined by the known values. This would
happen exactly when all individuals having the same values for attributes in A also
have the same value for the attribute 4. If this occurs for all selections of values of the
attributes in A, we say b is in the closure of A, ¢l(A).

Consider a set A’ with ¢l(A’) = A. In other words, all information about an indi-
vidual can be deduced from its values for attributes in A’. A’ is a key of the database.
When A’ is minimal, in that no subset A"CA’ has ¢l/(A”") = A, A’ is termed a minimal
key of the database. Minimal keys are the simplest sets of attributes which are suffi-
cient to recover all information about an individual. Hence the structure of minimal
keys in a relational database holds much interest.

Armstrong (1974) and Békéssy and Demetrovics (1979) establish that any set of
subsets '

-{AI! Y, As}! A; C A, and A; gAj for 54

can be realized as the set of minimal keys in some relational database. In fact, they
show that a relational database can realize any closure operation defined by the follow-
ing three axioms: ‘

(A1) AC cl(A)
(A2) ACB= cl(A) C ¢l(B), and
(A3) -cl(cl(A)) = el(A).

Naturally; many different databases'(ma.tficéé) realize the same closure operation; the
minimum such matrix is the one with fewest individuals (rows).

Demetrovics, Fiiredi and Katona (1985) consider a specialized question of this
form. Let L} be a closure operation on A, |4 | = n, defined by

February 9, 1988

~—98 —

A if <k
LP(A) = {g Al

if A [>k

This situation is somewhat analogous to threshold schemes; here, every k-subset is a
minimal key, but knowing fewer than £ attribute values does not allow us to determine
the value of any further attribute. Unlike perfect threshold schemes, however, know-
ing k—1 attribute values does enable us to eliminate many of the individuals from con-
sideration.

From our earlier remarks, we know that the closure operation L} is realized ‘f}y .
some assignment of attribute values to some set of individuals (i.e., by some matrix).
How few individuals can realize the closure operation L}? Let s(L}) denote this
~minimum. Demetrovics, Firedi and Katona (1985) determine s{L) exactly for
k =1,2,n—1, and n; they obtain bounds for other values of k. For k = 3, they obtain
quite tight bounds using designs. First, notice that for every 2-subset of attributes,
there must be at least two individuals who agree in values of these attributes (other-
wise the 2-subset is a key). No two individuals agree in values of three attributes
(every 3-subset is a key). Hence the number of pairs of individuals must be at least
the number of pairs of attributes; in other words, s(L }) > n.

To realize the minimum in this bound, every pair of individuals must agree in pre-
cisely two attributes. This minimum can be realized in certain cases using block
designs. Let (V,B) be a (v,3,2) ‘block design having a near-resolution into parallel

blocks whose union is V\{r;}. In addi-

“tion, we require that for each ¢,5 with %7, there is exactly one pair appearing in a
block of P; and a block of P;, Now construct a vXv matrix with diagonal entries all
zero, and off-diagonal entry (¢,5) equal to ! if and only if v; appears in the I*® triple of
P;. This matrix realizes the closure operation L 3.

. V=
classes P, * * - ,P,, so that P; contains

- Demetrovics, Firedi and Katona (1985) construct the required (v,3,2) deésigns for
all v=1,4 (mod 12) by replacing each block of a (v,4,1) design by a (4,3,2) design on the
same points. In fact, Bennett and Zhu (1987) extend their results by using pairwise
balanced designs. As a consequence, the bound n < s(L3) < n+2 holds for all n>20.

The determination of s(L3) is motivated initially by a problem in the theory of
relational databases, but the design-theoretic aspect arises primarily in a specialized

subproblem of the database problem; the main feature of this subproblem is to balance
the appearance of subsets.

February 9, 1988

929

13. Summary

We have examined ten application areas of combinatorial designs in computer sci-
ence. In-each case, designs and related combinatorial configurations arise naturally. It
is clearly unwise to try to characterize precisely those applications in which designs
might prove useful; nevertheless, it is important to identify general paradigms for the
application of designs. We make a first attempt at identifying paradigms here.

Designs provide balanced set systems. In most of the applications studied, a bal-
ance property is required. Balance on appearance of subsets arises in the design of
core access switches to ensure zero-noise, in the design of threshold schemes to ensure
that no partial information can be extracted, and in the design of authentication codes
to achieve the desired secrecy properties and to minimize the probability of undetected
deception. Balance on block sizes arises in combinatorial filing schemes to ensure that
no bucket is too large, and in interconnection networks to ensure that no bus carries
too much traffic. Balance on intersections arises in the design of expanding networks,
and algorithms for sorting in rounds. We have also seen that balance has some algo-
rithmic consequences; it is used to ensure good deterministic upper bounds on algo-
rithms; remarkably, in other contexts, balance is used to force an algorithm to take
exponentially many steps. There are two primary themes to the use of balance.
Firstly, balance in designs leads to balanced load, when the blocks correspond to some
physical entity (e.g., a bus or a ‘bucket’). Secondly, balance ensures that limited par-
tial information is obtained by examining a small set of elements. It is interesting to
remark that the balance properties of designs are those most exploited in experimental
design theory (see Street and Street (1987)).

Designs are minimum coverings, and mazimum packings. We have seen cover-
ing and packing applications throughout this survey. -Coverings arise from the need to
represent all subsets of specified cardinality; we have seen this in combinatorial filing
schemes, closure operations for relational databases, and interconnection networks.
The minimum number of blocks in a covering is realized by a design (when the
required design exists); hence, requirements for efficiency dictate the use of designs.
Packings and set packings arise from the need to avoid redundant:coverage. In our
applications, packings arise in the design of core access switches, to limit the amount
of noise generated. It is important to note here that the ‘packing’ aspect of designs is
that most exploited in the design of error-correcting codes (see MaeWilliams and
Sloane (1978)).

While these two main themes capture the flavour (if not the details) of the appli-
cations discussed here, there are many less general themes which are still useful. We
mention one here, because we believe that its importance has been generally underes-
timated. We have seen applications of resolutions and partitions of designs, particu-
larly used as an additional balance property. However, resolutions of designs also arise
naturally in scheduling problems. The reason for this is quite simple: a parallel class is

February 9, 1988

-30 -

a partition of the elements into blocks. If each block corresponds to some task (or sta-
tistical test, or game, for example), all tasks in a parallel class can be performed con-
currently. Moreover, completing all tasks corresponding to blocks of a resolvable
design takes an amount of time equal to the number of parallel classes: this is clearly
the minimum amount of time required to complete all tasks. Hence resolvable designs
have been used widely in scheduling games (see Schreuder (1980), for example).. Appli-
cations to timetabling have also been studied (see Hilton (1980, 1981)). Design-
theoretic notions are also used in establishing the complexity of some scheduling prob-
lems -(Colbourn (1983,1984)). However, applications to scheduling problems in com-
puter science seem not to have been explored widely. Some first steps in this direction
are taken in Brasel (1988); we expect that resolvable designs will find reasonably wide
application in scheduling problems.

' We close with some words of warning. This is a first survey on applications of
designs in computer science. We have been somewhat conservative in deciding what to
include and what to omit. In general, we have omitted the vast amount of literature in
which error-correcting codes find applications in computer science, despite the fact
that design theory and coding theory are very closely linked. On the other hand, we
have been more liberal in exploring applications of geometries in computer science,
since we employ only design-theoretic aspects of the geometries. Despite . the self-
~imposed restrictions. to consider only applications in computer science, and only appli-
cations of designs, we have found a rich body of knowledge. Hence we conclude that
designs are indeed useful tools in solving problems of computation effectively.

Acknowledgements

We are indebted to many people for assisting in locating the literature on design
applications: Frank Bennett, Jean-Claude Bermond, Fan Chung, Karen Colbourn,
Janelle Harms, Marlene Jones, Sanpel Kageyama, Richard Karp, Don Kreher, Rudi
Mathon, Vojta Radl, Alex Rosa, Doug Stinson, Victor Wei and Scott Vanstone. We
also appreciate the efforts of many colleagues in making comments on the presentation,
especially Rob Day, Dieter Jungnickel, Don Kreher, Bill Pulleyblank, Alex Rosa and
Scott Vanstone. Research of the first author is supported by NSERC Canada under
grant A0579. In addition; this research was supported in part by the Institute for
Mathematics and Its Applications with funds provided by the National Science Foun-
dation. :

References

ABRAHAM, C.T., GHOSH, S.P. AND RAY CHAUDHURI, D.K. 1968. File organiza-
tion schemes based on finite geometries, Information and Control 12 (2) 143-163.

February 9, 1988

- 31 -

ALON, N. 1985. Expanders, sorting in rounds and superconcentrators of limited
depth, Proc. Seventeenth ACM Symposium on the Theory of Computing, pp.
98-102.

ARMSTRONG, W.W. 1974, Dependency structures of database relat;onshlp, Proceed-
ings of IFIP74, North-Holland, pp. 580-583. :

AVIS, D, 1980. A note on some computatxonally dlfﬁcult set covering problems, Math.
Programming 18 (2) 138-145.

AZAR, Y. AND VISHKIN, U. 1987. Tight comparison bounds on the corﬁplexi_ty of
parallel sorting, SIAM Journal on Computing 16 (3) 458-464.

BABAI, L. AND ERDOS, P. 1982. Repi‘esentation of group elements as short products,
Annals Discrete Math. 15, 27-30.

BABAI, L., FRANKL, P. AND SIMON, J. 1986. Complexity classes in communication

complexity theory, Proc. Twenty-Seventh C’cm f. Foundations of Computer Sci-
ence, pp. 337-347.

BEKESSY, A. AND DEMETROVICS, J. 1979. Contrlbutlon to the theory of database
relations, Discrete Mathematics 27 (1) 1-10.

BENNETT, F.E. AND ZHU, L. 1987. private communications.

BERLEKAMP, E.R. 1970. Factoring polynomials over large finite fields, Mathematecs
of Computation 24 (111) 713-735.

BERMAN, G. 1976.The application of difference sets to the demgn of a balanced
multiple-valued filing scheme, In formation and Control 32 (2) 128-138.

BERMOND, J.C. AND BOND, J. 1986. Combinatorial designs and hypergraphs of
diameter one, LRI Rapport de Recherche No. 329 Centre d'Orsay, Université de
Paris-Sud, December.

BERMOND, J.C., BOND, J. and SACLE, JLF. 1984. Large hypergraphs of diameter 1,
Graph Theory and Combinatorics, Proc. Coll. Cambridge, 1983, pp. 19-28.

BETH, T., JUNGNICKEL, D. AND LENZ, H. 1985. Design Theory, Biblibgraphisches
Institut, Mannheim. -

BEUTELSPACHER, A. 1987. Geometric structures as threshold schemes, preprint.

BEUTELSPACHER, A., JUNGNICKEL, D., VAN OORSCHOT, P.C. AND VAN-
STONE, S.A. 1987. Pair-splitting sets in AG(m,q), Research Report CORR 87-41
(December 1987), Faculty of Mathematics, University of Waterloo.

BLACHMAN, N.M. 1956. On the wiring of two-dimensional multiple-coincidence mag-
netic memories, IEEE Transactions on Electronic Computers EC-5 (1) 19-21.

BLAKLEY, G.R. 1979. Safeguarding cryptographic keys, AFIPS 1979 National Com-
puter Con ference Volume 48, 313-317.

February 9, 1988

39

BOLLOBAS, B. AND ROSENFELD, M. 1981. Sortmg in one round, fsrael Journal of
Mathematies, 38 (1-2) 154-160.

BOSE, R.C., ABRAHAM, C.T. AND GHOSH, S.P. 1969. File organization of records
-with multiple-valued attributes for multi-attribute queries, in: Combinatorial
Mathematics and Its Applications (R.C. Bose and T.A. Dowling, edltors) UNC
Press, Chapel Hill, pp. 277-297.

BOSE, R.C. AND KOCH, G.G. 1969. The design of combinatorial information retrieval
systems for files with multiple-valued attributes, SIAM -Journal on Applied
Mathematies 17 (6) 1203-1214.

BRASEL, H. 1988. Rangminimale Maschinenbelegungsprobleme, preprint.

BRICKELL, E.F. 1984, A few results in message authentication, Congressus
- Numerantium 43, 141-154,

BROUWER A.E. 1976, On associative block designs, in: Combinatorics (A. HaJnal and
V.T. Sés, editors), North-Holland, pp. 173-184.

BUCHOLZ, W. 1963. File organization and addressing, IBM Systems Journal 2 (JTune)
86-111.

BURKHARD, W.A. 1976a. Partial match retrieval, BIT 16 (1) 13-31.

BURKHARD, W.A. 1076b. Hashing and trie algorithms for partial mateh retrieval,
ACM Trans. Database Systems 1 (2) 175-187.

CAMION, P. 1983. A deterministic algorithm for factorizing polynomials of F,[z],
Annals Discrete Math, 17, 149-157.

CHIEN, R.B. 1959. Orthogonal matrices, error-correcting codes, and the design of effi-

cient load-sharing matrix switches, IEEE Transactions on Electronic Computers
EC-8 (3) 400.

CHIEN, R.B. 1960. A class of optimal noiseless load-sharing core switches, IBM Jour-
nal of Research and Development 4 (4) 414-417.

CHOR, B. AND GOLDREICH, O. 1985. Unbiased bits from sources of weak random-
ness and probabilistic communication complexity, Proe. Twenty-Sizth Conf. Foun-
dations of Computer Science, pp. 429-442.

CHOW, D.K. 1969. New balanced file-organization schemes, Information and Control
15 (5) 377-398.
CHUNG, F.R.K. 1979. On concentrators, superconcentrators, generalizers and non-
- blocking networks, Bell Sys. Tech. J. 58 (8) 1765-1777.
CHUNG, F.R.K, SALEHI, J.A. AND WEI, V.K. 1687. Optical orthogonal codes:
- design, analysis and applications, preprint.

COLBOURN, C.J. 1983. Embedding partial Steiner triple systems is NP-complete, J.
Combin. Theory A35 (1) 100-105.

February 9, 1988

-33 -

COLBOURN, C.J. 1984, The complexity of completing partial Latin squares, Discrete
Applied Mathematics 8 (1) 25-30.

COLBOURN, M.J. 1985. Algorithmic aspects of combinatorial -r_fdesigns: a survey,
Annals Discrete Math. 26, 67-136.

COLBOURN, M.J. AND MATHON, R.A. 1980 On cyclic Steiner 2—des1gns, Annals
Diserete Math. 7, 215-253.

CONSTANTINE, G. Jr. 1958. A load-sharing matrix switch, IBM Journal o f Research
and Development 2 (3) 204-211.

CONSTANTINE, G. Jr. 1960. New developments in load-sharing matrix switches, IBM
Journal of Research and Development 4 (4) 418-422.

DE BRANDES, M. AND RODL, V. 1984. Steiner triple systems with small maximal
independent sets, Ars Combinatoria 17 (June) 15-19.

DEMETROVICS, J., FUREDI, Z. AND KATONA, G.O0.H. 1985. Minimal matrix
representations of closure operations, Dzscrcte Applied Mathematics 11 (2) 115-
128. L

DOYEN, J. AND ROSA, A. 1980. An updated blbhography and survey of Steiner sys-
tems, Annals Discrete Math. 7, 317-349.

ERDOS, P. AND LARSON, J. 1982. On pairwise balanced block designs with the sizes
of blocks as uniform as possible, Annals Discrete Math. 15, 129-134.

FRANKL, P., RODL, V. AND WILSON, R.M. 1987. The number of submatrices of
given type in a Hadamard matrix and related results, J. Combin. Theory B, to
appear.

FULKERSON, D.R., NEMHAUSER, G. AND TROTTER, L. 1874. Two computation-
ally difficult set covering problems that arise in computing the 1-width of
incidence matrices of Steiner triple systems, Math. Programming Study 2, 72-81.

GHOSH, S.P. AND ABRAHAM, C.T. 1968. Application of finite geometry in file organ-
ization for records with multiple-valued attributes, IBM Journal of Research and
Development 12 (2) 180-187.

HAGGKVIST, R. AND HELL, P. 1981. Parallel sortmg with constant time for com-
parisons, SIAM Journal on Computing, 10 (3) 465-472.

HAGGKVIST, R. AND HELL, P, 1982. Sorting and merging in rounds, SIAM Journal
on Discrete and Algebraic Methods, 3 (4) 465-473.

HILTON, A.J.W. 1980. The reconstruction of latin squares with apphcatlons to school
timetabling and to experimental design, Mathematical Programming Study 13,
68-77.

HILTON, A.J.W. 1981. School timetables, Studies on Gruphs and Discrete Program-
ming, (P. Hansen, ed.), North-Holland Publishing Company, pp. 177-188.

February 9, 1988

—34 -

HUGHES D.R. AND PIPER, F.C. 1985. Design Theory, Cambridge University Press,
Cambridge, UK.

KARP, R.M., UPFAL, E. AND WIGDERSON, A. 1085. The complexity of parallel
computations on matroids. Proc. Twenty-Siath Conf. Foundations of Computer
Science, pp. 541-550, : .

KARP, R.M. AND WIGDERSON, A. 1985. A fast parallel algorithm for the maximal
independent set problem, Journal of the ACM 32 (4) 762-773.

KILIAN, J., KIPNIS, S. AND LEISERSON, C.E. 1987. The organization of permuta-

- tion architectures with bussed interconnections, 28th Symposium on Foundatwns
of Computer Science, pp. 305-315.

KOCH, G.G. 1969. A class of covers for finite projective geometries which are related
to the design of combinatorial filing schemes, Journal of Combinatorial Theory 7
(3) 215-220. -

LAKSHMAN, T.V. AND AGRAWALA, AK. 1986, Efficient decentralized consensus
protocols, IEEE Transactions on Software Engineering SE-12 (5) 600-607.

MACWILLIAMS, F.J. AND SLOANE, N.J.A. 1978. The Theory of Error-Correcting
Codes, North-Holland, Amsterdam.

MARCUS, M.P. 1959. Doubling the efficiency of the load-sharing matrix switch, /BM
Journal of Research and Development 3 (2) 195-196.

MATHON, R. AND ROSA, A. 1985. Tables of parameters of BIBDs with <41 includ-
ing existence, enumeration, and resolvability results, Annals Discrete Math. 26,
275-308.

MICKUNAS, M.D. 1980. Using projective geometry to design bus connection net-
works, Proceedings of the Workshop on Interconnection Networks for Parallel
~and Distributed Processing, April, pp. 47-55.

MINNICK, R.C. AND HAYNES, J.L. 1962.. Magnetic core access switches, IEEE
Transactions on Electronic Computers EC-11 (3) 352-368.

ODLYZKO, A. 1985. Discrete logarithms in finite fields and their cryptographic signifi-
cance, Advances in Cryptology (Proceedings of EUROCRYPT ’84), (T. Beth, N.
Cot, I. Ingemarsson, ed.), Springer-Verlag, pp. 224-314.

PIPPENGER, N. 1987. Sorting and selecting in rounds, SIAM Journal on C‘omputmg
16 (6) 1032-1038. -

RABIN, M.O. 1980. Probabilistic algorithms for finite fields, SIAM Journal on Com-
puting 9 (2) 273-280.

RAGHAVARAQ, D. 1871. Constructions and Combinatorial Problems in Design of
Ezxperiments, Wiley, New York.

February 9, 1988

- 35—

RAY-CHAUDHURI, D.K. 1968. Combinatorial information retrleval systems for files,
SIAM Journal on Applied Mathematics 16 (5) 973-992.

RIVEST, R.L. 1974a. On hash-coding algorithms for partial-match retrieval, Proc.
Fifteenth ACM Symposium on the Theory of Computing, pp. 95-103.

RIVEST, R.L. 1974b. On the optimality of Elias’s algorithm for performing best-match
searches, Proc. IFIP7}, pp. 678-681. o

RIVEST R.L. 1976. Partial-match retrieval aIgonthms, SIAM Journal on Computing
5 (1) 19-50.

RODIL, V. 1985. On a. packing. and covering problem, Eur. J Combinatorics 6 (1)
69-78.

SCHREIBER, S. 1973. Covering all trlples on n marks by d1s301nt Steiner systems, J.
Combin. Theory AlS, 347-350. '

SCHREUDER, JA.M. 1980. . -Constructing tlmetables for sport- competitions,
Mathematical Prog'rammmg Study 13, 58-67.

SHAMIR, A. 1979. How to share a secret, Oommumcatzons of the ACM 22 (11) 612-
613.

SIMMONS, G.J. 1984. Message authentication: a game on hypergraphs, Congressus
Numerantium 45, 161-192.

SINGLETON, R.C. 1962. Load-sharing core switches based on block designs, IEEE
Transactions on Electronic Computers EC-11 (3) 346-352.

STINSON, D.R. 1987. A construction for authentication/secrecy codes from certain
combinatorial designs, preprint.

STINSON, D.R. 1988. Some constructions and bounds for authentication codes, Jour-
nal of Cryptology, to appear.

STINSON, D.R. AND VANSTONE, S.A. 1988. A combinatorial approach to threshold
schemes, to appear.

STREET, A.P. AND STREET, D.J. 1987. Combinatorics of Ezperimental Design,
Clarendon Press, Oxford.

TAKAHASHI, I. 1973. Combinatorial filing schemes (in Japanese), Bulletin of the
Institute for Research in Productivity (Waseda University) 4, 49-74.

TEIRLINCK, L. 1987. Non-trivial t-designs without repeated blocks exist for all t
Discrete Mathematics 65 (3) 301-311.

VAN OORSCHOT, P.C. AND VANSTONE, S.A. 1987. Ou splitting sets in block
designs and finding roots of polynomials, preprint.

VAN SLYKE, R.M. 1982. Redundant set covering in telecommunication networks,
Proc. 1982 IEEE Large Scale Systems Symposium, October 1982, pp. 217-222.

February 9, 1988

— 386 —

‘'WILSON, R.M. 1972a. An existence theory for pairwise balanced designs I. Composi-
tion theorems and morphisms, J. Combin. Theory A13 (2) 220-245.

WILSON, R.M. 1972b. An existence theory for pairwise balanced designs . The
structure of PBD-closed sets and the existence conJectures J. Combin. Theo'ry
A13 (2) 246-273.

WILSON, R.M. 1974. Some partitions of all triples into Stemer triple systems Lecture
Notes in Mathematics 411, pp. 287-277.

WILSON, R.M. 1975. An existence theory for pairwise balanced designs_ II1. Proof of
the existence conjectures, J. Combin. Theory Al18 (1) 71-79. '
ZAITSEV, GV, ZINOVIEV, V.A. AND SEMAKOV, N.V. 1973. Interrelation of
~ Preparata and Hamming codes and extension of Hamming codes to new double-
error-correcting codes, Proc. Second International Symposium on Information
Theory, Tsahkadsor, USSR, Akademia Kiado, Budapest, pp. 257-263.

ZIERLER, N. 1974. A conversion algorithm for logarithms in G‘F(Q”), Journal o f Pure
and Applied Algebra 4, 353-356.

February 9, 1988

- 37 -

Appendix: An Overview of Design Theory

We first review some basic conditions on existence of non-trivial block designs and
t-designs. We then examine some combinatorial configurations which relax the strong
reqmrements for designs.

A.l Necessary conditions for ex1stence

Let us suppose that a t-—(v k,\) design (V, B) exists. Consider a subset X cVv

with 0<|X |<t. The total number of t-subsets of V containing X in B is)\ :ﬁ):B((' ,

while any block containing X contains [];:B({ ” of these t-sets. Hence by considering

all possible sizes of X, we obtain ¢ divisibility conditions:

[t::] |)\[g___:] for1=0, - - - ,t—1.

For example, for a 3—(v,4,1) design to exist, we must have

4 {g], 3 | [”;1] and 2 | v—2,

from which we obtain the “congruence condition” v = 2or4 (modﬁlo 6). Suppose a
subset X is chosen, and let the subset of blocks in B each containing the set X be By.
It is then easy to check that (V\X,Bx\X) is a (¢~ }X [}-design, where By \X is the set
of blocks obtained by deleting from each block in By all points in X. This is called
the derived design for X.

For block designs (¢ = 2), we obtain the simpler necessary conditions
r(k—1) = Mv—1) and rv = bk.

These can :be obtained by count:ng, in two different ways each, the number of pairs
that a given point appears in, and the number of points in the entire design, respec-
tively.

A second type of necessary condition arises by considering ﬁhe number of blocks.
The number of blocks b in a block design is equal to A g / g + a well-known inequal-

ity, Fisher's inequality, shows that b2>v in any block design, and hence we have
Av—1) 2 k(k-1).

A.2 Some known sufficient conditions

Existence problems for block designs and t-designs are far from settled in general.
We only summarize some main existence results here. For block designs, an elegant
theory due to Wilson (19722,1972b,1975) establishes that the necessary conditions for

February 9, 1988

- 38 —

the existence of a (v,k,\) design are sufficient for v sufficiently large with respect to k.
Hence -existence of block designs is, in an asymptotic sense, well understood; neverthe-
less, complete solutions are known only for (v,k,)\) designs with k& = 3,4, and 5.

For t-designs with t>2, much less is known. Teirlinck (1987) recently proved
that simple ¢-designs exist for all values of t. However, except for 3—(v,4,)\) designs,
the necessary conditions are not known to be sufficient, even in an asymptotic sense.
In fact, ¢-designs with index A = 1 (called Steiner systems) are st present unknown for
£>5. Much of the effort in combinatorial design theory has been invested in con-
structing designs with additional properties. Most effort to date in establishing
existence results has been invested in triple systems ((v,3,\) designs), quadruple sys-
téms (3—(v,4,)) designs), and Steiner systems (¢t —(v,k,1) designs). We do not attempt
to review this literature here; see Doyen and Rosa (1980) for a bibliography, and
Mathon and Rosa (1985) for a summary of existence results for “small”’ parameter sets.

A.3 Symmetric Designs

In many of the problems which we discuss, an important aspect of the block
designs used is the number of blocks; in many applications, this number must be
minimized. We have seen that Fisher’s inequality requires 6 >v; the minimum number
of blocks is realized when equality holds. Such a design is called a symmetric design.

In a symmetric design, we have A(v—1) = k(k—1), and hence the parameters of a sym-

, 2f : .
metric design are of the form (k>\—k+1,k,>\); note that b = v implies & = +. The

order of a symmetric design is n = k=X,

The case A=1 has received special attention. A symmetric design with parame-
ters (k2—k+1,k,1) is called a (finite) projective plane; the parameters can equivalently
be written as (n2+n+1,n+1,1), and the plane is then of order n. From a symmetric
design {V,B), one can form a residual design by selecting one block, removing that
block and removing all of its elements from the remaining blocks. Residuals of projec-
tive planes are (nz,n,l) designs, usually called affine planes. '

Projective planes can be obtained from a general class of structures which give
rise to symmetric designs. Let S be an (m-+1)-dimensional vector space over GF(q),
the finite field with ¢ elements, where ¢ is a prime or prime power. The set of all sub-
spaces of S is called the projective geometry of dimension m over GF(g), denoted
"PG(m,q). The 1-dimensional and m-dimensional subspaces of § are called points and
hyperplanes, respectively. For each hyperplane H, let By be the set of points con-
tained in H. Then using the 1-dimensional subspaces of S as points, the block set {By:
H C S} defines a symmetric design with parameters

February 9, 1988

o = qm-i-l_l _ qm_l _ qm—l_l
g—1 g—1"’ g—1

Taking m =2 yields projective planes. It follows that projective planes are known to

exist for all values n =¢ which are powers of prlmes, at present no planes of non-prime

power order are known.

In 2 nontrivial symmetric design of order n, dn—1 < v < n®+n+1. Projective
planes realize the maximum here. At the ‘other extreme, the symmetric designs with
parameters (4n—1,2n—1,n—1) are Hadamard designs, and arise from related configura-
tions called Hadamard matrices. Existence of Hadamard designs is still unsettled, but

numerous infinite families of such designs are known. (The smallest open case is
= 107.)

We have already mentioned one reason for special interest in symmetric designs:
they minimize the number of blocks in a design. A second reason is equally important.
Two blocks in ‘2 symmetric (v,k,)\) design always intersect in precisely \ elements.
The reason for this, and the generalization to designs in general, is our next topic.

A.4 Duals of designs and set packings

A set packing with intersection number X is a set system (W,C) in which any two
different sets in € intersect in at most X elements. It is an exdcl set packing if any
two different sets in C intersect in precisely A elements. It is uniform precisely when
the set system is k-uniform for some k. Exact set packings balance the intersection of
blocks rather than the appearance of subsets, however, this notion is close]y related to
balance in designs: "

From a block design {V, B), we can form a dual as follows. Form a set W whose
elements are in one-to-one correspondence with the sets of B. Now for each v €V, form
a set C,CW consisting of all elements corresponding to blocks to which v belongs.
Now'let € = {C,:v€V}. (W,C) is again a set system. If (V,B) has replication number
r, (WC) is r-uniform. Let X\ be the index of B. Consider two sets in C; they must
intersect in precisely X elememnts. (W,C)is therefore a uniform exact set packing with
intersection number A. In general, a uniform exact set packing need not itself be a
design. However, the dual of a symmetric design is also a (symmetric) design; hence we
see that symmetric designs are precisely uniform exact set packings with a mazimum
number of sets. It is worth mentioning at this point that set packings are closely
related to error-correcting codes; the intersection property guarantees that no two sets
share many elements, corresponding to a guaranteed minimum distance in the related
code. :

A uniform set packing (not necessarily exact now) with intersection number A
requires only the less stringent restriction that sets intersect in at most A elements;
again we have that the maximum number of sets is achieved by the dual of a design
(when the required design exists). Of course, we need not require that a set packing

February 9, 1988

~ 40 —

(or exact set packing) be uniform; in general, we permit different block sizes.

A.5 Packings and Coverings

In view of our observations that much remains to be settled concerning existence
of designs, and that the necessary conditions rule out many orders, it is reasonable to
try to “come close”. Hence we might relax some of the restrictions. Suppose that
{(V,B) is a set system which is k-uniform on v elements and each t-subset appears at
most (at least) M times in blocks of B; then we call (V,B) a t—(v,k,\) packing

(t—(v,k,\) covering, respectively).

A t—(v,k,\) packing can have at most b(t,v,k,\) =)\[?]/{k] blocks, while a

t—(v,k,\) covering must have at least this number. Equality holds if and only if the
packing {covering) is a t—(v,k,\) design. However, R3dl (1985) demonstrates that as v
goes to infinity, the size of a maximum ¢—(v,k,)\) packing is (1=—o(1))b(t,v,k,\), and
hence that we can always come ‘“‘close” to a design.

Packings are also often called partial designs.

A 6 Pa1rw1se balanced designs

Packlngs and coverings relax the requirement that the 1ndex be constant; here we
relax instead the requirement that the block size be constant. A pairwise balanced
design (PBD) with parameters (v,K,\) is a set system on v elements with blocksizes
from K, and which is 2-balanced with index X\, A PBD does not in general have a
unique replication number. Block designs are just PBDs with a single block size. In
addition, PBDs are precisely the duals of (not necessarily umform) exact set packings.

While there is a rich theory of pairwise balanced demgns we only remark on a few
facts which we employ. First, Fisher’s inequality applies to PBDs; hence symmetric
.designs are again PBDs with the minimum number of blocks. Second, Wilson'’s asymp-
totic existence theory applies to PBDs as well, and hence existence of a desired PBD is
assured for v sufficiently large, provided that basic numerical conditions are met.
Finally, one can both relax restrictions on blocksizes and impose only an upper bound
on the index; the result is a partial PBD (equivalently, a non-uniform packing).

A.7 Resolutions of désigns .
One property of designs which arises in numerous design applications deserves
special attention. For a design (V,B), a parallel class (or resolution class) of blocks
P & B is a set of blocks such that no two intersect, and the union of all blocks of P is
V; a near-parallel class is similar, but the union contains all but one element of V.
When B can be partitioned into parallel classes, this partitioning is a resolution,
and (V,B) is a resolvable design. The necessary condition v =k {mod k(k-—1)) is
asymptotically sufficient for the existence of a resolvable (v,k,1) block design.

February 9, 1988

— 41 -

More generally, a t—(v,k,\) design may be partitionable into (t')—(v,k,\') designs;
resolution is just the case t'=1 and N=1. We see applications for partitionable
designs, but especially for the restricted case, resolvable designs.

A.8 Automorphisms of Designs

In the applications which we discuss, we often choose a design with some sym-
metry, or nontrivial automorphism. An automorphism of a design is a bijection from
the elements onto themselves, which induces a bijection from the blocks into them-
selves. Provided that an automorphism is known, the design has a compact represen-
tation, in which a representative for each equivalence class (orbit) of blocks under the
action of the automorphism is retained. The existence of such a compact representa-
tion enables one to find and use much larger designs in practical applications.

Of particular interest are designs with a cyclic automorphism, which is a cycle
involving all elements of the design. Colbourn and Mathon (1980) provide a survey on
cyclic designs, and remark on the importance of the compact representation here; a

more recent example of the use of cyclic designs appears in Chung, Salehi and Wei
(1987). '

February 9, 1988

