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SUPPORT FUNCTIONS AND ORDINAL PRODUCTS
ANNA B. ROMANOWSKA{t AND JONATHAN D. H. SMITH}

1. Introduction. The concept of the support function of a non-empty compact
convex set was introduced by Minkowski at the end of the 19th century [Mi, pp. 106, 144,
231]. Since then it has played a vital role in many of the applications of convexity, from
optimisation theory to the geometry of numbers. Support functions of non-empty compact
convex subsets of a finite-dimensional Euclidean space R? are characterized as positively
homogeneous convex real-valued functions on R?, and the convex subsets are determined
uniquely by their support functions.

The main aim of the current paper is to extend the concept of the support function
from compact non-empty convex sets to general bounded non-empty convex sets, thus to
convex sets that are not necessarily closed. The idea is to find a suitable codomain Dy,
replacing the codomain R of Minkowski’s support functions, so that non-empty bounded
convex subsets of R? are determined uniquely by their Dg-valued support functions defined
on RZ. Conditions must also be found, analogous to Minkowski’s positive homogeneity and
convexity, characterising the support functions amongst all the D;-valued functions on R¢.

More is demanded. Algebraic structure on R induces algebraic structure on the set of
real-valued functions on R?. Ideally, the set of support functions should be closed under
this algebraic structure, and should reflect comparable algebraic structure on the set of
non-empty compact convex subsets of R?. The usual linear algebraic structure on R is
unsuitable here; for example, the negative of a convex function is no longer convex. The
authors’ contention is that the correct algebraic structure on R for use in the context of
support functions comprises convex combinations forming a barycentric algebra (see [RS1],
[RS2]) and the maximum operation forming a join semilattice, the convex combinations
distributing over the join so that the two structures combiné to form a modal in the sense
of [RS1]. The support functions then form a submodal of the induced modal structure on
the full set of functions, and the modal structure on the support functions reflects exactly
the modal structure on the compact convex sets given by convex combinations and convex
hulls of unions. (See Section 3 below for an outline, and [RS1, 3.7] for details.) Given
this algebraic approach to Minkowski’s support functions, and the fact that non-empty
bounded convex subsets of R? form a modal under convex combinations and convex hulls
of unions, it will then be required that the codomain D, carry a modal structure such that
the new support, functions form a submodal of the induced modal of functions from R? to
Dy, this submodal being isomorphic to the modal of bounded convex sets.
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The codomain modals D)4 are constructed from the modal R and a second modal by a
new ordinal product method. The underlying semilattices of the two modals give ordered
sets, and their set direct product may be ordered lexicographically, to give the ordinal
product of the two ordered sets. The remaining algebraic structure on the product is
defined componentwise. Section 2 of the paper investigates this construction generally
in the context of modal theory, Theorem 2.5 giving sufficient conditions for the ordinal
product of two modals again to be a modal. Section 2 may be viewed as a separate chapter
in modal theory, motivated by but independent of the support function application.

The third section summarises some classical results on Minkowski’s support functions,
and shows how they fit nicely into the framework of modal theory. Then, in the fourth
section, the support functions of general non-empty bounded convex subsets of R? are
. introduced. The codomains D, are defined as ordinal products (4.1) within an induction
scheme on d. Conditions on functions from R? to Dy, the five so-called G-conditions of
Definition 4.11, will then characterise the support functions. Thus the G-conditions are
the analogues, for the support functions of bounded convex sets, of Minkowski’s positive
homogeneity and convexity for support functions of compact convex sets. The fifth section
verifies the validity of the induction scheme of Section 4. The verifications help to bring
out the geometrical analysis of general (bounded, non-empty) convex sets achieved by their
support functions.

2. Ordinal products of modals. A mode (A4,Q) is an algebra of type 7 : w —
N which is idempotent and entropic. Jdempoience means that each singleton {a} is a
subalgebra ({a}, @) of (4, Q). The entropic property mears that each operation w : A" —
A of @ is a homomorphism w : (4“7, Q) — (A,Q). A medal (D, +,) is an algebra with
(join) semilattice reduct (D, +) and mode reduct (D, Q) such that the distributive laws
T3 vz + :t:_',-)...:cww = T1eaZje e Torw + 21 a:; ... Zurw hold for all w in £, for
all 1 £j € wr, and for all z,,...,2;,2%,...,2,r in A. (See [RS1}, particularly sections
1.1-1.4 and 3.1, for further details.)

For modals (D, +,9) and (E,+,Q) of the same mode reduct type 7 : £ — N, the
ordinal product D o E is the cartesian product D x E equipped with the product mode
structure (D, Q) x (E,Q) [RS1, p. 6] and with the partial order < defined by

(2.1) (d,e) <(d',e') iffd<yd. or(d=d ande<;é).

Theorem 2.5 below gives sufficient conditions for the ordinal product D o E to be a modal.
The first question to be addressed is when the partial order (Do E, <) is a join semilatttice.
This question was examined by Slatinsky [S]], who gave necessary and sufficient conditions
[S1, 3.14] for the ordinal product of two partial orders to be a (meet) semilattice. Specialis-
ing his conditions to the case where each of these partial orders is a semilattice, and using
join semilattices instead, one is led to the following

Definition 2.2. An ordered pair ({D,+),(E,+)) of join semillatices is said o satisfy
the Slatinsky condition iff (D,+) is a chain or (E, +) has a least element.
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THEOREM 2.3. ([Sl, 3.14]) The partial order (2.1) defines a join semilattice on the
Cartesian product of the underlying sets of an ordered pair (D, +),(E, +)) of join semi-
lattices iff the pair satisfies the Slatinsky condition. []

Now recall that an algebra (4,8) of non-empty type r: @ — {n € Njn > 1} is said to
be cancellative [RS1, 653] if

(2.4) { VweQ’VISszT? Vxla"':mw‘rayszEA,
' .

T YTig1 - TorW = T o0 T 1 2Ti4 1 oo Tprld = Y = 2.

A modal (E, +,w) is said to have a zero element, usually denoted 0, if 0 is the least element
of the join semilattice (E,+), so that e + 0 = e for all € in E, and if {0} is a sink [RS1,
p- 73] of (E,Q), i.e. if e1...€;_10€i11...€uw = 0 for all w in Q, for all e;,...,e,, in
E, and for all 1 £ ¢ < wr. With these definitions, the main result on ordinal products of
modals can be formulated. '

THEOREM 2.5. Let (D,+,Q) and (E,+,Q) be modals whose mode reducts both have
non-empty type

(2.6) r:0—{n € Nin > 1}.
Suppose that

(2.7) the mode (D,Q) is cancellative, and

(2.8) either (D, +) is a chain or (E,+,§!) has a zero element. |

Then the ordinal product D o E is a modal (D o E, +,) of mode type (2.6).

Proof. The hypothesis (2.8) implies that the pair (D, +), (£, +)) satisfies the Slatinsky
condition, so by Theorem 2.3 the partial order (2.1) gives a join semillattice (D ¢ E, +).
The product (Do E, Q) is a mode of type (2.6). It remains to be proved that the operations
Q2 distribute over (D o E, +), i.e. that for each w in 2, say with wr = n,

(29) { (als 61) . (dz'—l, 6:‘—1)[((1:‘, 8{) -+ (d:, 6;)](d5+1, 6,‘..1.1) - (dn,.én)w

=(dy...d;...dpw,ey...€i...eqw) +(dy ... d}...dpw,e; ... €l ... eqw)

for all (dy,e1),...,(dn,€n),(d},€e}) in D x E. By the commutativity of 4, there are essen-
tially three cases to check: d; = d}, d; < d, and d; incomparable with d’. In the first case,
(2.1) shows that the two sides of (2.9) reduce to (dy,e;1)...(d;i,e; + €!)...(dn,en)w and
(di...di...dpw, €1...€i...€qw + €1...€;...eqw) respectively. These are clearly equal
by the definition of w on D x E and the distributivity of + over w in the modal (E, +,w).
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The second case d; < d’ is not quite so direct. Certainly (d;, e;) + (d, e}) = (d}, €;), so the
left hand side of (2.9) reduces to

(2.10) (dy...d:...dpw,er...€f...65 w).

By the Monotonicity Lemma [RS1, 315], d; < d] implies dy ...d;...dnw < d1 .. i dpw.
By the cancellativity hypothesis (2.7), the equality d; ... di...dpw = dy ... d} ... dpw would
imply the equality d; = d!, a contradiction. Thus the strict inequality dy ...d;...dqw <
dy...d,...dpw bolds, whence by (2.1) the right hand side of (2.9) also reduces to (2.10}.
The third case, where d; is incomparable with d}, can only arise if (D, +) is not a chain.
By the hypothesis (2.8), this means that (£,+) has a least element 0, and (d;,e;) +
(d,e)) = (d; + d},0). Also dy...d;...dpw is incomparable with d;...d;}...dnw, since
dy...dj...dpw < dy...d ... dpw say implies dy ...(di + d})...dpw = dy...d;...dnw +
di...d:...dpw = dy...d!...dow, whence the contradiction d; + d} = d} or d; < d; by
cancellativity. Then the right hand side of (2.9) becomes (d;...(d; + d})...dnw,0) =
(di...(di+d)...dnw,es...0...eqw)=(d1,€1)...(di +d},0)...(dn, en)w, which is equal
to the left hand side. [J

The need for the cancellativity hypothesis (2.7) is demonstrated by the

Example 2.11. Take 7 = {(.,2)}. Let (D,+,2) and (E, +,{2) both be the stammered
(meet- )semilattice [RS1, 327] {0 < 1}, so that 0.1 = 0+ 1 = 0. In particular 1 <4 0, which
means that (0,1) 4 (1,0) = (0,1) and (0,1) + (0,0) = (0,0) in D o E. Note that (D,Q)
is not cancellative, since 0.0 = 0.1 in D. Moreover [(0,1) + (1,0)1.(0,1) = (0,1).(0,1) =
(0,1) # (0,0) = (0,1) + (0,0) = (0,1).(0,1) + (1,0).(0, 1), so that the product . of Do E
does not distribute over the join +, i.e. D o E is not a modal.

3. Support functions of compact convex sets. For a finite dimension d, let
R? denote the vector space R? equipped with the Euclidean inner product R% x R% -
R; (z,y) — (zly). Let I° denote the open unit interval ]0,1[. Then R? also carries an
algebraic structure (R%, I°) of type I® x {2} with :

(3.1) zyp=2z(l-p)+yp

for p in I°. This algebraic structure is a “barycentric algebra” [RSI, 2.1] [RS2]. Convex
subsets A of R? are just subalgebras (4,I°) of (R%,I°). Let AK denote the set of all
compact non—-empty convex subsets of A. Then (AK,I?) is a barycentric algebra under
the complex products

(3.2) XYp= {:cyg‘:v eX,yeY}

[RS1, 263]. Furthermore, (AK,+) is a join semilattice with the partial order <. being the
containment relation C; for compact non-empty convex subsets X,Y of A, the join X +Y
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of X and Y is just the convex hull of their set-theoretic union X UY. (By [Gr, §2.3],
this convex hull is also compact.) Together, the barycentric algebra and join semilattice
structures on AK form a modal (AK,+,1°) [RSI, 3.7).

Another example of a modal having a barycentric algebra as its mode reduct is the
modal (R, +,1°), where (R, I°) is the case d = 1 of (3.1) and where z + y denotes the
maximum of the real numbers z and y. If T is a topological space, the set C(T) of
continuous real-valued functions on T inherits the modal structures (C(T),+, I°) from
(R,+,I°). For a non-empty convex subset A of R?, the modal (AK,+,I°) embeds into
the modal (C(R?), +, I°) via the support function

(3.3) H:AK xR — R;(X,Y) — sup{(z|y)|z € X} .
Indeed, an element X of AK is specified as
(3.4) X ={zc AlVWeR? z<HX,y)

[Bo, p. 24] [Gr, 2.2 Ex. 8(iv)]. Furthermore, for fixed X in AK, the support function of
X .

(3.5) R' —R; y+— H(X,y)

is convex [Bo, p. 24], and so continnous [Bo, p. 19]. Thus the embedding of (4K, +,I°)
into (C(R%), 4, I°) is given by

(36) X+— (Hx :y— HX,y)) .

This embedding is a semilattice homomorphism [Bo, p. 24] and barycentric homomorphism
[Bo, p. 29], [RS1, p. 46], see also [RS1, 371]. A function f = R? =~ R is said to be
positively homogeneous if

(3.7) Vpe RY, VzinRY f(zp)=flz)p,

where R denotes the set of positive reals. Then a function f : R ~— R lies in the image of
the embedding (3.6) for A = R?, i.e. f is the support function of some non-empty compact
convex set, iff f is positively homogeneous and convex [Bo, p. 26]. (Bonnesen~Fenchel
require f(0) = 0, but this follows from (2.7) via f(0) = f(0+ 0) = £(0) + f(0), i.e. taking
z=0and p=2.)

A point = of R? is said to be a linearity point of a positively homogeneous function
f = RY — R if f(zp) = f(z)p holds additionally for negative values of p. Note that 0
is always a linearity point. The set of linearity points of a positively homogeneous convex
function f: R? — R is a vector subspace L( f) of R? [Bo, p. 20]. The support function of
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a non-empty compact convex subset X of R? has a non-zero linearity point z iff X lies in
an affine hyperplane orthogonal to z [Bo, p. 24].

A convex function f : R — R, although necessarily continuous, need not be differ-
entiable. However, for each pair (z,y) of points of R?, the limit '

. flatyh)—flz) _ ..
(3.8) Jm 7 = f'(z;y)
exists [Bo, p.19]. For each z, the function
(3.9) y — f'(z;y)

is positively homogeneous [Bo, p. 19] and convex [Bo, p. 20]. If f is the support function of
the non-empty compact convex subset X of R%, and z is non-zero, then (3.9) is the support
function of the intersection of X with its supporting hyperplane {z € RY| (z|z) = f(z)}
[Bo, p. 26]. For z = 0, one has f'(0;y) = f(y) since f is positively homogeneous.

- 4. Codomains for support functions. Let D denote the modal (R, +,1°), with
z4y the maximum of z and y, as in the previous section. The modal D served as codomain
for the support functions of non-empty compact convex subsets X of RZ. These support
functions were characterised as the positively homogeneous convex elements of the set of
all functions from R? to D. This set of all functions inherits the modal structure from
D, and then the embedding of R?K sending a non-empty compact convex subset to its
support function preserves the full modal structure (R¢K, +,I°) on RYK.

Let R?B denote the set of all bounded non-empty convex subsets of R?. Then (R*B, +, I°)
forms a modal with X +Y as the convex hull of X UY and with I°-operations XY p defined
by (3.2) as complex products. In the notation of [RS1, 3.1], (R*B, +,I°) is a submodal of
the modal (R4S, +, I°) of all non-empty convex subsets of R?. The purpose of this section
is to give an inductive definition of a modal D; which will serve as a codomain for support
functions of non-empty bounded convex subsets of R?, in the same way that D served as
a codomain for the support functions of the non-empty compact convex subsets of RY. In
other words, the set of all functions from R? to Dy will inherit a modal structure from
Dy, and there will then be an embedding of R?B into this modal preserving the full modal
structure (R?B, +, I°) on R*B. _

Albng with the series of codomain modals D, for d > 1, there will be three other series
of inductively defined modals E4 (d > 0), F4(d > 1), and G4(d = 0). The induction basis
is the singleton Gy. The induction step begins with a modal G4_, of support functions
identified with (R¥~1B, 4, I°). Note that ROB is the singleton {{0}}. The modal E;_,
will be obtained from G4_; by adding a zero element, identified with the empty subset
of R4~1, The pair of modals (D, Ez_;) will then satisfy the conditions of Theorem 2.5.
Certainly (R, I°) is cancellative [RS1, 269 and 212], so that (2.7) is satisfied. Moreover,
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(2.8) is doubly satisfied: (R, +) is a chain and E4—; has a zero element. The next codomain
modal D, is then defined to be the ordinal product modal '

(4.1) ' . Dy=DocEy.q

furnished by Theorem 2.5. The modal Fy is the set of functions R — Dy, with the modal
structure induced from Dy. The induction step of the definition is completed by giving
five conditions on functions in Fy, the “G-conditions” of Definition 4.11 below, that define
its submodal G4. These five conditions are analogous to the two (positive homogeneity
and convexity) conditions characterising the support functions of compact convex sets.

Since the underlying set of Dy is R X E4.1, a function f : R — Dy may be written
as

(4.2) f:R*— Dy ; 2 (H(x),Cy(2)),

where Cy(z) is a (possibly empty) bounded convex subset of _Rd_l called the crust shadow
(in the z direction), and where '

(4.3) H;:R* — R; z— Hy(z)

is a real-valued function on RY, called the real function part of f. The first two conditions
on f are just the positive homogeneity and convexity of Hy. If f is taken as the support
function of a non-empty bounded convex subset X of R?, then H; is just the traditional
support function of the non-empty compact convex closure X of X in R%. To complete the
description of X, its intersection with the supporting hyperplane of X in the direction of
each non-zero vector z of R? must be given. This intersection is called the crust of X (in
the x direction). The crust is a (possibly empty) bounded convex subset of the supporting
hyperplane. It will be described by f as the preimage of the crust shadow C(z) in R4~?
under a certain affine isomorphism =, from the supporting hyperplane to R%~!. Thus,
before the remaining conditions on f can be given, the maps 7, must be specified. Their
specification depends on the satisfaction of the first two G-conditions by f, so that H;
really is the support function of a non-empty compact convex subset of R

For each 1-dimensional vector subspace V of R4, pick a linear isomorphism
(4.4) 8y : RY/V —s R,
For each non-zero point & of. R¢, define
(4.5) ' re {2 €RY (of2) = Hy(2)} — RO
to be the composite of the restriction of the projection
(4.6) R? — R?/zR,; zn-—->z+mR'
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with the isomorphism #,p : R¢/zR — R?"1. Then r, is an affine isomorphism, since
satisfaction of the first two conditions on f guarantees that the domain of =, as the
supporting hyperplane of the non-empty compact convex subset of R? with support func-
tion Hy, is an affine subspace of R? of dimension d — 1, orthogonal to the axis zR of the
projection (4.6). By convention, mp is defined to be the zero map

(4.7) 7o : {z € R4|(2]0) = 0 = H;(0)} = R? —s R4,z s 0.

Of course, this is not an affine isomorphisrh.

One more concept is required for the formulation of the five conditions determining
Gg4. For a function f in Fy with positively homogeneous convex rea.l function part Hy, and
for = in R?, define the supercrust (at z)

(4.8) ' Ki(z) ={z e RY Vy e R, (zly) < Hi(z;y)}

As observed in connection with (3.9), for non-zero z the set K ¢(z) is the intersection of the
convex set having support function Hy with its supporting hyperplane {z € R?| (z|z) =

Hy(2)}.
Thus

(4.9) Ky(z) € {z € RY| (zl2) = Hy(2)}

and

(4.10) Vy € R, Kz) C {z € R (zly) < Hy(v)}.

The third condition on f will be that its crust shadow in the z direction has to be contained
in the image of the supercrust at z under m, (whence the name “supercrust”). Since
the positively homogeneous convex real function part H; satisfies H;(0;y) = H(y), the
supercrust K;(0) is just the non-empty compact convex set with support function Hy.

The containments (4.9) and (4.10) still hold if z is zero. The fourth condition on f is
formulated in terms of the relative interior of the supercrust. Recall that the affine hull of
a non-empty convex subset A of R? is the smallest affine subspace of R? containing A. The
affine hull is topologised by the restriction of the Euclidean topology on R%. The relative
interior A® of A is then defined to be the interior of 4 in this restriction topology on its
affine hull. (An alternative, purely algebraic definition of A° is that (A°, I?) is the smallest
non-empty sink of the barycentric algebra (4, I°) ~ see [RS1, 386], [RS2].)

The inductive definition may now be completed.

Definition 4.11. The subset G4 of Fy, for d > 0, is defined to be the set of functions
(4.2) f:R?— Dy; z+— (Hi(z),Cs(z))
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satisfying the following G-conditions:
(GC1) Hy is positively homogeneous;
(GC2) Hy is convex;
(GC3) ¥z € RY,  Cfl(s) C mal Ky (o))
(GC4) Vz € L(Hy), Cy(z) 2 m(Ks(2));
(GC5) for all non-zero z,y in R, 771 (Cr(2)) N {z € RY| (z|y) = He(v)}
=1, (Cr(y)) N {z € RY| (z]e) = Hy(z)}
It remains to be shown that G4 is a submodal of F; isomorphic with the modal

(R¢B, 4+, I°) of non-empty bounded convex subsets of R%. This will be done in the next
section.

5. Characterisation of support functions. The singleton modals G and (R°B, +, I°)
are clearly isomorphic, and may be identified. On the inductive assumption that G4 is
a modal (of support functions) that has been identified with (R®1B,+,I°), for d > 0,
Definition 4.11 of the previous section defined G as the set of functions from R? to the ordi-
nal product modal Dg of (4.1) satisfying the G-conditions. To show that the G-conditions
characterise the support functions of non-empty bounded convex subsets of R%, this section
will show that G is a submodal of the induced modal Fy isomorphic to (R¢B, +,I°).

The main task is to obtain a set isomorphism between G4 and R?B from two mutually
inverse mappings

(5.1) $:R'B — Gy X +— (fx : 2 — (Hx(2),Cx(2)))
and
(5.2) £:Gq—RIB; f — Xy .

The mapping ¢ is defined initially as ¢ : R4B — F; by taking the real function part

Hx of fx to be the (traditional) support function H+ of the closure X of X in RY; this

closure is clearly a non-empty, compact, convex (cf. [Br, Th. 3.4(a)]) subset of R¢. Using

Hx in place of Hy, (4.5) then defines affine isomorphisms #, for each non-zero vector -
z of R?. The crust shawdow Cx(z) is defined to be the image under m, of the crust

X n{z € R¥(z|z) = Hx(z)} of X in the z direction. The crust shadow Cx(0) is defined

to be the zero subspace {0} of R~

LEMMA 5.3. The function X ¢ = fx satisfies the G-conditions.

Proof. Since Hx is just the support function H, the first two G-conditions are sat-
isfied. Write K x(z) for the supercrust Kx4(z). Then Cx(z) = m.(X N {z € R?(z|z) =
Hx(z)}) 2 7(X N {z € R¥|(z|zr) = Hx(z)}) = 7(Kx(z)), so that (GC3) is satisfied.
If z is zero, then (GC4) is immediate. Suppose that r is a non-zero linearity point for
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Hx, so that X = Kx(z). Also X C {z € RY| (z|z) = Hx(z)}, so Cx(z) = 7(X). Now
X 2 X° = (X)° [Br, Th. 3.4(d)]. Applying 7, gives Cx(z) = 7,(X) D 7, ((X)°) =
7o(Kx(z)°?), which is (GC4) for the non-zero z. Finally, the equality (GC5) holds for all
non-zero z and y, since each side of the equality is X N {z € R?|(z|z) = Hy(z)} n{z €
RI(zly) = Hs(y)}. O

The mapping ¢ of (5.2) is defined by

(5.4) Xr= (] Psa)
- z€Re

for f in G4, where
(5.5) Py(z) = {z|(zlz) < Hg(z)} Un; 1 (Cy(2)).

LEMMA 5.6. If f satisfles the G-conditions, then Xy is a non-empty boundéd convex
subset of R9.

Proof. If f satisfies the G-conditions, its real function part H is the support function
of a non-empty compact convex subset X = K £(0) of R%. Since the closed convex set
X is non-empty, and X = X = ((X°) (cf. [Br, Th. 3.4(c)]), the relative interior X°
of X is also non-empty. By (GC4) for the linearity point z = 0, combined withr-(GC-?a),
{0} = ma(X®) C C4(0) € mo(X) = {0} € RE1. Then Py(0) = 0 U3 *({0}) = RY, which
certainly contains X°. For non-zero z, the set Ps(z) also contains X°: in {z|(z|z) < H(z)}
if z is not a linearity point of Hy, and in 771(Cf(z)) by (GC4) if z is a linearity. point
of Hy. Since the non-empty set X® is contained in each Ps(z), it is contained in their
intersection (5.4), so that the set X is non-empty.

Now by (GC3) and (4.9), Ps(z) C {z|(z|z) < Hs(x)}. Taking the intersection of these
containments over all z in R% shows that X is contained in the bounded set X, and so
is itself bounded. Finally, note that each Ps(z) is convex, so that their intersection Xy is
also. []

- Lemmas 5.3 and 5.6 show that the codomains of the mappings ¢ and £ are as claimed
in (5.1) and (5.2). It must now be shown that the mappings are mutually inverse. The
first result, Lemma 5.7 below, shows that ¢ =1 : R*B — R?B. A non-empty bounded
convex subset X of R% furnishes a function X ¢ = f in G4, to which corresponds a subset’
Xy of R, '

LEMMA 5.7. The sets X and Xy are equal.

Proof. Since the real function part Hy is the support function of the closure of X,
one has that X C {z € Ré|(z|z) € He(2)} N X C {z|(zlz) < Hy(z)} U [{z|(z]|z) ="
Hi(2)}NnX] = {z|(2|z) < He(z)}Uur7(Cs(z)) = Ps(z) for each z in R®. The intersection
of these containments X C Py(z) gives X C Xy. '
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Conversely, it will be shown that each element u of

(53) Xy = ) [Elele) < (@)} U n (Cr(@)

zERY

is an element of X. If u lies in 7} (Cy(z)) for some non-zero z in Rd then
u € X N{z|(z|z) = He(x)} € X. So suppose

(5.9)' ue [ {z1(z|m)<5f(x)}.

0#rcRd

Since X° = (X)° (cf. [Br, Th. 3.4(d)]) and X° C X, it suffices to show that u € (X)°.
Apply a translation so that u = 0. Let 2§ = inf{H(z)|(z|z) = 1}. If § is positive, then
the ball of radius § centered on 0 lies in X, so that u = 0 € (X)°. Otherwise, § = 0. A
contradiction will be derived from this assumption. The assumption implies the existence
of a sequence of points z, on the unit sphere with f}anlo H¢(z,) = 0. For each n, define

Yn = 2 Hf(2,). Then lim y, = 0, and each y, lies on the boundary of X. But this
boundary is closed (cf. [Bu, (1.4)]), and so contains 0, whence (cf. [Bu, (1.8)]) 0 lies on

a supporting hyperplane of X. Translating back to the original position of u, this gives a
contradiction to (5.9). [

Lemma 5.10 below shows that {w = 1: Gy — G4. A function f in G4 specifies a convex
set f€ = X according to (5.4). The set X then determines a function X¢ = fx in Gy.

LEMMA 5.10. The functions f and fx agree.

Proof. ‘The real function part of f is the support function of the supercrust ¥ = K £(0).

The real functmn part of fx is the support function of the closure X of X = (] Pz).
r€R4
Thus the equality of the real function parts of the two functions will follows from the

equality ¥ = X. Now X = (| Piz) € ) Ps(z) € (N {zl(z|z) < Hy(z)} =
zeR4 z€R¢ zER4

Conversely, consider Y =¥ = (¥Y9) (cf. [Br, Th. 3.4(c)]). Each element y of ¥ is the limit
of a sequence of points y, of Y'0. If z is not a linearity point of Hy, then (y,|z) < Hj(z).
If z is a linearity point of Hy, so that Y C Ky(z), then y, € Y9 C Kf(z)® C n71(Cy(z)),
the latter containment holding by (GC4). Thus y, lies in P¢(z) for all z in R?, whence
yn € X. Taking the limit, one obtains y € X, as required.

With the equality of the real function parts demonstrated, it remains to show that the
crust shadows C¢(z) of f and

(5.11) =(| N P0Gl = #5))

0#yEeRd
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of fx agree for all non-zero r in R? (for z = 0, both equal the zero subspace of R*~!). Now
for non-zero y, one has 771(Cy(a)) = [r71(Cy(2)) N {2l(zly) < H )} U [rz(Cr(e)) N
{zl(zly) = He(m)H = [x71(Cs(2)) N {zl(zly) < Hp()} U [7;71(Cs(y)) N {zl(2]z) =
Hy(z)}] € {=l(zly) < Hf(y)}Ur;1(Cs(y)) = Ps(y), the second equality holding by (GC3).
Thus n71(Cy(z)) C ﬂ P(y)| N{z|(z|z) = Hy(z)}. Applying the affine isomorphism
) 0#yER? :
7, gives the containment of Cf(z) in (5.11). Conversely, = ([ ﬂ Pf(y)] N {z{(z|z) =
0#yeR?

Hy(z)}) € ma(Pr(z) N {2l(zlz) = Hy(2)}) = ma(n71(Cs(2)) N {zl(2l2) = Hy(2)}) =
7z(m;1(Cs(2))) = Cy(z), giving the containment of (5.11) in Cf(z) and completing the
proof of the lemma. []

Now that ¢ : RB — G4 and ¢ = G4 — RYB have been proved to be mutually
inverse set isomorphisms, it remains to show that ¢ is a modal homomorphism, for then
G4 becomes a modal isomorphic with (R%B, +, I°), as required to complete the inductive
definition of Section 4. A preliminary result is needed. '

- LEMMA 5.12. For non-empty bounded convex subsets A, B of R%, and for p in I°,
non-zero z in R%,[A N {z{(z|z) = Hz(=)}[B N {z|(z|z) = Hz(z)}p = ABpn {z|(z|z) =
Hz gp(=)}- - -

Proof. If (z|z) = Hz(z) and (2'|z) = Hg(z), then (22'p|z) = (2|z)(2'|z)p = Hz{(z)Hp(z)p =

Hz g,(2). Thus {z|(z|z) = Hz(2)H{z|(zlz) = Hp(z)}p = {zI(zlc) = Hz 5,(z)}. The

containment of the left hand side of the equation of the Lemma in its right hand side
follows. Conversely, suppose a € A, b € B, and (abp|z) = Hyz -é-p(:r), so that abp is a
typical element of the right hand side. It will be shown that a and b lie in the respective
arguments of the left hand side. If a is not in {z|(z]z) = Hz(z)}, then (a|z) < Hx(z). But
(blz} < Hg(z), so (abplz) = (alz)(blz)p < Hz(z)Hg(z)p = H5 5,(z), a contradiction.
Thus a lies in the first argument. Similarly, b lies in the second. O

The concluding result may now be given
LEMMA 5.13. The mapping ¢ : (R4B, +,I°) — G4 is a modal homorphism.

Proof. For non-empty bounded convex subsets A, B of R%, and for = in R?, it must be
shown that

(5.14) (Ha(z), Ca(z))(Hp(z),Ca(z))p = (Happ(2), Canp(z))
for p in I°® and

(5.15) (Ha(2),Ca(2)) + (Hp(2), Co(2)) = (Har5(z), Casn(a)).
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The first component of (5.14) restates the fact that (2.6) is a barycentric homomor-
phism The second component is trivial if z is zero. To verify it for non-zero z, take

: R? — R4 to be the full composite of (4.6) with g, rather than just its restric-
t1on to a supporting hyperplane. Note that =, being linear, is a barycentric homomor-
phism. Then C4(z)Ch(z)p = 7(X N {z|(z|z) = Ha(z)})7(Y N {2|(z|z) = Hp(z)})p =
w2 ([AN{zl(z]z) = Ha(=)}][BN{2|(z]x) = Hp(z)}]p) = 7z(ABpN{z|(2|2) = Happ(z)}) =
C 4Bp(z), the penultimate equality holding by Lemma 5.12.

In the verification of (5.15), the expression ~

(5.16) A+B=|] ABp
pEl

is used, where (2.1) and (2.2) are extended to all of the closed unit interval I. (Thus ab0 = a
and abl = b, etc.) Given the commutativity of the semilattice operation +, and the fact
that (D, +) is a chain, (5.15) breaks up into just two cases. In the first, H4(z) > Hp(z),
so the left hand side of (5.15) becomes (H4(z),Cx(z)). Then H 44 p(z) is the maximum
of {Ha(z), Hp(z)}, namely H(z), since (2.6) is a semilattice homorphism. Equality of
the second component of (5.15) follows on applying 7, to the equality

(5.17) AN {z|(zle) = Ha(2)} = (4 + B) N {z|(zle) = Ha(2)} .

Here the right hand side clearly contains the left. Conversely, an element abp of the right
hand side (a € A4, b € B) not contained in the left would have p positive. But then (a|z) <
Ha(z) and (blz) < Hp(z) < Ha(z) imply (abplz) = (a|z)(blz)p < Hp(x)Ha(z)p =
H 4(z), a contradiction.

The second case of (5.15) to.be considered is where H,4(z) = Hp(z), so that Happ(z) =
Ha(z)Hp(z)p = Ha(z). The left hand side of (5.15) becomes (Ha(z),Ca(z) + Ca(z)),
and the first component of (5.15) certainly holds. The second component is trivial for
zero z. For non-zero z, set § = {z|(z|z) = Ha(z)}. Since 7, is an affine isomorphism,
Ca(z) + Cp(z) = 7, (AN S) + 1(BNS) = m((AN S) + (BN S)), and Cayp(z) =
m((A + B) N S). It will be shown that (AN S)+ (BNS) = (A+ B)N S, whence
the second component of (5.15) follows on applying #,. Indeed, (AN S) 4+ (BN S) =
U@nsyansyp=JAaBpnS)=(|J 4ABp)NS = (A+B)NS. The first and last

pel pel per
equalities here are cases of (5.16), while the second follows by Lemma 5.12.
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