NONLINEAR EFFECTS IN THE WAVE EQUATION
WITH A CUBIC RESTORING FORCE

By

T. CAZENAVE
A. HARAUX
L. VAZQUEZ
AND
F. B, WEISSLER

IMA Preprint Series #297

February 1987

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

514 Vincent Hall
206 Church Street S.E.
Minneapolis. Minnesota 55455



Swe|qodd +8(yd[4(a
A4y o(pojded pue [0J44u0) (ew(jdy ew[] ©f[U[ju| ‘UURWS[ ) °M PUR SN[UC|O] °4
Aydeubodo| wojjog pue seaem
JOJRM-MO| [QYS JO UO[}DRJSLU| ‘UBYOD °*T°(Q PuR QuUOY *°r ‘[MedJe)-Jezoog °g
uojsusuw|g @Jedg 8UO U| SuO|[4enb3l [QODR[-UO4|[WeH 4O
SUO[4N [0S A4[SOIS(A JO4 4[nsey AjjJeinbey v ‘s|pjuebnog *3ey pue uesuef °y
$S8204d AOMJep O [pobuj
ue jo se[4uedoud uojje(aeg obde eys o4 uo[jed||ddy S}| pue uo[iOouny
-ueb|3 jueu{wog BU} JO BJUBYS[XJ UQ ‘JOUOS *W°H PUR NBYS *r°S ‘Bujwejd *HeM
SSeUNO [yl bui4e|| [0S0 y4(m Jehe ujy] @ AQ 4uewedsoju(ey ‘OzZR4ing ©des|NY

UO[{4N|OAT J[4SPYD0LS BWOS Y4[M poje([d0SSYy S|RUO|4Duny uo[4e4dedxy ‘moy)y *J°d
suo|jenbj Aueuojinjoay

JROU[ [UON JOJ Sp(Ojluey (R[4Jeu| ‘wewe] <Yy PUR | |85 °Yy°9 ‘se(o4 *)

124SAJ0 PINb[] Dj4eweN U[ SUO[4eU[[DS[Q JO4 [OPOW V ‘SHIOPPRW *H°[

uof4enb3 uo[4ed[uqn spjouhkey 8| q[SseJdwo) eyl ‘u[ysn *w pue 4od[y) °W
Ie4sAJQ p(nb(7 d(4eys 4o suojjeunb(juoy wnfuq]||nb3 yjoous

JO A4L[1Qe4S By 4nOQy Jewsy Y ‘U *H-*4 § JOJYe|JIePU[N *Q ‘4PJeH -¥
uo[4enb3 uo[4onpuo) 4eeY-uO[SN4L[g € 4O AdueiSUO)

3O s|eAueju|-pue sdunp Bu[ARH ‘SUO[4N|OS Je|[Ww[S-}|6S ‘49| | (nog ofnr

*6duebueAu0)d-] pue sew(] Gu[ddojs ‘OdSOn ° pOSew |eQ *9 ‘4e4xeg °r
*S82B4UNG |RW[U[l JO

enu|juo) bujuueds suojjeunb|juo) Ausepunog ‘4PURIGSP | [H °S PUR JBA[|[NY °Y

S85Sed0ug Adeuo[4eys 4oy se|d|du[dd Suo[je[Aeq eb.eq ‘uer| jed *S pue Aedp °S
*sulewog pepunoqun uo suojjenb3y

J[|0qedey Jepuy Jeyb[H Jesu|juoN A[QnOQg JOj S}(NSeY EdULBLS[X] ‘S|udeg °4
S46S XeAuo) U| swy4|Job |y uoj|jew|[xosddy O[4SeYD04S POU|RILSUOD

Uo[snj}}|g pe4oe|jey Jo s|sAjeuy suojje[Aeg ebue ‘s|ndng |ned

g8 Ul 0 = N(A+V=-) O4f UO[{N|OS @A[4[SOd 4O ©UNIONULS ‘@4CINK NJOU|W
USON }O seep| p|Q Ou4 R[A Ay[|enbeu|

NORUJIRH D[ jOoqRaRd §,J0SON JO JOOJd MON Y ‘NO00J4S °*M°(g Pue seqeq °ge3]
SWS [URYDeK UO[4RD0| (Y ©DJnosey

JO ADUB[D[}}3 PUR UO[4RZ||QU4USDBQ |RUO[4RWIOIU| UQ ‘ZI[MJIRY P[UOeT]

S |RUO[4OUN4 UR[UMOJY JO S|SA|RUY ‘@P[H [3NAeNe)l
uojjeziw|{dy D[450Yd045 pue

SUO[4DUN4 UO|4NQ[JI4UOD UO|[SUBY JO A|[wey Jojoweled OM] Y ‘ue|tg,0 sewoy]

©jd{ou|Jd wnu|Xxep pue Spoyjep |eJ4deds ‘o4nue) o|pne|o

SOJON ©J4n}de7 ‘HO00U44S °Q
seovds |euc[SuUBW|(Q ©4[U[ju]|

Vo dnoug-jwes jeeH jo Ajjue(nbey pue se[4|(enbeu; dueys ‘eeT eff-yng

|8POW UO|4snquo) @ wody Bu[s|Jdy Suo[4n|Og eaeM bBu||eaed] ‘uewue) plAeg

A412[459|3 84[u[4 4O UO[4DUN4 UOSS[O4 Yl ‘A}4eeg pPJe)| (W
uo|Je4| 4] bBu(reiaeap ey4

U4 [M UOZ[JOH ©4[U[JjU| UO SBSSeD0Jd UO[SN}4 [ Bul|joaquo) ‘z4[m0URZ|07] ©|IY

Bujuoi4[puoy s4| puw suo(snyyiag pe| (X ‘Oeyz u[xBuoyz § ue(d *W ‘Bucy +9
SUO|{RWJO)SURY| wopuRy

AqQ pednpu| ujey) AoYJep pen|ep-6UnsEel @ JO A4[D[pobuy ‘BufjJeq <Y MY

746640 umouy AjeA[SSEIB0LY PUR WOPURY Ui[M SWE[QOJd |OJ{UOCD’Z4|MOIRZ[O7] ©fJY

UIRY) AOMHJRK JO suo|4oung uof4e[Aeg ebue eyy up‘ue(d Bujdujw 3 Buog njbueng

Isuo[jenb3 o[4d|||3 ueeu[-UON JO; Swe|qodq en|ep Adepunog ey| ‘uewjereg °r-|
SUO| JRZ| |RJUBUBY [QUO|Sueu|g~N

S4| Pue spoy bujuepuel 4O UO[SJO] Y} Bu[uJedUO) SELON ‘uveujexNeg °[°|
se4[sodwo) O|doujos|uy

40 A4 [A[4oNpuo) 9A[400) 43 euj Bujpunog uQ ‘UOL|[W °M*9 Pue UYOY *A°Y

uo[4enb3 uo(4ed[ugnT sploudey eyy ug ‘40d[yD W

*SMO| 4 I(4SPYS04S D(yduowoswoyuoN bBuf4ondjsuoy ‘BujjIeq Y My
s|e|Je4en O[{Se|3 Do|doajos|uy

Joy AujeumnAs |ejieieln jo UO[4@D[[4UBP| BY4 UQ ‘[PRQRIYGKW °*W ‘U[MOD °S
©4Nseel uopey @ O4 4oedsey Y4|m

Se[4[ovde) JOj WeJoeYy| UO|{RA[UeQ Y ‘OISOW ‘N pue osey |vg °9 ‘OzZR44Ng °9

el4lL  (S)Joy4ny

ove
6¢C
8eC
(A%4
9¢c
1194
1474
13 Y4
A4
led

0¢c
6cC

8z¢
Lee

9z¢

1744
vze

1 X424

(444
(Y44

(0144
61c
8lc

Lic
91c
slc

ric
iz

rA Y4
(Y4
olz
60C
80¢
Loz
90Z
s0¢
yoc
£0Z

#

SMRT UO[{RAIBSUOD

JO sweysAg o[ (oquadAy Joj sD[4d0 O[Jjowoey Jeeu|(uoN ‘ep[eN medpuy
suo[4enb3 uew| |eg-|qodel-uo4 | [WeH O} Suo[injoS

A4[SOOS|A Y4 4O se[4|Je|nbuls ey4 up ‘IBUOS °*W °*H pPue eSJRUUR) °d

sojqe[Jep A4[Je|(w]s Bujsn dn-mo|g bu[z[JejdrlRy) ‘UYOY Y pue eB[9 A
sejeu[weT] Jeeu|T JO Se|jdedoud

SSOUYJO0WS SWOS ‘[ | [0J4e}40D ° puv JOJyejJepu() °g ‘4od(yd °W
we | qodd bujddep 4oe|jey

oy4 u| Bu[s[dy uo[jenb3 eusduy-obuoy Oy} UQ ‘UBWL|RM °d PUR JOM[ O °A
swe|qodd +e|yd(J4(g

pexe|ey 40} Aedeq Abusug pue e[uej[Jd) JOUS[M ‘OJSOW °f) PuR Osel jeQ °*9

@ 4Seq MO|4 SNODS|A MO|S 4O uo[4d[Jdseg D[dODSOJORW ©y4 UQ ‘uje4suiqny °f
sen|eAueb |3

uUuRWNEN PUB 48|Yd[J[Q ueemisq se|}]||enbeu| ‘sebioquieMm °4°H pue 8u[AeT °y °H

eJnsesy |[e[pey © JO SN|NPOK JOUB[M Y| ‘OISOW ° ‘Osew jeg °9

¥ uf (M4 =V-
JOj SWe|qoJd 48|UD[J[J PUB SO484S PUNOJY ‘UO[48[eF °V° PUE UOSU[N4Y °A°d
SWe4SAG |@[4UBJ044|Q Jesu[T Joj Sjueuodx] 4enbo|4 pue SUO|[IOunJ-w ‘UOSUYOL Y
uojjenby wn[pep SNOJOH |RUO|[SUBW[J-N OU4 JO SOJR}JejU| PUR SUO[4N|OS
JO A4[NU[4UOY Z4[YDSd(T] ‘[}SUR|OM °|°*N PuR ‘zonbzep <ef ‘[|jeJ4e}4e) Y
eocdg @|Oym ey4 u| suojjenb3z sedojis-dejaeN jo
suo[4njog Buouys 4o Jo[Aeyeg O[404dwAsy pue eoueis|x3 ‘@b[ep vg ovu[eg °H
A} [soos |\ Bujysjuep
JO poujel eus pue se[Jes O[4ojdwAsy ‘s[pjuebnog °3°d pue Bujwe|4 °H°M
e[peW 2|pO[48d U| UO[4D8AUO) pue uo|sJeds|q ‘[d4neW °Y PuR u[e4su|qny °f
SSQUpPepUNOg UO We|qodd S,POOMO|4} |7 O4 Jemsuy uy

seoedg ABo4RU4S |QU[U[WN U4|M SWIO{ OWRY ‘USL[OY °S PUR Uj4S|OYO[0Y °S
uo[4duosqy Y4|m suo[ienbl o[ joqeurgd JepJy Jeub(H Jeeu| (uON

ewos JOj sejey O[404dwAsy pue uo|4ebedouyd jo peeds e4(uly ‘s(useg 4

JepJo Jeyb(y Jeeu| |uou ewos JO} SO[4Jedodd eA[4e4|jend ‘sjuleq °4

S8qoY JO SO[(URUDeW ‘JO) @) °f puUe $HOOPPeW °f

vo[4enb3y se|Jp eg Femestoy ey4 JO) SpPoOULBK U[NJe|RY e4eJ4ds|g A||n4 ‘euog °f

Ajlae|nbey |B[4Jed PUR SUO[4DuUny d[4eupend ‘equ(nbejg oue|uey
A}|D[4SO|BODS[A JRBU| |uoN

|euojsuew|g eup Ul A4l (|[Q]SS|wpY pue A4[||QR4S :SuO[j[suvJl eseyq ‘obed Y
SWe|[qodd |QUO|[4R[JRA

JO SJU|Od [@D[4[JD JOj WEJOBY| UO[{RDIN4[F ¥V ‘YORQIOLNET] Y PUR AOY) °N-°S

suo{4enb3 o[4d|| |3 BwWOS JO SUO[{N|OS JO JO[ARYSE |RD0T] ‘S| [AY O|D|J4Rd

s|e4sAu) O[4se|3 JO suoj4eunbjuo) wnfJq(||nb3 ejqeis ‘ueswd{J3 °°r
suo| 4euw|xodddy 2[po|Jed

4504 U4[M sweysAs Joj se|Ado) O[pobu3 y4oows O UO[LIONJISUOD ‘JBANJON °WN
suo|4eunb|juoy |rvisAay plnb(T

214045 JO Aj|Je(nbey (R[4Jvd PUR ©JUBLS|XT ‘JOIS|JSPU[) G PUY {PIRH °Y

Sp|O4 pue A4[|[qeiS ‘SHDOPPEW °H uyor

©0UBbJeAUCD~] PUR UO[JO4[J) S,JOUa(M ‘ODSON °() pPua OSEW joQ °9
|el4+ue4od |[e[pey @ Y4 [m uoljenbl debupouyds

©y4 4O SUO[4N|OG BY4 JO SO[4[Je|Nbu|s peje|os| ‘UnJde) *) pue zenbzep <7°f

AL[o[4se |3 O4 U4 U] A4[|[GR4S PJRWRPRH UQ “J404D@dS °[°S Pue UOSAW|S *J°H
sujewog ujyl v A4[a[4se|]

3O suojjenby eyy jo sp{uj| uvojjezZ[uebowoy ‘sn||@BOA ° pue ue[we|weq °y
suoj4enb3 |e[4ueue}}|Q |euo[{4duny JOj SP|Oj[UPK

JUR[JRAU| O] |OGUedAH JO SSEUL4O0WS PUR BOUe}S|SJed ‘seeyjeben s|n
Ayp1o][4S@|00WIey |

4O ©se) ewe.ix3 ue - sho| |y AdJowely edeys ul Ap[d[4se|eopnesd ‘4e||mw obuj

sJeqqny pue sesv9 ‘Je||my obu|
suo|4enb3 ebuwibe-ue(n3 Joj ©|d[dU[Jd whu[XRW ©U4 pue

vo[jenb3 o[4d[ | |3 JeeU||-UON JO; Swe|qodd @n|ep Adepunog eyl ‘uewjexeg °f°|
s|e[Je4ep O[doajos|uy jO SSe|Q @ uoj

S4U8([D[}}00) D[4SE |3 8y4 uo eduepuedeg SNONU[4UOY ‘Yj@4 *S°Y PUR pjouly °Q

el4ll  (s)Joysny

(PONU[4UOD) Sju[adeud V| 4uedey

207

10¢
002

66 |
86 |

61
96|

S6 |
¥6 |

€61
6|

16 |

68|
88|

98 |
S8 |
vel
€81
(43
181
08 |
6L1
8L1
LL
9Ll
6L
vLl
€L

L
(74!

(I

69 |

91
991
91

4
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0. INTRODUCTION

This paper is devoted to the investigation of global properties of solutions

of the following semilinear hyperbolic problem

u,-u +u3=0 for teR, 0<x<1
tt  xx
} (0.1)
u(t,0) = u(t,1) =0 for teR .
It is well known ([13], Theorem VI, 1.2, 3) that for any ge Cl(]R) such that
VueR , gluwu>0 (0.2)
. 1 2 . . .
and any (uo,vo) in HO(O, 1) xL7(0, 1), there exists a unique function
u:RxJ0,1{ =R such that
uec(®, 10, 1) nc'®, L%, 1) (0. 3)
u € c'®, 5740, 1) (0. 4)
w, = u_-gw in R, 5 N0, 1) (0.5)
tt XX ’ ’
u(0) = u, and ut(O) =y - (0. 6)
When glu) = u3 this solves the initial value problem associated to (0. 1).
When g is odd, i.e.,
VueR, gl-u) = -glu) (0.7

~ 2
it is convenient, following [6], to introduce the function U€ C(R") defined by the

conditions

~ 2
ut,x) = -ult,-x) , V(t,x)eR

2

ult, x+2) = Wt,x) , V{,xER (0.9

u(t,x) = ult,x) , V (t,x) e Rx]0, 1L






Then U satisfies the integration equation

t Ax+t-s
~ 1 ~n
u(t,x) = plt+x) - plt-x%) - Y g(u(s,y)) dyds (0.9
0 Jx-(t-8g)
where p is given by
s
1 ~d ~n
p(s) = > {10(s) + VO(G) d0}+ c , (0. 10)
0
ﬁO’ ?7'0 being respectively the odd and 2-periodic extensions of uo and Vo respec-

tively, and C an abritrary constant chosen at our convenience. Of course

R |
p:R—R isin H1 c(]R) and p(s+2) = p(s). It will sometimes be convenient to

choose C so that \ p(s)ds =0,

3
When g(u) = cu” with ¢ >0, (0.9) becomes

t px+t-s
ult,x) = plt+x) -plt -x - % ﬁ'g(s,y) dyds . (0,11)
0Jx-(t-s)

In the paper we shall use formula (0. 11) quite extensively, since it has very

interesting properties, among which a kind of "smoothing" effect.

Apart from the initial value problem which is easily treated by standard
methods, various questions connected to (0, 1) have been studied in the literature.
For example,. in the pioneering work [18], P. RABINOWITZ established the

existence of solutions to (0, 1) which fulfill the additional conditions

u(t+2, x) = ult,x) , V(t,x)eRXx]0,1(
(0.12)

u is not identically 0 on RxJ0,1( ,

Part of the proof has been simplified in [3] by BREZIS-CORON-NIRENBERG.
However, it remains delicate to give a complete construction of such solutions in
the regularity class (0.3). Also, it seems completely unknown what these solutions

look like.






In [6], investigation of global behavior for arbitrary solutions of (0, 1)

was initiated by looking at oscillatory properties of the function t > u(t, xo) with
0< X, < 1. There it was proved that the solutions must oscillate "at least as fast
as' the solutions of the linear wave equation. However, the study of asymptotics

as t—>+oo is still essentially open from the theoretical point of view.

The object of this paper is two-fold. First, we present the most typical
results of numerical experiments which were attempted to test some conjectures
on global behavior of solutions: for three different kinds of initial data, the solutions
to (0. 1) have been computed on a large time interval by means of a finite-difference
scheme. More precisely, the computation technique is the same as in [25] and will

be discussed in the last section.

Secondly, we prove a few partial theoretical results either related to
behavior as t—+m, or to a detailed investigation of the oscillatory properties
of solutions. All the theoretical results will be illustrated by a numerical study

corresponding to at least one of the typical initial data mentioned above.

For simplicity, in all the numerical computations we assume Vo = 0. This
is usually admitted as physically meaningful and, as a matter of fact, is not so
disturbing from the point of view of generality, as long as the problems remain
open even this case. It is our hope that the results of this paper will be helpful
in the future, either to distinguish more clearly the various phenomena which may
happen and understand the underlying reasons for this complexity, or to find new

ideas solving some of the mathematical questions involved.

Apart from pure curiosity, our work has been partly motivated and strongly
encouraged by the existence of at least one well-known previous success in this
direction: the discovery of quasi-periodic solutions for the KDV equation by P.D.
LAX [16-_] about one decade ago, following the numerical experiments of M.D.

KRUSKAL and N.J. ZABUSKY [28] (cf. also (9] and [17)).

Acknowledgments. A significant part of the research for this paper was supported

by the Institute for Mathematics and its Applications at the University of Minnesota






as part of its year of concentration on continuum physics and partial differential
equations (1984-85), The fourth author was supported for the entire year at the
I.M.A., and the second as a visitor for the month of June 1985. It was then that
serious progress on some theoretical aspects of this research led to the idea for
this paper. The fourth author was also partially supported by NSF Grant DMS
8201639. Finally, the authors are indebted to P. JOLY, M. LEGENDRE and
P.J. PASCUAL for their generous assistance concerning the computational aspects

of this research.

1. ON THE POSSIBILITY OF DECAYING SOLUTIONS:
One important property of (0. 1) is the conservation of the energy integral

1 1

1 2,1 2 1 4} 1 2 1 2 1 4 i
—_ + = + = - —_ — + =u! + = b .
V te R, {2 llt 9 u ) u (t, X) dx = {2 VO(X) 9 uO (X) 1 uo(x) dx

0 0 (1.1)
This property implies in particular that no solution of (0. 1) can tend strongly to 0
in HS(O, 1) as t—+o (respectively -m) except the trivial solution u = 0. Indeed,

multiplication of (0. 1) by u(t,x) yields the following identity, valid for all t,

t+1 A1 t+1 N1 1
w2dxds = [u2 + u4]dxds +\ ult+1, Dut+1, x) dx
s X t
t Jo t Jo 0
1

- | ult,x)u 1;(’c, x) dx .
0

Therefore if, for instance, u(t, *) =0 in Hé(O, 1) as t—>+o, taking account of

t+1 nl
(1.1) we find first 8 S 'uz dxds =0, and then by integrating (1. 1) in t over
t 0

[t, t+ 1] we conclude that u, = v, = 0.

0 0
On the other hand, (1.1) does not a priori preclude the possibility that

Sup [ult,x)] =0 as t—>+w . (1.2)
x€(0,1]
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Physically difficult to believe, the weak coﬁvergencer (1.2) to 0 could be
eliminated if we knew a priori that u(t, -) remains in a compact subset of Hé(O, 1)
for all t > 0. Rather paradoxically, this is precisely unknown even when

uO €000, 10) and v0 = 0, the basic reason being the absence of known higher order
conserved integrals for (0.1). A first simple observation is that if u(t, -) happens
to tend to O at infinity, the convergence caunot be very fast. More precisely, we

have the following result.

Proposition 1.1, Let u be any solution of (0,1). Then if u # 0 we have

+ o0 1

{

6 /2
lu(t,x)| dx } dt =+ (1.3)
0 0

Proof. Let #= H(l)(O, 1) XLz(O, 1) and let us denote by T(t) : # — J¢ the isometry

group generated by the linear wave equation in ¥. If we introduce

Ut) := (u(t), ut(t)> eCR,*)

and FO) := (0, -g)
then the variation of parameters formula applied to the system satisfied by (u, ut)
yields
t
U(t) = T(t) (U(O) + \ T(-s)F(s) ds> . (1.4)
0

In particular, if we assume, by contradiction, u i 0 and

+mo Nl

{

then F(t) €L1(0, +00,#) and (1.4) implies

1/2
lu(t,x)Ide} <+o |, (1.9)

0 0

u(t) - T(’L)U00 —>0ind as t—>+ (1.6)

with



0

\
¢
’ -




+ 00

Uoo = U(0) + T(-s)F(s) ds .

In particular, u(t,x) is asymptotic in the strong topology of Hé(Q), as té-loo,

to a 2-periodic continuous function u s R ->H(1)(0, 1). Then (1.5) immediately
implies u = 0, and therefore u(t, -)=0 strongly in H;(O, 1) as t—=>+m, a
contradiction with the preliminary remark which concludes the proof of Proposition

1.1, Wl
As a consequence of Proposition 1.1 we deduce

Corollary 1.2. If u is a nontrivial solution of (0. 1), then for all £> 0,

lie

lim sub {tg [utt, D)HG} =+ . (1.7)
t=>+o

Using numerical methods, the solution u of (0.1) and (0.6) has been
computed when Vo = 0 and uy = k¢ with ke {1, 5, 10, 20, 30, 50} and §(x) is one of
the functions

sinmx , sin27rx , x(1-x) .
In figures 1 and 2%, we show the evolution of u(t,1/2) in the first case with k = 10,
0< t< 3 andalso 71,65 t < 74.65. All the other numerical experiments show

the same behavior: there is no tendency for |u(t, 1/ 2)] (a fortiori for max lu(t, x| )
fo, 1]

to decrease in a significant manner as t increases (cf. also the comments in
2 3

Section 2, especially the comparison with utt+ 7 u+u” = 0). Another natural

question to be investigated mathematically is whether or not the conditions

u €H2(0,1) and v HE‘)(O,I) imply that

0 0°

Sup [lu_ (t,%)||, < +oo . (1. 98)
£3 0 XX 2

o,
i

< Figures and tables all appear in Section 5.



N




Our numerical computatioas seem to indicate that (1. 8) is satisfied when Vo = 0

and uO(x) = 10sinmx. Indeed, according to figure 5, the function

D(t) = Sup "uxx( s, %) 5
0<sgt
seems to be constant for 45 <t < 90, Therefore, at least in this case, the curve
t = u(t, *) would remain in a compact subset of H(l)(O, 1), a fact consistent with

the absence of decay of [ult, -)| o 25 t—>too.

2. THE ALMOST PERIODICITY CONJECTURE

Another natural conjecture concerning the solutions of (0, 1) (which can be
extended for t <0 since the system is reversible) is that most solutions (and maybe
all of them) are almost periodic with respect to t, either weakly or even strongly
in H(l)(O, 1). In either case, one should then observe a recurrent character of the
function t —>u(t, *) in the space C([0,1)). In this section, we try to evaluate the
validity of this conjecture on the basis of heuristic arguments as well as numerical
results. A mathematical study of this question would be interesting, but most

probably extremely difficult even for this simple one-dimensional model.

2.1 Previous results of this type

In 1965, L. AMERIO established that all solutions of the linear wave equation
with homogeneous boundary conditions in a bounded domain of Bn, n >1, are
almost periodic in the energy space. The final argument (following partial results
by previous authors) ultimately did not require any regularity of the domain and
related the almost-periodicity property oaly to three circumstances: conservation

of the energy, linearity of the equation, and precompactness of trajectories [1]

Later, in 1975, P.D., LAX established in [16] the quasi-periodic character
for a large class of solutions of the KDV equation on a one-dimensional torus. The
proof, unfortunately, relied heavily on the ""completely integrable' character of

the system and a very precise determination of invariant tori in the phase space.

In 1980, H. CABANNES and A, HARAUX (4] found a large family of almost

periodic solutions for the equation of a string with fixed ends vibrating against a






straight, fixed obstacle. The solutions are generally not periodic (cf. Theorem 1. 2,
b) of [12]). More complicated almost periodic motions have been discovered later
by H. CABANNES [5] Here again, the success relies on the possibility of
computing rather explicitly the solutions (cf. also [22]).

The physical content of equation (0. 1) suggests a behavior rather similar
to this last example. On the other hand, we are far from being able to compute any
solution, or even to reduce the problem in some specific circumstances. These

remarks suggest that an entirely new method needs to be developed.

2.2 The importance of diffusion

If the operator u +—> _uxx is replaced by its contribution on the first

eigenspace in the sense of H(l)(O, 1), we obtain the equation

u +7r2u+u3 =0, teR, xe]0,1(
tt
(2.2.1)

u(t,0) = u(t,1) =0 teR

which can be solved uniquely in the function space Cl(]R, H(l)(O, 1)) for all initial
1 2
data (uO, VO) € [HO(O, 1],
Classical results on O.D.E. (cf., e.g., [10]) show that for all X, €lo, 1C

the function u(t, xo) is periodic in t.

Since the period is a decreasing continuous function of the "local'' energy
1 2 1 2 1 4 . . _ .
5 vo(x) *3 uo(x) +3 uO(x), if, forlmstance, vy = 0 and u, # 0, the solution
O(Q). Numerically, we investigated the behavior

1
of the function t &)u(t, x) dx when

cannot be almost periodic: R —H

Vo = 0 and uO(x) = 10 sin mx

for (0. 1) (figure 3) and (2.2.1Xfigure 4).

The observation of figure 4 seems to indicate that this integral tends to O,
or at least is far from being recurrent as t—>+o. In the case of(2.2.1)it is not

2
absurd to imagine that all solutions tend weakly to 0 in L"(0,1) as t —To (but






in general the Hé norm of u(t, -) will blow up at infinity). On the other hand,

figure 3 suggests an almost periodic behavior.

Unfortunately, it has been impossible to follow the behavior pictured in
figure 4 for very large values of [t ], since after a while, numerical effects
obviously related to the highly oscillatory character of the solution are no longer

negligible and the picture degenerates in a very irregular way.

In any case, the comparison between figures 3 and 4 points out in a very
intuitive way the crucial role played by diffusion in the global behavior of solutions.
Finally, the comparison with finite-dimensional systems [11J suggests that the

problem may be quite hard.

2.3 On a result of P, RABINOWIT?Z

There is at least some mathematical evidence thatdifussion plays an
important part in global behavior of solutions to (0. 1), again by comparing with
the "simpler" problem (2.2.1). As pointed out in §2.2, the only time-periodic
solution of(2.2.1)is the trivial solution u = 0 on RX ]0,1(. On the other hand,
P. RABINOWITZ [18, 1£ﬂ established the existence of at least one solution of
(0.1), (0.3) and (0.12). It turns out that this is a genuine nonlinear property since,
unlike the linear case, some nontrivial solutions of (0, 1) in the class (0.3) do not
satisfy (0, 12). More precisely, we can state the following result, which is related

to an unpublished observation of H. BREZIS, communicated to the authors by P.
RABINOWITZ (2.

Proposition 2.3.1. If u is a solution of (0. 1) in the regularity class (0, 3) - (0.4

such that
u(t+2, <) = ult, ) forall teR , (2.3.1)
then either u=0 or
2 nl
Ju(t, )| dxdt > 2 . (2.3.2)
0






Proof. We apply formula (0, 11) and we set

Q =1]0,2(xJo, 1(

ul(t, x) = p(t+x) - p(t-x)

t nxtt-s
u(1:x)=-l Tig(s ) dyd
o\ts 2 ,y)dyds .

0 Jx -(t-s)

As a consequence of (0.8) we obtain easily the following estimate

t Al

1
o €3 ], [ -
’ 0vO0

1 . (2.3.3)
L (Q)

On the other hand, let v be a solution of (0. 3) - (0.5) and
2 1 1
weL (O, 2; HO(Q))ﬂH (0, 2; Lz(Q)); we have the identity

1

1 1

d

—_ = + = - -

dt< vtwdx> (v,,w Vtwt) dx {Vtwt VW gviwldx .
0 0 0

By integrating on (0,2), we find that if v and w are such that Vt(O,x) = vt(2,x)
and w(0,x) = w(2,x), then

2 nl
{vtwt A A g(v)w} dxdt = 0 . (2.3.4)
0 Y0

It is clear that uy satisfies (0. 3) - (0.5) with g = 0 and by choosing u =v and

u = w in (2. 3. 4) we obtain

{)u - @) u Jaxdt =0 . (2.3.5)

On the other hand, by choosing g(u) = u3, u = v and u =w in (2.3.4) we find

10



3
Sg{ut(ul)t- wlu) +u’u Yaxde = 0 . (2.3.6)
Q

By subtracting (2. 3.5) and (2. 3. 6) we get

S&usuldxdt =0 . (2.3.7

Q
Therefore
g& u4dxdt = gg u3u2dxdt s
Q Q
and by (2. 3. 3) we obtain
4 1y 3y2
llullL4 S LY IR (2.3.8)
Q) L(Q)

On the other hand, by Holder's inequality,

1] <ol [meas@]®

L(Q) L(Q)
' 4 1 6

and since meas(Q) = 2, (2.3.8) yields nu" 1 gﬁ”uﬂ 4 3 henceif u £0, we
conclude that LQ LQ

2

“u" . 202 . (2.3.9)

L(Q)
This is clearly equivalent to (2. 3. 2). (i)
Remark 2.3.2. In particular, if v =0, u, #0 and ”uo " 1 is small enough,

H (0, 1)
3 0
the solution of (0. 3) - (0.6) with g{u) = u~ is not 2-periodic in t.

Remark 2.3.3. On the other hand, in [27:], M. WILHEM established the existence

of nontrivial periodic solutions with arbitrarily small energies and periods of the

form 2n, n —>+o. A related result can also be found in [20].

11



2.4 Numerical experiments and the recurrence property

A common point among all the solutions that we computed numerically is
the following: assuming that t remains in the region where the computation is
presumably correct, the curve u(t,x) is "very close' to uO(x) when t is taken
in the union of small intervals regularly spaced on the half-line t >> 0. This property
suggests a recurrence phenomenon quite consistent with the almost-periodicity con-
jecture. In this paragraph we describe some observations which make the conjecture

look quite reasonable.

Observation 2.4.1. Let us consider the special case uO(x) = 10 sin 7x (the coefficient

10 is chosen large so that we are far enough from linearity, and still small enough
so that numerical effects due to the fast oscillations are not excessive). In the

interval 0 £ t< 100, we look for all values t such that

[u®) -ug)

=: €(Y) < 0,05,
(L

The set $ of such points is the union of 15 very short intervals quite regularly
spaced on the interval [0, 100] . For example, the maximal distance of two suc-
cessive intervals is about 13, while the mean-value of all such distances is of the

order of 7.

For more precise information, see Table 1. The same calculation with
0.05 replaced by any £ > 0.03 leads to very similar conclusions. One observes

1
similar results if the Lm norm is replaced by the H0 norm,

Observation 2. 4.2. Another way of following the evolution of u is to study the

function t > ult, 1/ 2). Indeed, the solution u can be reconstructed from the values
of u(t, 1/2) by using the method of characteristics. As shown by the comparison
of figures 1 and 2, the function y(t) := u(t, 1/2) is such that

sup |y(t) - y(t+71. 65)| is of the order of 2 while the oscillation of y is greater
0<t<3 EE—
than 20. In addition, the mean-value of [y(t) - y(t+71.65)| on (0,37 is close to

0. 66.

12






Remark 2.4.3. The above two observations suggest that after a certain amount of

time, the solution recovers approximately its initial shape. This property is
especially striking when following the solution on a large time interval, since in

the meantime, one then observes drastic changes in the shape of u(t, *) as a
function of x. For example, starting with a positive concave initial datum, we
observe the appearance of successive pairs of zeroes which, from time to time,
suddenly cancel each other to reconstruct a shape quite similar to u0 (compare
figure 8). This strange phenomenon was already observed a long time ago by

M.D. KRUSKAL and N.dJ. ZABUSKY [28] for another kind of nonlinear wave equation
(in fact, a KDV equation on the one-dimensional torus). The remarkable stability
of the initial configuration under the action of a dynamical system which, otherwise,
does not seem to obey any simple "conservation rule' with respect to the shape,

seems to be the most convincing evidence of an glmost periodic motion.

3. OSCILLATORY PROPERTIES

In (6], Theorem 2.1 it has been established that if g satisfies (0.7) and
u is a solution of (0, 3) - (0.5), then for any X, €3]0, 1( the function ul(t, xo) has at
least one zero on any time interval of length > 2. At this level there is no major
difference between g =0 and g % 0, especially since the result is optimal with
\4

respect to the length of the interval if u are arbitrary.

000
Another kind of oscillation result, of ''global" type, can be proved without

assumption (0. 7): in [6], Theorem 3.1, it is shown in particular that if u >0 on

JxJ)0,1( with J some interval, then either u = 0 or lJlg 1. For g =0 this result

is optimal since then sin7tsin7x is a nonnegative solution on Jo0,1Ex1J0, 1(.

In this section we consider the special case where VO =0 and u0 is such

that

u, is increasing on (0, 1/2) (3.1)

uO(l—x) = uo(x) , Vxel(0,1] . (3.2)

‘Under these assumptions, we compare the oscillation properties in the linear

and nonlinear cases.
13



3.1 A property specific to the linear case

In this paragraph, we assume g = 0. Then the solution of (0. 3) - (0. 6)

with V0 = 0 is given by the formula

alt, 0 = 3 {420 - § -]

with ﬁo the odd and 2-periodic extension of u, on R. The hypotheses (3. 1) and
(3.2) on u, imply

0
Y is increasing on [-1/2, 1/2] (3.1.1)
a’o(l-x) = ﬁ“o(x) , VxeR . (3.1.2)

In particular, for any £€ R the equation ﬁ’o(x) = [ has at most 2 solutions Xy and
Xy = l-xl on [-1/2, 3/2].
Since '\60 is continuous and increasing on [-1/2, 1/ 2], it follows that
Vxelo, 1/20 , Vtelo, 1/2(,

~s + _l\.l _
uO(t x) uo(t x)> 0.

In other words, we have
vV xe€lo,1(, Vvtelo,1/20,  ult,x) >0 , (3,1.3)
V x€ (0, 1/27 , u(1/2,%) =0 . (3.1.49
More generally, for any meZ we have
v x€10,1(, Vtelm-1/2, m+1/20, (-D7ult,n >0 (3.1.5)

and

VxeR, VmeZ, um+1/2,x =0 . (3.1.6)

This means that the solution vanishes simultaneously at all points x for te Z+ % .

In Section 4 we shall see that the situation is quite different when g(u) = u3.

3.2 Corresponding results in the nonlinear case

Since the condition Vo = 0 implies u(-t,x) = u(t,x) we obtain that u cannot

remain nonnegative on )0, 1/2( x)0, 1L, (This follows from the proof of Theorem 2.1
in [6] since g is not identically zero.) In addition, the symmetry property implies
the following stronger result.

14
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. 1
Proposition 3.2.1. Let g€ C (R) satisfy (0.7) and assume that g: R —R is
increasing. Then for any e satisfying (3.1) - (3. 2) we have

vx€J0,10 , Inf{t>0, ult,x) <0} < 1/2 | (3.2.1)

Proof. This is basically an application of the methods of [7], therefore we only

give a brief sketch of the proof.

Property (3. 2) implies that ?1’0(1+x) = -Go(x) and therefore for all
(t,x) e RXR we have

ult, x+1) = -1(t, %) . (3.2.2)
Let xOGJO, 1[ be such that u(t, XO) >0 for all te (0, 1/2], Then in fact

u(t,xo) >0 forall te (-1/2, 1/2], (3.2.3)

We introduce

wit,®) = Ut ») +ilt, 2x-%) . (3.2.4)

Then by the method of [7], we deduce from (3.2.3) that
w(t,x) > 0, V(t,x) with [t]+|x-x0] <1/2.

Since on the other hand w(t, x+1) = -w(t,x) we deduce

w(0, Xy - 1/2) = w(0, x0+ 1/2) =0 . (3.2.5)

From(3.2.5), by computing the value of w(0, Xyt 1/2) in terms of w(t,x )’
[—1/2, 1/2]
and SS glw(s, y))dsdy we conclude, since g is increasing, that w =0 in

|t1+|x-x01<1/2
{]t [+[x -xol < 1/2}, In particular W(O,xo) = 2u0(x0) = 0 and this contradicts (3. 1).

3.3 Fast oscillations for large initial data

In the linear case, (3.1.3)-(3.1.6) imply in particular that, assuming Vo = 0
and (3. 1) - (3.2), the frequency of the oscillations is independent of Uge In the
nonlinear case the situation is quite different. In particular, we have the following

result which will be used in Section 4.
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‘ys 3
Proposition 3.3.1. Let g{u) = cu” for some ¢ > 0, assume that v0

as previously specified, Then we have

sup{t >0, u(s,x) > 0 for all x€(0,1] and s¢ (0, t'_]}

= T
=3 <
t 1
\/%S u_(x) sin mx dx
0
0
Proof. Let
1
z(t) := \ u(t,x) sinmxdx .
0

2 -
We have z€ C"(R) and for all te [0,t],
1 1

. 2 3.
z"' = uttsmﬂxdx = -Tz-c¢\| u sinmxdx £ -cz

0 0
with z'0) = 0. Therefore on [0,t]) we have
z(t) > 0
3
z'"(t) < -cz (1)
z'(t) < 0

From (3.3.4) and (3.3.5) we deduce
% (z'2+ 324) = 2z'(z" + cz3) >0

and therefore

20 < - | $[zg-2 (W) for all tel0,i)

By letting

w(t) = z(t)/z v te(0,t] ,

0 s’
we find

16
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being

(3.3.1)

(3.3.2)

(3.3.3)
(3.3.4)

(3.3.5)

(3.3.6)



w' -
— < -&/2 zq for all te[0,t] . (3.3.7)

Therefore we have

w(t)
d%[ — Js-\/Z/*zz
0
0 1-s

and by integrating on (0,t) we obtain

1
ds =

Sﬁ‘/'——4> c/2zy°t . (3.3.8)
1-s

Since

(3.3.8) implies (3.3.1). il

3.4 Oscillatory properties and the numerical experiments

Of course, all the theoretical results obtained in Section 3 are confirmed

by the numerical experiments (cf., e.g., Table 1).

The various computations also confirm the fact that when v0 =0 and

=kg, k >0, the following estimates of the ""crossing time" te

"o
t ~ 1/2 if k is small
t ~ C—Iié-) if k is large [compare (3.3. 1)

are rather satisfactory. These estimate of the crossing time will be intensively

exploited in Section 4 below.

4. LOCATION OF THE "FIRST CROSSING"

It is interesting to compare the behaviors of the respective solutions of the
linear equation and the nonlinear equation "without diffusion'(2,2,1), when Vo = 0

17




and Uy satisfies (3.1) - (3.2). We saw (formulas (3.1.3)=(3.1.6) that in the linear
case, ult,x) vanishes for the first time at t = 1/2 for all x€J0,1(. On the other
hand, it is easy to check that the solution of (2.2.1) vanishes for the first time at

x = 1/2 (this is indeed related to the fact that the period of the function t > u(t, xO)
is a decreasing function of u(xo) in this situation). It is a natural question to ask
whether for the full equation (0. 1), the solution will always cross first at the
"center" x = 1/2. In this section, we shall see that the answer is negative, and in

fact the situation is already complicated even when uo(x) =ksinmx, k > 03 more

precisely the answer is different for small values and large values of k.

4,1 Preliminaries

Throughout Section 4, we keep the following assumptions and notation. We

assume v0 =0 and

u,.=kp, k>0 (4.1.1)

¢$€H(1)(0, 1) (4.1.9)

$ is increasing on [0,1/2] and for all x€ 0,1, 1= =4x . (4.1.3)

3
Let u be the solution of (0, 3) - (0.6) with g{u) = u"; then for all te R, we have
u(t, 1-%) = ult,x) for all xe[0,1]. If we set

u=kv , (4.1. 9
v is the solution of
Vi~ Vxx+ k2v =0
v(t,0) = v(t,1) =0 (4.1.5)
v(0) = 4 and vt(O) =0
Throughout this section, any function pe L2(0, 1) will be identified with its unique

odd and 2-periodic extension over R, each time when we write ¢(s) for some

s¢ (0,1]. By using this convention, formula (0.9) yields

18
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t nxtt-s

1 k2 3
v(t,x) = 5‘@(7{"‘9 + ¢(x—t)} aliey v (s,y)dy (4.1.6)
OVx-t+s
9 t
Vx(t, x) = %{sﬁ'(xﬂ) + ¢'(x-t)} - k? [v3(s, x+t-s) - v3(s, x -t+s))ds
0 (4.1.7)
t
v (50 = g0 -k | v)(s, t-s)ds . (4.1.8)
0

Formula (4.1.6) isapointwise equality between continuous functions and holds for

(t,x) €eRXR. Formula(4.1,7) holds for all teR as an equality between functions
2

of Lloc(lR), while (4.1.8) holds for almost all te R,

We shall also consider the free solution w given by
1
wit, ) = 5 {flx+0 + dx - 1)} (4.1.9)

and the function h given by

t
hit,x) = [vg(s, xtt-s) - v3(s, x-t+s)]ds . (4,1.10)
0

Clearly, h is continuous on RXR and by (4 1.7), (4.1.9) and (4. 1. 10) we have:

2
v -w 60 = - = hit,x . (4.1.11)
X X 2

Therefore, even if ¢ is only in Hé(O, 1), V" W is continuous and Vo and Wx have
the same singularities. We shall consider, for all k > 0, the "first crossing time''

tk defined as follows:

tk = sup{t >0, u(e,x) >0 for (s,x) e (0,t) x(0, 1]} . (4.1.12)

Obviously, tk is also given by the formula
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t, = sup{t >0, v(s,x) >0 for (s,x) € [0,t] x(0, 1]} . (4.1.13)

(Note that v depends on k, cf. problem (4.1.5).)

4.2 A partial result for large data

In this paragraph, we assume that é, in addition to (4. 1.2)~(4. 1. 3), satisfies
the following hypothe ses:

éECI([O, n)) for some n >0 , (4.2.1)

There exists 6 >0, M >0, 0 £ 0 v such that ¢ = 4+30-v >0 and

vV xe(0,n], 6Xv\< P(x) < Mx . (4.2.2)
The first result of this paragraph is the following lemma.

Lemma 4.2.1L Let ¢ be as above. Then

v te (0, n/2] , v(t, x)eCI(EO, n/2)) ; (4.2.3)

> .
tk 0 (4.2.4)

Furthermore, there exists &(5,0,M) >0 such that [x)+ [t] < n and

K2+ DY+ K20k + 1802* 72 < el5,0, M) imply

v (60 > 5 (x+ e . (4.2.5)

1 .
Proof. Since $ is C~ on [-n, n), (4.2.3) follows easily from (4. 1.6).

Now let 7€]0,n(: if v were a classical solution of (4.1.5), a straightforward

computation involving differentiation under the integral sign would show that

T-t 9

1 2 1 2 k 4
= vt v =
Uut) g Vet gVt TV }(t,x)dx

is nonincreasing on (0, 7). For the actual solution v, such a result is then easily

deduced by a density argument. Hence for any t€ (0, 7], we find
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4 2
vi(t,x)dx < {gs'z + k? ¢4}dx ) (4.2.6)
-T
Let
s 2
m(s) = {¢'2+ £ ¢4}dx . (4.2.7)
-S

By setting s = 7-t in(4.2.6) we find

S

2
vx(t, x)dx < m(t+s) forall s >0, t >0 such that t+s <n. (4.2,98)

-s
By symmetry, for s > 0 and y€ R such that s+|y| <n we have

[yl

1/2
[v(s,y)ls\l—lztlyll/z{ Vi(s,o)dcr} . (4.2.9)

-ly)

For 0 <s <t and 0 <x<n-t, as a consequence of (4,.2.8)-(4.2.9) we obtain

| v(s, x+t—s)|2 + | v(s, x—t+s)|2 < (x+tmx+t) . (4.2.10)

Similarly, for 0 <s <t and 0 <x <n-t we find

1
[v(s, x+t-s) - v(s, x-t+s)| [2(t - ) m(x+1)) /2 (4.2.11)
is an immediate consequence of (4. 2.8).
From(4.2.10)-(4.2.11) we deduce in particular
|v3(s, x+t-s) - VS(S, x -t+8)] < V% (x+t)(t - s) 1/2 [_-m(x+t)—_| 3/2 (4.2.12)

Now (4. 1.10) and (4. 2. 12) yield

3/2
h(t,x) < ﬁ(x+t)5/2[m(x+t)] / for all t,x such that 0 <t <xtt <n -
(4.2.13)
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On the other hand, as a consequence of (4. 2. 2)
'2wx(t,x) > 8(x+t) for 0 <t <x+t<n . (4,2,14)
Combining (4. 1.11), (4. 2. 13) and (4. 2. 14) we obtain
2v (t,x) > s(x+t)’ - kz(x+t)5/2[m(x+t)] 32 gor 0<t < xtt<n . (4,2.15)

By using the right-hand side of (4.2.2), formula (4.2.7) shows on the other hand that

20+l 2 4ot5
m(s) < C [s7 +ks" |

for all s€ (0,n]). As a consequence, for some ¢ >0 we have

3o+4-y 60+10 -UJ

2vx(t, ¥ > x+t)[s - ck2(x+t) - cks(x+t)

for 0 <t < x+t<n . (4.2.16)
Since 60+10-v = 2a+2+v, (4.2.5) is an easy consequence of (4.2, 16).

It follows from (4.2.5) that v> 0 on (0,p] x[0,p) for some p > 0. On the
other hand, since ¢ >0 on [p, 1/2] we also have v(t,x) >0 for x€ [p, 1/2] and
t small enough. Hence (4.2.4). o

Remark 4.2.2. In order that tk > 0, it is not sufficient to assume (4, 1.3). Indeed

(4.2.4) is false if é'(xn) = 0 for a sequence of positive numbers X tending to 0.

More precisely, if $'(y) = 0 for some y€ 0, 1/2( then it follows immediately
from(4.1.8)that t, < y. Hence if é'(xn) =0 and x —>0 we deduce t, = 0.

We are now in a position to state the main result of this paragraph.

Theorem 4.2.3. Let § be as in the statement of Lemma 4. 2.1 and assume in

addition that 2+30-v > 0. Then for k large enough, we have vx(tk, 0) >0,

Therefore the first crossing occurs away from the boundary.
Proof. Since t < C(#)/k, we have

5, 2ot t2

o 3=-2a~-vp
tk )

k2t§+k <Ok
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which tends to 0 as k —+o0 since by hypothesis we have @ > 2, Now (4. 2. 5)
applied with x =0 and t = tk gives the result, @

4,3 Generalities for small data

In this paragraph, we keep ¢ fixed and assume k < 1. Then the energy
conservation property combined with(4.1.6) impliesthat v is uniformly bounded on

Rx R, independently of k. Therefore from (4,1.6) - (4.1.7) we deduce
VT >0, v—=>w uniformly on (0,T]JXxR as k—0 , (4,3.1)

VT>0, V.- WX%O uniformly on (0, T)JXxR as k—0 . (4,3.2)

We assume that ¢ satisfies (4.1.2) - (4.1.3), (4.2.1) - (4.2.2) and

,5601([0, 1/20) (4.3.3)
vV x€lo, 1/20, 4= >0 . (4.3.4)
We introduce
¢ = Ut deRxR, ’x—%—ml=|t|} (4.3.5)
meZ

Under the hypotheses above, it is clear that w (hence v) is c! on RXR\L., We

now have:

Proposition 4.3.1. Under the hypotheses above, it follows that

tkq\l/Z as k—0 . (4.3.6)

Proof. As a consequence of Proposition 3.2.1 we know that tk <1/2. It is there-
fore sufficient to show that for any 7€ (0, 1/2(, v is positive on (0, 7)x]0,1(

for k small enough. To that end we fix 7€ (0, 1/2( and we set a = %(% -7). We
now observe that as a consequence of (4.3.4), ¢ satisfies also (4.2.2) with n = 7+a
(by perhaps modifying 6, M, 0 and v). Applying Lemma 4.2.1, it follows in par-

ticular from (4.,2.5) that there exists k0> 0 such that for all ke]O, kO]:

¥ (t,x) €[0,7) xJ0,a) , w(t,x) >0 . (4.3.7)
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Also, as a consequence of (3. 1.3) and (4. 3. 1) there exists k1 >0 such that for all
ke_‘]O,kIJ :

V(t,x)e(0,7)x(a, 1/2] , wvit,x) >0 . (4,3.9)

Putting together (4.3.7) and (4.3.8) we conclude that v >0 on (0, 7]xJ0,1( for all
k such that 0<k( min{ko,kl}. Since T was arbitrary in (0, 1/2(, the proof is
now complete, m

4,4 Crossing at the center in a special case

In this paragraph, we consider ¢ given by
Vx€(0,1), $(0 = min{x, 1-x}
Obviously, ¢ satisfies (4.1.2) - (4.1.3) and (4.3.3) - (4.3.4). The free solution w

is given, for all te [0, 1/2], by the formulas

wit,d =x, Vxelo, 3-t] (4.4.1)

1

wlt, %) %—t, VX€[%—1:, 1/2] . (4.4.2)

Our main result is the following.

THEOREM 4.4.1. For k small enough we have

v xe€)0,1/2( , v(tk,x) > 0 (4. 4.3)
vx(tk, 0 >0 (4. 4. 4)
vit,, 1/2) =0 . (4. 4.5)

Hence crossing occurs at x = 1/2.

The proof of Theorem 4. 4.1 relies on

t
[w3(s, xtt-g) - W3(s, x-t+s):| ds for (t,x) eRXR.

Lemma 4.4.2. Let ho(t,x) = S
0
Then h0€C(B le)nCl(le R\§) with ¢ as in (4.3.5) and
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0
V (t,x)€]0, 1/2) x ([0, 1/20, h (t,x > 0 (4, 4.6)
0
V telo, 1/2) , hx(t, 1/2) <0 . (4,4.7)
Proof. Easy calculations show that

wlo,z) < wlo,y), Voe€lo,1/2(, Vyelo, —+o] V ze [-1,y] (4,4.9)

wlo,z) < wlo,y), Voe€lo,1/2(, Vyelo, -l-!-o], Vze)-1,y(n]-1, ; -ol.

(4. 4.9)
Let te (0,1/2). If x€ [0, =-t], then by (4.4.7) we have w(s, x-t+s) <W(s, x+tt-s)
for any s€J0,t( and therefore h (t x) > 0. On the other hand, if x€] -t, 1/2(,

we distinguish two cases. For s€lz (x+t —) tl, by (4.4.8) w(s, x-t+s) < w(s, x+t -s) .
For s€]0, (x+t-—)[ we have w(s x+t - s) =w(s, 1-(x+t-s)), and by (4.4.9)
we deduce w( s,x-t+s) <wl(s,x+t-s). Therefore in this case also we have

hO( t,x) >0 and the proof of (4.4.6) is complete.

o 1
Now straightforward calculations show that h™ € C'(R xIR\G) with

t

0 1
hx(t, 1/2) = {(w W )(s —+t s) - (w W )(s 5 -t+s)}ds
0
t
2 1 1
= -6\ w (s, '2--t+s)w (s, §—t+s) ds by symmetry.
0

On the other hand we have

w(s, -;-—Hs) >0 for t€)O, 1/2) and s€]0,t(

w_(s, '12'-t+s) >0 for te (0, 1/2] and s€]O0,t(
X

w (s, %-t+s) > 0. for t€10, 1/2] and s€]0, t/2(
X
Hence (4.4.7) is proved. | (]
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Proof of Theorem 4.4.1. Let h be given by (4.1.10). From (4.1.11) we deduce

5[ 60 -w 0] = - hitx) (4. 4.10)
K

An easy calculation shows that as k—0, h —>h0 uniformly on (0, TJXR for any
T > 0. Furthermore if we set D = {(t,x)€B2, |t— ll+|x- %lg 1/4} (so that

- 2
(1/2, 1/2)eD and DcR"\¢) we also have. hx-éhX uniformly on D,

By (4. 4.7) and since W = 0 in D, for k small enough we have Vex >0

near (1/2, 1/2). In particular, by (4.3.6) there exists 6 >0 and k_> 0 such that

0
¥V keJo,k ] Vxe[l-é l+<5} v (t,x)>0 . (4.4.11)
3 O Ed 2 3 2 > Xx k, o .
From (4. 4.10), (4.4.5) and (4. 3.6) we deduce that there exists k ) > 0 such that for
all kE]O,kl[ we have
1
-1/2\<vx(tk,x)-wx(tk,x) <0 for Osxgz—é . (4, 4.12)
From the left-hand side of (4. 4. 12) and (4. 4. 1) we get
Vkelo,k(, Vxelo, 2-t [, v(t,03> < . (4. 4.13)
E 1 E F 2 tk E x k’ e 2 L4 i
Considering the right-hand side of (4. 4.12) and (4. 4. 2) we find
VkelO,k(, Vxe]i-t,>-5], v(t,0<0. (4.4.19)
3 1 E] 2 k’ 2 2 x k’ 0 .

As soon as k < min(ko,k ), (4.4.3) and (4. 4. 4) now follow from (4. 4.11), (4.4.13)
and (4. 4. 14) and the continuity of v(t_, -) as a function of k. Then (4. 4.3) is obvious

and the proof is complete. (1]

4,5, The case #(x) = sinmx

In this section we consider @(x) = sinmx. Note that here the free solution w

is simply

w(t,x) = coswt sinmx (4.5.1)
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Since w is regular in both t and x, it follows that v is indeed a classical solution
of (4.1.5) and that all the derivatives of formula (4. 1.6) also hold in the classical

sense.

The following result is a striking contrast to the crossing behavior for the

previous examples.

Theorem 4.5.1. Let ¢(x) = sin7x. Then for all sufficiently small k > 0 we have

v(t,x) >0, Vxelo,1l (4.5.2)

vx(tk, 0) = vx(tk, H=0. (4.5.3)
Remark 4.5.2. Clearly (4.5.3) follows immediately from (4.5.2) and the definition
of tk Also, this theorem shows that the solution crosses first at the boundary. In

other words, for t just slightly larger than tk’ v(t,x) is positive everywhere on

J0,1( except close to x =0 and x = 1.

Remark 4.5.3. The proof of Theorem 4.5.1 is very technical and relies on two

computational lemmas.
Lemma 4.5.4. Forall k >0, te(0, 1/2] and x€]0, 1/2], define

v (t,0)
Glk,t,% = (ksinﬂx)-z[V(t’X) -2 :)

sin mx T

(4.5.4)

Then as k—0, G(k,t,x) converges uniformly on (0, 1/2] xJ0, 1/2] to a continuous
function G(t,x) which is Lipschitz continuous in t, uniformly with respect to

x€J0, 1/27.

Lemma 4.5.5. We have the formula

v xelo, 1/2], G(1/2, 0 = le'; . (4.5.5)

The proof of Lemma 4.5.5 will be postponed to the next section since it follows from
a general computation valid for other initial data (cf. Theorem 4.6.5 and Corollary

4,6.11).
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Proof of Lemma 4.5.4. We define

t nxtt-s
1 3
gk, t,x) = Py v (s,y)dyds . (4.5.6)
0 Jx-t+s

(Recall that v also depends on k.) From (4.1.6), (4.1.8) and (4.5.1) it follows

immediately that we have

1 gl tx) gx(k,t,O)J

Gk, t,%) = - sin mx T

(4.5.7)
sin mx

Because of the smoothness of the free solution w, it follows easily by induction that

g(k,t,x) and all its x-derivatives are continuous for k >0, teR, xeR, In par-

ticular
o™ o™
VmeN, lim 5 (ktx = “5(0,t,x% |,
m m
k=0 ox ox
uniformly on compact subsets of B2 . (4.5.98)

Since v and w are smooth solutions we have

v(t,0) = w(t,0) = vxx(t,O) = wxx(t,O) =0,

and this implies

VteR, Vk>0, gk,t0 = gxx(k,t,O) =0 . (4,5.9)

From (4.5.9) we deduce easily

XAy AZ
= 4,5.10)
glk, t,x) ng(k, t,0) + gxxx(k,t, o) dodydz . (
0J0 JO

Therefore by (4.5.7) we find
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XAY NZ

_ 1
Glk,t,x) = z,(0g (k,t,0) - z,(x) < g, Ko s 0) dodydz (4.5.11)
* JoJoJo
where Z,, %y are continuous and given by
1 3
z (x) = ——— [sinﬂ'x - ﬂx:], zZ (x)
1 .3
Tsin (7x) sin mx

As a consequence of (4.5. 8), it is now clear that, as k —>0, G(k,t,x) converges

uniformly on (0, 1/2] xJ0, 1/2] to the function

XNY nZ
1
G(t,x) = z1<x)gx<0,t, 0) - z,(x) 3 g, (0. t,0)dodydz . (4.5.12)
X Jo o vo

Finally it is clear that G is bounded and Lipschitz continuous in te (0, 1/2],
uniformly with respect to x€10, 1/2], @

Proof of Theorem 4.5.1. From Lemmas 4.5.4- 4.5,5 it follows that for k small

enough and t sufficiently close to 1/2, we have with 0 < @ < 1/487 (o fixed),
Gk, t,x) > >0, Vxelo,1/2]) . (4.5.13)

By choosing k perhaps smaller, Proposition 4. 3.1 guarantees that we can choose
t= tk in formula (4.5.13). Since Vx(tk, 0) > 0 it follows from (4,5. 4)and (4.5.13)
that

Vv x€]0, 1/2), V(tk X) > Olk sin (WX)

By symmetry, we obtain (4.5.2). The proof of Theorem 4.5.1 is now complete.®

4,6. Some results for general ¢ and applications

In this section, our goal is to understand the two previous examples as much
as possible from a general point of view. In addition to the hypotheses of paragraph

4,3 (i.e., (4.1.2) - (4.1.3), (4.2.1) - (4.2.2) and (4.3.3) - (4.3.4)) we assume
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2
$ is C” in a neighborhood of x = 1/2 with $"(1/2) <0

It will be convenient to set

p(x+1) + dlx ~1t)
26'(t)

for 0<t<1/2
h(t,x) =

ﬁ‘(x-i";‘)

g511(1/2) for t = 1/2

By the hypotheses on $, h is continuous on J0, 1/2] xR, We now introduce

H(k, t,x) = i2 [v(t, %) - ht, Qv (t, 0)] -
k

1
Note that if §(x) = sinmx, then h(t,x) = - sin 7x and therefore in this case

Hik,t,%) = sin(m)Glk, t, %)
with G given by (4.5.4).

It follows from (4. 1.6) and (4. 1. 8) that in the general case

t t nxtt-s
3 1 3
H(k,t,x) = h(t,x) \ v (s, t-s)ds - 5 v (s,y)dyds
0 Oux-tt+s
We now set
t t x+tt-s
3 1 3
H(t,x) = h(t,x) \ w (s, t-s)ds - 5 w (s,y)dyds .
0 0Vx-tt+s

Lemma 4.6.1. As k—0 we have

H(k,t,x) = H(t,x) uniformly on JO, 1/2]J xR ,

H(k, tk’ x) = H(1/2, x) uniformly on R

(4.6.1)

(4.6.2)

(4.6.3)

(4.6.4)

(4.6.5)

(4.6.6)

(4.6.7)

(4.6.8)

Proof. (4.6.7) follows immediately from (4. 3. 1) and the formulas (4.6.5) - (4. 6. 6).

On the other hand, since H(t,x) is Lipschitz continuous in t, uniformly with respect

to x€R, (4.6.8) follows from (4.6.7) and (4. 3. 6).
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The following two propositions show the importance of H(1/2, %) in

determining the crossing behavior of the solution u for small values of k,

Proposition 4. 6.2. Assume that there exists xoej 0,1( such that H(1/2, xo) <0,

Then for k small enough we have vx(tk, 0) > 0. Hence the first crossing cannot

occur at the boundary.
Proof. By (4.6.8), for k small enough we have H(k, tk xO) <0. Then (4.86.3) yields

h(tk, xo)vx(tk, 0) > v(tk, xo) >0,

Since (4. 6. 2) gives h(tk, xO) > 0, we deduce Vx(tk, 0) > 0, and the proof is

complete. i

Proposition 4.6.3. Assume that for all x€J0, 1(, H(1/2, x) > 0. Then for any

€>0 there exists k, such that for all keJo, kEE we have v(tk, x) >0,
V x€ (€, 1-€]). Hence for k small, the first crossing occurs arbitrarily close to

the boundary.
Proof. For any £> 0, min H(1/2, ¥ > 0. Therefore, by (4.6.8) we have
x€ (g 1-€)

for k small enough

VvV xe (g 1-¢), H(k,tk,x) >0 .

By (4. 6. 3) we conclude that

- > . Nl
v xe (g 1-¢€), v(tk, x) > h(tk,x)vx(tk,x) >0

Remark 4.6.4. We have H(k,t,0) = 0 for any k > 0 and t€ R, Therefore the

argument of Proposition 4. 6.3 cannot be applied to show that first crossing occurs
exactly at the boundary. In other words, while the arguments of this paragraph
apply to a more general class of data than sin(7x), they are not as subtle as the

analysis of paragraph 4.5.

The main result of this paragraph is the following explicit formula.
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Theorem 4.6.5. We have

¢'(X+ .].‘.) X
1
H(1/2,%) = 6 [é"T/; ;53(1/2) - S ¢3(r+%)er
0

1 1
pl(x+ =) x
3 2
+ EG 4 (ﬂmMWl-Tg)— #(1/2) S
0 .

é(r+%)dr]. (4.6.9)

0

Droof. We set

1/2 x+%—s
0(x) = g S w3(s,y)dy

0 x-%+s

1/2
p(x) = S [wg(s, x+%-s) —W3(S, x-%-i-s) ds .

0
Note that p(x) = 6'(x) and by symmetry, we have
p(x) = Ux) + YU-%)

with

1/2
Uux) = g w3(s, x+§-s)ds
0

By (4.1.9) and (4.6. 13) we have

]
co [

1/2
Ux) S [Bx+ %) + flx+ % 28] 3 ds

0
x+l
1 ,3 3 42 1
= Eé(x+%)+1—6¢(x+'2‘)g é(r)dr

x-3

1
3 1 X+§2 1 X+23
+§¢$(x+§) é(r)dr+ﬁ f(r)dr.
2

0O =
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. 3 2
Since ¢ and §° are odd and ¢~ has period 1 it follows that

1

1,3 1
U +-2 = L4 (x+§)+%¢(x+%) #2(0) dr .

0

By (4. 6.12) we obtain
1
0(0) = §¢3(1/z) + %,6(1/2) 62(x) dr .
0

Since 6(0) = 0, by integrating (4. 6. 14) we find

X 1 X

00 = 5| £+ Dar+ 2| Poar| perdrar

0 0 0

Finally, from (4.6.6), (4.6.10), (4.6.11) and the symmetry we deduce

H(1/2, ® =

DN =

h(1/2, ©p(0) - %mx)

A combination of (4. 6.2) and (4. 6. 15) - (4. 6. 17) finally yields (4.6.9).

We now derive simple consequences of Theorem 4.6.5.

(4.6.14)

(4.6.15)

(4.6.16)

(4.6.17)

Corollary 4.6.6. Assume that ¢'(0) = 0. Then for k small enough, first crossing

occurs away from the boundary.

Proof. We write (4.6.9) at x = 1/2. Since ¢'(0) = (1) = 0 we obtain

1/2 1/2
1

H(1/2, 1/2) = - —

16 16

0 0

<0.

Hence by Proposition 4. 6. 2, the first crossing cannot occur at the boundary.

¢3(r+%)dr -2 ¢$(r+é)dr <

562(1') dr

2 .
Remark 4.6.7. Corollary 4. 6.6 applies to ¢(x) = sin"(mx), and the conclusion fits

with the numerical results (Table 2).
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Corollary 4.6.8. Assume that

$(x+ 1)
V x€]0, 1/2(, m >x (4.6.9)

Then H(1/2, x) >0, V x€]0,1(, hence as k tends to 0, the first crossing occurs

arbitrarily close to the boundary.

Proof. We have

¢"(x+%) 3 x 5 1 5 X 5
/2 (1/2) - \ #°(x+ E)dr > xp(1/2) -\ 4 (r+%)dr
0 0
x
3 3 1
Z [¢ (1/2) - " (x+ Eﬂdr ,  Vxelo,1/20 .
0

. 3 3
Since for all r€]0, 1/2] we have ¢°(1/2) > ¢ (r+ %), the first term in the right-
hand side of (4.6.9) is positive. Similarly, the second term in the right-hand
side of (4.6.9) is also positive and the result follows by applying Proposition 4. 6. 3.
1)

Remark 4.6.9. Corollary 4. 6. 8 applies to ¢(x) = x(1 -x) and its conclusion fits with

the numerical results (Table 2).

Remark 4.6.10. In the extreme case where "¢"(1/2) = -0, we would find

H(1/2, x) <0 for all x€]0,1(. Therefore formula (4.6.9) also gives a heuristic

explanation of the result obtained in Section 4. 4.
To conclude this paragraph, we now check formula (4.5.5) of Lemma 4.5.5.

Corollary 4.6.11. When ¢(x) = sin(mx), we have

H(1/2, 0 = 2o sin'(m) . Vxedo, 10 . (4.6.18)

Proof. By applying (4. 6.9) and reducing the terms we obtain
X X
1 1 3 O\ 1 3
H(1/2, x) = Tom sin(mx) - 6 | °°8 (mr)dr = T [cos(7r) -cos™(mr)] dr
0 0

(cont'd)
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X X

-1 .2 L\ 4.3 1 .3
= 1g | sin (mr) cos(mr) dr = 287 \ dr [sin (mr))dr = 2a, Sin (mr) . 1]

0 0

Proof of Lemma 4.5.5. Formula (4.5.5) is indeed an immediate consequence of
(4.6.18) and (4.6. 4). 1]

5. THE NUMERICAL RESULTS

9.1. Description of the scheme. Evaluation of the error.

We employed the explicit finite difference scheme described in KUO PEN-YU
L. VAZQUEZ [15] which is

£l

k+1 k - -
0 ) - 200x) +u” ) _ uk(xiﬂ) —2uk(xi)+uk(xi_1) . P ) -F @ 1))
(6t)2 (6x)2 uk+1(xj) - uk—l(xj)
-0 (5.1)

4
with F(x) = x /4. We imposed the boundary conditions uk(O) = uk( 1) = 0. From
the convexity of F it is easily seen that for any initial data u0 and ul, the dis-
cretized problem admits a unique solution, regardless of the size of 6t and 6x

(compare L. VAZQUEZ [26)).

The convergence and stability of this scheme have been proved in [15]. Our
boundary conditions require only an obvious change of the discrete Sobolev spaces
considered in the proof. At each step, the implicit problem was solved by means
of Newton's method. We always assumed an initial speed equal to 0, which
corresponds in the continuous problem to a solution which is an even function of t.
Therefore, to insure the maximum accuracy, u = was computed from the initial

datum u0 by (5.1) (with k = 0) on imposing the condition ol = ul. Finally, the

computations were performed in double precision with éx = 0.02 and 6t = 0.01.

Several experiments have been done in order to estimate the error due to the
method. We first considered the discretization of the d'Alembertian operator. We

compared the solution of the discretized linear problem with the analytic solution of
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the linear continuous problem. For the initial datum 10sin(7x) and 0<t < 100
(i.e., 10,000 time steps) the mean error is 0.078 while the maximum error is
0.38 at time 99.51. We also computed the error coming from the approximation
by Newton's method. Again with &L = 10 sin(7x) the solution of (5. 1) was computed
up to t = 100 and then backwards to t = 0. After these 20,000 steps of computa-
tion, the departure from the initial datum did not exceed 1.05° 10-10. Therefore

we can reasonable expect that the long term computations (up to t = 100) described

in this paper are significant.
5.2. The results

5.2.1 Table 1. Here uO(x) = 10 sin(mx). We have been investigating the values
0
of t in (0,100) for which y(t) = [u(t) -u ]|00/ ||u0||00 is less than 0.05. We found

fifteen sequences of consecutive times. In Table 1 we give the time of each
sequence corresponding to the smallest value of y(t). For completeness, we also

tabulated the corresponding values of

0
(t) -
"u e uH(l)(O, 1) [u(t) ) .
z(t) = “ 0 u and w(t) = -"—On-— .
u
: H(l)(O, 1) 4

5.2.2. Table 2. We considered 3 cases:

L = ksin(m . 0@ = ksinXm ,  w® = kdl-% .

In each case, we computed the solution for ke{l, 5, 10, 20, 30, 50}. For each of
these 18 examples, we indicate in Table 2 the value of the crossing time tk. of
course what appears in the table is in fact the first time step Gk greater than or

and t we give in Table 2 the location of the

k k
points in 10, 1{ where u(tk, x) <0. Three different situations have been observed.

equal to tk. By identifying 6

Invisible: u(tk,x) < 0 for all x€)0,1(.
Boundary: At time tk’ the solution is positive everywhere except near xe{O, 1}.

Center: At time tk the solution is 0 near x = 0.5 and positive elsewhere.
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TABLE 1

t y(t) z(t) wit)
0 0 0 0
2,48 0.048 0.174 0.040
10,69 0.014 0,063 0.011
13,17 0.023 0,087 0,020
21,36 0.030 0.120 0.026
23. 85 0.020 0,090 0.016
34, 53 0.019 0.085 0.017
45, 25 0.033 0.148 0.031
47,74 0.044 0.192 0.037
58, 46 0.017 0.064 0,013
69. 16 0.021 0,103 0,019
71.64 0.020 0.084 0.016
82, 36 0.046 0.161 0.041
86. 45 0.029 0,097 0,022
99, 64 0.024 0.091 0.019
TABLE 2
Initial Datum
2
k k sin(mx) k sin” (7x) kx(1 -x)
tk Location tk Location tk Location
1 0. 49 invisible 0. 45 center 0.50 invisible
5 0, 32 center 0.29 center 0. 48 boundary
10 0.18 center 0.18 center 0. 42 boundary
20 0.10 center 0.10 center 0,33 invisible
35 0.07 center 0.07 center 0.24 center
50 0.05 center 0.05 center 0.15 center
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5.2.3.

The Figures
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5.3. Further observations

In order to understand the cases where the location of the first crossing
was "invisible" (cf. Table 2), we made further computations with smaller time
and space steps. We chose 6t = 0.001 and 6x = 0.005. We observed the following

phenomena.

0
When u (x) = sin(mx), the first crossing occurs near the boundary

(crossing time t,_= 0. 486).

When uO(x) = kx(1 -x),
- if k = 1, the first crossing occurs near the boundary (tk = 0, 499);
. if k = 20, the first crossing occurs near the center (’ck = 0,321);
. The special configuration in the latter case led us to consider the
case k = 19. Then first crossing occurs neither near the boundary
nor near the center. Figure 9 represents the corresponding solution

u at time tk = 0. 330.
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