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This report summarizes results obtained in collaboration with J.M. Coron and
E. Lieb (see [3] and [4]); it answers some questions raised hy J. Ericksen and
D. Kinderlehrer. The original motivation comes from the theory of liquid crystals
(see 7], 18], [10]), and is well explained in other contributions to this volume.
We deal with maps ¢ from a domain o R® with values into S? which
admit a finite number of singularities. We consider iwo different kinds of
problems. In the first type of problem the location and the degree of the

singularities is prescribed; the main result is an explicit formula, when ¢ = R3,

for the minimum value of the deformation energy. In the second type of problem

the number, the location and the degree of the singularities are "free"; our main

result asserts that if ¢ is a minimizer then all its singularities have degree

+ 1, moreover, the first order expansion shows that ¢ (or -4) acts like a
rotation near every singularity - a fact which agrees with experimental and

numerical evidence (see [5] and [6]).

1. Prescribed Singularities

Fix N points Ay, Ap, ... Ay in R? (the desired location of the
N

singularities). Consider maps ¢ which are smooth on RS U [ai} , with values
i=1

in S2 , and with finite energy , i.e.

2
E(¢) = Rfa lve] " < o

[The most general energy of interesti in the theory of liquid crystals is

E(¢) = Ky f (div¢)2 + Ky f |pecurlo|? + Ky f l¢. curle|?



which is equivalent to E(¢) when K1 =K, = K3 =1 ; 1t is an interesting open

problem to extend our results to E].

The fact that E(¢) < = does not imply that ¢ is continuous at the points

a; - A typical example of a ¢ with a singularity at x = 0 and locally finite

energy is ¢(x) = x/|x]| .

The degree of ¢ at a, , deg(¢,a1), is defined to be the (Brouwer) degree

of ¢ restricted to any small sphere around a; - The class of admissible maps

consists of

N
£={¢ e CYR® \ U {a,}; $2)| [ .|ve|? < » and deg(s,a;) = d, }
c_q i 3 i i
i=1 R .

where the di s are given integers (positive or negative). [Experimental
evidence shows that the only observed degrees are + 1 and the reason will be
explained in Section 2 ; but, a priori, it makes mathematical sense to consider
all possible integers].

Note that if the class £ of admissible maps is not empty, then we must

have

. N
(1) E d; = 0

because the assumption [ 3lv¢|2 < » implies that, in some weak sense, ¢ tends
to a constant at infinisz and therefore the total degree must be zero.
Conversely, if (1) holds, then £ is not empty (this follows from the
construction below).

Our purpose is to investigate the least deformation energy E needed to
produce singularities of assigned degree at a prescribed location, namely,

(2) E= Inf [ |vg|? .
b e &

The main results of Section 1 are the following:



Theorem 1 E = 84L

where L s the length of a minimal connection (a notion which will defined

later).

Theorem 2 The infimum in (2) is not achieved. If (¢n) denotes a minimizing
sequence, then there is a subsequence (¢nk) which converges to a constant a.e.
and such that |v¢nk|2 converges in the sense of measures to 8q § Where C s
some minimal connection and GC is the one-dimensional Hausdorff measure uniformly

distributed over C .

In order to explain the concept of a minimal connection it is convenient to

consider first some simple cases:

Example 1, The system consists only of two points a 2, with degrees +1 and
-1 . This basic example will be called a dipole . Here, L = |a1 - a2| is the
distance between the two points and 8 is the uniform one-dimensional Hausdorff
measure of the segment [al,az]. It is not surprising, from dimensional analysis,

that E has the homogeneity of a lengtih.

'

Example 2 The system consists of many points (ai) and all the degrees d1 3
are + 1, Because of assumption (1) there are as many pluses as minuses. We
relabel the points (ai) by distinguishing the positive points Pys PoeeeDy and

the negative points Ny s Noeealy ©

Here,

3 L= M -0 ]
(3) a" 121 |P1 o(1)

where the minimum is taken over the set of permutations ¢ of the integers
{l,z,ock} [
A minimal connection is, by definition , a union of segments

k

C=1U

i Coys noge)?

1



where o is a minimizing permutation in (3). There may be several minimal

connections.

Theorem 2 says that if (¢n) is a minimizing sequence, then all its energy tends

to "concentrate" near some minimal connection.

Example 3 . In the general case where the di‘s are any integers one proceeds as
in Example 2 except that the points a; are repeated according to their

multiplicity |d1| .

Remark 1  There are varianis of Theorem 1 when R3 is replaced by a domain @q

and the class of admissible maps consist either of

k
51 = {seciaN U fagbs S?)| [ |ve| %<, deg(4,a;)=d;}
i=1 a

or of

k
5 = {6 € Cl(ﬁ \\1U1{a1}; S2Y| [ |vel %=, deg(¢,a1)=d1 and ¢ is constant on aq }.
= Q

For example, in the latter case the formula is

E, = Inf [ |vg|® = 8r L,
peE &9
where
k
L, =Min ¥ d_(p; o n )
2 o il o " o(i)

and dn(p,n) denotes the geodesic distance between p and n within o (see [4]).

Remark 2 One may conceive of other problems where the energy has the

homogeneity of an area. Consider, for example, a fixed Jordan curve T in )R3 .

The class of admissible maps consists of

E= (g eCH{RIN 15 SN [ ,|78] < = and deg(s,r) = 1},
IR '



where deg(¢,T) 1is the circulation of ¢ around T i.e. the degree of ¢

restricted to any circle which 1inks with r. The energy

ECe) = [ ,lvel
iR

has the dimension of an area (instead of a length).

We conjecture that

(4) E = Inf [|vg] = 24A
¢ef

where A 1is the area of an area - minimizing surface spanned by r . (Formula
(4) is established in the case where r 1is a planar curve, see [4]). This is
just the analogue of the dipole formula. One may imagine a similar problem for a

collection of oriented curves (ri) » the class of admissible maps being

k
E = {¢ eCl(R3\iU1 ri;s‘)| [ lvg] < = and deg(s,T;) = d,}.

Sketch of the proof of Theorem 1. The proof is divided into iwo distinct parts:
Part A : The upber bound E < 84L
Part B : The lower bound E > 84L .

Part At The upper bound E < 84l.

The main ingredient in the proof is a basic dipole construction summarized in

Lemma 1 Consider a dipole {p,n}. Then, for every ¢ > 0 there is a map

b, € ¢ (relative to the dipole), fi.e.,
b, € CHR? N\ {p,n}iS?) , deg(s_, p) = +1 , deg(s_in) = -1

such that

(5) f |V¢€|2 <8r |p-n|+e



and

(6) ¢, is constant outside an ¢ - neighborhood of the segment [p,n].

Proof Without loss of generality we may assume that

p = (0,0,1) and n = (0,0,-1) . Let m: RZ +S2 be the inverse of stereographic

projection from the north pole N . It is easy to check that

[, |vn|? = 8x .
R

By a small modification of 1 near infinity we obtain a smooth map w, : R? + 52

such that
.fIVwe|2 < 8n+ e

W, is constant (=N) far out

deg w_ =1 ( R2U{=} 1is identified with S$2).

After a dilation we may further assume that W, is constant outside the unit
disc (note that f|Vwe|2 is invariant under dilations).

Next, consider the map ¢4 :lR3 +S2 defined by
N if lz] > 1

o(x,y,z) =

w (22—, L) if |z <1

and the sequence of maps 0 :RY » 52 defined by

8,(x5y,2) = ¢(nx,ny,z) .
Note that b, € £ and moreover ¢ is constant ( = N ) outside the region
Vn = {(x,¥,2) | 22 +n Jx2 + y2 <1}

which is a small neighborhood of the segment [p,n] .



We have

3¢n . n 3me ( nx ny \
8 1.2 & 1,2 1-22
3 . N Bug (DX ny_
%y 1-22 ¥ 1.2 1-22
¥ 2nz < dug L Yy 4 due  nx ny
2 2 a 2 1 2 .y ( 2 ] 2) o
az (1-z°) X 1-z 1-z ¥ 1-z 1-z
So that
nz 77 2z .
—_— ¢ — /x“+y° C < C in V
8z (1-22)2 € 1-22 € n °
where C_ = Max |Vm€| . It follows that
[ . 1 |2 <2, | I2 + 4 2 f z? dxdydz
R3 n R2 € € vn (1_22)2

(in order to compute the first two integrals one uses the change of variable

nx , n= ﬂ! ) .
2 2
1-2 1-2

C'—‘.

Therefore we obtain

. 96,17 <2 (8n+ ¢) + 3% €2 ;-15-
and the conclusion follows by choosing n large enough.
k

In the general case, let C =181 [p1 . "a(i)] be any minimal connection,
On each segment [pi’ n0(1)] consider the basic dipole construction as above and
then glue these objects. Note that they glue well since ¢ is constant (=N)
outside a small neighborhood of [p,n] and also since two segments have no
self-intersection because C 1is a minimal connection. [Two segments may overlap

or intersect at their end points but these cases are easy to handle].



Part B: The Lower Bound E > 84L .

We have to prove that

(7) [ |vel?2 > 8aL ¥ ge E.

For this purpose it is extremely convenient Lo associate with every map ¢ ¢ & a

vector field D (a kind of electric field) defined by its coordinates

(8) D = (4:6,.0, » 6:6,.0, » 60,.8) .

The vector field D has some remarkable properties. First, we have

(9) ID| <-;- | 7|2 on R3 .

Indeed, choose a coordinate system so that
¢ = (0, 0, 1)
and then, since |¢| =1 , we may write

¢x = (al ’ bl ’ 0)
= (32 ’ bz ’ 0)
¢Z = (33 ’ b3 » 0) .
Therefore we find
D=a _b
with a = (al, P a3) and b = (b1 » by, b3) .

It follows that

1 1
Dl < lal Ib] <3 (lal® + |b]?) gy lvel® .



Next, we have

N
(10) div D = 4y 151 4 8, inof) ' (R?) .

[Note that D ¢ L! since _f|v¢|2 < », and thus (10) makes sense in 49' ].
Indeed, it 1s easy to check that
N
div D=0 in R¥\N U Ja,).
i=l
In order to prove (10) it suffices to observe that if ¥ 1is any smooth closed

N
surface in R3\ U

{ail » then the flux of D across | is given by
i

1

[ D« vdo a [ J, do
) v

where v 1is the normal to ¥ and J¢ is the Jacobian determinant of ¢
restricted to J ; on the other hand the degree of ¢ (considered as a map

from § to S2) is given by an analytic formula (see e.g. [13])

1
d 2 = J d .
PR P

" It is a surprising fact that we may now ignore the map ¢ and work only with the

vector field D . More precisely, we claim
(11) [ ID| > 4x L

N
for every D e L! (R}, IR®) such that div D = 44 yl dy &y -
i=

Note that, in view of (9) and (10), (11) implies (7). Let ¢ :R?® +RR be any
function with "c"Lip <1, so that vgn | < 1. We have

L
N
) d1 ;(ai) .

lel)‘er-V(:A'N
i=1



Relabelling the points (ai) as positive and negative points and taking into

account their multiplicity we may write

N k
§ ody ¢ (ai) = 7 (zlpy) - zlny)) .
i=1 =1

Claim (11) is a consequence of the following general Lemma:

Lemma 2 Let M be a metric space and let Pys Pos eee Py and Nys Moy eeely

be 2k points in M

Then
k
(12) Max {5 (c(p1) - c(n1)) l =1L
z:M+IR i=1
";"Lip< 1
where ey, = Sup  Jz(x) - zly)| / d(x,y)
X Y
k
and | L = Mlp 121 d(pi’ no(i)) .

Proof of Lemma 2 It is clear

k
5 (zlpy) - xlny)) < 121 d(py » Mgy -

for every.function ¢ with "¢'L1p <1 and every permutation o . It follows
that
Sup { S(elpy) - glng))t < L.
HC”L1p< 1

In order to prove equality it suffices to construct a function ¢ defined only
k k

on the set Q= (U {p;}) U (U {n;}) with ngn. <1 on Q and
1=1‘ 1 1=1 1' L‘lp

such that



k
121 (C(pi) - C(“i)) =L

[Because such a function ¢ may be extended to all of M by letting

Z(x) = Inf | ¢ly) + d(x,y) }
y €Q
which has all the required properties].
The existence of ¢ 1is a consequence of two facts:
a) A min-max equality of Kantorovich [12] (see also [14]) which - in our special

situation - says that

k

Max { Y(e(py) - z(ny))} = Inf Y ooags d(py,ny)

¢ Q R ‘ ‘ (aj;) e A i,4=1 9T
“;'Lip< 1

where dl denotes the (convex) set of doubly stochastic matrices, i.e.

k k
a;; »0 vi,j Vaj; =1 Vj and  Yaz; =1 V¥
ij * i=1 13 j=1 13

b) A classical result of Birkhoff which asserts that the extreme points of 4 are

the permutation matrices.

For the convenience of the reader we present a direct elementary argument.
After relabelling the points (n1) we may always assume that L 1is given by
5 )
L= 7§ d(pgy,ng) o
§=1 1274
Set d; = d(p1,n1) and consider A = C("i)’ 1 <i <k, as being the unknowns

so that c(P1) =t d1 . We are led to the following system of inequalities

which expresses that IC'Lip <1 on Q:

(131) | Ai - Ajl <d (ni, nj) V1,j

(132) I (Xi + d1) - (Aj + dj)‘ < d(Pi’ Pj) Vi,j



(13,) | (4 +dg) = a5 | <dlpys ny) Voo,
which in turn is equivalent to

(14) N ot d1 - Aj < d(pi, nj) Vi,j

[A11 the other inequalities in (13) are consequences of (14) and of the triangle
inequality]. In other words, we have to find a solution (xi) for a linear

programming system of the form

(15) A - Aj < bij Vi,j = 1,2,...k

where by, = d(pi, nj) - di .

ij
Such a system has a solution if and only if the matrix (bij) satisfies the

condition

i1 2 0 for every i =1,2,...k

b
(16) k
y b; o(i) 2 0 for every permutation o ,

i=1
which in our case, is precisely the assumption that L is the length of a minimal
connection.

Indeed, assume that (16) holds. We shall construct a solution of (15) by
using essentially the method of [1]. By a chain K we mean any finite sequence

of elements (not necessarily distinct) taken from {1,2,...k}; we write
K= {nsnps ooy}

where ¢ > 2 can be any integer. We say that a chain is a loop if np=n, and

we say that the chain K connects 1 to j if n = i and n, = j . Given a

chain K we set

S, =b + b + ... b .
K "1"2 n2n3 n

It follows from assumption (16) that SK > 0 for every loop K. This is obvious



if K is a simple loop (i.e. all elements are distinct except the two end
points) because we may apply (16) to the permutation o : Ny * Ny s Ny >N,y ..
N1 ™M with all other integers being invariant. If K is a general loop we
may split it as the union of simple loops.

For every integer i =1, 2, ... k , set

Ay = Inf { S | K 1s a chain connecting i to 1 }.
Note that li is well defined ( x1 > - =) since for every chain K connecting

i to 1, we have S, > - b11 (because {1, K} is a loop) . It is clear that

K
(Ai) satisfies (15). Indeed if K is any chain connecting j to 1 , then

[i, K} is a chain connecting 1 to 1 and so

which implies that Aj < h,. + AJ

The proof of Theorem 2 is more delicate (see [4].) I will only give a brief
indication in the case of a dipole {al, a2} . First, note that if B is a ball

of radius R centered at a and ¢ € c! (B \ {al; S2) with deg(¢,a) =1, then,
(17) [ 1v¢]%2 > B8R .
B

Indeed, consider the D field associated with ¢ .

We have

[lvel? >2 (D] >-2(D. v = 8xr g0)
B B B

for every function ¢ such that wven = < 1 and z=0 on 3B ; then,
choose ¢ Lo be the distance to an .L Assume now, hy contradiction, that the
least energy E is achieved for the dipole by a map ¢ . Let B1 (respectively
Bz) be a ball centered at a, (respectively az) with radius R1 (respectively

Rz) such that R1 + R, = |a1 - a2| = L . By (17) we have



[ 19l > 8xRy and [ [4]® > 8rR,
B -

and thus

[ 1el® > 8m(Ry +Ry) = 8uL .

Since, on the other hand,
2
fR3|v¢| = 8x L ’

we conclude that v¢ = 0 outside B1 U 82 . By varying Rl and Rz we find
that v¢ = 0 outside the segment [a,,a,] , so that ¢ 1{s constant on R3 -
which is absurd. In fact this argument shows that if (¢n) is a minimizing
sequence then
2

[ |ve| + 0
for every compact set K such that K [a;,ap]l =¢ . It follows that |v¢nk|2
converges to a measure yu concentrated on the segment [al.a2] . A similar

argument shows that p 1is uniformly distributed on the segment [al,az]

2. Free Singularities

3

Let @ R™ be a (smooth) bounded domain. Let g: an + S2 be a given boundary data.

We consider now the problem of minimizing the energy in the class

on a3}

1
«a

=1 ¢ enl(ais?) | 4=

where Hl(n;Sz) = {¢ e n (n; R3) | 14l =1 a.e. on o} . It is clear, by a

standard lower semicontinuity argument, that

E= Min [ |ve]?
¢ €

is achieved. Moreover, every minimizer satisfies the Euler equation i.e. the

equation of harmonic maps



- 8¢ = ¢|vel? on a .

[The Lagrange multiplier |ve|2 comes from the constraint o] = 11 . It is

known (see [15], [16]) that every minimizer is smooth, except at a finite

number of points. In contrast with Section 1, the number and the location of the

singularities is not prescribed and in fact, it would be interesting to estimate
the number of singularities. Here, singularities are free to appear wherever they
want as long as they help to lower the energy. A natural question is whether

singularities really appear. The answer is yes and there are two reasons:

1) If deg(g,20) # 0, there is a topological obstruction since g can not be

extended smoothly inside @ ; every map in the class & must have at least one

singularity.

2) If deg (g,3Q) = 0, there 1s no topological obstruction : g can be extended

smoothly inside q . A very interesting example of Hardt-Lin [11] shows that
there may still be singularities. In other words, the system is not forced

(topologically) to have singularities, but it pays for the system to create

singularities in order to lower its energy. Here is an alternative simple

example of amap g from 3Q to s2 , of degree zero, such that

(18) E= Inf rlvel2  ~ e
¢ € H(Q;5°)
¢ = g on aQ
while
2
(19) E = Inf fve| ~ 167
res 4 e cl(m;s?)
é = g on an

(with e arbitrarily small). Let @ be the unit ball with north pole N and
south pole S . Along the NS axis we place two dipoles with the same orientation:

{pysny} 1s centered at N and {p,, n,} is centered at S (see Fig. 1) .



Fig. 1

pzT

We assume that | PpL-M | = 1py, -y | = e 1is small. Using the construction

of Lemma 1 we obtain a map ¢, which 1s smooth except at the points

{p1 » N 5 Ppos "2}’ which is constant except on B(N, ¢/2) and B(S, €/2) and such
that

f |V4»t_:|2 < l6ne + 2¢.

Define g to be the restriction of ¢ to 3a, so that g is smooth and g
has degree zero. Clearly we have E < 1l6me + 2¢ (since we may use ¢, as an
admissible map).J For the proof of (19) it is convenient to use the D field
associated with ¢ ; we find

[ |vel2>2 (D] > 2 (D.vg=2 [ (Den)g do
Q Q Q an

(since div D = 0 because ¢ 1s smooth), for every function ¢ such that
tvzr < 1 . Choosing a function ¢ such that ¢ =0 in B(S, €/2) and

L
r =2-¢ in B(N, €/2) we obtain

flvel2 » 2 (2-¢) [ (D .n) .
3 N B(N, e/2)

But D . n =Jac g 1is the Jacobian determinant of g , which vanishes except



near N and S , and thus

1
— f (D . n) = deg(¢ . ) =1 .
47 30 B(N,e/2) e Pi

Remark 3 This gap phenomenon (E < Ereg) raises many interesting questions:

a) Is Ereg achieved?

b) It implies that smooth maps from B into s? are not dense in Hl(Ba;Sz) -
a fact already pointed out in [16]. More generally, one may ask whether smooth

k to S* are dense in the Sobolev space wl’p(Bk; Sl) sy 1 <p <o,

maps from B
Some surprising partial results have been obtained by F. Bethuel and X. Zheng
[2]. Assume for example k = 3 :

if 2=1, smooth maps are dense 1iff pe [2,)

if =2 smooth maps are dense iff pe [1,2) U [3,)

if 253 smooth maps are dense for all pe [1,x) .
The main results of Section 2 are the following

Theorem 3  Assume o is the unit ball and g(x) = x is the identity map on Q.

Then ¢(x) = x/|x| 1is a minimizer for E .

Theorem 4 Assume Q is the unit ball and g : 3 + 52 is arbitrary.
Then the homogeneous extension ¢(x) = g(x/|x|) is not a minimizer for E unless

is an isometry or a constant.

Remark 4 By contrast, if we ask the question whether ¢(x) =g (x/|x|) 1is a
critical point, i.e. a solution of -aA¢ = ¢|v¢|2 » then there are many more g's

(all harmonic maps from $? to 52) .
These results have an interesting consequence:

Corollary 5 Assume q 1s any domain and g 1s any map. Let ¢ be a minimizer



for E , then all its singularities have degree + 1 . Moreover, for every

singularity Xg there is a rotation R such that
X = X
#(x) ~ + R(—————) as x +x .
= Ix=xg | °
Corollary 5 is derived from Theorem 4 by a standard blow-up procedure.
Assume for example x, =0 ; as e +0, o(ex) » ¢(x) (see [15] and [17])
which is a minimizing harmonic map and which depends only on the direction

x/|x| . It follows from Theorem 4 that y(x) = +Rx / |x| .

Sketch of the Proof of Theorem 3 Our proof is rather indirect and it would be
interesting to find a different argument. An obvious calculation shows that the

energy of x/|x| 1s 8w . Therefore, we have only to prove that
2 1 2
(20) []ve]” > 8 Voe H'(258°) , o(x) =x on an.

It suffices to establish (20) for ¢'s which are smooth except at a finite
number of points. The reason is that, by [15], every minimizer has that property;
alternatively one may also invoke a result of [2] which asserts that such 4's

are dense in H! . Consider such a ¢ and its D field. We have

flvel2 > 20| > 2 Devg=2 [ (D an)g-2f (divD))g
Q Q Q oN Q

for every 1 such that ol < 1.

N
But D e« n = Jac(¢lan) =1 (since ¢(x) = x on 3q) and divD=7F¥ d1 5
i=1 2
N
with d; e Z? and ¥ d1 =1,
i=1

Therefore, we have

N
1
Lorgwl? > L f cdo- T d; () .
Q 4y : i i

8 1) i=1



Lemma 3 below (applied with M = g and dy = 3-1—— do ) shows that
"

1
8 f |V¢|2 > Mi"__"l“ f |y-c|do =1
n Q yen 4 s

Lemma 3 Let M be a compact metric space and let y be a fixed probability

measure on M .,

Then
Inf Max { frdy = fzgdv} = Min [ d(x,y)du(x)
vea :M »IR Yy eM
";"Lip <1

where the infimum is taken over the class & of all measures v of the form

y d

v = )
finite

s, » with d, eZ and Vd, =1 .

i ay

Sketch of the Proof of Lemma 3 It is clear that Inf Max < Min . Indeed, if

v y
we choose vy = §y we obtain

frdy = fzdv = [ (g(x) = z(y))du(x) < [ d(x,y)du(x) .

For the reverse inequality, it suffices - by density - to consider the case where

u s a discrete measure with rational coefficients, which we may always write as

(the points ¢y need not be distinct).
Fix a measure v e 4 ; relabelling the points (ai) as positive and negative

points and taking into account their multiplicity we may write



We have to prove that A > B where

k k-1 m
A = Max [ fm ¥ 6. - m Y &6 -V 6.)c}
hogh g, < 1 j=1 PJ j=1 N j=1 Cf
and
m
B = Min 7 d(c;sy) .
y e M i=1

It follows from Lemma 2 that A = L , the length of a minimal connection of a
system which consists of mk positive points and mk negative points. The

positive points are the points (pj) counted with multiplicity m . The

1 ¢j <k
negative points are the points (nj)1< j < k-1 counted with multiplicity m

together with the points (Ci) counted with multiplicity one. Finally we

1 <icm
invoke the following Lemma from Graph Theory (whose statement has been conjectured

by us and proved by Hami doune-Las Vergnas [9])

Lemma 4 Consider a family of k boys Bl’ 32 ...Bk and k girls Gl’ Gz“’Gk.

Assume é} is a graph connecting the boys and the girls such that, in %} , every
boy is joined exactly to m girls and every girl is joined exactly to m boys.

Then, given any.girl G there is some boy B joined to G by m disjoint paths
in i? .

Proof of Lemma 3 completed
The boys are the points Pys PosesePy 5 the girls Gl’ GZ""Gk-l are the points
m

Nys Nos eeel g s while Gk consists of 1Bl{c11 . The graph ;} is any
minimal connection.

It follows from Lemma 4, that given the girl G=Gk , there is some boy, say
Py such that 3} contains m disjoint paths joining Py to all the points

(Ci)l <i<m*® We conclude that

m m
L> ¥ d(c1.pz) > Min ) d(cy»y) = B .
i=1 yeM =1



The proof of Theorem 4 is quite involved and I will not discuss it here

(see [3]). Rougly speaking, there are two steps:

Step 1 If |deg g| > 1 one constructs a map ¢ with more than one singularity

and with energy lower than g(x/|x])

Step 2 If |deg g|] =1 and g 1s not an isometry, one can lower the energy by

"moving the singularity" towards the center of mass of |vg|2 i.e. [ |vg|? oda.
30
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