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Introduction and Summary

This paper is based on a talk given by the first author at the I.M.A. in
February, 1986 but incorporates improvements discovered during six later repiti-
tions. The second authour should not be held responsible for the siyle of pre-
sentation of the results bul should be given credit for discovering the results
independently in the Fall of 1985, The discussion helow is equal to the talk
with most of the details of the proofs filled in, but we have tried to preserve the
informal style of the talk and concentrate on the "main ideas" rather than
giving complete details of the proofs. If we forget about definitions then the
results can be summed up in a few words "Everything Durrett and Griffeath (1983)
proved for one-dimensional nearest neighbor additive groth models is true for
the corresponding class of finite range models, i.e., Lhose which can be

consiructed from a percolation structure."

This author was partially supported by an NSF grant and an AMS “mid-career"
fellowship.

This author was partially supported by CNPq (Brazil) and NSF during the
academic year 1985-86 which he spent alt the Rulgers Math department. He
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We will describe the models we consider in a minute but even before we do
Lhis it is easy to see the main poinL of our generalizaltion: tLhe words nearest
neighbor have been replaced by finite range. This generalization has two bene-
fits. The first and most obvious it thal il greally increase the number of
systems to which our results can bhe applied.

A second benefit is that we are able Lo improve what is known about the
discrete time contact process (and other models) in Z2. To be precise results
which Durrett and Griffeath (1982) could only prove for p > pC(Z) the critical
value for the process on the integers Z can now be shown for
p > pc(Z x {-Ly...,L}) for any L < o, Presumably

lm P (Z x {-L,...L}) = p_(2).
(and then our results hold for all p > pC(Zz)) but we have no idea how Lo prove
this, and in any case we are getting way ahead of ourselves. We will discuss
the last topic in Section 6 but before this a number of other things must be
done (e.g. defining pC(Z)). In Section 1 we will describe the class of models
for which we can prove our results. These "generalized percolation processes
(gep.p.s)" in Zd are generalizations of oriented percolation in Zd+1 and
have two special properties (additivity and duality) which make them easier to
study than other discrete time growth models.

In Section 2 we will begin out study of g.p.p.'s by describing the
questions we want to study, and the set up we will use to formulate our answers.
The real work begins in Section 3 when we prove that "edge speeds characterize
pc“. This is one of two keys to developments that follow, Lhe other being the
renormalized bond construction described in Section 4. That construction, in
the words of Durrett and Griffeath (1983), "was inspired by work of Russo and
Kesten and allows us to reduce results concerning supercritical contact pro-
cesses Lo corresponding results about l-dependent oriented percolation with p
arbitrarily close to 1",

Once one has the two resulis in the lasi paragraph one can, following Lhe

pattern of Durrett (1984), obtain a large number of results. In Sections 5 and



6 we will prove two of the most important of these: Lhe complele convergence
theorem (which is called complete because il describes the limit in distribution

starting from any initial configuration) and the strong law for lgﬁ

|, the
number of particles at time n starting from a single particle at O.
Exponential estimates and large deviations results like those in Sections 10-13
of Durrett (1984) could also be proved but no new ideas are needed so we will
leave this as an exercise for the reader.

Given the dates of the papers with the two "keys" to the proof the reader
may ask why he had to wait unitl 1986 for the results we have here. The answer
is simple: the approach of Durrett (1980) relies on a "coupling" result which
is a special feature of the nearest neighbor case (see Lemma 3.4 in Nurrett
(1980) or (6) in Section 3 below) and only recently did we have the idea to go
around this step using the renormalized bond construction (Note: to close the
circle, when we are done we can go back and prove that the coupling result is
almost correct, see Sectiion 6).

Having extolled the virtues of our resulis it is only fitting tc close this
introduction by listing their weaknesses. The firsiL and mosiL obvious is that we
are able to prove our results only for generalized percolation processes and not
for Lthe more general class of monotone (or attractive) growth models. (If these
terms are unfamiliar they will be defined in Section 1). Accomplishing that
generalization will require a new idea and not just rearranging the old ones.

A second more technical defect is that we have only proved the result in
discrete time. The reader will see the reason for this at the end of Section 4
when we use the green bonds to tie the blue paths together. This part of the
argument can undoubtedly be done in continuous time hut would requires many more
technical details, since continuous time paths can move arbitrarily fast while

paths for a finite range discrete time system have a strict speed limit.

1. Description of the Models

In this section we will describe the various classes of models we will con-

sider in this paper. In all cases the sysiem will be a discrete time Markov



. . . d .
chain whose state at time n is £, € Z” and which evolves accarding tn the

following rules

(1) Pix e g iylg)) = alg (x +y)ieee &lx +y))).

d
where k < = Lyl,...yk} € Z° and we have used coordinale notation for the random

setl: gn(x) =1 if x e £, and gn(x) =0 if x e £ .

(i) given £y the state at time n + 1 is decided by flipping indepen-
dent coins, i.e. for any Jj and xl....xj € Zd
K3 . J
p(x; e g, for 1 <i <jlg) = izl P(x; € Ep4qlEn)-

Systems which satisfy (i) and (ii) are what we would call discrete time

particle systems bul are often referred to in the physics literature as stochastic

cellular automata. (See Kinzel (1985)). If we impose Lhe additional condition

(iii) g is monotone i.e. if x <y coordinatewise then g(x) < g(y)

then we say the process is monotone or "attractive"
and if we insist in addition that
(iv) there is no creation from nothing, i.e. g(0) =0

then we have the class of processes mentioned in the title of the paper:
stochastic growth models.

If one thinks (as we do) of the poinis in £, as being occupied by a par-
ticle (think of an animal or better yel a plant) then assumption (iv) is clearly
natural. Assumption (iii) is also reasonable. The probability of a birth
should be an increasing function of the occupancy of the neighbors (unless
severe overcrowding cause higher death rates). In any case, assumption (iii) is
very useful (see Liggett (1985), Chapter III, Section 2) and for most of our
results we will have Lo restrict our attention to an even smaller class of pro-
cesses which are the discrete time analogues of the additive process of Harris

(1978) and Griffeath (1979).



These generalized percolation processes are constructed from a "graphical
representation". Specifically, we make z2 into a random graph in which the
oriented bond (x - y,n) + (x,n + 1) 1is open (resp. closed) with probability
f(y) (resp. 1 - f(y)); bonds ending at different sites are independent; and
the system is translation invariant (so the joint distribution of bonds ending
al a given site is always the same).

To construct the process from this graphical representation we let

g? = {y: tlhere is a path of open bonds from

(x,0) to (y,n) for some x ¢ A}.

The subscript and the superscript on £ indicate that iL is the state aL time

n when the initial state is A. To explain the name and the right hand side we
observe that gﬁ is the sel of wet sites at level n if we imagine there is a
source of fluid at (x,0) for each x € A and the fluid can travel only
through open bonds.

A few examples should help clarify the definitions.

Example 1: Oriented bond percolation. In this model f(y) =p if y ¢S

where S 1is a finite set and all the bonds are independentily open or closed.
The name comes from Lhe facl that in the special case S = (0,1}, gno is what
resultls when we take the usual oriented bond percolation process in 22, map
(x,y) + (x,x +y), and look at {z: (z,n) can be reached from (0,0)}. For

more on this see section 2 of Nurrett (1984).

Example 2. Oriented site percolation. In this model f(y) =p if y e S

where S is a finite set (like Lhe last model) but this time either all the
bonds (x - y,n) + (x,n + 1) are open with probability p or all are closed
with probability 1 - p. Again Lhe name comes from the fact thal in the special
case S = [0,1},5ﬁ is what resulis if we consider the points in 72 (called
sites) Lo be the objects which are open or closed, define a path Lo be open if
il contains no closed sites, map (x,y) + (x,x +y), and look at {Z: (z,n) can

be reached from (0,0)}.



Examples 1 and 2 are extireme cases and a large number of examples can be
constructed by combining these iwo. 1In Lhe nexlL two examples we will consider
what happens when g depends on two or three values of gn(x +y) Lo try to
convince the reader that "many interesting examples bul by no means all growth

models are g.p.p.".

Example 3: Two-site g.p.p. Consider systems in which

Pix e g 18 = alr (x +y)), £ (x +y,))
where Yy *Yy, are in Z. [ claim that this model is a g.p.p. if and only if
g(0,0) =0
9(0,1),9(1,0) < g(1,1) <g(0,1) + g(1,0).

To see this observe that if bonds bl = (x - yl,n) + (x,n + 1) and

b2 = (x - yz,n) + (x,n + 1) have
b1 b2 with probability
open open a
open closed b
closed open c
closed closed 1 -a+b+c¢)
then
g(1,1) =a+b +c
g(1,0) =a+b
g(0,1) = b + ¢

so the conditions above are necessary and sufficient to have a,b,c >0

(a +b+c =g(1,1) so the sum is automatically < 1).

Example 4. A simple class of 3 site g.p.p. If we look at the general model on
three sites then we gel a bewildering number of conditions so Lo simplify things

we Wwill only consider what we call sum rules



P(x € En+1|£n) = fIEn(‘\ {X - l,x’x + 1}'

where |A| = the number of points in A, (= the sum of the coordinates

gn(x - 1) + gn(x) + gn(x + 1)). Calculations similar to those in the last

example show that these processes are g.p.p. if and only if

f3 =a+ 3 + 3
f2 =a+ 3 + 2
fp=a+2+c

for some a,b,c »0 with a + 3b + 3c < 1. The last condition is automatic

since f3 < 1, and for the first three to hold we must have

The inequalities above imply

0 < fl < f2 < f

fl -0 f2 - f

(f

3

1 f3 - f2 >0

- 0) - 2(f, - fl) + (f3 - fz) > 0,

1 2

in contrast to the conditions for two site sum rules:

0 < f1 < f2

f1 -0 > f2 - fl.

We leave il Lo the reader Lo find the general result (or see Harris (1978)).

In closing the discussion of the models we would like to note that although
we have arrived at our conditions from a desire Lo use the graphical represen-
tation, one can, after the fact, argue that the first two conditions, are not
Ltoo bad biologically: increasing the number of occupied sites should increase
the birth rate bhut each new individual should result in a smaller increase.

The third condition which says "the first difference is convex" is harder

Lo defend but it is satisfied for three site bond percolation (where



_ k
f =1 =00 -p)

increases with the range but it is comforting to note that it is always an open set.

V. The numher of nnpleaseant, conditinns we have tn accept

2. Basic Questions and Set Up

Having defined the models we want to study, the nexiL thing to explain is
what we want to prove about them. In the last section we mentioned the fact
that we think of the points in En as occupied by plants or animals so it is
natural to ask: Is P(gﬂ + ¢ for all n) > 0? (i.e. does the species have
positive probability of not dying out) and if the answer Lo the firsi question
is yes, "whal does 52 look Tike on Q= {5: ¢+ ¢ for all ny)?"

Most of the resi of the paper is devoted Lo answering the last two
questions. We will not have much to say about the first bul we will be able to
give a fairly complete answer to the second question for all "supercritical"
g.p.p. It will take a few minutes Lo explain what we mean by the word in quota-
tion marks, so will postpone that for a moment and set the stage by describing
what sortis of answers we have for the examples described in the Tlasl section.

In oriented bond percolation (example 1) the fraction of open honds increases Lo

1 as p does, so it is natural to let
Pe = inf (p: P(gz # ¢ for all n) > 0}.

The first thing to be resolved is: "Is P € (0,1)?" This question is

answered by

Proposition 1. Let |S| = the number of points in S.

If |S| »2 then T%T <P, <-§ .

Proof. For the left side compare with a branching process. For the right see
e.g. Durrett (1984), Section 10.

Computing P has turned out to be a difficult problem (see Durrett (1984),
Section 6) bul somewhat surprisingly il is possihle Lo prove results valid for all
P> P, without knowing what P is. This was done in Durrett (1984) for the

case S = (0,1} (or = {-1,1}) and will be done for general finite S below.



Having heard us say "supercritical" above the reader has probably noticed
that the results above are only stated for p > Pe and no mention is made of
the critical case p = Pee Presumably P(nm) =0 at P. SO the asymptotic
behavior of éz is trivial there, but this has turned out to be highly nontri-
vial to prove (and is an importani open problem).

The situation for site percolation is the same as for bond percolation so
we turn out attention now Lo Example 3: 1iwc site models. Suppose for simpli-
city that {yl,yz} = {0,1} and we have a sum rule, i.e. g(1,0) = g(0,1) = Py
g(1,1) = Py By results in Section 1 this process is a g.p.p. if and only if
Py <Py < 2p1 or, geometrically, (pl,pz) lies in the triangle with vertices

(0,0), (1,1) and (l2,1) (see Figure 2.1).

N

FIGURE 2.1

The processes witlh Py = 1 and Py = p are easy to understand. In this
case if we draw a picture (see Figure 2.2) then il is easy to check that (for
0 <p <1) we have
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0 with prob 1-p.

Figure 2.2,



0 . 0 0 s 0
(1) En always equals {x: ln < X < rn}, where ln = inf En and

0 (6]
= su .
rn P En

(2) r_is a random walk which moves x + x + 1 with probability

3> O

p and x + x with probability 1 - p.

(3) na is a random walk which moves x + x wilh probability
p and x +x + 1 with probability 1 - p
and

0

(8) the increments r° r and g

0 .
n+l - M N+l " Qn are independent

on {éz # ¢).

s 0 _ 0 0
For (4) observe that if £, {(x} then {x € £n+1} and (x + 1 ¢ En+1} are
: 0 0 _ o _ 0 _
independent and these evenis are equal to {2h+1 - ln 0} and {rn+1 "n 1y.
The case |5ﬁ| > 1 s easier.
Combining the last four observation we see that the number of particles
_ o _ 0
Iy = (1 + " Qn)1

(& #4)

is a random walk starting from 1 and run until it hits 0. The mean of rg

is p, the mean of 23 is 1 -p,and p>1-p if and only if p > 1, so
from the last three facts il is easy to see that p_ = o, i.e., if p < Y2 then
the increments in Zn have negative mean and P(gﬁ ¢+ ¢ for all n) = 0. On

the other hand if p > 2 then Eﬁi - Eii =c >0 and we have P(n ) > 0.

For comparison with later resulis and an earlier conjecture, we would like

the reader to observe that

and if p > P. then on @

"

?]—+p d.S.
0

'ﬁﬂ +1-p a.s.
le |




Having solved our problems when Py = 1 and Py =P it is natural to make
this a starting point for investigating the rest of the triangle (0,0), (1,1),

(12,1). Let

pl,c(e) = inf (p: Pp,e(nw) > 0}

where Pp 0 is Lhe probabilily measure for the system with Py =P and

= 9. As ¢ decreases from 1, P (8) increases (i.e. if o, < 8

P2 ,C 1 %2
pl,c(el) > pl’c(ez)) al least as long as (pl’c(e),e) stays in the set
{(pl,pz): Py <Py} of attractive interactions. [Life below the diagonal will
be the subject of a later paper].

The models with Py = 8, Py = pl’c(e) are "critical" since they lie on the
boundary of {(pl,pz): P(@_) > 0} and we will have nothing to say about them
(except that they presumably also have P(Qw) = 0). We will however he able Lo
prove fairly complete results about the models which live strictly above the
critical curve (i.e. in the shaded region in Figure 2.1).

There is a similar but more complicated piclture (which we leave for the
reader to draw) for three site sum rules (example 4) or for the general case in
example 3. In each situation the parameter space is three dimensional, there is
a lwo dimensional critical surface, and we will be able Lo prove results about
the "supercritical" models in the interior of ({p: P(Qw) > 0}.

To prove results for these supercritical models it is convenient to embed
them in a one parameter family like site or bond percolation so we will assume
that (x - y,n) » (x,n + 1) is open with probability f(y,p). In order to
prove our results we will, of course, head to make some assumptions about
f(y,p) and (even though the first author failed to mention this in his talk)
also make assumptions about how the joint distributions change as p increases.

The first and most obvious of these is
(H1) the joint distribution of the bonds (x - yi,n) + (x,n + 1) 1is stochasti-
cally increasing in p,

i.e., if p' < p then the two systems can be constructed on the same space in such

a way that if a bond is open in the p' system il is also open in the p system.



Me will need A little more than this al two points helow: we will need Lo
know that the systems are strictly increasing in p. The technical assumptions
required will be obvious when we get there so we will introduce them as they are
needed. The reader can be assured that site and bond percoaltion and the models

above with P, = 6 and Py =P will always he included.

3. Edge Speeds Characterize Pce

The monotonicity assumption we just made allows us Lo define a critical

value
p. = inf{p: P{gg # ¢ for all n} > 0}
which has the property that

if p < P, Lthen P(Qq) =0

if P> P. then P(nm) > 0.

The key to being able to prove results for all p > Pe without knowing what

Pe is, is finding a way Lo characterize Pee The answer is hinted at in the
title of the section and described below. It, like everything else in this sec-
tion, is from Nurrett (1980).

The first step in our analysis is Lo define the "right edge" by

ry = sup(;ﬁ’m’o])

and embed rn into a two parameter process by setling

Poon - sup{y: there is an open path from

(x,m) to (y + rm,n) for some x < rm}.

In words, ra v’ is the rightmostl site we can reach at time n if we pre-

]

tend all the sites to the lefl of rn, are occupied at time m, so it is clear



that

r_ and is independent of ot

Combining the last two observations with some ideas from the proof of Kingman's

subadditive ergodic theorem one can show

(1) As n + = rn/n + o almosi surely where
a = inf Erm/m.
m>1
For a proof see Durrett (1980), 893-896 or for a betier proof see Liggett
(1985), Chapter VI, Section 2.

Looking at the lasi argument in Lhe mirror gives

(1") Let 8 = inf{gn '°)). As N + o zn/n + B almost surely

where g = sup Ezm/m.
m>l

From (1) and (1') it follows immedialely that we have

(2) if a < g then P(ez ¢+ ¢ for all n) = 0.

('“:0]

0 _ 0 . 0
Proof: Let Fp = SUP . Since £, € £,

(recall that the graphical
representation defines the process simultaneously for all initial states) we

have rg < rn and since rn/n + a it follows that

. 0
1im sup rn/n < a.
N +o
and looking in the mirror again we see
L 0
Tim inf zn/n > B.

N+

Combining the last two observatons it follows that if n 1is large then
sup g?] = r‘g < 12 = inf gg

with high probabilily, but the only set A with sup A < inf A is the emply

sel (sup ¢ = -=» < inf ¢ = +w) so the proof is complete.



Remark, Ry observing that

NN TNyen T T T ke N
and that if « > a and N is large the right hand side is a random walk with
drift < a. (and E exp(orN) <o for all 8> 0) it is easy Lo see that if

a > a then there are constants C,y e (0,«) so ihat
P(rn »>an) ¢ Ce” M

(see Durrett (1984), Scction 7 for details. We will need this facl in the next
section).
Having seen that a < g8 implies that the process dies oul il is natural Lo

ask if there is a converse. This is true but much harder Lo prove.

Theorem 1. If (H1)-(H3) are satisfied then

inf{p: a(p) > R(p)}

Pe

sup{p: a(p) < 8(p)}.

(Note: as we mentioned above we will have Lo make two tlechnical assumptions to
make this a correct statement but we will introduce them as they are needed in
the proof. (H2) is given in the proof of (4) below, (H3) al the very end of
Section 4.)

The first step in the proof of Theorem 1 is Lo prove the following fact
which is a generalization of an observation due to Tom Liggett. (see Durrett

(1980), Lemma 4.1).
. P B B
(3) If Be€ (-1,-2,...} is an infinite set and we lel ry = Sup € then

RU {0} B
E(rn - rn) > 1,

The proof is the same since all that it uses is the additivity property

u
AUB _ Ay B

& {0 n

of processes defined on graphical represenlations.,



With this result in hand we can repeal the proof of Lemma 4.2 of Durrett
(1980) to conclude that p + a(p) is strictly increasing. If we let
R = sup{y: f(y,p) > 0} and suppose
(H2) If f(y,p) > 0 for some p > 0 then

i_(l_’_El>C>0’
ap
then what we obtain is
(4) ErP® - Py 5 can.

Proof: Since this result is differenl from the one given in the talk we will
supply a few details. As in Durrett (1980) if we let < = inf{s > 0:

rg+6 > rz} then using the Markov property and (3) we conclude

+
E(PE §. Pg) >P(t <)
but this time

P(r >n) < (1 - [f(R,p+8) - f(R,p)])"

since if the p + & process jumps by R and the other one doesn't the p + ¢
process gels ahead by 1. Dividing the interval [p,p+6] into M pieces, using
the inequalily above, and letting M » » gives (4). For more details see Nurrett
(1980), p. 901.

Looking in the mirror again we have
| pté _ oP _
(4") ECey gr) < -Can
for the same constani. If we combine the lasi result with (4), let
Py = sup{p: a(p) < R(p)}, and let n » =« we get
(5) if p>p, then afp) - 8(p) >C(p -p,) >0.
The last resull implies

sup{p: a(p) < 0} = inf{p: alp) > 0}



so the "only" thinq that remains is tn show that if alp) > glp) then
P(g: # ¢ for all n) > 0.
In Durrett (1980) this was done for Example 3 by using a coupling result

which is a special feature of thal case:

(6) if g = inf ;EO’W) and r_ = sup Ei—m’oj then
on {%“ < rm for all m < n}
Er? ) Erzln [’Ln’r‘n'.I
and consequenily 13 = L rz = o gz £ ¢

NOTE: this coupling property is NOT true in the three site case. See Durrett
(1980), Section 6 for a discussion or draw a random picture.

With (6) il was easy to prove what we wanted to (see Durrett (1980) for
details) but until recently it was not clear how Lo do without (6). A large
part of the solution it turns out was in Durrett and Griffeath (1983) so we turn

to describing those results now.

4, A Renormalized Bond Construction

To almost quote Durrett (1984), p. 1023. "In this section we will intro-
duce a construction which will allow us to reduce questions about supercritical
finite range g.p.p. to corresponding quesilions aboul a k-dependent nearest
neighbor site percolation process with p arbitrarily close to 1." The argu-
ment given here like the last quole is a simple modification of the corresponding
thing in Durrett (1984) so we will start by describing the argument in that spe-
cial case: oriented bond percolation S = {-1,1}; and then describe the changes
which are necessary for finite range g.p.p.

The first thing to do is to define the sile percolation process and its
relationship to the original process. Letl oz7 be the graph with vertices
V= {(mn) € 22 m+n is even, n » 0} and oriented bonds connecting each
(myn) eV to (m+ 1l,n +1) and to (m - 1,n + 1). Stealing a term from the

physics literature we call ,Zﬂ the renormalized lattice. To explain the name



(and the idea behind the construction) the reader should imagine .f mapped
into the upper half plane R x [0,») by ¢(x,y) = (aLx,Ly) where a is a spe-
cial constant and L dis a large number to be chosen below.

We will define the site (m,n) in V Lo be open if a "good event" happens
in the graphical representation near Zo g € R x [0,») and we will do this in

such a way that

(i) the random variables n(v) v € V which indicate whether Lhe
sites are open or nol are k-dependent (i.e. if the distLance
from x to y on the graph >k tLlhey are independent).

(i) if L 1is large the probability n(v) =1 1is close to 1.
(i11) if percolation occurs starting from 0 on the renormalized
lattice then it does starting from some point near 20,0 in

ihe original percolatlion process.

It is by now well known that (i) and (ii) imply that if L 1is large then the
probability of percolation is positive (for more on this see Durrett (1984),
Section 10) so once (i)-(iii) are demonsirated we can conclude that if

a(p) > B(p) then P(gg # ¢ for all n) > 0 completing the proof of Theorem 1

in Section 2. We will see helow that the construction can be used to prove a
number of other things aboul percolation processes so if the reader gels bored

or confused by the details of the construction, he/she/itl should skip ahead to the
next two sections to see parl of whalt it is good for: the complete convergence

theorem and the strong law for ga.

NDetails of the construction (oriented percolation S = {-1,1}).

We begin by describing the fundamental building blocks: the renormalized
bonds which appear in the title of the section. Let A be the parallelogram
with vertices (-2¢L,0), (2eL,0), ((a-2€)L,L), and ((a + 2¢)L,L). From (1) in
Section 3 we know that r /L »a as L » e, soif §>0 and L > Lo(é) then

P(ri e ((a - e)ly(a+ e)l)) >1 -6

L



Whan rL e ((a - €)l,(a + &)L)), we know thal there is a path from (-«,07 x {0}
to ((a - e)l,(a+ e)l) x {L} but it might look like the dotted line in Figure

4.1. Our next task is Lo show that it looks like the solid line. i.e. it stays

(O¢-e)L (O¢+e)L

1V
LI

2¢L O 2eL
FIGURE 4.1

in the parallelogram. To prove that it doesn't hit the right side we observe

that if N s large ErN < (a + ¢)N and

<r,+r +

r NN T T TN KN

kN

with the right hand side being a random walk, so the simple arqumeni we used in

Lthe last section shows thal there are constants C,y e (0,») such thatl
(1) P(rm > (a + g)m) < Ce” WM

Now if R = sup{y: f(y,p) > 0}y (which is independent of p > 0 by (H2)) the

right edge can increase by at most R per jump so



P(r_ exits right side of A) < 5 oop(r > (a + €)m)
m m=2¢l/R

< Ce—YL

(where C,y € (0,w) are new constants and will continue to change as we go
along.)

To estimate the probability that the path escapes from the left side of the
hox we use an observaltion due Lo Larry Gray which allows us Lo turn our upper
bound into a lower bound. Lel oy
((a - €)L,(a + €)L) x {L} in the graphical representation used to construct the

0 ¢t <L be apath from (-»,0] x {0} to

g.p.p. Let M= sup{m:(om,m) € A} Larry's simple but useful insight is (see

Figure 4.1 again) thal the line from (o,,M) Lo (cL,L) has slope > (a + ¢)
so if M =m then the right edge of the process starting from (-w,-2¢L + am]
al time m must be > (a + €)(L - m) at time L and summing the estimale in

(1) we conclude that
P(g  exits left side of A) < ce Mt

Comhining Lhe last three estimates shows that if ¢ > 0 and L » Ll(a)
then with probability > 1 - 36 there is a path lying in A. These evenils are
the raw material for Lhe construction that follows. The nexit step in carrying
il out is to associate the sites in the renormalized lattice with translates of
A in the percolation structure.

Drawing a picture (see Figure 4.2) motivates letlting

Zm,n = ((a - 4e)m,n) (m,n) e v

be the points of the renormalized lattice, defining translates of A by

Am,n = (zm’n + (-4¢L,0)) + A

m.n (Zm,n + (4¢L,0)) - A

o
il

(where x - A= ({x -y: y e A} etc.) and declaring that the site (m,n) is

open if there are paths in Am,n and in Bm,n'



(1]

|
6el -2eL 0 2el. &L

FIGURE 4.2,

From the definition it is clear that we have property (i) and the arguments
above show that (ii) holds. To check (iii) we observe that in the case under
consideration paths cannot "jump over each other" so the arrangement of the

Am n and Bm n guarantees that if say (m - 1,n - 1) and (m,n) are open

9 H]

then there is a path from 2z, . ; + (-6el,-2¢L) o Zoelnel ¥ (2¢L,6¢€l)

and to 2z + (-6¢l,-2¢l) (see Figure 4.3). From this it follows easily

m-1,n+1
that (iii) holds. (for more details consult Durrett (1984). p. 1025).

3 Y/
N z

FIGURE 4.3.



Details of the construction (finite range g.p.p)

The last argument does not work outside the case S = {-1,1} (or

S = {0,1}) because paths which cross do nol need to intersect but (here finally
is our new idea) paths which cross will intersect with probahility > n > 0 so
if we use a zillion little paths Lo try to connect two of the (long) paths used
in the constiruction then there will be a success with high probability. As tLhe
reader can probably guess carrying out this idea requires a little ingenuity and
a large number of unpleasant details. To keep things as simple as possihle we
will first give the details for oriented bond percolation with S = {x: |x| < R}

and then treat the general case.

The first step in the argument is Lo make the tubes smaller. Let A' be
the left half of A, i.e. the parallelogram with vertices (-2¢L,0), (0,0),

((a = 2€)L,L) and (aL,L). We keep the renormalized lattice the same

z = ((a - 4€)Lm,Ln) (myn) eV

define translates of A' as before by

>
n

]
m.n (Zm,n + (-4¢L,0)) + A

o
U

non = (2 % (4el,0)) - AL,

Thinning the tubes creates space near each point of the renormalized lat-
tice (see Figure 4.4) and into this space which has width 4¢L we put [4/¢]
tubes of width e2L and length 2L in the manner indicated in the picture and
then (for reasons that will hecome clear in a minute) we remove every other one.
Paths in the new smaller tubes will be used Lo connecl the paths in the four

lTarge Lubes.
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FIGURE 4.4,

Tying paths together is delicate because of "conditioning problems" - i.e.
picking a path by some algorithm makes the conditional distribution of bonds
near the chosen path different from the original one. To avoid difficulties of
this Lype we "save a little randomness Lo make conneclions at the end." To be

precise:

(a) We pick p' <p with afp') > 0 (and observe that in the proof of
Pe €SP, which is what we're doing now! - this can be done without loss of

generality.)

(b) Construct the processes with parameters p and p' on the same space by
assigning independent uniformly distributed random variables U(b) 1o each bond
b = (x-y,n) + (x,n+l) where |y| <R and declaring b to be open for the p'

(resp. p) system if U(b) < p' (resp. U(b) < p).

(c) Do the renormalized bond construction for the p' system (with the
corresponding a(p') > 0) and call one of the large or small tubes in the
construction good if it has a path in the p' percolation structure from one end

to the other which stays in the tube.



Since all the paths in the little tubes must pass within R of a path in
Lhe Targe tube and the number of litile tubes is large then it is clear that if
e 1is small then the situation drawn in Figure 4.5 will occur with high probabi-

1ity i.e. there are paths in the small tubes which intersect and intersect the

paths in the four large tubes.

FIGURE 4.5,

To prove this we pick for each tube which was called good in (c), a path in
the p' percolation structure with the desired properties and for ease of
reference later, we will say that these paths are drawn in blue. Now each pair
of blue paths a,t that we want Lo connect must come within a distance R of
each other at some point, i.e. there are integers x,y and n with o, = %

T =y and |x -y| <R.

n+l
Now if we condition on the value of U(b) A p' for all the bonds b then

there is still probabilty > (p - p')/(1 - p') > 0 that U((x,n) +

(yon + 1)) < p and hence open in the p percolation structure. Wheﬁ present

the "green bond" (x,n) + (y,n+l) (its color intended to signify its uncon-

ditioned state) allows us to connect the blue paths. Since we have arranged for

there to be lols of litile tubes and we have separaled them by removing every

olher one to make Lhe connection evenls independent, iL follows that if ¢ is

small and L is large then all the desired connections happen with high probability.



Riven the arqument. for oriented percolation on S = {-1,1} the dennuemeni
should be clear at this point. We declare a site in the renormalized lattice Lo
be open if there are paths in the four large tubes near il and the green hond
construction above succeeds in connecting them as indicated in Figure 4.5. From
the definition it is clear that we have property (i) listed in the first version
of the proof and the arguments above show that (ii) holds. To check (iii)
observe thal above we have been careful to choose one path in each large tube
and then connect these paths so, having worked harder to get here, the last step
is now trivial,

With (i)-(iii) verified the rest follows as before and we have completed
the proof for oriented bond percolation with S = {x: |x| <R}. In tackling the
general g.p.p the first (trivial) extension to be considered is what happens for
other oriented percolalion processes, e.g. hond percolation process with
S =1{1,2,3,4}, S = {-2,2}, S = {-51,50},... In the first case mentioned we just

need to slant the construction: if (m,n) ¢V and 2 =n - m then

I (n - 2)(a - 4e) + 2(B - 4¢)

(for more details in Lhe nearest neighbor case see Schonmann (1986)). In the
second case (like S= {-1,13}) restricting to a sublatiice gives a problem to
which the results for solid intervals can be applied. Last but not least when S
is not a solid interval but the group it generates is all of Z, a finite number
of iterates allow us Lo reach all points in an interval and blah, blah, blah.

The generalization mentioned in the lasl paragraph are, like the extlension
of Markov Chain results from Lhe case of a posilive matrix Lo that of an irreducible,
one, routine although somewhat tedious and hence are lefi as an exercise for
an energetic reader. We turn now to the lasi important item of business:
proving the result for a general g.p.p. Having discussed the asymmetric and
non-interval cases above we will assume that model is symmetric and f(y,p) > 0
if and only if |y| <R.

Looking back at the proof now it is clear Lhat special properties of

oriented bond percolation were only used in the (p',p) property of the



construction above and for this the importani poini was

(H3). If we condition on the state of all bonds in the p'-system then for any x,n
and |y| <R there is always conditional probability > é&(p,p') > 0 that

(x - y,n) » (x,n + 1) 1is open.

This is our last hypothesis that "the models increase strictly with p and with

it made it is trivial Lo complete the proof.

5. The Complete Convergence Theorem

In this section we will prove a result which allows us Lo determine the
limiting distribution of gﬁ for any A when p > Pe+ The first step in doing
Lthis is to describe Lhe process which appears in Lhe limit theorem.

Let E; be the process generated by the graphical representation in which
the oriented bond (x,n) + (x - y,n + 1) 1is open (closed) with probability
f(y) (resp. 1 - f(y)); bonds beginning at different sites are independent; and
the joint distribution of the bonds (x,n) » (x - y,n +1) y ¢Z is the same
as that of (x - y,n - 1) » (x,n) in £, Comparing the last paragraph with
the definition in Secltion 1 il should be clear thal the new graphical represen-
tation can be obtained by reversing Lime (and Lhe direction of the arrows) in

the old one and a litille more Lhoughi leads us Lo the following important

conclusion
t\ﬂ
(1) PLENN B+ 4) = P(AN E + o).

Proof: From the definition of gﬁ we see Lhat {gﬁ NB # ¢} = {there is an
open path from (x,0) to (y,n) for some x e A,y ¢ B and from the discussion
above we see that the righi hand side is equal to the probability of a path down
from (y,n) to (x,0) 1in the same percolation structure.

Taking A =172 1in (1) we see that P(gﬁ{) B # ¢) = P(Eﬁ # ¢) which
~B

£). The

decreases Lo a limit as n + = (since ¢ 1is an absorbing setl for n

inclusion-exclusion formula allows us Lo write all probabilities of the form

POEE(x)) = Tpaeee E20x) = 1)



where {xy,...,x, } €Z and 11""’1k e {0,1} in terms of P(ggf) B =¢) so it

follows that we have
7 . . z
(2) As n + = & => 1o a limit E_»

where => denotes weak convergence of probability measures on {0,1}Z (which
in this setling is = convergence of finite dimensional distributions).

Having defined the 1imit we can now state our convergence result

Theorem 2. If a(p) > 0 > g(p) then as n » =

A A

gg => 8¢P(r < w) 4 Ei?(r = w),

= ¢},

=P

where rA = inf{m » 0:
5¢ = the point mass on Lhe emply sel ¢ ,

and we use gi to denote the limit distribution starting from 55 = 7.

The first part of the right hand side is easy Lo see: on {TA < w} we

have gﬁ = ¢ for n > rA. The second part is much harder to prove: it says

that if gﬁ does not die out (i.e. rA = w) and n 1is large then sﬁ looks

like gﬁ with high probability on any (fixed) finite set. (We will prove a

sharper version of this in the next section).
An immediate consequence of Theorem 2 is thal all stationary distributions

have the form 66¢ + (1 - e)gi for some 6 e [0,1]. When confronted with the

last observation the reader should ask: 1is éi # 6¢ for p > pc? The densitly

of particles in gi can be read off from the duality equation (1):

P(xegé)=P(Eg¢¢ for all n).
so if we let
= infip: €& # 6.}
Pe I N

(where e 1is equilibrium) then it is clear thal we have

. e oD
Po = P. = inf {p: P(gn ¢ ¢ for all n) > 03,



~

and the question becomes "p_ = pc“ ? The answer as we will see in the proof is:
Yes.
. . . N s A B
The first step in proving Theorem 2 is to observe that if £y and £y

are independent
A _ A B
(3) Pley 1 B # ¢) = P(& ) & # @)

(the first eveni being the probability of a path from (x,0) to (y,?2t) for

some x eA, y ¢eB while the second {there are x e A, y eB, and z ¢ Z so

that (x,0) + (z,t) » (y,2t)}.) Now
PR N 28) =P(eh s o, Brg) -Pleh ¢ 6.B 20l NE =0
AR g+ 6 BV # o L E £ e N =0

and the first term = P(gﬁ # ¢)P(E$ ¢ ¢) which converges to

P(rA = m)P(éL[]B # ¢) as L + » so to prove the theorem it suffices to show

A 8 AL B
(4) POE. * 026 * € N E = ¢) +» 0.

The proof of (4) requires one new bit of inspiration (followed by quite a
bit of perspiration) so we will startl by stating the new idea: "when Lhe renor-
malized bond construction works il produces points al a positive density of
sites between the left and right edges so if Bg(p) < 0 < a(p) and the time is
large L then gt and E? will intersect with high probability (if both are
nonempty)."

With this idea in mind the rest is routine following the proof of similar
results in NDurrett (1984) so we will just give an oulline.

The sentences in quotalion marks below were the ones I said during my talk.
In between them I have tried to supply enough details so that the reader (with
the help of the paper cited above) can fill in the rest. As in the last seclion
the summary becomes tedious or confusing Lhe reader can safely skip to the
beginning of the nexL seclion where we will start Lo consider |52l = the number of

occupied sites at time n.



1. "After a geomeiric number of Lrials either (a) Eﬁ = ¢ or (b) the
renormalized bond construction works and on the renormalized latlice rA domi -
n

naltes oriented percolation with p close to 1,"

The proof is a "restart argument" following Durrett (1980), 903-904 and/or
Durrett (1984), 1031-1032. The proof is based on a simple idea: "“if at first
you don't succeed try, iry again" bul requires a depressing number of defini-
tions to carry out.

Let x, = sup A, If M > 6eL and we are very lucky then (i)

0
[-6eL + x0,6eL + X0] c 530 and (ii) we gel a path Lo « on the renormalized
lattice when we Lry the renormalized bond consiruclion transiated hy Xge These
are the two things we dream about and they have positive probahilily of hap-
pening on the first try.

When they don't then we have to go to work: if (i) does not occur and
ga = ¢ Lhen we are happy since all we have to do is show that things are OK
when gﬁ ¢ ¢. If (i) does not occur and ga £ ¢ we let xi = sup ga and look
M unils of Lime later Lo see if [-6¢l + x1,6eL + xl] CE I (2M) where the
superscript indicates we are looking at the process starting from {xl} at time
M. Each time we repeal the last step we have a posilive probahility of success
so after a geometric number of failures we get to try the renormalized bond
constiruction.

As the reader has probably already anticipated the renormalized hond
construction may fail but if iL does we try again: we wait until the process on
the renormalized lattice dies out (and then wait 1.1L units of time more for
"good luck", i.e. so that the death of the construction does not adversely

effect the future development of the graphical representation) and then start

again to look for an interval of length 12¢L to try the construction again.

2. "alp) = g(p) and B8(p) = a(p) so the same construction can be used on

the dual." As observed on p. 9 of Durrett and Griffeath (1983)



P(r‘m > k) = P(Lhere is a path from (-«,0] x (0} to [k,=) x {m})

"

P(there is a dual path from [k,«) x (m} to (-«,07 x {0})

P(there is a dual path from [0,®) x {m} to (-w=,-k] x {0})

i

P(Iﬁ < -k).

n o

The last identity shows r_ —Eﬁ from which it follows immediately that
B8(p) = al(p). From this the rest of the statement in quotes follows immediately

and using results from Section 4 shows P. = P,

3. "When the renormalized bond consiruction works for the process and its

dual then gﬁ and Eﬁ intersect with high probability."

In this case a picture is worth (and probably replaces) a thousand words.
(see Figure 5.1). The squiggly line above A and below B indicates that with
high probability we have to wait at most 100 years (i.e. a time independent of 1)
before the renormalized bond construct{on works and the rest of the picture is
meant to suggest ihat when it does then the process on the renormalized lattice
dominates (k-dependent) oriented site percolation with p close to 1. Results
of Section 10-11 of Durrett (1984) show that if the probabilty of a site being
open is close to 1 then the set of occupied sites for oriented percolation on
the renormalized lattice

]lm inf|l LIk >1-6 on )+ forall k)
+ o

almost surely. Since<13 E € {Kyeeurk} fills up a f}action (1-8) of the
available space. The last observation implies that if we pick & much smaller than
the minimum of & and B8, and gﬁ and gz are # ¢ then there will be a

large number of pairs (xi’yi) with X; € ée, i € EE and |x,

i - yil <L and

running things for 2L more units of time we conclude

A ~8 A g
P(e, # ¢ € # ¢ £ NE =¢) +0
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FIGURE 5.I.

6. Limit Laws for gﬁ

In this section we will take a closer look at the behavior of the system
starting from a single particle at 0. The first step is to state a result

which follows from the construction in the lasi sectlion.

(1) If € > 0 then there are constants C,y e (0,») so that if

(B+ e)n <x < (a- €)n then

m

0 7 -
P(g # ¢, sn(x) # en(x)) <Ce M,

n

Proof: As enunciated on p. 1031 of Durrett (1984) the proof is based on two simple

ideas.

(i) If you have a sequence of independeni evenis with probability p then K,

then the number of failures before the firsi success has P(K =n) =p(1 - p)n

n =20,1,2,... and

(ii) If Xi is a sequence of independent random variables with

P(X,

;> m) <c exp(-ym) so that (Xl""’xk) is independent of {K = k} then

P(X, + ... + Xk >m) <C' exp(-y'm).



where C',y' are new constants ¢ (0,»). To use these ideas to prove (1) you
have to check that when the renormalized bond construction fails it only lasts
an amount of time T with P(T > 1) <C exp(-yt) but this is true, see Durrett
(1984), p. 1031-1032,

From (1) it follows immediately that we have

(2) For any ¢ > 0, on Q, {gﬁ # ¢ for all n} we have

x: £2(x) Eﬁ(x)}:D[(B + en,(a - eln]NZ

n

for all n sufficienltly large. With the coupling resull ((6) in section 3)

recaptured one can repeat arguments from Section 13 of Durrett (1984) now Lo show
Theorem 3. On a_ we have
Iaﬁl/n + (a - B) almost surely as n + =,

where p = P(z ¢ éi) and a, B are the by now familiar limits of rn/n, zn/n.
The last result has a simple explanation: the distance between the left
and right particles is ~(a - B)n and this interval is filled with particles at

densilty »p.
7. Results for d > 1

Last but not least we come Lo the original motivation for doing this paper:
Lo improve what is known in higher dimensions. We begin by "recalling" the
results proved by Durrett and Griffeath (1982). We have pul the word recalling
in quotation marks because those results were proved for a class of models in
continuous time (called permanent one-sided growlh processes there) and we will
have Lo ask the reader to believe thal the analogous results are true in

discrete time. First some notation:

- 0 _ iy . .
W, = U £, = sites hit by time n

Fa
it
—~
x
g
(@]
—
x
~
n
y
N
—
x
~
—
1}

sites coupled at time n.



Far a varietv of reasons it is convenient to enlarge the last two sels hy

replacing each point x by a cube of side 1 centered al that point:

— 1 1 .d
U e
n
_ 1 1 d
-rn"u X+[--?-‘7]
Xel(n - -

(the notation is meant Lo suggesi closure).

With this notation introduced we are now (almost) ready to state the result
of Durrett and Griffeath (1982). For simplicily and concreteness we will
restrict our attention to oriented bond percolation in 23 q.e. the process
defined from the percolation structure in which all bonds are independent and

(x,n) + (x +y,n +1) 1is open with probabilty p if (and only if) |y| = 1.

(1) Suppose p 1is large enough so that the process restricted to Z x {0} has
positive probability of survival for all Ltime. There is a (non random) convex

set U so that on Q= {52 # ¢ for all n} we have

%—(H;n?;)+u a.s. on @

as n +» i.e, forany €>0 and w e 9

(1-¢)nl € (H'n'nK;) € (1 + ¢)nll

for all n sufficiently large.

Roughly speaking (1) says that gﬁ looks like gi)f)nu on Q_ or even
rougher it is a "blob in equilibrium" in the terminology of Durrett and
Griffeath (1982). The statement of (1) is made contorted by the fact that
Kn':){x: gn(x) = 0} for trivial reasons so we have Lo intersect with Hn to
get the interesting part. The sirenglth of this is the fact that the theorem
says "almost everywhere we have hil we are in equilibrium" and has as a con-

sequence the complete convergence theorem



(2) For any A, as n » =

A
n

A A z

£y = P(r < =)g, + P(e7 = w)E,

So much for the virtues of (1). Its shoricoming is obvious: the result is
only for p > pc(Z) the critical value for the process on Z and not for
p > pc(Zz). The next result, our last theorem improves this bul does not yet
complete the story. Lel pt he the critical value for oriented percolation in

z

7% x {-Lyee.,L}. It is easy to see that as L + =» pt decreases to a limit we

call p: and it is natural (if somewhal optimistic) to conjecture that

p: = pC(Za). In any case the next result improves on (1) but is not the last
word. The reader should note that Lhe complete convergence theorem is again a

consequence,

Theorem 4. If p > p: then there is a nonrandom convex set U so that on

Q= {éz ¢ ¢ for all n } we have

1 -
S NK) »U a.s.

This result can be proved by using an abstract theorem (see Durrett and
Griffeath (1982), p. 529) which was designed five years ago for the application
we are making today: all we have to do is check that the three conditions of

Lthe theorem hold and then Theorem 3 follows. If we let ¢ = inf{n: gﬁ

i

¢} then

what we need to show is thal there are constants 6,C,y € (0,») so that

(a) P(n < 1 < o) Ce™ M
(h) P(x ef%,r = w < Ce”M jf Ix] < &
(c) P(x € Kn,T “w) < ce™™ if Ix] < &n.

Checking (a), (b), and (c) is neither trivial nor pleasant but following
the argumenti on p. 545-550 in Durrett and Griffeath (1982) and using the renor-
malized bond construction one can do this. Details of the proof of this will be

Lhe subject of a future publication.
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