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THE BEHAVIOR OF PROCESSES WITH STATISTICAL MECHANICAL PROPERTIES

Lawrence Gray
School of Mathematics
Universitiq of Minnesota
Minneapolis, MN 55455

1. Introduction.

Ever since Spitzer's famous paper in 1970, there has been interest in a class of
Markov processes which have as time—reversible stationary measures certain special
distributions from the theory of statistical mechanics. The state space for these pro-
cesses is = = {-1, +I}Zd, which is the space of configurations of + and — spins on the
sites of the lattice 29 Transitions occur when there is a “flip” at a site x € Z9, or in
other words, a change of sign in the spin at x. The probability that a flip occurs at x
in a short time interval (t, t +h], given the history of the process up to time t, is
c,(§)h + ofh), where £, is the state of the process at time t, and c, is a non-
negative function defined on =, called the flip rate at x. Simultaneous flips at two
different sites do not occur. A system of Markov processes with this description, one
process for each possible initial state, is often called a "spin—flip system” with rates
{c, ). Spitzer pointed out that for certain kinds of interaction potentials commonly
used in statistical mechanics, one can always find a set of rates { c, } such that the
corresponding spin—flip system has as time-reversible equilibria the Gibbs states that
correspond to the interaction potential. (Spitzer's results required a certain unique—
ness hypothesis that was later verified for a large class of systems by Liggett
(1972).) This is illustrated in the following example:

Example 1. (The stochastic Ising model) We start with a pair potential with

range R: let J: (0,00) = [0,00) be a non—increasing function such that J(r) = O for r >R,
and then we define the energy at x in state &£ by



E) = -2 808w = -yl -
U U7X

Wwe have used || - || for the usual Euclidean distance in Z9 . and £(x) stands for the
value of the spin (+1 or —1) at x in the configuration . We have restricted our atten—
tion to pair potentials whose strength decreases with distance merely for convenience.
The assumption that J is non—negative is more significant. It ensures certain mono-
tonicity properties that seem to be almost indispensable in the study of spin—flip

systems.

Next we define a Gibbs state with potential J to be any probability measure j on

the Borel sets of = such that for all 7 € = and all x € 29,

(& £(x) = n(x) | &) = m(y) for y # x) = 27'(n)exp(-E,(n)), (1)

where Z27'( - ) is the normalizing constant that makes the total conditional probability

equal to one,

2-'(n) = exp(-£(n)) + exp(En)) .

To get a spin system that has all the Gibbs states with potential J as its time-
reversible equilibria, we have many choices for the rates, but we choose ¢(£) =
exp(E,(£)), which is one of the choices that makes the system symmetric with respect
to interchange of + and — spins. For a detailed explanation as to why a system with

these rates has time-reversible equilibria as claimed, see Spitzer’s original paper, or



more recently, Ligget's book on interacting particle systems, both listed in the
references.

Next we introduce a parameter € > O (corresponding to a constant multiple of the
temperature in statistical mechanics) which we call the noise parameter. Let

cs (8) = exp(E,(£)/€),

which defines rates for a system corresponding to the interaction potential J& = J/¢ .
The idea is that as the noise decreases, the interaction becomes stronger.

One final parameter: let H be a real constant, which we call the bias parameter
(the external field strength in statistical mechanics), and define flip rates for a

biased system by

cEH (£) = exp(E (£)/¢€) exp(-HE(X)). )

These biased systems also have Gibbs states as their time—reversible equilibria. They
are defined by replacing E(&) in (1) by (E(§)/e) — HE(x).

The expression in (2) ensures that the flip rate at x is high if E, would be lowered
by a flip, and the flip rate is low if the energy would be raised. A quick glance at the
expression for the energy shows that there is a positive contribution to it for each
site y within range R of x such that the spins at x and y disagree. In biased systems,
there is also a positive contribution to the energy if the spin at x disagrees with the
sign of H. Conversely, sign agreement between such x—y spin pairs or between H and
the spin at x contribute negatively to the energy. Thus the rates are set up so that the
system tends to spend more time in configurations of low overall energy. In the unbi-
ased case, there are two configurations of minimum energy, which we call £Fand &7,

the two configurations in which all the spins have the same sign. These are called



ground states. In the biased case, only one of these states has minimum energy,

namely the one that agrees in sign with H. Under certain circumstances which will be
discussed in the next section, the extreme equilibria of the system become more and
more concentrated near the ground states as the noise parameter decreases to 0. This

might be expected from the form of the flip rates.O

One of the purposes in defining a Markovian system with Gibbs states as equilibria
is that it makes available the tools and techniques of Markov processes to the study of
statistical mechanics. Semigroups, generators, martingales, coupling methods, etc.,
can now be brought to bear on problems that originally had no time dependence. Fur—
thermore, information about rates of convergence to equilibrium, dependence of the
process on the initial state and other details about the time evolution can be trans—
lated into information about uniqueness and mixing properties of the Gibbs states. As
a simple example of how this can work, we take one of the most basic questions in the
study of Gibbs states, namely the question of whether there exists more than one
Gibbs state corresponding to a given potential J. If the corresponding spin system is
ergodic (or in other words, has a unique equilibrium), then one can conclude that there
is only one Gibbs state for J, and if the system converges exponentially fast to this
equilibrium, then the Gibbs state must have exponential mixing properties (see
Liggett's book for these and other results).

To a certain limited extent, this carryover from the study of spin—flip to statisti-
cal mechanics has occurred. Some nice contributions to various questions are to be
found in the work of Holley and Stroock (1976a and 1976b). There has also been
some interesting work about the increase of free energy in the time evolution which

adds to one’s understanding of the concept of free energy in statistical mechanics —



see Holley and Stroock (1977). But these instances are the exceptions, rather than the
rule. Most of what is known about the equilibrium behavior of the stochastic Ising
model is derived from already known facts about Gibbs states. This is putting the
cart before the horse if one is trying to find applications for spin-flip systems. (Of
course, a great deal of interesting and important work has been done on other kinds of
spin—flip systems which have nothing directly to do with statistical mechanics, such
as those which are related to population or genetics models like the contact process or
the voter model.)

Based on what has been said so far, the problem seems to be that most techniques
for studying the time evolution of the stochastic Ising model depend on g pr/ar/ in—-
formation about the equilibria. It is proposed here that methods should be developed
which deal directly with the time evolution. These methods should be robust, in the
sense that they should apply to systems whose rates are qualitatively like the rates
defined in Example 1, but which do not necessarily have the same precise form, sys—
tems which do not necessarily have Gibbs states as equilibria. Once such methods are
developed, then it should be possible to isolate those essential properties of a time
evolution that lead to “statistical mechanical-like* behavior (we will call this SML be—-
havior for short), thus leading to a better understanding of time evolutions of actual
statistical mechanical models.

In the next section, we will propose a program of research that has these goals in
mind. We will do this by first defining a class of flip rates that we conjecture have
the features necessary for SML behavior, then by giving some examples of such rates,
and finally by listing some of the properties that we feel are a part of typical SML be-
havior. In the third section of the paper, we will "set a good example” by outlining a

proof that a certain well—known system which is not a stochastic Ising model (the ma—



jority vote model) has SML behavior in one dimension for all sufficiently small values
of the noise parameter €. (The SML behavior 1 have in mind here is ergodicity, or as the
people in statistical mechanics would say, “no phase transitions in one—dimensional,
finite range systems”.) This is a partial solution to an open problem of several years
(one would like to remove the restriction that € be small). Since this is only a re-
search report, the proof will only be indicated for the nearest neighbor case. An ex-
tension to the arbitrary finite range case is forthcoming in a paper which is in pre—-
paration (Gray (1986)). It should even be possible to extend the proof to cover the wi-
der class of systems defined in Section 2; the proof can certainly be adapted to cover
one—dimensional stochastic Ising models. In Section 3 we will also discuss briefly an
unexpected benefit of the proof, namely a sort of invariance principle for one—
dimensional systems as € = 0. At the time of the writing of this report, I don't quite
know what to make of this last material, but it is hoped that it has some conse—

quences for the theory of statistical mechanics.

2. SML flip rates and SML behavior.

It seems (to the author at least) that there is nothing special about the exponential
function in (1) and (2). Its presence is dictated by certain considerations from sta—
tistical mechanics, but from a purely dynamical viewpoint, it is hard to see why its
use in the definition of the flip rates should be crucial. To best see what are the es-
sential properties of this function, we consider a state in which there is a flat inter—
face between the two types of spins. To simplify things, let H = 0. Let 7t be any
(d-1)-dimensional hyperplane that does not contain any of the lattice points in 29.
Assume that a normal vector is attached to 7t to give it some orientation, and let E“

be the state in which the sites on the positive side of 7 have spin +! and the sites on



the negative side have spin —1. In this configuration, the energy E,(£) at any x is less
than or equal to 0. If we change the sign of the spin at some site x, then the energy
at x becomes strictly positive. Thus, if for any configuration £, we define the confi-
guration *£ by
(y) = &(u) for y#x,
-&(y) for y=x,
then the ratio c,(£7)/ ¢ (*€™) is strictly less than 1. When we introduce the noise

parameter, we find that
EE™/EEE™ - 0 as e-0. (3)

(Note that it is the ratio of the rates that is important, since we can always rescale
time without changing the equilibrium behavior. Also note that (3) still holds for the
biased rates cf'H. ) Thus, the smaller the noise, the more the system attempts to
maintain a flat interface where one exists. If we define @5(E) = exp(E/c), then for all
E >0, 9%(E)/9%(0) converges to oo as € goes to 0, and it is this property of the expo-
nential that implies (3). We feel that this property is also the reason that stochastic
Ising models behave the way that they do, and that other non—decreasing positive func-
tions cpe with this property would do just as well. This leads us to the following:
Definition of SML flip rates. Let E,(£) and J( - ) be as in Example 1. We will
say that a parameterized family {cf'H , €> 0} is a family of SML flip rates with poten—

tial J if there are positive, non-decreasing functions {9, € > 0} defined on R such that

EME) = 9(E, (BN exp(-HE(X)) @



and such that for all E> 0O,
PE(E)/95(0) » w as £— 0. (5)

We further impose the regularity condition that the ratios @%(€)/9%(0) be non-
decreasing for E > 0 and non—increasing for E <0 as € decreases to 0, so that a de-
crease in the noise parameter corresponds to an increase in the strength of the
potential. O

In our definition, we have retained the way in which the rates depend on H and we
have not done anything to generalize the energy function. Presumably more generality
is possible, but we feel that we have done enough violence to the original mode! al-

ready. Actually, the class of SML rates is even larger than it first appears, due to the

flexibility with which ¢, and J may be chosen. This point will be partially illustrated

by the following examples.

Example 2. Perturbations of the stochastic Ising model. We simply let @(E) be
some increasing positive function that is uniformly close to exp(x) and define c?E(E) =
¢(E/e). 1t seems incredible, but it is true, that as soon as a perturbation like this is
made, virtually all the facts known about the stochastic Ising model become open
questions.

Example 3. Sums of Ising model rates. Let {af'H} and {bf'H} be two sets of rates
for stochastic Ising models, corresponding to two different potential energies, and de—

: eH _ .eH
finec,” = a,

+ bf'H . As in Example 2, most of the usual results are no longer
known to apply. For example, suppose both of the original systems have phase transi-
tions (non—ergodicity for small €). It is not known whether the hybrid system with

rates {cf'H} has a phase transition. (It is not immediately clear that this example



fits into our class of systems with SML flip rates. It turns out, however, that by
choosing J and q>‘3 properly, the rates in this example can always be realized as SML
flip rates. I am indebted to R. Schonmann and J. Lebowitz for pointing out this
example.)

Example 4. The majority vote model (continuous time). Define J = 1 and

$5E)=¢ if E<O

=1 otherwise.

With H = 0, the flip rate at a site x is 1 if £(x) # £(y) for more than half the sites y
within range R of x (these sites are called the neighbors of x). When the spin at x
agrees with at least half the spins at neighbors of x, the rate is €. This is the sim—
plest continuous time example of SML rates, yet its behavior is only known in the one-
dimensional case with R = 1, in which case it just happens to be a stochastic Ising
modell O

We are also interested in models in discrete time. Such models have often been
avoided by people interested in statistical mechanics, because there is no simple way
to define such a model so that it has Gibbs states as equilibria, as one can in
continuous time. From our point of view, however, they are just as worthy of study as
their continuous time relatives.

In a discrete time model, there are no rates. Instead, if the systems is in state &,
at time t € {0, 1, 2, . . .}, there is a {lip probability c,(&,) that the spin at x changes
sign during the next time unit, in which case it takes on the new value at time t + 1.
During any single step of the time evolution, the flips are made independently at the
different sites. We will use the same notation for flip probabilities as we use for flip
rates (of course, flip probabilities must be between O and 1). An analogue to the no-

tion of SML flip rates is:



Definition of SML flip probabilities. Let E(&) and J( - ) be as in Example 1.
We will say that a parameterized family {cf;"H , €>0} is a family of SML flip proba—

bilities with potential J if there are non-decreasing, positive functions {¢% , € > 0}

defined on (-0, 0] such that

cEHE) = 9%(E, () exp(-HE(K)) it E(E) < 0 @)

= 1 - (§5(-E,(8)) exp(HE(x)))  otherwise,

and such that for all E <0,
§%E) » 0 as e—0. (5)

As before, we make a regularity assumption, namely that ¢&(€) be non-increasing for
all E <0 as ¢ decreases. Note that we have formulated (4') in such a way that for all
states £, cf'H(a) + cf'H("&) = 1. This is not a necessary assumption, but it does save
us from being forced to pay attention to several annoying details that come up in dis—
crete time models. We are now ready to define what we consider to be the simplest
SML model of all:

Example 5. The majority vote model (discrete time). Define J = 1 and

¢%€) = ¢ forall E<O.

Thus the spin at x changes with probability € if it is in agreement with at least half
the spins at neighbors of x, otherwise it changes with probability 1-€. Until now, no-
thing was known about this model for small € > 0, even in the one—dimensional, nearest
neighbor case (compare with the continuous time model above). It seems that the sim-

pler the model gets, the less one knows about its SML behavior. In the next section,



we will alleviate this situation a little by discussing the very simplest of all models,
namely the one—dimensional nearest neighbor discrete time majority vote model. For
this model, we will sketch the proof that the equilibrium is always unique for suffici—
ently small € >0. Our methods can be adapted to the arbitrary finite range case in
both discrete and continuous time (see Gray (1986)) , and probably even to the general
one—dimensional SML model. O |

We conclude this section with a discussion of what, in our view, constitutes basic
SML behavior. We have picked out a few properties that we feel characterize the be—
havior of a fairly general class of statistical mechanical systems. We are aware that
there are many interesting examples of systems which do not conform to this picture
(which is one reason that they are so interesting). For example, we are ignoring the
variety of behavior that occurs in systems with infinite range interactions, or in sys—
tems with infinitely many “spin” values possible at each site.

We start by defining the magnetization at x, which is merely the expected value of
£,(x). For a fixed family of SML flip rates, this quantity depends on the initial state
£, the site x, the time t, and on the parameters € and H. We will only be interested in
the initial states £t &~ and &“ defined earlier. Let Mf(e, H), ﬁt—(e, H), and NF(x,e,H)
be the corresponding magnetizations at x.

Note that by translation invariance, M7 (e, H) and M (g, H) do not depend on x, and
that by symmetry, M¥(e, H) = -M{ (¢, H). It follows from our assumption that J be a
non—negative function that the flip rates are "attractive” (see Liggett's book in the re-
ferences), which in turn implies that M(e, H) decreases as t — . We will write
H:(e, H) and M€, H) for the limits of Mf(c, H) and M, (g, H) as t = o0. It is not clear
that M'(x, €, H) has a limit as t = 0, s0 we will use the notation M (x, €, H) for the

lim sup if x is on the positive side of 7, otherwise it will stand for the lim inf.



Using the notion of magnetization, we can now list four kinds of behavior that we
conjecture are exhibited by all systems with SML flip rates in which the range R is
finite:

SML Behavior.

(i) Monotonicity in the parameters: for any fixed potential J and for any time
0 <t < o0, the magnetizations M1 (e, H), M7 (g, H), and M](x, €, H) are monotone func-
tions of the range R, the dimension d, the noise € and the bias H.  Note: the mono—
tonicity in H — like the monotonicity in t —is a consequence of the fact that the
kinds of flip rates that we are concerned with are attractive. Monotonicity in the re-
maining parameters does not come so easily.

(ii) No spontaneous magnetization in biased systems: If H # 0, then the limits
Mt (e, H), M (e, H), and MTT(x, €, H) are all equal for all €>0.

(iii) No spontaneous magnetization in one dimension: If d = 1, then the limits
ME(e, 0), M (e, 0), and MX(x, €, 0) are all equal to O for all £>0. Furthermore, the
convergence is exponentially fast in t.

(iv) Spontaneous magnetization in dimensions greater than 1: If d> 1, then
Mi(e, 0) > M,(g, 0) for all sufficiently small € > 0.

(v) No tight interface in one or two dimensions: 1f d = 1 or 2, then
M (x, €, 0) = O for all €>0 and all sites x.

(vi) Existence of tignt interfaces in dimensions greater than 2: 1f d> 2, then
for all sufficiently small >0, MM (x, €, 0) is dependent on x. O

This list is based on known behavior of Gibbs states. There is a great deal that

can be said about these properties — a proper discussion of them is beyond the scope
of this report. The interested reader should consult Liggett's book, and also the very

readable monograph of Kindermann and Snell (1980). We will merely note here that we



feel that property (i) is of the most immediate importance. It corresponds to various
correlation inequalities in statistical mechanics which are used over and over again
(for example, the monotonicity in € corresponds to the “Griffith’s inequalities*). In

particular, it allows one to talk about “critical* values of the various parameters.

3. SML behavior in the one—dimensional majority vote model.

In this section, we will outline the proof that property (iii) of SML behavior holds
for the one—dimensional nearest neighbor discrete time majority vote model, at least
for all sufficiently small € > 0. If one could prove that property (i) also holds for this
model, then we could remove the restriction that € be sufficiently small.

Theorem. Let (§,),t=0,1,2, ..., be the discrete time system in Example S,
with H = 0 and R = 1. There exists g,> 0 such that for all € € (0, ], Mf(e, 0),

M, (€,0) and M;’r(x, g, 0) converge exponentially fast to 0 as t — o0. (As noted earlier,
this result will be extended, using essentially the same proof, to all finite range
majority vote models in discrete and continuous time in Gray (1986).)

Outline of Proof. This is not a complete proof. We will be very detailed for
certain parts of the argument and very sketchy in others. Our choice will be based on
whether we consider the part of the argument to contain new ideas or not. See Gray
(1986) for more details.

We start by giving an explicit construction of the process. For integer times t >0
and sites x € Z, let e(x, t) be i.i.d. random variables, with distribution determined by

Ple(x, t) =+1) =P(e(x,t)=-1)=¢ and P(e(x, t)=0)=1-2¢.
Wwe will construct the entire system of processes (one process for each initial state)
on the probability space associated with the random variables e(x, t). Assuming that

an initial state £, has been chosen, then we inductively define &; for times t >0 by



£,(x) = e(x,t) if e(x, t)#0

the majority spin value in

the set (£, ,(u), [y-x|< 1} if e(x t)=0.

Thus, to determine the value at x at time t, a vote is taken at time t — 1 at the sites
within distance R = 1 of x (including x itself). The outcome of this vote determines
£,(x), provided the "error variable” e(x, t) is 0. If this error variable is not 0, then
the vote is ignored, and &,(x) is determined by e(t, x). This clearly agrees with the
description of the system in Example S. Note that if e(x, t) happens to agree with the
outcome of the majority vote, then the value of &,(x) is the same as if e(x, t) had been
0. We will say that an error occurs at x at time t if e(x, t) is not 0 and if e(x, t) does
not agree with the outcome of the majority vote taken at time t — 1 at the sites with—
in distance 1 of x. Thus, an error occurs independently with probability € at any given
point (x, t) in space-time.

We can now describe the general strategy of the proof. Let &:' and &7 be the pro-
cesses with initial states t,"' and £~ respectively (these are the "all +1's" and "all
—1's” initial states defined earlier). As noted in the previous paragraph, these two
processes are jointly defined on the same probability space, so we can define the joint
process y, = (§7, &7 ). 1t is easy to check that £5(x) > £7(x) for all t and x, so that
y4(x) can only take three values: (+1, +1), (+1, 1), and (-1, —1). We will call these
values +, 0, and — respectively. Note that

/,P(y,(0)=0) = Mf(e, 0)-M (¢, 0).

Since Mg is sandwiched between t“l:, and M, it is enough to prove that

For all sufficiently small € >0, P(y,(0) = 0) - O exponentially fast as t—co. (6)

(Of course, the exponential rate is allowed to depend on £.)



The basic idea behind the proof of (6) is simple. Since there is a positive proba—
bility € of an error occurring at any given site, and since these errors occur indepen—
dently, during each time step there will be infinitely many places where at least 2
consecutive sites have simultaneous errors of the same sign. Such a block will show
up as a string of consecutive +'s or consecutive —'s in the process y,. As long as no
errors occur near the endpoints of such a string, no 0’'s can appear within the block, so
we have a somewhat stable string of non—zeroes. This string of non—zeroes will change
in size as errors occur near its endpoints. If € is small, the most likely event is that a
single error will eventually occur near an endpoint (rather than simultaneous multiple
errors), and the symmetry of the model ensures that, for strings of length 4 or more,
such an error is equally likely to result in an increase of the size of the string by 1
unit as it is to result in a decrease by 1 unit. One should try to envision infinitely
many such strings of non—zeroes whose endpoints are essentially doing independent
simple random walks. Of course, this picture is only approximate, for several reasons.
First, simultaneous multiple errors do occur. Secondly, a single error can simultane—
ously affect both endpoints of a short string (of length 3 or less). Finally, when the
endpoints of different strings get close to each other, various movements can occur
which are not due to errors. If we could ignore these difficulties, the rest of the
proof would be easy. Simple computations would show that with infinitely many
strings of non-zeroes appearing in each time step, all of which change size like ran-
dom walks, the probability would go to 1 exponentially fast as t — oo that a given site
be contained in such a string, implying (6).

The crux of our proof is to show that for small enough €, the behavior of strings of
non-zeroes in the process Yy, is sufficiently like the naive description given in the pre—

ceding paragraph to obtain (6). We begin by investigating the behavior of a single



string of +'s. Let {f = (&§], &',"), where £{ is the process with initial state defined by

Lgx) =+ if  |x| <n
=-1  otherwise.

As with the process y,, (' (x) can take three values, +, 0, and —. It starts with the

value + at x inside the interval [-n, n] and O at all other x. We wish to analyze the

movement of the endpoints of this interval of non-zero values due to two different

causes, namely due to errors and due to collisions with other intervals of non—zero

values.

There is one more point that we wish to make before we start our analysis. It
will be seen when we make our estimates that events that have probability O(e3) can
be completely ignored. Thus we do not need to worry about the occurrence of clusters
of more than two errors in space-time. More precisely, we will eventually be working
on some block of space-time [-N, N] X [0, T], where N is O(1//€ ) and T is O(e~2). It
follows that the probability that somewhere in the [-N, N] X [0, T] rectangle, three or
more errors occur in any space—time block of size 10 X 10, say, will be small as € =
0. One should keep this in mind when checking the various claims that will be made
— in particular, we will never concern ourselves with checking for the effects of
clusters of three or more errors.

Movement of the endpoints due to errors. The most important effects
arise from a single error. Let us assume that at time 1 a single error occurs at some
site x within the interval [n =1, n+ 2], and that no other errors occur anywhere near
the site n for several time units. Also, for simplicity, assume that n is at least 2. If
x <n (the error will produce a — at x in this case) then it is easy to check that at
time 2, there will be a O at the site n in the process {,, while all other sites near n

will retain their original value. Thus, the right endpoint of the interval of +'s has



moved one unit to the left. Similarly, if x>n, and if the error at x produces a -,
then at time 2 there will be a +!1 at the site n+ 1 and the endpoint will have moved 1
unit to the right. Examples of this type of movement at the right endpoint are illus—
trated below in "Movie #1*. An analogous description applies to the left endpoint of
the string, with all the directions reversed.

It is possible to give a similar but more involved analysis of the possible effects
of two simultaneous errors. The result is that there is again a balance between move—
ment to the right and movement to the left. However, in the case with R = 1, there is
no need to make the effort. We will find that the direct effects of two simultaneous
errors are negligible, as far as the movement of endpoints is concerned. Of course,
the occurrence of two simultaneous errors at some distance from the endpoint can in—
directly affect the movement of the endpoints through eventual collisions, as will be
seen below. Also, remember that we are ignoring clusters of three or more errors, as
explained earlier.

Thus we see that, at least to the extent that we can ignore interactions with
other strings and the occurrence of two simultaneous errors near the endpoints of the
string of +'s, they are seen to behave like independent symmetric random walks. Each
endpoint moves 1 unit in either direction with probability € during each unit of time.
Of course, the same is true of a string of ~'s. (The situation in the general finite
range case is very similar. The proper statements are somewhat more difficult to
formulate and require more machinery to justify, but behind all the technicalities lie
just two factors: symmetry and the fact that we can ignore clusters of more than R
errors.)

Collisions. Let us suppose that we have in some way defined the positions of

the endpoints of an interval of +'s or —'s up to some time t. Let Efand Ef stand for the



positions of the left and right endpoints at time t. Initially, each endpoint behaves
like a random walk as described above. Now we consider the problem of what happens
when one endpoint comes close to the endpoint of another interval. For example, sup—
pose that we are dealing with a string of +'s, and that somewhere between E{ and E,
two errors that produce —1's occur simultaneously at neighboring sites. This produces
an "inner” string of —'s which will move about with the same kind of random walk
behavior exhibited by the "outer” string. After some time, its right endpoint may come
within three units of Ef. Let the three sites that separate Ef from the right endpoint
of the interval of —'s be called x, y, and z. The process {{ has +'s at these sites. If
an error now occurs at y that produces a -, then after the dust settles (in two time
units), the process (] will have values —, 0, and O at the sites x, y, and z respective-
ly (see Movie #2; note in the movie that a single inner string can be the cause of two
collisions — once when the string first gets close to the endpoint, and then later when
the inner string becomes too short). Such collisions with inner strings cause us a few
problems. One is that the value + at the end of the outer string seems to have changed
to-. Up until now, Ef has always marked a dividing line between +'s and 0's in the
process (' . We will be forced to drop this interpretation and will have to move E{
two sites to the left when such a collision occurs (for a more precise definition, see
below). Our interpretation is now that the endpoints mark positions between which
there are essentially no zeroes in the process ({ . We will be more explicit later.
There is still another more serious difficulty that the collision causes for us. The
endpoint has moved 2 units to the left, but only a single error has occurred. One may
say that the error caused a movement of 1 unit and that the collision caused a further
movement of 1 unit. This introduces a drift into the random walk behavior of the end-

points. Of course, one might hope that this drift is balanced out by the possibility



that a symmetrically opposite collision occurs on the right side of Ef . That is, two
consecutive errors that produce +'s could occur to the right of ET , then this string of
+'s could eventually come within 3 units of the endpoint, then an error could occur at
the middle site separating the string of +'s from E{ , and then Ef would move at least
2 units to the right. This is probably correct, but rigorous proof seems very difficult.
For example, it is hard to say anything about the independence of increments due to
collisions in the movement of E{. These collisions are events that involve large chunks
of space-time and are highly dependent. They constitute the main problem that has
prevented any progress on this model for so many years.

The way out of the difficulty is to prove that the effects of collisions can be ig—-
nored when € is sufficiently small. We will show that when € is sufficiently small, E}
and Ef behave enough like a random walks so that the heuristics given near the begin—
ning of the proof can be carried out. Before we can do this, we must get the right

definition of Ef and Ef. But first, here are the movies promised earlier.

Note: In all movies, time progresses down the page.

Movie *1
.++++++++00000.... These are the sites near the right endpoint.
Lot +++++++09000. ... An error (circled) occurs . . .
.+++++++++0000.... moving the endpoint to the right.
.++++++++00000.... Another error occurs . . .
..++++++++00000.... and the endpoint moves left.
Movie *2
.+++++++++0000.... The sites near the endpoint.
.+++--++++0000.... An inner string of —'s appears.

.+++---+++0000.... Later, the Inner string has moved.



+++---+©+0000.... An error occurs and . . .

.+++----+00000.... in two time steps . . .
..+++----000000.... the 0's have gained two sites.
.++++---000000.... Later, the string of —'s shortens.
.++++-®-000000.... An error occurs and . . .
.+++++00000000.... two time units later, the O's gain

two more sites

Definition of the endpoints. We will explain how to construct the right end-
point process Ef. The left endpoint is defined analogously. We start by defining Ej = n
+'/,. This position marks the midpoint between the rightmost + and its neighboring O
in the initial state of the process (. Next let us assume inductively that E{ has been
defined to be some half integer value for some t > 0. We will include in our inductive
assumption the requirement that the value assigned by ([ to the site Ef - %/, is non-
zero and agrees either with the value assigned to the site Ef — '/, or with the value
assigned to Ef - %/, . Thus we assume that there is an interval of at least two con-
secutive +'s or two consecutive —'s which includes the site Ef — %, . Note that this
assumption is satisfied at t = 0 as long as n> 0. We call the common value at the two
consecutive sites the (right) endpoint sign. In the case that the endpoint sign does not
agree with the value assigned by (7 to the site Ef - '/, , we make the further assump—
tion that value assigned to the site Ef + '/, does agree with the endpoint sign. To
make it easier to visualize all this, we note that if the endpoint sign is +, then ac—
cording to the assumptions made, the values at the four sites in [Ef - 3, ET + 1] are
either ?7++7? or ++7+, where the symbol *?" stands for any of the three possi-
ble values +, -, or O.

We will now define the increment EY,, — E{. Following our previous discussion,



this increment is built from two pieces, the first of which may be considered to be
the result of errors, and the second the result of collisions. The part due to errors
will be called X{,, and the part due to collisions will be called V], , with the incre-
ment being the sum of the two.

We start by defining X{,,. Consider the values of the error variables e(x, t+1) for
sites x in the interval [E{ — 2, Ef + 2]. If all of these have the value 0, then set X[,
equal to 0. Next we define X{,, in the case that exactly one of these error variables is
not 0. Let x’ be the site where this occurs. If x' < Ef and if e(x’, t+1) does not agree
with the endpoint sign, then let X{,, equal —1. If x'>E{ and if e(x’, t+1) does agree
with the endpoint sign, then let X{ , equal +1. In all other cases, let X{,, equal 0. It
will be noted that this definition of X[,, exactly corresponds to the jumps described in
the discussion of movement of the endpoint due to the occurrence of a single error.

Now that X{,, has been defined, we let Y{,, be the largest integer <0 such that
the choice

ta = E{tXREy+ Y,
satisfies the inductive assumption at time t+1. (If no such integer Y{,, exists, we let
El =-oo for all u>t+1. It is easy to see that if € >0, such an integer will exist with
probability one at all times.) We may describe our definition of the movement of the
right endpoint in this way: first move the endpoint in accordance with the description
given in the paragraphs which discuss movement due to a single error; then, if neces—
sary, move it to the left until the values assigned by ({,, to the four sites in [E{,, - 3,
Ef, ,+1lare ?++7 or 7--7 or ++7+ or —— 7 —, with “?" representing any of
the three possible values 0, + or — as before. A little investigation of the possibili-

ties will reveal that the extra movement to the left represented by Y{,, can only occur

when there is a string of sites close to the endpoint which have the opposite value



from the endpoint sign (a collision occurs), or when multiple simultaneous errors occur

near the endpoint.

Let Ef , X! and ! be defined in the obvious way. Then it is easy to check induc—
tively that

All sites in the interval [E} + 1, E] — 1] are assigned non-zero values by £7.  (7)

In fact, the statement in (7) is essentially true for the larger interval [E}, E{]: any
zeroes that occur at the end sites of this interval are temporary (they last only one
time unit) because of the assumption made about the signs at sites near the endpoints.
(Such zeroes can arise at, say, the right endpoint, when the right endpoint moves one
unit to the right due to an error that occurs at the site Ef + z‘/2 at time t+1.) Thus for
all practical purposes, we may consider the interval [E} Ef] to be free from O's in the
process (]

Inner strings. One of the goals in this proof is to obtain good upper bounds on
the amount that the endpoint moves due to collisions with inner strings. Thus we need
to analyze the way in which these strings move about and interact with one another.
We will separate the inner strings into two types. The first type, called a gimple
string, is an inner string which has never joined together with another inner string
which has the same sign and which was originally disjoint from it. When two simple
strings with the same sign join together, the larger string formed is called a complex
string. We will also insist that the occurrence of multiple simultaneous errors not
figure into the movements of the endpoints of a simple string. If more than one error
occurs simultaneously within four sites of either side of the endpoint of a simple

string, it becomes a complex string.



Let us describe the typical life of a simple string. It is born when two simultan-
eous errors with the same sign occur at adjacent sites at some time t in the interval
[E}, Ef], forming a block of two neighboring sites which are assigned the same non-zero
value by £ . As single errors occur near the endpoints of this block, it grows or
shrinks as described in the paragraphs on the movement of endpoints due to errors. If
at any time one of these endpoints comes too close to another block of sites contain—
ing the same sign as the endpoint of the simple string, or if multiple simultaneous er-
rors occur near one of these endpoints, then its life as a simple string ends and it be—
comes a complex string (see Movie * 3 below). It can also happen that an “inner,
inner” string is formed within the first simple string, with the opposite sign. If, say,
the right endpaint of this inner, inner string eventually joins up with the right end-
point of the simple string, then we will consider the simple string to have shrunk by
an amount equal to the width of the inner, inner string (move the right endpoint of the
simple string to coincide with the left endpoint of the inner, inner string). The inner,
inner string then "breaks out” of the simple string and is then absorbed, so to speak,
by whatever is outside of the original simple string (see Movie #4). Note that we are
treating simple inner strings differently here than we treated the large interval [E},
Efl. A simple inner string always retains its integrity as a string of +'s or a string of
—'s. It does not change its endpoint sign like the interval [Ef, Ef] does. Incidentally, an
inner, inner string is considered to be a separate inner string itself, which may be ei-
ther simple or complex, and which may cause its own collisions with the endpoints E}
and Ef. Once it breaks out, it either disappears as a string, or joins together with
another string with the same sign, so in any case, it will at that time cease its life as
a separate string. To summarize, the endpoints of simple strings move in two ways:

the usual random walk kind of movement due to single errors, and larger jumps that
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shrink the size of the simple string and allow inner, inner strings to break out.

Movie #3
Some sites in the interval [Ef, Ef].

An inner string is born.

R b Stk R R R R R The inner string has grown and moved.
B R Rl s ok T A second inner string appears.

LAt -+ O+ -+ 4. .. An error (circled) occurs between the strings . . .
t++-—-—-——— ++ and a complex string is formed in 2 time units.
Movie *4

Attt Some sites in the interval [E{, Ef].

An Inner string appears and . . .

tt-—-————— +++ grows after some time has passed.
R et & R o o An inner, inner string appears.
R I R L An error (circled) occurs, allowing. . .
Lttt -4+ 4 the inner, inner string to break out, causing the

string of —'s to be diminished after 2 time units.

We are interested In upper bounds on the number of times that a collision occurs
between one of the endpoints E{ or Ef and one of the inner strings. We will be able to
estimate the probability that such a collision occurs when the inner string remains
simple, but estimates for complex strings are troublesome (they can be done, but we
prefer not). We find that it is sufficient to be quite crude with complex strings: it is
enough to note that the number of collisions between complex strings and E{ or Ef is
bounded by the twice number of times that a new complex string is formed (recall
from Movie #2 that an inner string can cause two collisions). In other words, once a

complex string is first formed, we will count it as if it has already collided twice



with Ef or Ef , whether it actually eventually does so or not. The formation of complex
strings in the interval [E{ , E{] is rare enough that this overestimate does not get us
into trouble. Note that we do not need to keep track of instances where simple strings
join up with complex strings, because such events do not increase the number of com-—
plex strings. We simply count complex strings once they are formed, and then we ig-
nore them. Note also that we do not exclude the possibility that the same set of si—
multaneous errors that destroyed one simple string could also start an new simple

string. Our estimates will allow for this possibility. To summarize, we have the

following:

Assume that Ef > E} +2 for all t € [0, T]. Then the number

of collisions between inner strings and E{ or EJ during the time

interval [0, T] is bounded above by twice the number of simple inner

strings that collide with Ef or EJ during [0, T] plus twice the number of  (8)
collisions between two disjoint simple inner strings during [0, T] plus

twice the number of simple strings that become complex through the

occurrence simultaneous errors.

Thus, according to (8), we only need to work with simple strings in our estimates.
This fact is quite useful, because for all practical purposes, we can treat simple
strings as if their endpoints moved like random walks. The deviation from random
walk behavior occurs when an inner, inner string breaks out. This causes a decrease in
the size of the simple string, making it harder for it to collide with another disjoint
simple string or with the endpoints E£ or E{ . If we ignore such decreases, we are only

making it easier for complex strings to be formed and for collisions to occur between



simple strings and E{ or Ef . Thus we are justified in our estimates in treating simple
strings as if the movements of their endpoints were only of the random walk type that
results from single errors.

Estimates. Our goal is to show that the endpoint processes E{ and Ef behave like
random walks for small € >0. Define

>Yo=Cl  and D> X[ = Bf

s<t s<t
so that Ef - Ef = Bf + C[. The increments X{ were constructed to be independent
identically distributed symmetric random variables, so the Bf process is just a sym-
metric random walk. Thus we would like to show that the decreasing process C{ is
negligible in comparison to Bf as €—0 (and similarly for the left endpoint process).
Recall that Y] is O unless there is some movement of the right endpoint Ef which is
not due to the occurrence of a single error. Multiple simultaneous errors near Ey and
collisions between an inner string and the right endpoint can cause Y{ to be negative.
Wwhen such events occur, =Yy measures the distance that the right endpoint must move
toward the left in order that the assumption about the values assigned by the process
¢ to sites near the right endpoint remain valid. This distance is roughly the distance
to the nearest pair of neighboring sites that are both assigned the same non—zero
value. Recall that none of the sites in the interval [E{ + 1, E] — 1] can be assigned the
value 0, so as long as Ef remains larger than E{ + 2, the sites in the interval [Ef + Y{
, Ef— 1] must contain alternating +'s and —'s. It is not hard to check that intervals of
alternating +'s and —'s of length N in the process ({ can only be produced by clusters of
at least N/2 —1 errors occurring near each other in space-time. As mentioned earlier,
we can assume that clusters of three or more errors do not occur (they can be ignored

if € is small), so it is safe to assume that -V{ is always less than or equal to 6. If



we combine this bound with (8), we obtain the following, which is valid for small £>0:

Assume that Ef > E2 +2 for all s € [0, t]. Then
Cf < 6 [(the number of collisions between the right endpoint E7and
inner strings during [0, t]) +
(the number of times s € [0, t] that two simultaneous (9)
errors occur near E0)]
< 12 [(the number of simple inner strings that collide
with the right endpoint Efduring [0, t]) +
(the number of complex strings formed between
E! and E at some time s € [0, t]) +
(the number of times s € [0, t] that two simultaneous

errors occur near ED].

We will estimate the expected values of each of the three terms on the right of

(9). It is easy to see that

The expected number of times s € [0, t] that two simultaneous (10)

errors occur near Ef is O(te?),

provided we understand "near” to mean "within some fixed number of sites”. Esti-
mates for the other two terms will take more effort. Let

F(x, s) = the event that x € [EL Efl and e(x, s) = e(x + 1, 5) # O.
In other words, F(x, s) is the event that an inner string of two +'s or two —'s starts at

time s at the sites x and x + 1. We are ignoring strings that start in other ways,



since all other ways require clusters of three or more errors, which we have claimed
all along are negligible. We are also including some situations in which a true string
is not formed, namely those cases where the signs of the error random variables e(x, s)
and e(x + 1, s) agree with the values of the process {J_, at the sites x and x + 1. This
overcounting of strings will only increase our estimates, so it is justified. Next let
G(x, r, s) = the event that F(x, r) occurs , and the resulting inner string
eventually collides as a simple string at time s with the right endpoint E{
H(x, r, s) = the event that F(x, r) occurs , and the resulting inner string
becomes a complex string at time s, either by colliding with
another simple string or through the occurrence of multiple
simultaneous errors near one of its ends.

I(N, t) = the event that [-N, N} > [EX Ef] and Ef > E?

8-"8

+ 2 for all s € [0, t].
According to (9) and (10),

E(CT IN, 1)) < 12 ) > (P(G(x, r,8)) +P(H(x, r, 5)) ) +0(te?) (11)
r<s<t xe[N,N]

We will first obtain an estimate for P(H(x, r, s)). There are two ways in which
H(x, r, s) can occur. One is that an inner string appears at the sites x and x + 1 at
time r, this inner string survives as a simple string until time s, and then at time s,
two simultaneous errors occur near one of its ends. The probability that the inner
string appears is €2. The length of a simple inner string behaves essentially like a
symmetric random walk which starts at 2 and has an absorbing barrier at 1, and which
has jumps at rate 2e. Thus the probability that it survives for s —r time units is
bounded above by a constant times 1//(s — r)e . The probability that two errors occur

simultaneous near one of its ends at time s is a constant times €2. There is enough



independence around so that we can multiply these probabilities, yielding a bound of
C(v'(s = r)e )~'e* for the probability that H(x, r, s) occurs in this way, where C is some
constant independent of €. The second way that H(x, r, s) can occur is that the inner
string appears at time r and survives for s — r time units, as before, and then a second
inner string appears at time s at a distance d from the first inner string, and the two
inner strings collide as simple strings some time later. We claim that the probability
that this later collision occurs is bounded by a constant times d='. Again there is
enough independence so that we are justified in multiplying probabilities, so we obtain
a bound of Ce*(dy/(s — r)e)-', where the factor of €* comes from the probabilities of
the appearances of the two inner strings, and the factor of (v (s - re)~' arises as be-
fore. Of course, we have ignored the possibility that the collision occurred with a se-
cond inner string which appeared before time s. However, this only introduces a factor
of 2 in our estimates (the collision will be counted in H(x', r’, s) for some other site x'’
and some time r’ <r), so we will not worry about it. Since all inner strings must ap—
pear somewhere in the interval [-N, N], d must be less than 2N. Summing over all such

d we find that P(H(x, r, s)) is O( (s - r)~""2e™2InN), so that

> > P(H(x, r, 8)) is O(t¥2e™2NInN). (12)
r<s<t xel-N,N]

We will now justify our claim about the probability of collision being a constant
times d~'. In order to picture the situation, let us assume that the second inner string
appears to the right of the first. We will concentrate on the movements of the right
endpoint of the first inner string and both endpoints of the second inner string. They
essentially all move like independent random walks until two of them come close

enough together to collide. If the two endpoints of the second inner string come too



close to one another, the second inner string will disappear and no collision between
the two inner strings will occur. Thus the two inner strings can only collide if the
right endpoint of the first inner string and the left endpoint of the second inner string
come close to each other before the two endpoints of the second inner string get too
close together. This is a variation on the classical gambler’s ruin problem: the right
endpoints of the two strings play the roles of the absorbing barriers, and the left end-
point of the second inner string plays the role of the gambler’s fortune. This compari-
son makes the claim quite plausible. One can easily rigorously justify the claim by
using the same kind of martingale arguments that one uses in the gambler’s ruin pro-
blem. In fact, with a little work, one can prove the following: let x,(t), x,(t) and x4(t)
be martingales with respect to the same sequence of o-algebras (the martingales are
not assumed to be independent). Assume that x,(0) = x(0) = x4(0) = 0, and for simpli-
city also assume that the increments of each of the three martingales are bounded in
size by some fixed constant. Finally assume that the expected value of either x,(t)? or
x(t)? grows at a non-zero rate. Let T, be the first time t that x,(t) > x,(t) + 1 and let
T, be the first time t that x(t) > x((t) + d. Then P(z,>,) <Cd™' for some constant C
independent of d.

We now turn to the estimate of P(G(x, r, s)). The event G(x, r, s) occurs as fol-
lows. First, the inner string appears at x and x + 1 at time r. This happens with pro—-
bability €2. Then the two ends of this inner string move about like symmetric random
walks, jumping at rate €. At time s, the right one of these two random walks collides
with E]. The two endpoints of the inner string must not collide during [r, s, since the
inner string would disappear if thegdid. Thus we can consider them to be moving like
independent random walks during that time. These two random walks are also moving

independently of the process B[, which is itself moving like a random walk. If we



could identify EJ, with Bf, then we would again have a gambler's ruin type problem in-
volving the three random walks. There would be a probability of the form p(r, s) that
the collision at time s would occur between EY and the right end of the inner string
before the inner string disappeared. The sum over s > r of these probabilities would be
the probability that the inner string would eventually collide with E[ before disappear—
ing. If we let d be the distance between x and the right endpoint E7, then as before,
we would obtain an upper bound for this sum of the form Cd™'. It is easy to see that
the probabilities p(r, s) depend only on s —r, so we would also have the same bound for

the sum over all values of r less than s. Summing over d < 2N, we would then have
> > P@G(x,r,8) is  O(*INN) .
rir<s xe[-N,N]

Unfortunately, we cannot identify E! with B . We must take into account the ef—
fect of the process C/. The simplest way to do this is to replace the event G(x, r, s)
by a different event. Let x(t) be the position of the right endpoint of the inner string
formed at x and x + | at time r and define

G(x, r, 8) = the event that F(x, r) occurs and the resulting inner string is

still alive and simple at time s, and s is the smallest time such that

either BY - By + Ef— x(s) < (Ef - x = 2)/2 or «{C[-C) > (Ef-x-2)/2 .
The event G(x, r, s) does not contain the event G(x, r, s), but the union over x, r, s of
the G events does contain the union of the G events, and more importantly, the number
of G events that occur is greater than or equal to the number of G events that occur.
The reason for this is that in order for a collision between an inner string and EJ, to
occur, the (distance — 2) between the two must be reduced at least half way either
through the drift caused by the process C{ or by the wandering about of the random

walk components of the various endpoints, and all this must happen before the inner



string disappears. If we let d equal this distance (i.e., d = (Ef — x — 2)), then the pro-
bability that half this distance is covered by the wandering of the random walks is
bounded above by a quantity p(r, s) which sums to Cd™' as before. The probability that
it is covered by the process CJ is equal to P(C{ - C{<d/2 for allu € [r, s—1]; C[ - C >
d/2). Since the process CJ, is decreasing , we have a bound of P(-C"> d/2) for the sum
of these terms over r <s. Summing over d < 2N, we obtain

2. > P(G(x,r,8) < 2e%E(-CL) + O(e?InN) .
rir<s xe([-N, N]

Thus we have the following inequality:

E(-C: I(t, N)) ¢ CE2(tInN + e32t%2NInN + > E(-CT I(s, N)) ) (13)
s«<t

(we have glossed over a technical point here, namely the appearance of the event I(s, N)
on the right side of (13). This can be justified by using a stopping time that stops the
process EJ at the first time that the inequalities in the definition of I(s, N) become vi-
olated. We will spare the reader the details.) The constant C in (13) is independent of
€, t and N. Let us assume that t <c/€? and N<c//€ for some constant ¢ independent

of €, and define f&(s) = /& E(~CT; I(s, N)). Then (13) becomes

rf(t) < (/e |Ine|ert + €23 %)), (14)

s«<t

Again, C is a constant which is independent of €, N and t. It follows from Gronwall's

inequality (see Coddington and Levinson, Chapter 1, Exercise 1) that

(1) < /e |ine|ett foralle>0,t<c/e?andN<cie. (15)



This last inequality has been the main goal of all our estimates, so let us take a mo—
ment here to understand what it gives us. By the Central Limit Theorem , /€Bfis ap~
proximately norma?llg distributed, with mean O and variance equal to a constant times
£2t. On the other hand, we have just shown that if I(t, N) occurs, —/€ C{ has an ex—
pected value which is small in comparison with €2t, at least when € is small. Typi-
cally, the size of /& Bf will be the same order of magnitude as the square root of its
variance, while /¢ Cl will be comparable to its expected value, so for t <c/e? and € > 0
sufficiently small, the drift part of EY, namely C{, will be small in comparison to the
random walk part, which.is Bf . Of course, there are still some technicalities to over-
come, but the worst is over. We will not give these details here, but the remaining
work on this part of the proof involves using the fact that there is sufficient indepen—
dence built into the & and H events to make the phrases "typically” , "comparable to*

and "small in comparison to” sufficiently precise to prove the following statement:

Let E, = Ef - Ef and define T = inf{t>0: E<2 or E,>d/\/e},
for some d> 0. Then there is a constant C independent of d such that  (16)

for all sufficiently small € > O (depending on d)
P(E, >d//e)>C/en/l.

(Recall that n is the number that determines the length of the original interval of +'s

in the process {f , so that Ej = 2n+1.) The lower bound on P(E,. > d) is just what we

would expect if there were no movement of the endpoints Ef and E{ due to collisions.
In other words, If Cf and C! were both O, then E, would equal Bf - Bf, which Is just a
random walk. If such a random walk starts at 2n + 1, then the probability is ~ n/d

that it will hit d before hitting 1. Thus (16) is a way of expressing the statement



that the movement of endpoints due to collisions is negligible in comparison with the
movement of endpoints due to single errors. We will use (16) to complete the proof in
the next subsection.

Conclusion of proof. After our long excursion concerning the movement of end-
points, we are finally ready to return to an analysis of the process ¥y, and the proof of
(6). Recall that the initial state of y, has O's at all sites. There is a probability of
€2 that simultaneous errors with the same sign will occur at any fixed pair of neigh-
boring sites at any given time. One can imagine that an interval of non-zeroes has ap—
peared, with endpoints 2 units apart. One can define the subsequent positions of these
endpoints in the same manner that E{ and E{ were defined (the values at sites outside
this interval are not relevant — we never assumed anything about these values in our
actual definitions of the endpoints). Estimate (16) will apply. In particular, the
probability that the interval will achieve a length of at least d//e before disappear—
ing is greater than C//¢ /d, as long as € >0 is sufficiently small (depending on d).

Now consider a c///e X c/e? rectangle of space-time. Within such a rectangle,
we would expect about c3//¢ intervals to appear as described in the last paragraph.
Thus the expected number of these intervals to achieve a length of d//e before disap—
pearing is greater than Cc3/d , at least for sufficiently small € >0. Choose c large

enough so that Cc?> 1 and set d = c. Then we have the following:
The expected number of intervals originating in a c//e X c2/g?
space-time rectangle which achieve length c//€ before disappearing  (17)

is at least | for sufficiently small € >0, where c is independent of €.

There are now two remaining steps. These are both non-trivial, but they contain no



new ideas, so we will only briefly describe them and refer the reader to the paper re—
ferred to at the beginning of the proof for details. The first step is to convert (17)

into the following:

Let c be as above. Then there exists § > 0 such that for sufficiently
small €>0 and for any c//e X c2/e? space-time rectangle R, (18)
P(an interval originates in R which achieves length c//e in time c2/e?)

>1 -8.

As in other parts of the proof, we claim that there is sufficient independence around
to get from (17) to (18). The dimension of the rectangles in the time direction has
been chosen so that any interval that achieves length ¢/y/e has a minimum positive

probability of doing it within a time interval equal to the length of the time side of

the rectangle. This is important in order to maintain a certain amount of independence
for the rest of the argument.

In the final step of the proof, we finally use a fact that we have carefully avoided
until now, namely the fact that two intervals of non-zeroes can join to form a larger
interval. The statement in (18) guarantees that there is a minimum positive density
of intervals of non-zeroes with a certain minimum length in rescaled space-time. If
we focus on one of these intervals, we find that its endpoints will continue to move
about like random walks (or Brownian motion as € = 0). There will be a certain rate
at which the interval will join with another interval. The endpoints of this new longer
interval will also move about like a random walk until a further coalescence with yet
another interval. It is not too hard to show that we therefore will get an interval

which grows linearly in length. By choosing € sufficiently small, this description can



be made accurate for arbitrarily long periods of rescaled time. There are certain per—
colation techniques (fast becoming standard in this area) which can now be used to
show that for all sufficiently small € > 0, with probability 1 these growing intervals
will link together to form an infinite region in space-time, and every site will even—
tually become a part of this region forever. The statement in (6) follows easily from
this. We do not have space here to give the details of the percolation argument. For
an example, see Durrett and Griffeath (1983). This and other missing parts of our
proof will be found in Gray (1986). O

A concluding note. In the proof we rescaled space and time in such a way that
the endpoint processes behaved like Brownian motions as € = 0. The same thing can
be done in other models with SML flip probabilities or flip rates. It is natural to ask
whether there is some limiting distribution in space-time which is independent of the
particular model. I believe that there is. In other words, I conjecture that there is an
invariance principle in operation which applies to all finite range SML models as € = 0.
The chief difficulty with this conjecture is not to prove that it applies to a large
class of models. Instead, I have difficulty trying to make sense out of it even in the
special case of the nearest neighbor majority vote model. The problem lies in trying
to identify the limiting object. One must try to imagine a process which lives on R in
which swarms of infinitesimally small intervals of two different colors are appearing.
The endpoints of these intervals move like Brownian motions, so most of them dis—-
appear immediately. However, so many of them are produced that some of them be—
come long enough to be “visible”. Collisions produce no effects except to join two in-
tervals into one. One is vaguely reminded here of the production of so—called virtual
particles in physics, most of which immediately disappear, but a few of which have a

relatively long life. It is hoped that if it is really possible to make sense out of such



a process, some insights into the nature of Gibbs states at low temperatures will be

attained. Then our goal of applying the stochastic theory to equilibrium theory would

be realized.

1.

Q.
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