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Two Dimensional Navier-Stokes Flow with Measures as Initial Vorticity
Yoshikazu GIGA, Tetsuro MIYAKAWA & Hirofumi OSADA
Introduction

This paper studies the nonstationary flow of a viscous
incompressible fluid in R2 when the initial vorticity is very singular.

The governing equations of motion are the Navier-Stokes equations

(1) u' - vAu + (u*Vy)u + Vp = 0, V-.u = 0,

u->0 as |x| = o, u(x,0) = a(x), V-a = 0,

where u and p represent unknown velocity and pressure, respectively,
vV > 0 is the kinematic viscosity, (u-9) = Ziuia/axi, Veu = Ziaui/axi
and u' = 3u/dt. The density of the fluid is assumed to be one by a
normalization.

We consider problem (1) in two dimensions assuming that the initial
vorticity

Vxa = 9a®/3x, - da'/ax,

is a finite Radon measure on R2 and discuss the solvability. The
velocity fields of this type include those with vortex sheets and point

sources of vorticity, which are both important in the vortex theory for

ideal fluids. It is very recent that a rigorous relation between



solutions of the Euler equations (system (1) with v = 0) and the
classical theory of the motion of point vortices is studied

See, e.g., Marchioro and Pulvirenti [19],[20] and Turkington [31]. For
the Navier-Stokes system (1) Benfatto, Esposito and Pulvirenti [3]
constructed a global smooth solution, assuming that initial vorticity is

a finite pure point measure which is small compared with v, i.e.,

m
VXas=15% a, 6(x-2.)
o0 i

i=1
and Vv is sufficiently large compared with Zjlajl i here, 6(x—zj) is
the Dirac measure supported at zj € Rz. In other words, results in [3]

say that point source vorticities can diffuse following the Navier-Stokes
flow provided Vv is large. We note that this result does not follow

from classical theoriés for the Navier-Stokes system as developed by
Leray [17]1, Ladyzhenskaya [16] or Temam [30]. As pointed out in [31,
classical existence results for (1) fail to work since the initial
velocity a, with Vxa a measure, is not necessarily square-summable,
even locally.

Our main goal in this paper is to show that there is a smooth global
(in time) solution to (1), assuming only that the initial vorticity Vxa
is a finite measure on Rz. Evidently, this improves the result of [3]
since no restriction is imposed on Vv as well as on the size and the
form of Vxa.

To show the existence, we adopt a standard procedure. We first
regularize the initial velocity a, consider the corresponding regular
solutions of (1), and then take a subsequence converging to the desired

solution of the original problem. As is well known, to carry out this



process one needs good a priori estimates for regular solutions. For

this purpose we study the vorticity equation for v = VUxu

(2a) v' = vAv + (u-V)v = 0,
(2b) u = Kxv
for smpoth initial data v(x,0) = Uxa. where K is the vector function:
K(x,,X,) = (-X,,X )/2n|xl2 X = (X,,X,)
1’72 2'71 ' 1’72
and * denotes the convolution on R2. These equations are formally

obtained by taking Vx of (1) and using the condition V-u = 0. We note
that there is no vorticity stretching term in (2a) since the space
dimension equals 2.

We regard (2a) as a linear parabolic equation for v with
coefficients wu and write the corresponding fundamental solution as
Fu(x,t;y.s), t 2 s. A bound for Pu due to the third author [25]
yields our key a priori estimates:

1

(3 C, (t-s)" exp[—Colx—y|2/(t-s)] ST, (x,tiy,s) S

- 2
S Cgtt-5) lexpl-C, lx-y|%/(t-5)]
where the positive constants Cj’ j=1,2,3,4, depend only on v and Ll—norm
of Vxa. Estimate (3) makes it possible to control the behavior of v

as t 2 0 uniformly in approximation so that solutions with regularized

initial data converges to a solution of the original problem, i.e., the



9
problem (1) with Vxa a finite(Radon) measure on R". Estimates of the

form of (3) with Cj independent of the smoothness of coefficients were
first established by Aronson [1], Aronson and Serrin [2] for linear
equations of divergence form. Osada [25] extends estimates in Aronson
(1] to a class of linear equations of non-divergence form which includes
equation (2a) as a typical example.

Existence problem for nonlinear evolution equations with measures as
initial data has recently attracted many mathematicians. For example,
McKean [22], Osada and Kotani [24] and‘SZnitman [29] study the existence

and uniqueness of solutions for the Burgers equation

u' + uu_. = vu s X € R1
X XX
with u(x,0) = ¢cb6(x), c > 0. For the problem
o) n

u' - Au + u¥ =0, X € R ; u(x,0) = cd(x), ¢ > 0,

Brezis and Friedman [5] prove the existence of a solution for 0 < p <
1+2/n  and nonexistence for p & 1+2/n; see also [35] for more general
initial data. Their existence results are extended to more general
equations of the form u' - Au + f(u) = 0 by Niwa [23]. For the problem

u' + f(u)X =0, x € R1 sy u(x,0) = &8(x),

Liu and Pierre [18] discuss existence, (non-)uniqueness and asymptotic
behavior of entropy solutions under various assumptions on the form of

the function f. Our main result may be understood as an example of the



existence results for nonlinear parabolic equations involving measures as
initial data, since our result yields in particular global solutions to
the problem (2a),(2b) when v(x,0) is an arbitrary finite measure on R2

In Section 1 we start with local existence results for problem (1)
in R', n 22, with initial velocity a in LP, p > n and show that the
solution is regular for t > 0. For later use we discuss higher
regularity up to t = 0. Since (1) is parabolic, these results are
conceptually well Kknown. However, it is difficult to find the
appropriate version in the literature since initial velocity a is not
necessarily square-summable, i.e., initial energy may be infinite.

From Section 2 we consider only the two dimensional flow. We extend
the local solution obtained in Section 1 to global smooth solutions,
appealing to the vorticity equation (2a)(2b). An argument of this sort
is found in McGrath [21]. Our global existencé resufts in Section 2
improve recent results in [19,20] as well as that of [211, by relaxing
assumptions on the initial data.

As a byproduct of our existence results, we prove in section 2 a

persistent property of our solutions in Sobolev spaces wm’p(RZ), p > 2,

l)
M P(R%) and Uxa €

m=0,1,2,... Namely, we shall show that if a € W
Lq(RZ) with 1/q = 1/p+1/2, then the corresponding solution stays in
wm,p(R2) for all time and bounds for the solution on each finite time
interval are independent of the viscosity v. Such a uniform bound
enébles us to take a subsequence converging as Vv 2 0 to a solution of
the Euler equations. In fact we construct a global solution to the Euler
solutions under the same assumptions on a.

Persistent property of this sort is systematically studied by

Kato [15] and Ponce [27] for the solutions of (1) with finite energy.



Since our solution may have infinite energy, our results are not

included in either of [15] and [27]. After we completed this work, we
learned that Kato and Ponce [34] extends their results to solutions which
may have infinite energy. Their result covers our results for m 2 2.
However, our results for m = 0,1 are not contained even in [347]. I'n
particular, our existence result for the Euler equations seems new for
initial data a € LP(R%), uxa € L9R%), 1/q = 1/p+1/2.

Section 3 establishes our key a priori estimates for smooth
solutions constructed in Section 2. It is crucial that our bound depends
only on Ll—norm of initial vorticity VUxa and is independent of
regularity of a.

In Section 4 we apply our a priori estimate in Section 3 and prove
our main existence result. More precisely, we construct a global
solution to (1) as well as (2a)(2b) when the initial vorticity is a
finite measure on R2 and prove the regularity for t > 0 as well as some
decay estimates as t = o, We clarify the meaning of the convergence to
initial velocity as t - 0 by using Lorentz spaces. We further show
that our solution is unique provided that the pure point part of Vxa
is small. We note that there is no restriction on the size of the
continuous part of Vxa. This result covers the uniqueness result of [3]
since they assume that VUxa 1is a finite pure point measure and that its
total variation is small.

We are grateful to Professor Masao Yamazaki for some suggestions on
Lorentz spaces. We are also grateful to Professor Noriaki Suzuki for

valuable suggestions on the proof of Lemma 4.4.



1. Local Solutions in R"™ with Initial Data in LP

This section establishes some local existence results in LY for the
Navier-Stokes system (1) in Rn, n & 2, without assuming that the initial
energy is finite. Although there are many references on the local
existence in Rn, only a few results are available unless we assume that
the initial energy is finite (see e.g., [7, 12, 14, 16, 33, 341) ; so we
give here the details of our version for later use. The basic tool for
constructing solutions is a standard successive approximation which goes
back to Leray [17] and is systematically studied in [10, 11, 14, 32, 33,
341.

We shall also discuss higher regularity up to t = 0 which is used
in the sequel. Since the equation is semilinear parabolic, regularity
for t > 0 and up to t = 0 1is conceptually well known (see, e.g., [7],
[101,[34]1). However, we state here our version and give a complete proof
for later use and for the reader's convenience, since our argument
contains new technical aspects and our result does not follow from a
simple combination of known results.

In what follows we use the following notation : BC denotes the
class of bounded continuous functions. LP(R™ represents the space of
Lp—vector or tensor functions on Rn, as well as the space of Lp—scalar
functions on R" ; the norm of f in LP(R™) is denoted by Hpr. We

write BC([O,T) Lp(Rn)) simply as B . The norm of u(x,t) in B

p,T p,T

is defined by



1 n n

If £ = (",..., £) is a vector function on R, Vf denoles the tensor
aifJ, 1 £i, j & n, where ai= a/axi. Similarly, for a nonhegative
Kk 0cl an
integer k, V'f denotes the tensor 81 ...an fJ, oy + L.+ o = k
The expression J3,f denotes the time derivative of f.

t
As is a usual practice ([7,10,11,12,14,32,33,341), to solve (1) we

transform (1) to its integral form:

ViEA

(1.1) u(t) = e a + S[ul(t), t 2 0,

where

(1.2) S[ul(t) = Stu,ul(t) ;  Sfu,wict) = -f! eV CS)B b gy ws s,
Here etA is the solution operator for the heat equation : P is a

singular integral operator of convolution type (see [7]) and is the
orthogonal projection on L2(Rn) onto the subspace of divergence-free
vector fields. A solution u of (1.1) is called a mild solution of the
initial value problem (1) since (1) and (1.1) is eguivalent provided u
and a are smooth and decaying at space infinity. It turns out that the
solutions treated in this paper are all smooth and satisfy the equations
in the classical sense for t > 0. However, we should be careful to the
behavior of the solutions as t 2 0 in order to understand the meaning
of initial condition. We first prepare basic estimates in LP on the
bilinear map S[u,wl. We observe Zjujajw = Zjaj(ujw)

(= V- (uBw) in short) provided V-u = 0. This gives another expression of

S



(1.2') SLu,wl(t)

—Ite vt-s)A

0 PV (
_Iév.eV(t‘S)AP(
evtA. Since

since P and V commute with

(1.2) by (1.2").

Lemma 1.1. Let 2 S n < p <o, T >O0

u ® w)ds

u ® w)ds

Veu = 0,

and  d = 1

we may replace

/2-n/2p. Then

. a : _
(i) IS[u,w]Ip'T < M(VT) Iulp,T IwIp’T/v Provided that V-u =
Giy oot ? gsru,wil s MOD%ul . oot wel /v
R p,T _ p.T p,T '
. g 2d 1/2 1-20a
Y < .
(iii) IVS[u.w]Iq’T S M(VT) Iulp,T | (vt) Vulp’T 'leq,T/V :

with 1/q = 1/p + 1/n, where M

Proof. We use the well-Known estimates

(1.3) ”vthA f“r < C(vt)-l/Z*(n/s-n/r)/Z Hf“s,
(1.4) HPer s chHr, 1 <r < o,
(i) Apply (1.4) to (1.2') to get

Istu,will jct) s c[é 7.V (t=s2D

1

(see [13,

(u ® w)(s)“p ds.

10

SsSr s ow,

Chap 91]1).



Applying (1.8) and Holder's inequality to the right hand side yields

-1+0

t
HS[u,w]Hp(t) s ch [V(t-s)1] lu ® pr/Q(s)ds

t -1+0
s ch [(V(t-8)1] “qu(s)Hpr(s)ds

A
-

< Mlch)"lulp lwl ./v, 0 < T,

» T p,T

where Ml depends only on n and p. This proves (i) with M = M

(ii) A similar argument gives

1/2

(vt)

lostu,will oty s cotr /2 Ié

[Vv(t-g)] 1*O Hqu(s)HVpr(s)ds

1/2 It 1+0 s)—1/2 1/2
20

< C(vt) [v(t-s)1 (v ds x |u|p Tl(vt) Vw|

p,T

172 Uw | /v, 0SSt <T,

(0]
s M, (VT) Iulp’Tl(vt) b T

which shows (ii) with M = M2.

(iii) Similarly to the proof of (ii), we take V of S[u,w] to get

-1/2

lvstu, will <ty s cff tvct-s)3 | Ca- Wyl (s)ds

-1/2

S CIiIvit-5)1 lully (s> 19wl (s)ds

where C depends only on p and n. Since p > n the Gagliardo-

Nirenberg inequality [9. p.24. Theorem 9.3] yields

11



lull, s cllul2Ivul} =27,

We thus have

IVSLu,wlll Ct)
q

s Cfé[v(t—s)]—1/2(Vs)_1/2+0HuH§0(s)H(vs)l

(0] 20
S Mg (VD) Iulp’

with Mq depending only on n and p.

complete the proof.

We begin by constructing a local solution

Proposition 1.2. (i) Suppose that

Tl(vt)

1/2Vu|

1-2
p,T

Taking M

in.

o]

| Tw |

/Zvulll"ZG
1Y

(s)HVWHq(s)ds

/v

q,T

= max(M,, M

the initial

LP,

velocity

1 2°

P > n.

Lp(Rn) r some p >n and V-.a = 0.

solution u of (1.1) such that u € Bp'TAigg
(1.5) 'ulp,T < 2HaHp .

(ii) The time T c¢can be taken so that
(1.6) T 2 cv POy IIaHIl,/‘j , o=
(1.7a) w2 gy e B, p with [
\nd

!

some T >
1/2 - n/2p
/2

\7u|p,T

.
’

s Cllall
p

a

is

Then there is a unique local

we

in



(1.76) 1f va € LY@R™ with 1/q = 1/p+1/n, then Vu € By ¢ and

| Vu | s 2||vall .
q q

, T

where C depends only on n and p.

(iii) Let m be a nonnegative integer and suppose that Vka €

LP(R™ for k = 0,..., m. Then in addition to (i)(ii) the time T can

be taken so that

K K , _
(1.8a) vtu € Bp’T and |V ulp’T s C', k=0, , m
L 1/2 m+1 1/2 om+1 ..
(1.8b) (vt) v u € Bp’T and | (vt) v ulp'T S C' o
k.h K.h , or <
(1.8¢) v atu € Bp,T and |V atulp’T s C or Kk+2h £ m,

where C' depends only on n, m, p and bounds for Vv and HVkaHp ,

Proof. (i), (ii). Consider the successive approximation for (1.1)

(1.9 u, = u, + S[uj], u, = e a, j o= 0,1,...

vtA

Lemma 1.1 (i) and the estimate |le aHp < HaHp together yield

s Ha”p + M(\)T)Olu.l2 /v

g lpr i'p,T

13



This implies that, for all j 2 0

- ,'"1 . _ _ 1/2
(1.10a) Iujlp’T S K = 2rf HaHp, Y 1 (1-0) <1
provided
(1.11) 0< 0 = 4HaHpM(vT)°/v < 1.

For 0, 0< 8 <1 we take T > 0 so that (1.11) holds.

Taking V of (1.9) and then applying Lemma 1.1 (ii), together with

(1.3) and (1.10a), yields

1/2 < a 1/2
| (vt) Vuj+1|p < CHaHp + M(VT) Iujlpl(vt) Vujlp /v

1/2 |

s Clall ) + MK (VT O (vt) Va, | /v

p

Here and hereafter we drop the subscript T to simplify the notation.

By definition of K and (1.11), the second term of the right hand side

1/2

is S (r/2)| vty Vujl .  Hence

p

(1.10b) |(vt)1/2 Vujlp < 2CHaHp = N for all j 2 0

with C depending only on p and n.

Similarly we take V of (1.9) and apply Lemma 1.1 (iii) (1.10a) and

(1.10b) to get

(8]
IVuJ.+1|q s HVqu+ ML (VT) HaHpIVujlq/v

14



with L depending only on p and n. If 6 is sufficiently small,

say 0 < 6 < 2/L, then the above estimate gives
1
Vu , S ||Va + =|Vu,
| lq 8 Ivally + glou, 1
which yields the bound

(1.10¢) IVujl < ZHVqu for all j 2 0.

a,T

Here and hereafter we fix T so that (1.11) holds with BL‘< 2.

9
We shall now prove that uj and (\)t)l/"Vuj (resp. Vuj) are Cauchy

sequences in Bp,T (resp. Bq,T)' The difference wj = uJ+1 - uj
satisfies
(1.12) wj = S[uj+1] - S[ujJ
= = 2

S[uj, wj-1] + S[wj_l, uj_lj, J 1,2,

Lemma 1.1 (i) implies that
o
. T . + . . \V
Ilep S M(OVT) (luJIp IuJ—l,p)IwJ—llp /
By (1.10a) and (1.11) this yields
o]
< =
ijlp S 2MK(VT) ij_llp rIwJ_llp

so that

15



< j
(1.13a) lelp Sr lelp S 2Kr”.

This shows that uj is a Cauchy sequence in Bp T*

We next take V of (1.12) and apply Lemma 1.1 (ii) to get

1/2 o 1/2 1/2
(vt) Vw s M(VT . vt Vw . ‘
I wJIp (VT) [lujlpl( ) wJ_llp + le_llpI(vt) VuJ_llp]/v
< MK(VT)O[I(Vt)l/Zij_llp + aned Ty
r 1/2 J
s 3 [ (vt) ij-llp + Nr

by (1.10a), (1.10b), (1.11) and (1.13a). By (1.10b) this yields

(1.13b) I(vt)l/Zijlp < CrJHaHp for all j 2 1,

1/2

which shows that (vt) Vuj is a Cauchy sequence in B

p,T’
Similarly, applying Lemma 1.1 (iii) together with (1.13a), (1.13b)

and (1.10c) yields

8]
lelq S ML(VT) HaHpIij_llq/v
o] 20 1/2 1-20
+ M(VT) le_llp [ (vt) ij_llp [Vu _1|q/v
1 J
< = [
S 2,ij*1|q + C HVqur

with C' independent of j. Thus

16



IijIq s C"HVqusJ, s = max(r, 1/2), for all j 2 1

with C" independent of j. This shows that Vuj is a Cauchy sequence
in Bq,T'

The estimate (1.6) is obvious from our choice of © and T. Since

uj and (\)t)l/ZVuj (resp. Vuj) are Cauchy sequences in Bp T (resp.
Bq,T ), we see the limit uw = 1lim uj is a solution of (1.1) in Bp,T and
satisfies (1.5),(1.7a),(1.7b) by passing to the limit j - o in
(1.10a),(1.10b),(1.10c). The proof of uniqueness in Bp T is standard
(see [12]) so (i),(ii) are proved.
(iii) First we shall prove that, for k = O,..., m

(1.14) IVku.l s c for all j 2 0 ;

k J'p
(1.15) 1v¥w.| s ¢'pd for all j 2 1,

k i'p _
with C' independent of j and T. To do this we appeal to induction

on K. The case k = 0 1is nothing but (1.10a) and (1.13a). So we

assume that (1.14)i and (1.15)i are valid for i = 0,..., k-1. Taking

vE 0f (1.9) and (1.12) gives

k _ 4k k
(1.16) V uj+1 =V uO + V S[uj]

k-1 .
VA% + stu.,vRu1 ¢ stv®uul1 « 7 (KD srvie v
i ] i oo ) i

k

-1
ujJ:

k. Kk K
(1.17) v Wy o= S[uj,V wj-1] + S[V wj—l’uj-1]

17



k k
+ S[V uj’wj-1] + S[wj_l,v uj—1]
k-1
(k) i k-i k- i i
+ i§1 (1) ¢ SV u, V% Twy 11+ SV Wi ViU D

Applying Lemma 1.1 (i) to (1.16) yields

k-1
k a k - i k-1
s cllv aHp + M(VT) [2|uj|p|V ujlp + ciéllv ujlplv ujlp]/v.

K
|v uj+1|p

Using induction assumption, (1.10a) and (1.11), we have

IVku

K K ,
jerlp S Clviall o+ rlv ugly, +cr.

Since r < 1, this implies (1.14)k provided HVkaHp is finite. We next

apply Lemma 1.1 (i) to (1.17) and use (1.14) with k S m to get

k

K o K
: . . VW,
|v wJIp S MOV [(Iqup + '“J-1|p)| wJ_llp

This, together with (1.10a), (1.11) and induction assumption (1.15)1, i S

k-1, yields

| + c'rd.

K <« ok
|V wjl srlv Wil

p

Since r < 1, we obtain (1.15)k. The proofs of (1.14)k and (1.15)k are

completed. We next show that

/2 vm+1u.'

(1.18a) [ (vi)!l s c for all j 2 0 :

18



(1.18b) | (ot)/2 vm*lelp sc'rd for all joz1,
by induction on m. The proofs are parallel to those of (1.10b) and
(1.13b). We apply Lemma 1.1 (ii) to (1.16) with Kk = m+1 and use

(1.10a), (1.11) and (1'14)k’ Kk s m, to get

1/72 _m+1 m
[ (vt v uj+l|p s Ccl|v aHp
m
+ MDD %l oot 2e™y |y o T vk | oty 1/ 2gm itk
i'p i'p Kol i'p i'p
m r 1/2_m+1 ,
s cllv aHp + 5 | (vt) v ujlp + C' .,

which implies (1.18a). Similarly, applying Lemma 1.1 (ii) to (1.17) with

K = m+l gives

1/2m+1 o 1/2,m+1
: v . . Y Y .
[ (vt) wJIp S MOVD) [Iqupl( t) wJ_llp
L 1/20m+1 .
+ Iuj_llpl(vt) v wj_llp]/v + C'r
st oo™y Lo,

j-1'p

This implies (1.18b). Estimates (1.15)k and (1.18b) show that Vkuj and

1/2Vm+1u.

(vt) are Cauchy sequences in B So (1.8a) and (1.8b)

p,T"

follow from (1.14)k and (1.18a), respectively, through passage to the

limit j = o,

19
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[t remains to prove (1.9¢). We shall prove it by induction on Q =
k+2h & m. We may assume m 2 2, since otherwise (1.8c) is nothing but
(1.8a). If Q2 =0, (1.8c) is trivial. Suppose that (1.8¢) is true for
K+2h & 2-1. If h = 0, (1.8¢c) is the same as (1.8a) ; 'so even if Kk+2h =
k = Q, (1.8¢) is true. We again appeal to induction on h. Suppose that

(1.8¢) is true for vk+232'1u with k+2h = 9. Using the equation

u' = viAu - Pu-Y)u

we calculate

VkaTu = VkaT—l(vAu - P(u:-Yu)
- Vka?—l(vAu) - PRI L L v e Pu W)
x o x o
:Il+12+13,

where Ca is a constant and Ua, wa are of the form Vyaéu with y+268

t
. Y+1.6 . . . .
S 9-2. Since Vu and V atu are in Bp T by induction assumption on
Q, the Sobolev inequality implies that u and v*afu are in Bp T n
BC(L[O,T) ; BC(Rn)). From this it easily follows that’ 12 and 13 are
in B . (Note that Vk+18h—1u is in B by induction assumption.)
p,T t p’T
Further, our induction assumption shows that I ‘is in B We thus

p, T’

1
conclude that Vka?u is in Bp T for k+2h = Q. The bounds in (1.8¢)

are easily obtained from those of Il’ IO and 13. Thus the proof of

(1.8c¢) is completed by induction.

20



Remark. The basic idea of the above proof goes back to Leray [171],
in which he constructed a global regular solution, when n = 2, by a
successive approximation, assuming that a is in H1 N Lm. A proof of

(i) is given in Giga [12, Theorem 1 and Sect. 41, except for (1.7a).

The next result establishes a regularizing effect for solutions of

(1.1) given in Proposition 1.2.

Proposition 1.3. (i) Let a € Lp(Rn) for some p > n and V-a =

0. Let u be the solution to (1.1) given in Proposition 1.2. Then,

vkaﬁu € BC(le,T); LP(R™) for all k,h 20 and 0< & < T. Moreover,

we have the bound

K.h <
sup[e’T)HV etqu(t) <cC

where C depends only on &, p, n, k, h and a bound for HaHp. In

particular, u 1is smooth for t > 0 and solves the Navier-Stokes system

in the classical sense for t > O.

(ii) Suppose further that v¥a € LP(®R™) for all k 2 0. Then V alu

is bounded and continuous on RnX[O,T) for all Kk,h 2 0. Moreover, we

have

h
sup ;o gy 1980l < ¢

where C depends only on p, n, kK, h, v and |

Q
v .
max l a“p)

0308k+2h+1

21



Proof. (i) By (1.7) we have HVUHp(tO) S C for 0 < ty ¢ T with

C depending only on n, p, t, and HaHp. We then solve the Navier-
Stokes system for t Z tO with initial velocity u(',to) and obtain,
due to the uniqueness of solutions, HVzqu(ZtO) S C. Repeating this

process eventually yields that vaqu(mtO) is bounded by the same
constant C so long as mtO < T. Since tO can be taken arbitrarily
small, this shows that V™u is in BC([e,T) ; Lp(Rn)) for all € > 0
with a bound C depending only on p, n, m, € and HaHp. Combining

this with (1.8c) yields the estimate in (i). The smoothness is immediate

from the Sobolev inequality.

(ii) This follows from (1.8¢c) via the Sobolev inequality. The proof

is completed.

Remark. We note that Proposition 1.3 (ii) also follows from [7,
Theorem 3.4] or [34]. However, apparently no estimate of the form (1.6)
is given in [7] or [34] for the time T. Moreover, it seems that

Proposition 1.3 (i) does not directly follow from the results of [7] or

[341].
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2. Global Existence and Persistency via the Vorticity Equation

The goal of this section is to show some global existence results
for the Navier-Stokes system (1) in R2 without assuming that the
initial energy is finite. As a byproduct we obtain a persistency of our
solutions in Sobolev Spaces wm’p(Rz), P >2, m=20,1,2,... This leads
to global existence results for the Euler equations by letting v = 0.
I't should be noted that our version of persistency deals with solutions
without finite energy, so it is not included in either of [15] and [271.
Since the standard energy method fails to work in our case, we are forced
to appeal to the vorticity equation in order to get the desired results.
Such a type of argument is found in McGrath [21] under more stringent
assumptions on initial vorticity. Here we give our global existence
results for both Navier-Stokes and the Euler equations, based on the
results in Section 1, which relaxes the assumptions and simplifies the
proofs of [21]. In what follows we always assume that the space
dimension n equals 2 unless otherwise specified.

Suppose that the initial velocity a 1is in Lp(Rz) for some p > 2
together with all its derivatives. Proposition 1.3 (ii) then says that
there is a unique local solution of (1) which is smooth and bounded on

RZX[O,T). We here take VX of (1) and get the vorticity equation for v

= Uxu = 8u2/8x1 - 8u1/3x2

(V-1) Lvzv' - vVvAv + (u-V)v = 0, t € (0,T),

v(x,0) = Vxa
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Since u is bounded on RZX[O,T) together with all itsg derivatives,

linear parabolic operator Lll has a unique fundamental solution
Fu(x,t s ¥Y,8), 0 Ss <t <T, X, ¥ € R
such that Luru = 0 as a function of (x,t) and

lim J 2Fu(x,t s Ves)f(y)dy = f(x)
tis R

for every f € BC(RQ) ; see [8,Chap. 11.
Let us quickly review some properties of Fu which are needed

later. It is well known that Fu > 0 and that the function

(2.1) wix,t) = J STyt 5 v,8)f(y)dy
. R u

is a unique bounded classical solution to Luw = 0 (t > s8), wix,s) =
2

f € BC(R") ; seel8, Chap. 1,21]. Since Lu has no zero-th order term,

w =1 is a unique bounded solution to Luw =0 (t > s8), w(x,s) = 1.

(2.1) this yields

(2.2) / STy (x,t 5 y,8)dy = 1, 0Ss<t«<T.
R u

The function F:(x,t sy ¥,8) = Fu(y,s y X, ), 02t < s <T, is the

fundamental solution to the adjoint problem

iA
-

w' + VAW - V. (uw) = 0, 0 < T,

24
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which is

since

(2.3)

v

the same as

w '

u = 0.

IRZFu(y,s i X, t)dy =

+ VAw -

(u-V)w =

1,

0

Similarly to (2.2) we have

0 St <s <T.

The following result is immediately obtained from Propositions 1.2, 1.3

and

Proposition 2.1.

identities (2.2) and (2.3).

(i)

for some

iven in

R

(2.4)

(2.5)

We next consider how to recover the velocity field

solution

that

Suppose that

p > 2

Proposition 1.2.

vix,t) = J 2ru(x,t 5 ¥,0)(Vxa) (y)dy,

R

Suppose further that

0. Let

Uxa € LY(R

X

v of the equation (V-1).

Au = Vv ,

where

Since

Vlv =

25

v*a e LP(R?), x

u

2

= 0,1,2,..

solution of

) for some

expressed

a

q

0 ¢t < T.

with

Veu = 0,

it

from the

A

s

is easily seen

(—8v/8x2, av/axl).

(1)



It is thus expected that if u decays as |[x| - o,

u = ExVlv = (V'E)sv

2

where E =(2n)—110g|x| is a fundamental solution of A in R and

2

denotes the convolution in R°. We shall now show that this observation

is true in our setting. To this purpose we introduce some function
spaces. By 7. we denote the space of all finite Radon measures on
with norm defined by the total variation. A measurable function f

R?> is said to be in LP'"R%), 1 < p < o, if

£l 0, = sup Almea(x ; |[f(x)| > A}]l/p < ™
* A>0
where mea 1is Lebesgue measure in Rz. Al though Hpr » does not

satisfy the usual triangle inequality, it is a pseudo-norm on the linear

Lp,w Lp,m

space and is a Banach space with a norm equivalent to

“f”p o (see [4]1). Such LP*® is often called a Lorentz space.
’

In what follows we let

= vt - ) € R

xl)/2n|x|2 for x = (X

and consider the convolution operator U = K%V = J 9

R
2,w(R2) and that K is not contained in any Lp(Rz), 1

K(x-y)V(y)dy.

that K € L

m.

I
\

=]
o
o
o
~
—
N’
o
~

U = K¥V we have the estimates
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2
2.6a)(lUll s Clikll, ,lvll,, it 1 <a <2, Ve LYR*) and 1/p = 1/q - 1/2;

(2.6b) lully & s cHKHz’mHVHﬁl for V € ;
(2.6¢) lvull . = clivil.  for Vv e LYR%, 1<r < o,
with C independent of V, where |[V] denotes the total variation of

the Radon measure V.

(ii) Suppose that U € Lp(RQ), 2 < p <K », wit V.U = 0 and t

uxU € LY9r%) with 1/a

1/p + 1/2. Then

(iii) Suppose that U € L°’°(R“) with V-U = 0 and that VxU € }.

Then
U = Kx(V x U).

Proof. (i). (2.6a) is nothing but the generalized Young's
inequality (see [28, p.32]). Since VK 1is a Calderon-Zygmund kernel,
(2.6¢c) follows from the standard theory of singular integral operators ;
see [13, Chap. 91. To show (2.6b) consider the linear operator Af = fx*V
for any fixed V e?ﬂ. It is easily checked that A defines a bounded
linear operator on each Lp(Rz), 1 Sp S o, with norm = HVH%U An
interpolation theorem for Lorentz spaces ([4, Theorem 5.3.4]1) now implies

2,

that A is bounded on L%’'®(R?) with norm =S CHV“wU This shows (2.6b).

.. . . . .. D, 52 2,0 _2
(ii),(iii). The function W = K*(VXU) is in LY(R")(resp. L (R7))
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by (2.6a) and (2.6b), and satisfies VW = 0, VUXW = UYxU. Therefore Z =
U - W is harmonic on R2 and belongs to Lp(Rz) (resp. Lz’m(Rz)). The

mean-value theorem for harmonic functions yields, for every X € R2
-1
|Zx) | < mea(B) ~ [, 1Z(y)ldy s cnzllp (resp. = clizll, )

l)
where B is the unit disc in R° with center x and C is independent
of x. Liouville's theorem for harmonic functions now implies that Z =
. . P,,2 . 2,0 _2
constant, which must be equal to O since Z € L"(R”) (resp. L (R7)).

This proves (ii) and (iii).

2
Proposition 2.3. Let 9fa € LP(R®), k = 0,1,..., for some p > 2.

Suppose further that V-a = 0 and VXxa € Lp(Rz) with 1/q = 1/p + 1/2.

Then the local solutio u given in Section 1 is expressed as

(V-2) u(x,t) = K&(V x u) = [ , K(x-y)(V x w(y,t)dy, 0 st <T.
R

Moreover, the estimate

2.7) Hqu(t) s CHVXqu(t) s cHanHq, 0St<T

holds wit C depending only on p.

Proof. By Proposition 1.2 (i), u(-,t) is in Lp(Rz). So (V-2)
follows from Lemma 2.2 (ii). (2.7) is then immediately obtained from
(V-2), (2.6a) and (2.5). The proof is completed.

We can now prove our global extension results, using estimate (2.7).
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k

Theorem 2.4. Suppose that V' a € Lp(Rz). k = 0,1,.

2 ,
p > 2, and that V-a = 0. Suppose further that Vxa € LA(R") wit 1/q

= 1/p + 1/2. Then the local solution to (1) given in Proposition 1.2

m'

.

extends uniquely to a global (in time) solution u such that u € Bp

y ©

Vu € B and
q

X
lul, o & Cllvxall, [Vl

o S Cllvxall

where C depends only on ©p. Moreover, the derivatives Vka?u belong

to B for every finite T > O and satisfy

K. h
|v atulp’T scC

with C€C depending only on p, k, h, T, v, and bounds for

Q
v Vx .
max l aHp) and | a”q

0sQSk+2h
Proof. Take T as in the proof of Proposition 1.2 with HaHp
replaced by CHVXqu, where C is the constant in (2.7). For any t, €
(0,T), (2.7) shows that Hqu(tO) has a bound depending only on p and
HanHq. Therefore, the argument in the proof of Proposition 1.2 ensures
the existence of a unique solution on [tO, t0+T) with initial value
u(',to). Suppoose now that u extends uniquely to some finite interval
[O’Tl)‘ Then (2.7) holds on [O’Tl) as seen from Propositions 2.2 and
2.3. Thus u extends uniquely to the interval [0,T1+T). Since T is

independent of Tl’ we conclude that u extends uniquely to the whole

interval [0,®). By (2.7) and (2.6c), we easily see that u € B and

, @
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Vu € Bq © with desired bounds. Bounds for VkaTu are obtained from

Proposition 1.2 (iii). The proof is completed.
. k p,,2 .
The assumption V'a € L"(R™), kK = 0,1,..., is assumed so that the
local solution wu(x,t) is enough regular up to t = 0. Since the

equation (1) is parabolic, it is natural to expect global existence even

if we drop regularity assumptions on a.

Theorem 2.5. Suppose that a € Lp(Rz) for some p > 2 with V-a =

0 and Vxa € Lq(Rz), 1/q = 1/p + 1/2. Then there is a unique global

solution u of (1) such that u € Bp Vu € Bq wand

’
’m 4

luly o & clivxall ., lvul s clvxall

ith C depending only on p. Moreover, all derivatives Vka?u exist

n szfe,w) for any € > 0 and satisfy

k- h
sup[S,T]HV atun(t) s cC

where C depends only on p, T, k, h, €, v, and a bound for HVXqu.

Proof. Let u be a local solution in Proposition 1.3 (i). Since
we have Va € Lq(Rz) by Lemma 2.2 (i)(ii), Proposition 1.2 (1.7b) now
implies that Vu 1is in Bq T for some T. For every tO’ 0 < tO < T we
have
(2.8) Ilv"u(to)llp SC k=0,1,2,...
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by Proposition 1.3 (i) where C = C(p, Kk, tyr Vs HaHp). Applying Theovrem

2.4 with initial data u(to), we find that our solution can be extended

globally in time due to the uniqueness. In particular we obtain u €
By, and Vu € Bq'm and
< >
Hqu(t), HVqu(t) < AHquHq(tO) t 2t

with A depending only on gq.

Letting tO - 0 show that
(2.9 , x , s 0,
2.9) Hqu(t) HVqu(t) S AllV qu t 20
which proves the first part of Theorem 2.5.

By (2.8) and (2.9), Theorem 2.4 now yields

(2.10) sup Ivalull () s ¢
[t t™'p

O.T]

with C = C(p, k, h, v, tgr Ts HVXqu). The proof is now completed by

applying the Sobolev inequality to (2.10).

Remark. The existence results in Marchioro and Pulvirenti [19] and

1

Osada [26] assume that Vxa € LN Lw. This assumption implies that VUxa

€ Lq, so one can apply Theorem 2.5 to get global existence.

We finally prove a persistent property, in the sense of Kato [15]
and Ponce [27], of our solutions to (1). Al though our argument involves
nothing new, we state our version since it deals with solutions with

infinite energy and therefore is not contained in either of [156] and
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2
[27]. In what follows Wm’p(R“), m=0,1,..., denotes the usual LP
2

sobolev space. The norm of W™ P(R®) is written as Il

2

Theorem 2.6. et a € W™ P(r%) for some p > 2 ith Vea = 0 and

o

Ux a e‘Lq(Rz), where 1/q = 1/p + 1/2. Then the solution u of (1)

given in Theorem 2.5 is in BC([O,T] ; W (R™)) for all T > 0 and

(2.11) Sup T]HuH m,p(t? & C uniformly for v > 0.
’ w ’

Proof. It suffices to prove (2.11) since u € BC([O,T], wm’p(Rg))
directly follows from (1.8a) and (2.10). Since (2.11) with m = 0 1is
nothing but Theorem 2.5, we may assume m = 1. First assume that m = 1

and consider the vorticity equation

(2.12) v' - VAV + (uV)v = 0 (t > tO),
v = Uxu , v(x,to) = Uxu(x, tO),
where tO > 0. By (2.9) and (2.10), applying (2.5) to (2.12) yields

Hva(t) s HquHp(t for all t 2 t and therefore by (2.6c¢),

0’ 0

HVqu(t) < CHva(t) s cHquHp<t for all t 2 t. with C depending

0’ 0
2

by (1.8a) and Va € LP(R®), letting t. -

only on p. Since Vu € Bp 0

, T
0 vyields HVqu(t) s clIanllp for all t 2 0. Combining this with

(2.11) for m= 0 gives (2.11) for m = 1.
We next assume that m = 2. We apply V to (2.12), multiply the
resulting equality by leIp_ZVv and integrate by parts using V-u = 0,

to get
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: _d p p
(2.13) dtHVva s CHVU”m”VV”p, t 2 ty
with C depending only on p. To estimate HVun we appeal to the

following result of Kato [15, Lemma A3]
(2.14) IVull, s cclivily + livll, + livii logrl + vl /vl

where C depends only on p. Using (2.5) and the Sobolev inequality, we

1-2/p 2/p
have [lvl s [[vxall < Clla!lwz’p and [lvll, s HVHq‘ ol 5" s

HVXaHé_z/p“anﬂi/p . Thus (2.14) gives
Ivull, s ca1 + log+HVva)

with C depending only on p, HanHq and [ all Combining this with

2o P

(2.13) and integrating with respect to‘ t now yields
(2.15) HVV”p(t) s C, for t € [t,,T]

I)
where C depends also on T. Since V“u = VK*%(Vv) and since VK is a
Calderon-Zygmund kernel, (2.15) implies that Hvzqu(t) £ C on [0,T].
This implies (2.11) for m = 2.
Suppose finally that m &2 3. We apply Vk to (2.12), multiply the
. . K _p-2-5Kk . } 2 s
resulting equality by [V v] V'v and integrate over  R°. Integration

by parts using the condition V-.u = 0 and the Sobolev inquality together

imply that, after summation over k = 0,1,..., m-1
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_d p
dtHVme_l s clull -

P Ivi®
W

s P 1, wm_lyp
where C depends only on m and p. Integrating this and then using

the estimate Hu“wm’p s cdllvll “1p * HanHq), which follows from (2.7)

W
and the relation Vku = VK*(VR_IV), we get (2.11) by induction on m.

The proof is completed.

Theorem 2.6 suggests that we can obtain a solution of the Euler
equations (system (1) with v = 0) by passing to the limit v = 0. For
m 2 2, this is carried out by Kato and Ponce [33]1 with no assumption on
the vorticity Vxa. For the cases m = 0,1, which are excluded in [331,

our Theorem 2.6 gives the following reéult.

Corollary 2.7. (i) Let a € LP(R®), p > 2, V-a = 0 and Uxa €

L9R%) with 1/q = 1/p + 1/2. Then there is

a function u such that

(a) u : [0,w) = Lp(Rz) is bounded and continuours under the weak

topology and u(-,0) = a.

- 2
(b) PV:-(u ® u) makes sense as an element of Lw(O,°° ;W 1’p/“(R2

(c) u' + PV+«(u ® u) = 0 for t > O.

(ii) Let a € Wl’p(Rz), p >2, V-a = 0 and Vxa € LY (R) with

1/q = 1/p + 1/2. Then there is a function u such that

(d) u : [0,») = wl’p(Rz) is bounded and continuous under the weak

oY)
=}
o,

u(-,0) a.

(e) P(u-V)u makes sense as an element of L7(0,» ; LP(R%)).

(f) u' + P(uV)u = 0 for t > O.
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Proof. We fix a and denote by u vV > 0, the corresponding

\)O
solution of (1).

(i) From (2.6¢c) and (2.7) we see that HVuVHq and Huva are

. w 3 K3 . .
bounded in L (0,®). Since gq < p, this implies that uv are bounded

00
in L (0, wl’q(D)) for any fixed open disc D. Also, Auv and

. = . 3 ® . _l’q 2
P(uv V)uv = PV (uv 8 uV) are bounded in L (0,o ; W (R™)) and

-1,p/2 -1,p/2

Lw(O,Oo ;W (Rz)), respectively. Since q < p/2, W (D) C

w—l’q(D) with continuous injection ; Thus the equation

u - vAuv + PV(uV ® uV) = 0, t > 0,

“Ls9%pyy. Since D s

implies that UG are bounded in Lw(O,w W
arbitrary,Lemma 2.1 in [30, Chap.III] ensures the existence of a
subsequence of u,, (which we denote also by uv) so that u, > u a.e.
in R2X(O,w) as Vv = 0, The foregoing observation shows that we may
assume u € L”(0,» ; LP(R%)) and vu € L®¢0,» ; L9R%)). Since

vAuv > 0 as Vv =0 in Lm(O,w ; w_l’q(Rz)), a simple limiting argument
gives

a% (u,d) - (W ®u, V) = 0 in t > 0O

for every smooth and divergence-free vector field ¢ with compact
support. We can thus apply de Rham's fheorem [30, Chap.I]l to conclude

that

(2.16) u' + Ve(u ® u) + VI = 0, t >0,
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for some distribution T on RZX(O,w). Taking the divergence of (2.16)

gives

- _y i K
AT = Xj,kajak(u u),

which shows that we may take T = Z. kRij(ujuk), where Rj are the

J
Riesz transforms. By the boundedness of the operators Rj in LF(RZ).

1 <r < o, the function VI is in Lm(O,w'; w_l’p/z(Rz)). Thus (2.16)

W 1P/2(R2y) | 50 that (c) follows by applying P

w—l,p/z

implies u' € Lm(O,°° s

to (2.16). (b) follows the boundedness of P in (R2). From (b)

—1,p/2(R2), and

and (c¢) it follows that u is continuous from . [0,©) to W
so from [0,%) to W 2'9(D) for any D. Since LPm) c 1% c w19
with continuous injections, Lemma 1.4 in [30,Chap.111]1 implies that u

is continuous from [0,®) to Lp(D) under the weak topology. Since D is

arbitrary and Hqu(t) is bounded, the Banach-Steinhaus theorem implies

(a).
- . w 1,p 2
(ii) Theorem 2.6 shows that u, are bounded in L (0, ; ¥ (R7)).
- 2
Since p > 2, the Gagliardo-Nirenberg inequality : [[fl[_ s chH; 2/pHVfH;/p

yields the boundedness of P(uv'V)uv in Lm(O,°° H Lp(Rz)). This,
together with the boundedness of Auv in Lw(O,oo s W~1’p(R2)), implies
that ué are bounded in Lw(O,w ; w—l’p(Rz)). We can thus apply Lemma

2.1 in [30, Chap.III]l to conclude that uv 2 u as Vv -2 0, a.e. in

R2X(O,W). Similarly to the proof of (i), one can show that
(2.17) u' + PV«(u 8 u) = 0, t > 0.

Since u(-,t) € wl,p(RZ) for a.e. t >0 and V:.u = 0, we see that
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Ve(u ® w) = (u-Vyu ; Thus (2.17) is rewritten in the form of (f). (e) is
easily seen by applying the Gagliardo-Nirenberg inequality. (e) and (f)

together imply the continuity of u from [0,®) to Lp(Rz). Since u

° :
lies in L (0,» ; wl’p(RZ)), Lemma 1.4 in [30, Chap.IIIl] ensures the

continuity of u as asserted in (d). This completes the proof.

Recently, Kato and Ponce [34] extend their results in [15] and [27]

to Lp spaces. They prove the persistency of solutions of (1) with v 2

0 in Hs,p’ s >1 + 2/p. However, our Theorem 2.6 and Corollary 2.7

&

are not covered by their results when m = 0 or 1.
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3. New a Priori Estimates

This section establishes some new a priori estimates for solutions
of (1) in R2. which depend only on the norm of the measure VUxa. These
estimates allow us to take a subsequence of solutions for the regularized
initial data which converges to the desired solution of the original
problem. Our argument is based on a comparison theorem of the third
author [25] for the fundamental solution of the heat operator at— VA
and that of the operator_ Lb = St — VA + (b-V) with V:b = 0. We note
that results in [25] extend those in [11,[2] to operators of non-
divergence form.

n

To be more precise, we consider a parabolic operator in R (n 2 2)

of the form

Lb = at - VA + (b:-V),

under the following assumptions (3.1) and (3.2).

(3.1) The vector function b = b(x,t) is bounded and continuous on
RnXEO,T) together with all its derivatives,‘and satisfies Vb = 0.
(3.2) There are functions Cij(x,t), i,j =1,..., n, such that
sup Icij(x,t)l s «, i,j =1,..., n,
for some o > 0 and
bl = T.aceld, i =1,..., 0, 95 = a/0x.
J ] J J

where bl is the i-th component of b.
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Since b is assumed to be smooth and bounded, Lb has a unique

fundamental solution (see [8, Chap. 1,2]), which we denote by Fb(x,t ;

y,s8), X,y € Rn, 0 s <t <T.

Theorem 3.1 ([25]1). Suppose that b satisfies (3.1) and (3.2).

Then the following estimates hold for the fundamental solution Fb of
Lb.

(i) There are positive constants Cj, i=1,2,3,4, depending only
on n, o and Vv such that
(3.3) Cl(t—s)—n/zexp[-czIx—ylz/(t—s)] ST (x,t 5 y,8) S

-n/2

l)
s Cqalt-s) expl-C |x-y|“/(t-s)]

4
or all x,y € Rn and 0 s s < t < T.

(ii) There is a B, 0 < B < 1, depending only on « and VvV such

(3.4) lFb(x,t poyes) - T (x't' 5 oy',s Y| S

$ e (Us=s' 182 o 1yoy 1B 10 1B2 0 ex 1B

for all 1 < t-s, t'-s' < ® and x, X', ¥y, y' € R", where 05 depends

only on n, v, « and Tt > 0.

The smoothness assumption on b is in fact not necessary. It is
assumed here only to avoid the lack of uniqueness of the fundamental
solution. For the full version of Theorem 3.1 and its proof, we refer

the reader to [25].

2
Let us now consider the vorticity equation in R for v = VUxu
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(V-1) L.v v' - VAv + (u-V)v = 0, t > 0, v(x,0) = VUxa

.
’

(V-2) u = Kxv, K(x) = (—x2. xl)/z,nlxl2 y X = (x X,) .

17 72
The next two results show that Theorem 3.1 is applicable to Lu provided
that the solution u of (1) is smooth on RZX[O,T) and VxXa is a

. 2
finite measure on R™.

Lemma 3.2 ([251). The function K = (K, K°) given in (V-2) is
expressed as
1 3 1 2 .1 .2
K™ = 31A + 32A ; K™ = SIA 82A ,
where
1 . 2.2 4 2 2 3 4
A" = -x xz/nlxl , A° = 3x1x2/2n|xl + X1X2/ﬂ|XI ,
3 _ 2 3 1
AY = 3x1x2/2nlx| + xlxz/nlxl .

Proof. The lemma is verified by direct calculation.

Lemma 3.3. Let U = KV with V €. Then U is expressed as

. 2 .
ul = ¥ a.c'd, i o= 1,2,
j=1

lc'dx)l s M on R
with M depending only on m such that “V”wt < m.
Proof. We define

- 2 2
= A%V, c = A %V, ¢c” = =A%V, c = -AT%V,
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where Ak, k =1,2,3, are the functions introduced in Lemma 3.2. Since

each Ak is in Lm(Rz), we have c¢'? € Lm(Rz) with HCIJH00 <

|
vauqn

1,2,3. The expression for U

where N depends only on HAka, k

follows immediately from Lemma 3.2. This proves Lemma 3.3.

Using Theorem 3.1, Lemma 3.2 and 3.3, we now prove our main results

in this section.

Proposition 3.4. Let u be the unique global solution of (1) given

in Theorem 2.4. Suppose further that wv. = VUxa 1is in LI(RZ) with

0 sl = Ny S NN

IIVOII1 = m, and let Fu be the fundamental solution of the operatorv LU

(3.5) Hle(t) s vl

ollys vo= v 5 ull, jcty s clivglly,  for t 20,

.
0

where [-ll, , 1is the norm of L “(R®) and C depends only on Ixll,

(3.6) cl(t—s)~1 exp[—Czlx-le/(t—s)] ST (x,t;y,8) 5

s C3(t—s)_1exp[-C4|x—y|2/(t—s)], t >s 2 0,

with Cj, j=1,2,3,4, depending only on Vv and m.

(3.7a) Ivll <) s Ct'“”rllvoll1 for t >0 and 1 < r S ®,
(3.7b) HVuHr(t) s Ct'“l/rllvoll1 for t > 0 and 1 < r < o,
(3.7¢) HuHr(t) < Ctl/r—l/zllvoll1 for t >0 and 2 < r S o,

with C depending only on r, m and V.
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(3.8) sup T]HVkaTun(t) s C, € >0

with C depending only on €, h, k, v, T nd m.

Proof. By the assumption u is smooth and bounded together with

2
its derivatives on each slab R™x[0,T]. So the fundamental solution Fu

exists uniquely. Estimates in (3.5) are already shown in (2.5) and
(2.6b). The estimate (3.6) is obtained from Theorem 3.1, since Lemma 3.3
applies to u = Kxv due to the esﬁimate (3.5) for v.

The estimate (3.7a) follows from (3.6). Lemma 2.2 together with

(3.7a) yields (3.7b)(3.7c) eXxcept

"1/2} li

|
IVOI

full, = Ct 1

This is deduced by applying the Gagliardo-Nirenberg inequality:

2/r, 2/r

HuHm s CHuHi— JVuHr , T > 2 (see [9, p.24 Theorem 9.31) to (3.7b) and

(3.7¢) for finite r.
It remains to prove (3.8). Taking tO = £/2, we see by (3.7¢)

”“”r(to) s C, r > 2

with C depending only on tO’ r, v and m, where tO = g/2. Applying
Proposition 1.3 (i) with initial data u(tO) and p = r yields (3.8) by

the uniqueness. We thus complete the proof of Proposition 3.4.
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Our next result concerns the continuity of the function v(:,t) =

(Uxu)(+,t) when Vxa is a measure, and enables us to give a precise

meaning to the initial condition u(:-,0) = a.

as in Proposition 3.4, and

Ih—‘
Ko
-~

|

0 Xa. Then for each m > 0 and T > ¢ the functio

topology of weak convergence of measures. n other words, the pairing

(v(+,t),d) of ¢ € BC(RZ) with the measure v(-,t)

(v(,t),d) = (v(-,8)d) as t 2 =

for all s € [0,T], and the convergence is uniform in v with Hvoll1 s m.

roof. On %7;’= {u € 4?[ s u 2 0, ull S m) consider the function

m

. +
RGuy, w,) = int IR2XR2<IX yloa 1) d Y, uy, h, e

2
where the infimum is taken over all measures XA & O on RQXR“ such that

HIA =y and sz = My 3 here Hl (resp. Hz)

R™%R onto the first (resp. second) factor, and HiA, i =1,2,

is the projection from

is the
image of the measure A by Hi.

R?  with lugl S m, i = 1,2, e define

For arbitrary measures “1 and M, ON

"2

4

R(uy, wy) = R(u], ny) + RCuj, uy)

where u; and u; denote the positive and negative part of nu

i’

respectively. It is known (see [6]) that the function R 1is a distance
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funciton on (pu e'ﬁ% HuH which defines a topology equivalent to
that of weak convergence. We shall use the funotion ‘R in showing

equicontinuity. Without loss of generality we may assume that VO 2 0
and therefore v(-,t) 2 0 for all t & 0. Consider the measures pu(t) =

v(X,t)dx on R® and Alt,s) = T (x,t;y,8)v(y,s)dxdy on Rix R’

)
- Then
Yy

we have p(t) 2 0, A(t,s) 2 0 and

HIA(t,s) = [f 9 Fu(x,t;y,s)v(y,s)dy]dx V(X,t)dx = puct)

R
T,ACt,s) [f o T (Xstiy,s)dx1v(y,s)dy

R

v(y,s)dy

n
g
—~
4]
~

Note that here we have used the positivity of Fu, identity (2.3),
integral representation (2.4) for v and the Chapman-Kolmogorov

equality :

(3.9) T (x,t 3 y,s) = J 9

F (x,t;z,t")T (z,t';y,s)dz, O < s < t' ¢ t.
R u u

By (3.6) and the definition of R we see that

R(uct), npcs)) £ Jf 5 2|x-y|Fu(x,t;y,s)v(y,s)dxdy
R“%R

sC (t—s)—lff | x-y| expl-C lx—ylz/(t—s)]v(y,s)dxdy
1 R2xR2 2

1/2Hv“ 1/2 1/2

= C(t-s) L(8) S chOH (t-s) S mC(t-s)

1

for 0 S s < t £ T, where C depends only on m and Vv. This shows the

desired equicontinuity and the proof is completed.
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Remark. Proposition 3.5 can be proved directly without introducing

R. In fact, since v(x,t) = I 5 Fu(x,t;y,s)v(y,s)dy, using (3.5) and the
R

upper estimate for Fu in (3.6), one can prove, by a standard calculus
argument, that (v(+,t) ¢) converges to (v(+,s),4) uniformly in s 2 0
and Hvoll1 Sm as t I s. Clearly, this implies the equicontinuity of
(v(-,t),¢) on [0,T].

The proof using R seems conceptually simpler since it conceals
the calclus argument for the convergence behind. The function R is

used in [31,[19] and [20] in a similar context.

The results obtained in this section are applied. in Section 4 to
construct a global solution of the problem (1) when VUxa 1is a measure.
In particular, Proposition 3.5 is important in giving a precise meaning

to the initial condition : u(-,0) = a when Vxa is a measure.
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4. Main Theorems

In this section, we apply a priori estimates in Section 3 to
construct a global solution to (1) as well as (2a)(2b) when the initial
vorticity Vxa 1is a general finite Radon measure on Rz. It turns out
that our solution is smooth for t > 0 and has some decay estimates as
t 2 o, We also study the convergence to initial velocity a as t = 0.
We further show that our solution is unique provided that the pure point

part of the measure Vxa 1is sufficiently small.

We begin by finding a reasonable function space for a when VXa
is a finite Radon measure on R2 and V-a = 0, By (2.6b) and Lemma
9
2.2(iii), a 1is expressed as the sum of Kx(VUxa) € L“’m(RZ) and a

harmonic vector field. Since our initial velocity a 1is supposed to

2,0 2

decay as |[x| = ®», it is natural to assume that a is in L (R™) with

Vea = 0 and Vxa E¢% so that a = K#(Vxa).

To study the convergence to initial velocity we give a sufficient

2,m 2

condition for the continuity under weak* topology of L (R°). Since

2, 2 2,1 ,2

L m(R ) is the dual space of the Lorentz space L (R™) (see [4]1),

weak* topology is well defined.

2, 2

Lemma.4.1. Suppose that u € L (0,T ; L°’"(R°)) with V-u = 0 and

that v = UVUxu 1is continuous from [0,T] to ﬁ% under the topology of weak

onvergence of Z%. Then u is modified on a set of Lebesgue measure

[0,T] so that it is continuous from [0,T] t L2,w(R2) under the
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l)
Proof. By Lemma 2.2 (iii), K#v € L°¢0,T ; L?*®(R%®)) and u - K#v
0 a.e. in [0,T] as an element of Lz’w(Rz). The assertion is thus

obtained if we show the continuity of U = Kxv,. Take an arbitrary
sequence tﬂ in [0,T]) with tg -t as Q = o, By the Banach-Alaoglu

theorem we can extract a subsequence, which is again denoted by t

2,0

that U(tg) - Um weakly* in L (R2). By assumption, VxXU(t,) =

Q
(qu)(tg) - (Uxu)(t) in the weak topology of measures. On the other

2,

hand, weak* convergence in L w(Rz) implies the convergence in the

destribution topology ; so VXU(tg) - VXU00 as 2 = ®, Hence V><U°° =
(UXu) (t) = v(t)‘ and therefore U = Kxv(t) = U(t) does not depend on

the choice of tg. This proves Lemma 4.1.

Theorem 4.2. (Existence for the Navier-Stokes system). Suppose

that a € Lz’m(RZ) Vea = 0 and that Vxa is a finite measure. Then

problem (1) has a global solution u which is smooth for t > 0 such

(i) u : [0,0) = Lz’m(Rz) is bounded and continuous under the weak%

topology and u(-,0) = a.

(ii) ¢ = Uxu : [0,®) =/} is bounded and continuous under the weak

topology and v(-,0) = VUxa.

(iii) The estimates

1/r-1/2

(4.1) Hui!r(t) < Ct or t >0, 2 <r & o ;
(4.2) liVuilr(t) < ¢t 1tL/T for t >0, 1 <r <K ®
hold with C depending only on r, v and [[VUxal
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(iv) For O < &€ < T and nonnegative integers Xk, h, there is a

9%l () s c.

SUP e, T
with C depending only on €, k, h, T, v and a bound for HVXaWhL.

(v) The function wu(t) = u(-,t) solves the integral equation (1.1)
in L% %Rr%).
. vnA . .
Proof. Define a_ = e a for n > 0. By generalized Young's

n

inequality and properties of the heat kernel we observe that Vkan €

)
LPr%), k = 0,1,..., for all p > 2, and that Uxa, € LY(R") for all

q & 1. So, by Theorem 2.4 there exists uniquely a global smooth solution

u, of (4 with u,(-,0) = a_ . Since HannH

n n s HVXaHW%, the estimate

1
(3.8) guarantees that there is a subsequence un, converging to a
function u(x,t) uniformly on every compact subset in (0,00)><R2 together
with its all derivatives as n' = 0. Estimates for u in (iii),(iv) now
follows from (3.7¢)(3.7b) and (3.8) by the lower semi-continuity of
integrals. Since each up solves (1) for t > 0, evidently the limit
u(x,t) solves (1) for t > O.

We next prove (i) and (ii). Since Proposition 3.5 is applicable we
see VXun,(°,t) converges to Vxu(-,t) uniformly on [0,T] as n' = 0
under the weak topology of 77l by taking a subsequence if necessary.
Since ann converges to VUxa wunder the weak topology of 7 as n = 0,
we conclude that v = Vxu 1is continuous from [0,®) to %n,under the weak
topology of Jn and vVv(X,0) = Uxa(x). By (3.5) we see Hvﬂ%m(t) is

bounded on [0,»). This completes the proof of (ii). Since {un) is

2,

bounded in Lm(o,m s L oo(R2)) by (3.5), a subsequence {un,) converges
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to' u weakly*
applying Lemma

It remains

ult) =

For € > 0 our

udt)

in a1l LP(r?%),
we have

g,V (t=s)by,

£

L?(R%) and

2

in

embedded to L

(%) e\)(t

Assertion (i) and the boundedness of the operators e

together imply

fixed t > 0.

(

On the other hand,

2

o © _n
in L (0, ; L% (R7)). Sin

4.1 now yields (i).

to prove (v), i.e.

evtAa - Iév-ev(t_S)AP(u®u)(

solution u(t) solves

ev(t—e)Au ItV-ev(t_S)A

ce)

p > 2. By (4.1) with r = 4

V(t-s)A
e

u® u(s)ds - Jt v.

0

. 2,0 2 .
therefore in L (R™) sinc

' (R%).

-e)A vtA

u(eg) =2 e a weakly*

v(it-g)A

that e uce) is bound

it

v(t-g)A JAY
e

uce), ) » eVt 4,
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So we need only show that,

ce v = Uxu

s)ds in L°°

P(u ® uﬁ(s)ds,

and

P(u ® u)(s)ds

(1.3) with

2
(R

t

).

r

as

satisfies

(ii),

= 0

2
e LZ(R“) is continuously

2,0 2

in L (R™)

tA

)
ed in L’ (R

$)

as &

as

in
2

is easily checked that

L

for

for each fixed

2,

t >

2

(R7)

each



5
for any smooth vector function ¢ with compact support in R". Since

2,1 2
(R7) (see e.g.

2,1

such functions ¢ are dense in the Lorentz space L
2 9

[4]), and since L“’w(Rz) is the dual of the space L (R™), (%) fallows

from the Banach-Steinhaus theorem. This completes the proof of Theorem

4.2,

The next result discusses properties of the vorticity v = Uxu of
the solution u obtained in Theorem 4.2. The main assertion is that v
has an integral representation in terms of a well-behaved function
F'ix,t;y,s), t > s & 0, which is obtained as a limit of the fundamental
solutions of parabolic operators Lun with smooth u - This
representation plays an important role in discussing the unigqueness for

solutions constructed in Theorem 4.2.

.3. (Integral representation for Vxu). Qnggl the

assumption of Theorem 4.2, the vorticity v = Uxu 1is expressed as

(4.3) vix,t) = [ LT (X, t3y,0)(Vxa) dy), t > 0,
R

in terms of a continuous function I'(x,t;y,s), X,y € R™, t > s =2 0, with

(4.4) J T(x,t;y,s)dy = J ,I'(x,t;y,s)dx =1, t > s 2 0 ;
2 2
| R R
(4.5) F(x,t;y,s) = [ 2I‘(x,t:z,t’)l"(z,t';y.s)dz, t >t > s 20
R
—_ 9
(4.6) Cl(t—s) 1exp[-C,,lx-yl"/(t—‘s)] S Tix,t;y,s) £

s c3<t—s)'lexp[-c4|x-y|2/(t—s)1. t > s 20,
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with Cj. i =1,2,3,4, depending only on Vv and a bound for |lUxall.
s

Moreover, the estimate

4.7) Ivil_cty < cy 1t1/r

holds with C depending only on r, v and a bound for |[Uxal .

Proof. As in the proof of Theorem 4.2, we consider the functions

u, and Vi = qun. By (2.4)

(4.8) v (x.t) = i 5 ru

(X, t3y,0)(VUxa ) (y)dy, t > 0,
R n n

i
o
1

where Fu is the fundamental solution of Lu ¢ \V

+ (u_-U). Since
n n A n

- X < H H - - 1 e
Uy, K#v_ ~ and an”l(t) < Han”nm, Lemma 3.3 implies that the estimates

(3.3) and (3.4) with b = un are uniform in n. We can thus apply

Ascoli's theorem to conclude that, by passing to a subsequence of {1 },

ln,

(4.9) Fu (x,t;y,s) » I'(x,t;y,s) as h" = 0
n"

uniformly on compact subsets of points (x,t;y,s) with t > s =z 0, and
that the limit function I satisfies (4.6). Futher, since ann - Uxa
as n - 0 weakly in7,, (4.8),(4.9) and the uniform (in n) bound (3.3)

with b = un together yield (4.3). Identities (4.4) and (4.5) are

similarly obtained, since they hold for the fundamental solutions FU

n
(see (2.2),(2.3) and (3.9)). Finally, (4.7) follows from (4.3) and

(4.6). The proof is completed.
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We next consider the uniqueness problem for our solution obtained in
this section. Let us recall the Lebesgue decomposition of a finite Radon
measure M (see [28, vol I, p.22, Theorem 1.131); u is written

uniquely as

o= u + u

Pp C
o
where “c is the continuous part, i.e., uc({x)) = 0 for all x € R~
00
and is the pure point part, i.e., = ). O(x-2.), . E R,
. P 9 p Mop 5J=1aJ x=2.), o
zj € Rz. This is easily verified by defining upp = E',s n with E = ({x

€ R2; M({x})#0} and proving that [ is a countable set. Here E ., n

denotes the Borel measure defined by E 4 p(A) = p(A N E)

Lemma 4.4. For any finite Radon measure u on R? we have
tim sup t27V Tt i s u I for all o> 1,
t40 PP m
where Cr depends only on r
Proof. We first recall a well-known estimate
-1+
let®ull s c T T
m
Indeed, since the linear operator Af = f*u is bounded in both L1 and

L” with operator-norm = “l”bﬂ , applying the Riesz-Thorin theorem ([4],
[28, Vol.II]l) to A vyields the estimate if we take f as the heat kernel.
This estimate shows that we need only prove that

(4.10) lim t171/TtA

““r = 0 for all r > 1
tlo
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provided p is continuous i.e., p({x}) = 0 for any x € Rz.

Without loss of generality we may assume that u 2 0. For any fixed & >
0 we take N > 0 so that, denoting B(O,N) = (x ; [x| £ N}, u[Rz\

B(O,N)] < & and hence u2 = (RQ\B(O,N))J U satisfies

(4.11) tl_l/r![etA u2H S C.e¢ for all r > 1.
r r
The support of the measure “1 =y - u2 is contained in B(O,N) and

direct calculation gives

1-1/r, _tA r _ .,,-1 o e w12, r
(4.12) (t le “1”r) = Clt IRz(IlyléN expl-|x-vy| /4t]u1(dy)) dx

vyl o2 r
C.t (I|X|>2N + I]XI§ZN)(IIY|SN expl-|x-y]| /4t]u1(dy)) dx

mn

Il(t) + I,(t),

2
Since [|x-yl| > Ixl/2 if |x| > 2N and |y| £ N, we get
T

) -1 _ 2
(4.13) Il(t) s Cr””1 t I|x|>2N expl-r|x|“/16tldx = 0, as t = 0

For Iz(t) applying Minkowski's inequality yields‘

| o] ? r
(4.14) I,(t) S Cit I|X|52N(I,X_y,>0exp[ | x-y| /4tIu, (dy)) T dx

+

| el 2 r
CLt lelszw(jlx-ylsa expl-|x-y|"/4t1n (dy)) dx

m

121(t) + 122(t),
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where & > 0 is to be chosen later. Obviously, for any fixed & > 0,
(4.15) I,,(t) £ C'mealBC0,2N) 1, 1Y t lexpc-rs2/4t) - 0, as t > 0
21 r 1 am

where mea is the Lebesgue measure on Rz. On the other hand, Holder's

inequality yields

< (o r- w2,
(4.16) I,,(D)s crI|x|$2N[“l(B(X’6)] }IIX_ylgéexp[ rlx-yl /AtTn, (dy))dx/t

r-1, r tia
< Cr suplxl&ZN[Ul(B(X’é)] || e “1”1
s clull X sup [ u, (B(x s)1771
o ’ | x|S2N 1 ’ :
Where B(x,8) = {y ; |ly-x|] £ 86). We shall now show that
(4.17) ultB(X,é)] > 0 as &6 =2 0 wuniformly in x| £ 2N.

The desired result (4.10) then follows (4.19)-(4.15) by taking &6 so
that 122(t) < er and recalling that & 1is arbitrary.

The uniform continuity (4.17) follows from the continuity of My
Indeed suppose that (4.17) were false. Then there would exist

n > 0, 5§, ¥ 0 and x

Q with |[x

Q QI S 2N so that

(4.18) Ul[B(XQ’ GQ)] = N for all Q.

By passing to a subsequence we may assume that Xq 2 X as Q-2 ®, For

any 6 > 0, B(x Q) C B(x,8) provided Q is sufficiently large.

99
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Since ul((x}) = 0, we have lim p
&40

lim u,[B(x,,8,)] = 0 which contradicts (4.18). We thus obtain (4.17).
Qoo 1 Q79

][B(x,é)] = 0, S0

The proof of Lemma 4.4 is now completed.

Theorem_4.5. (Uniqueness). Suppose that a € Lz’m(Rz). Uxa € 9,

and V-a = 0. Take m > 0 so that [[Vxall =< m and let u be the
solution of (1) given in Theorem 4.2. Then we have the following.

(i) For all ©p > 2, we have
(4.19) 1im sup tY27YPIul (b s clluxar |l

p pp
tl0

with C devpending only on p, m and Vv

(ii) For each p > 2 there is a positive constant & = &(p,v,m)
such that if | (an)ppllm< €, the solution u is unigue in the class of
functions w with the following properties

2,0 2 . * .
(a) w : [0,w) = L (R™) is weakly c¢ontinuous and w(-,0) = a ;

(b) w : (0,0) = Lp(Rz) is continuous and satisfies (4.19) for

2,0 2

(c) w solves (1.1) in L (R7).

In particular the solution u 1is unique provided that Vxa 1is a

continuous measure.

Proof. (i) Since p > 2 and u = K¥%v with v = VUxu, we get by
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hall jcty < CKIl, HIvi . 17a = 1/p+1/2
with C depending only on p. By (4.3),(4.6) and Lemma 4.4 we see that

lim sup tl—l/q

lvll ¢ty s c'|l(Uxay |
t10 q Pp

where C' depends only on q, m and V. Combining these two estimates

gives (4.19).

(fi) Let G be another solution of (1) with the same initial data
a satisfying properties (a) and (b) above. By (¢) the difference w =

u - u satisfies

_plg.eV(t=s)a

0 Plw 8 u(s) + ﬁ ® w(s)lds,

w(t) =

so that, as in the proof of Lemma 1.1 (i),

t -1/p-1/2 ~
< -
Hpr(t) < MIO(t s) [Hqu + Hqu](s)HWHp(s)ds.
) - ‘ 1/2-1/p . .
Thus, Hpr’T:; SUP, 4o b HWHp(t) satisfies
(4.20) Hpr,T < MB(1/2-1/p, 2/p)[IIqu't + Hqu’TJHpr,T

where B is the beta function. We here assume that (V><a)pp satisfies

1. C 1/2-1 , 2 UX & < 1
(4.21) 2CMB(1/ /p, 2/p)1l<( *)pp”4ﬂ/
where C is the constant in (4.19). Estimates (4.19)-(4.21) together

imply that if we take T > 0 sufficiently small, then Hpr s CHpr T

T

56



for some c¢ < 1, which yields w = 0 on [0,T] since |wl is finite.

p.T
On the interval [T,®), both u and U are classical solutions belonging

to Lp, so we get w = 0 on [T,®) by the uniqueness result of

Proposition 1.2. The proof is completed.

Thorem 4.5 shows in particular that the solution is uniqgue whenever

Uxa is a continuous measure. When the measure Vxa has a density, i.e.,

9
when Uxa is in Ll(R“). we can also prove more regularity at t = 0,

as shown in the following theorem.

_ 2,0 2 . 1,2
Theorem 4.6. I1f a € L (R™), Vea = 0 and if Vxa € L (R,

2 2
then the (unigue) solution u of (1) belongs to BC([O,®) ; L“'"(R%)).

Proof. By assumption, thA(VXa) is in BC([0,®) ; Ll(Rz)). So, by

(2.6b), the function e\)tA a = thA K#(VUxa) = K*[evtA(VXa)] belongs to

2,

BC([O,w) ; L m(Rz)).‘ By (v) of Theorem 4.2 it suffices therefore to

show that the function

t

v(t-s)A
A

S[ul(t) = -f V-e P(u ® u)(s)ds

2+®(R%)). By (1.3) with r = s = 2, and (4.1) with

is in BC([O,w) ; L
r = 4,
Istullly, oct> s fistulll,ct

-1/23-1/2ds

5 Cfé(t—s) = CB(1/2, 1/2) for t > 0,



which implies the boundedness as well as the continuity for t > 0. On

the other hand, since Uxa contains no pure point part, Theorem 4.5 (i)

yvields
(4.22) 1im t1/2°1/p lull (t> = 0  for all p > 2.
£40 P
Hence, using again (1.3) with r = g = 2 and (4.1) with r = 4 we get,

as t = 0,
HS[u]HZ'm(t) s lIstudll, ¢t
s cBa/z, /20l - 0

t

. 1/4 .
= 24
since ”UH4’t__ SUP (o<t S HuH4(s) 2 0 as t 2 0 by (4.22). This

shows the continuity at .t = 0, and the proof is completed.

Remark. Benfatto, Esposito and Pulvirenti [3] prove existence and

uniqueness of solutions to (1) with initial data a such that

Uxa =

h~3
R
O
b
|
N
.
A
R
m
=
N
m
=

and Zjlajl is suficiently small. Here 6(x—zj) is the Dirac measure

supported by zj. Our uniqueness result covers that of [3] s moreover,
our existence result improves that of [3] since no restriction is imposed

on either of size and the form of the measure Vxa.
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