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ABSTRACT

We prove the existence of weak {or “energy") solutions of the homogeneous
Dirichlet initial-boundary value problem for some equations of the form
3(Bu)/st + Au = f, where A and B are nonlinear monotone operators deriving
from convex functionals and the spatial domain is an arbitrary open set of R",
In particular, our existence theorem applies (for any p,q > 1 and any

m,n > 1) if A and B are defined by:
Au = (-1)7 % D%(0%|P~Ysgn D%), (Bu)(x) = [u(x)|%"}sgn u(x)
oa=m

We start from an existence result of Grange and Mignot [20] and follow some
methods of Alt and Luckhaus [3]. 1In addition, we use Nikol'skii spaces (spaces

involving H@lder conditions in the LP metric) to perform a key compactness

argument of the proof.

1980 Mathematics Subject Classification. Primary 35K65, 35K55. Secondary 47H05,



1. Introduction

J.L. Lions {23, p. 525] points out the interest of studying evolution

problems for doubly nonlinear equations

3 =
EE-(BU) +Au = f

where both A and B are nonlinear operators. A typical example is the

initial-boundary value problem
'%f (|u|q'lsgn u) + Alu =f on Qx(0,7T) =Q {1.1)
u satisfies null Dirichlet boundary conditions on 38 x {(0,7) (1.2)
u=uy on @ for t =0 (1.3)

Au = (-1)" )% D*(|D%|P-1sgn p%) (1.4)
[ a]=m

where u is an extended real-valued function u = u(x,t), {x,t) e @ x (0,T),
Qc R”, 0 < T < = and the sum extends to all x-derivatives of order m. {Thus
the order of operator Al and equation (1.1) is 2m). This problem is doubly
nonlinear for p # 2 and q # 2. Initial condition (1.3) will be replaced by

Bu{0) = Bu0 for more general examples. For p = 2 Al = (-2 and for m=1

-Al is the nonisotropic p-laplacian.

The case m =1, p =2, f =0 of equation (1.1) is related to the well-

known porous media equation

d
3% - A(|V|M sgn v) =0

by the change v = [ulq'1 sgn u, q - 1=1/M, Notice that q > 1 is equivalent
to M > 0.

In this paper we prove an existence result (Theorem 5.1) which includes

problem (1.1}-(1.4) for any p,q > 1, any m,n > 1 and any open set & c RP.




(Psq € R; myn & N). (1.2) holds in the sense that u(«,t) € W{Q) for almost
all t ¢ (0,T), where the space W(Q) 1is similar to the Sobolev space Ng’p(n).
(The definition of W(Q) is found in H5.1, Section 5; see also Appendix I).

A modified existence result (Theorem 8.1) allows the replacement of (1.1)

by

'%E (|U|q-159n u) + Au + |u|r'lsgn u=f (1.5)

for any r > 1. (A1 is given by (1.4)). Although the solutions given by these
theorems are very weak, they have remarkable properties (finite speed of propa-
gation, extinction in finite time, nonexistence of global nonnegative solutions,
Tocalization of the support) depending on p,q,m (and r in case (1;5)): see
{9,10].

In Section2 we present some notations and results on convex functionals and

monotone operators deriving from convex functionals. 1In Section 3 we prove an

abstract formula of integration by parts (Proposition 3.1), following methods
used by Mignot [25], Bamberger [6] and A1t and Luckhaus [3] to obtain related
concrete results. This formula allows to handle the very weak derivative

3(Bu)/3t and implies an "energy" estimate for the solutions of Theorem 5.1.

(This suggests the name “energy solutions" for them). Alt and Luckhaus [3]

already exploit this kind of estimate. In the case of problem (1.1)-{1.4) with

f = 0 the energy estimate reads {where 1/q' =1 - 1/q)

O

éT-j lu(x,t) |9dx + % J |D%(x, 1) |Pdxdr =-%r | Iuo(x)]qu
Q al=m S Q
In Section 4 we state an abstract existence theorem of Grange and Mignot
[20]. In Section 5 we state Theorem 5.1 and give some examples. Both A and B
are assumed to be (singlevalued) derivatives of continuous convex functionals (on

two different spaces). Since the operator Al of (1.4) is only partially coer-
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cive on unbounded domains, we set a coerciveness hypothesis for the operator B.

The proof of Theorem 5.1 (Section 6) begins applying the theorem of Grange
and Mignot [20] to some approximating problems. Thus we avoid discretization.
(Papers [3] and [20] use time discretization). The estimates for passing to the
1imit are obtained from Proposition 3.1. The problem of passing to the Timit
for the operator B 1is solved by means of a compactness lemma of Lions-~Aubin
(see Appendix IV) and the use of Nikol'skii spaces (see Appendixes II and I11).
Proposition 3.1 is again used at the end of the proof in order to perform a
monotonicity argument for the operator A. General background for the proof is
found in the book of Lions [23].

In section 7 and 8 we sketch extensions of Proposition 3.1 and Theorem 5.1

to sums of spaces and operators, following a device of Lions [23].

Related work

Grange and Mignot [20] prove an abstract existence theorem (see Section 4)
which includes problem (1.1)-(1.4) if @ is bounded and 1/q > 1/p - m/n.
(Paper [20] also considers muitivalued operators). For the second order case
(i.es for m = 1), the existence results of Raviart [28] and Alt and Luckhaus
(3] apply to problem (1.1)-(1.4) if @ 1is bounded. Paper [3] includes systems
of second order equations with nonhomogeneous boundary conditions and does not
require power bounds for the operator B. Existence results for related doubly
nonlinear second order equations are found in [21,4,11,2,22,17,19].

We do not consider here the questions of uniqueness and regularity. The
above references and [25,6,7] include some results on these questions (only for
second order problems).

Finally, we give some references on existence resuits for higher order

problems if q =2 or p = 2. The case gq =2 of (1.1) is well-known
(¥m > 1): see e.g. the books of Lions [23] and Brézis [14]. The case p = 2

(@ bounded, ¥m > 1) can be dealt with Theorem 2 of Brézis [12].



Notations

W(Q):

D'(Q):
D'(0,T;X):
LP(0,T:X):

real Banach spaces

conjugate exponent of p: 1/p + 1/p' =1

topological dual of X

conjugate convex functional of J; see {(2.3)

arbitrary open set of R"

closure of @ in R

g x (0,T)

almost everywhere

(Xl,...,xn) £ Q

(a 1s a multi-index of integers): a derivative with respect
to xj...x,  (t excluded) of order |af

Soboiev-like space: see H5.1 {Section 5).
W(g) = wg’p(ﬂ) NL9(e) if 1 <q<p or if @ is bounded
{see Appendix I}.

space of real-valued (Schwartz) distributions on ( _

space of X-valued distributions on the real interval (O,T).

space of (classes of) measurable functions u from (06,T) to X
such that tuf, belongs to LP(0,T;R). It is reflexive if X

is reflexive and 1 < p < o,

We refer to Brézis [14, Appendix] for background material about the spaces

of vector-valued functions LP(0,T;X).
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2. On convex functionals and monotone operators deriving from convex functionals

In this section we present some notations and results on convexity to be
used later. These results are known and we only sketch proofs of some specific

statements. We refer to Barbu [8] or Ekeland and Teman [18] for proofs of fun-

damental results and further information.

Let Y be a real Banach space. We assume

J: ¥ + R is a convex continuous functional possessing }
(2.1)

an everywhere defined Gateaux derivative B: Y + Y'

Since B coincides with the subdifferential & of J, B is a monotone

operator and for each u € Y Bu is characterized by
d{w) - J(u) » (Bu,w ~ u) for all weyY (2.2)
where (»,+) stands for the duality between Y' and Y.

Remark 2.1, If Y 1is reflexive, hypothesis (2.1) implies that B is

demicontinuous, i.e. continuous from Y strong to Y' weak. This follows as

in the Hilbert space case (see Brézis [14, Corollary 2.5]) noting that monotone

operators from Y to Y' are locally bounded (see e.g. Barbu [8, p. 44]).

Let J*: Y' » RU {+=} be the conjugate convex functional of J, defined

by

J*(v) = sup {({v,w) - J(w)) (2.3)
weyY

Lemma 2.1 Under hypothesis (2.1):

I. J% is (strongly and) weakly lower semicontinuous (l.s.c.) on Y' and

takes at least a finite value.



“f=

1I. 81 = g%,
III. J* 1is bounded below by ~J{0).

IV. J* s coercive, i.e. J¥(v) » +o as Wy > 4o,

I and II are standard results. 1III follows taking w = 0 in (2.3).

Proof of IV. Let ScC Y'; IV is equivalent to
J%(S) bounded in R => S bounded in Y'.

From (2.3) for all w ¢ ¥

[(vow)| < 3%(v) + max{d(w) + J(-w)}.

Thus J*(S) bounded implies

[(v,w)]| < Cw IvesS, Wwe Y

where Cw depends only on w. And by the Principle of Uniform Boundedness

{Banach-Steinhaus)

"V“Y* < Constant Vv & S, Q.E.D.

Remark 2.2 In this paper J 1is finite everywhere, B 1is singlevatued, J* may
have the value +e and B-~1 may be multivalued and not everywhere defined. 1In
Theorem 5.1 J* 14s finite and continuous, while B*l s everywhere defined
(f.e., B s surjective). In Example 2.1 (see below) B'1 is a classical
singlevalued operator. The usefulness of J* in the present paper is due to
the fact that B~1 = 8J*, i.e. J* is a potential functional for B-1 {(in a
generalized sense).

Now we consider the functiomal u » J*(Bu) from Y to R, which turns out

to be finite everywhere.



Lemma 2.2 Under hypothesis (2.1):

I. J%(Bu) = (Bu,u) - J{u) for all ue Y

II. The functional u » J*(Bu) is continuous for all ue Y if Y is

reflexive.

IIfI. For all Ups Uy €Y

J*(Buz) - J*(Bul) > (Buy - Bup,u;) (2.4)
J*(Buz) - J*(Bul) < (Buy - Bup,u,) (2.5)
Proof of I. From (2.3)

J*(Bu) = sup ((Bu,w) - J(w))
wey

and from (2.2) for all wu,w e Y
(Bu,w) - J{w) < (Bu,u) - J{u).

Thus the former supremum is attained for w = u.

Proof of II. [t is implied by I, B demicontinuous (see Remark 2.1) and J

continuous.

Proof of IIl. (2.5) is obtained from (2.4) multiplying by -1 and

interchaning Uy and u,. (2.4) follows from I and (2.2) with u = up and

Remark 2.3 In general the functional u + J*(Bu) 1is not convex. Nevertheless,

in some important particular cases it is convex (see Example 2.1 below).

Example 2.1  (Operator B of equation (1.1)). Let Q be an arbitrary open set
of R", ¥ =19(Q), 1 < q < = Taking



then (Bu)(x) = |u(x)|9-Ysgn u(x) and

J*(v)

.QJ:—!

| Ivix)|9dx J*(Bu) = 1 | lu(x) |9 dx
Q 9 g

(In this example B and B'1 are bijective and everywhere continuous).

3. Formula of integration by parts

The purpose of this section is to generalize in some directions the classi-

cal formula

t t
| iﬁﬂﬁiﬁL;Ell u(x,tdxdr = | | X 1) g1y (x 1) )drdx =
0 f Q0 at
= [ 3"(slulx,t)))dx - | §*(8{u(x,0)))dx
Q Q

n L di(s) “lrey = dji*(s) _
where @ CRY, 8(s) = 4=l , 87(s) = SLBh v = g(u).
We shall prove an abstract result following methods used by Mignot [25],

Bamberger [6] and A1t and Luckhaus [3] to obtain related concrete results.,

Let X, Y be real Banach spaces. We set the following notations and

hypotheses.

H3.1 Y s reflexive, X C Y, X s dense in Y and the imbedding X + Y
is continuous. The compatible dualities (X',X) and (Y',Y) are both denoted
(ese)e

H3.2 J and B satisfy (2.1).

H3.3 u e LP(0,T;X), 1 <pcm 0<T< o,

H3.4 Bu, S (Bu) € LP'(0,T;X") where the derivative d/dt 1is in the

sense of {vector-valued) distributions of D'(0,T;X'), see e.g. Lions [23, p. 71.




Remark 3.1 Hypothesis H3.4 implies (see e.g. [23, p. 7] or [14, Appendix]) that

Bu is continuous from [0,T] to X' (eventually after redefining it on a set
of zero measure of [0,T]). Thus Bu(t) makes sense for all t €& [0,T] and

not only almost everywhere.

Proposition 3.1 Assume H3.1 to H3.4. Then

I. Bu is continuous from [0,T] to Y' weak. In particular,
Bu & L(0,T;Y').

II. For all s,t e [0,T], s < t,

t
J*(Bu(t)) - J*(Bu(s)) = | ( G (Bu(1)), u(x))dr (3.1)
S

r

Remark 3.2 1II implies that the function t » J*(Bu(t)) is absolutely con-

tinuous from [0,T] to R and

g5 (F*(Bu(t))) = ( & (Bu(t)),u(t)) for almost all t € (0,T)

Remark 3.3 Let g: R + R be a continuous function., If the functional

v > g(J*(v)) 1is uniformly convex (see e.g. Vainberg (30, p. 121]) or equal to

an uniformly convex norm equivalent to Telyu, then Bu 1is continuous from
(0,T] to Y' (strong). Furthermore, ue C([0,T];¥) if, in addition, B is

injective and B8~! s continuous on range {B). Thus, u e C([0,T1; L)) for

Y and J as in Example 2.1, since the Lql norm, 1 < gq' < =, is uyniformly

convex.

Remark 3.4 Let Y be a Hilbert space (identified to its dual) and B the

identity operator. Thus J(u) = J*(u) = (1/2)nuu$. Then Proposition 3.1 and

relation u € C([0,TI;Y) are well-known and frequently used: see e.g. [23].
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Proof of Proposition 3.1. The following proof is strongly influenced by

that of Alt and Luckhaus [3, Lemma 1.5].

Step 1. The function t + J*(Bu(t)) is measurable because the function
u » J*(Bu) 1is continuous on Y (Lemma 2.2). Now J*(Bu) ¢ Ll(O,T;R) from
(2.5), H3.3, H3.4 and J* bounded below (Lemma 2.1).

Step 2. Let 0<s <t <T. From (2.5)
J*(Bu( 1)} - ¢*(Bu(t - h)) < (Bu(1) - Bu(r - h),u(t))

holds for almost all +© e (s,t) and all h > 0 smal} enough. Integrating in

7 between s and t we gbtain
t S t
J  9*(Bu(r))dr - | J*(Bu(r))dt < J (Bu(t) - Bu(t - h),u(t))dt (3.2)
t-h s=h S
We divide by h and let h » 0. Hypothesis H3.4 implies (see Brézis [14,
Appendix]) that the differential quotient converges (strongly) in Lp'(U,T;X')
to the derivative (notice that 1 < p' < =), Since J*(Bu) e L1 (Step 1), we

obtain that

t
J*(Bu(t)) - J*(Bu(s)) < J ( & (Bu(x)),u(t))dr (3.3)
3

for almost all s,t € (0,T), s < t.

Step 3. Bu 1is {strongly) measurable from (0,T] to Y', because B is
demicontinuous (recall Remark 2.1). This is true without assuming Y'
separable: see Brézis [13, Appendix IV]. From (3.3) and J* bounded below
J*(Bu) € L™(0,T;R). Since J* is coercive (Lemma 2.1), Bu € L™(0,T;Y'). This
and Bu ¢ C([0,T];X'), (recall Remark 3.1}, imply that

Bu & C([0,T];Y' weak)
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by Lemma 8.1 of Lions and Magenes [24, p. 297]. (Here we use the reflexivity of
Y', but it is not necessary that X' be reflexive.) In particular, Bu(t) ¢ Y
and J*(Bu(t)) makes sense for all t e [0,T] (not only for almost all t).

Since J* 4is weakly l.s.c. (Lemma 2.1), the function t + J*{Bu(t)) is l.s.c.

from [0,T] to R.
Step 4. We are gonig to prove that

h
lim %J (Bu(t) - Bu(0),u(7))dr = 0 (3.4)
h+0" M 0

For p # = (i.e. p' # 1), Bu is Hilder continuous (of exponent 1/p) from

{0,T] to X', because of H3.4 (see again [14, Appendix]). Thus
| (Bu{z) - Bu(0),u(7))| <¢C /P nu('r)ﬂx

holds for almost all <t e (0,T), where we also use hypothesis H3.3. By Holder
inequality (notice that (p'/p + 1)/p' = 1)
h

h 1/p
J [(Bul1) - Bu{0),u())ldr < Gy h( | HU(T)Ing)
0 0

This and H3.3 imply (3.4).

For p = «» it is enough to observe that

|{(Bu(z) - Bu(0),u(1))| <C, g(1)

where g(t) = 1Bu(1) - Bu(0)r,« 1is a continuous function with g(0) = 0.

Step 5. From Step 3 Bu(0) € Y'. We set
Bu(t) = Bu{0) for t < 0.

Thus we obtain trivially for nh > 0
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0
J 9%(Bu(1))dt = h J*(Bu(0)) (3.5)
-h
We remark that extension to negative t will be used for Bu(t) but not for
u{t). Repeating Step 2 with s = 0 and taking into account (3.4) and {3.5) we

obtain for almost all t € (0,T)

J¥(Bu{t)) - J*(Bu(0)) <

Ow,

(S (Bu(),u(x))d (3.6)

Step 6 We set Bu(t) = Bu(T) for t > T and argue as in Step 5, con-
sidering u{t+ h) and u(t) instead of u(1) and u{t - h) and using (2.4)

instead of (2.5}. We obtain for almost all t € (0,T)
T d
J*¥(Bu(T)) - 9*(Bu(t)) > | ( g5 (Bu(1)),u(x))dr (3.7)
t t
Step 7 Finally, (3.6) and (3.7) hold for all t e [0,T] because J*(Bu)
is- 1.s.c. (Step 3). Thus, we have proved (3.1) for t =T and s = 0. The

same proof applied to the interval [s,t] shows that (3.1) holds for all

s,t € [0,T], s < t. Q.E.D.

4. An existence theorem of Grange and Mignot

Let Vl and V, be separable and reflexive real Banach spaces. We set

the following hypotheses.

H4.1 Vl and Vo satisfy H3.1 with X =

I
-~
et

and Y

Vz. In addition,

the imbedding V1 > V2 ig compact.

H4,2 $, and A satisfy (2.1) with J s B=A and Y = Vi. ¢ and

B satisfy (2.1) with g = ¢g and Y = V,. A and B are bounded on bounded

sets.

s
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H4.3 (Coerciveness of A). There exists Y, 1 < vy < =, such that

°A(U)
1im inf - >0
fun,, =+ ful
1 V1

H4.4 Uy £ \I1

L YL df Y' !
H4.5 f e L%(0,T;V)), gr e LY (0,T5V)

Theorem 4.1 (Grange-Mignot [20]). Under hypotheses H4,1 to H4.5, there exists
u such that

u € L”(O,T;Vl), Bu € L"“(G,T;Vé), Au € L“(o,T;vi)

Bu(0) = Bu0

%f (Bu) + Au = f in L”(O,T;Vi)

where the derivative d/dt 1is in the sense of (vector-valued) distributions of
D'(0,T;vs).

Remark 4.1. 1In [20] A and B may be multivalued. 'We have stated the theorem

for the singlevalued case.

5. Existence theorem (statement and examples)

Function spaces

Let @ be an arbitrary open set of R". We shall use the real space

L9g) and a Sobolev-like space W(R). We set the following notations and
definitions
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Bl o) = nuqu(Q) * lulyee (5.1)
IUIN(Q) ='ﬁ<|£|an nDaUI!Lp(m (5.2)

where m and m are nonnegative integers and |a] is the order of the deriva-

tive D%,

H5.1 Let 1 < p,q < =». We define the space W(R) = W(a,p,q,m,m)} as the

closure of CS(Q) in the real Banach space
wel¥(a): petP(a), m< el <m}, 0 <mem m>1

with the norm defined by (5.1). (See also (5.2); in general, (5.2) is only a
seminorm). We write W'(Q) for the topological dual of W{q).

(Some facts on the space W(p) are collected in Appendix I.)

Hypotheses on the operator A

A 1s the (singlevalued) subdifferential of a convex functional I on

W(Q). We set the hypotheses on A in semi-abstract form.

H5.2 (Derivative of convex functional). I and A satisfy (2.1) with
J=I,B=A and Y = W(a).
H5.3 (Coerciveness with respect to the seminorm). For all u € W{Q)

P -
I{u) » ¢ IUIN(Q) Chy € >0

H5.4 (Boundedness). For all u € W(gQ)

1Aun <c, Pl os ¢
wl(n) 3 N(ﬂ) q

Notice that H5.3, Lemma 2.2-1 and Lemma 2.1-111 imply

L)
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(Au,u) > Cl|u|ﬁm) - Cg, €1 > 0, Yu € W(a) (5.3)

The operator B

Let B: @ xR + R be a function and define B by

(Bu)(x) = 8(x,u(x)) | (5.4)

H5.5 8(x,s) 1s a Caratheodory function: measurable in x for all s e R

and continuous in s for almost all x € gq.

H5.6 B(x,s) 1is nondecreasing in s for almost all x & Q.

H5.7 For almost all x € @ and for all $15,5, € R
8(x,0) =0 (5.5)

|8{x,s)| » cﬁlslq'l, cg > 0, (coerciveness) (5.6)

-1 .
cyls, - 5q19 if 1<qc<2

|8(x,5,) - B(x,5,)] <{ (5.7)
-2 ,
¢y{ls | + Iszl)q |52'51| ifq>2
We note some easy consequences of these hypotheses on B. Setting
S
j(x,s) =é B(x,0)do, J{u) = | j(x,u(x))dx,
Q

then J and B satisfy (2.1) with Y = L9(q), 8 and J are bounded on
bounded sets and

J*(Bu) > cg qund » Cg > 0, Vu & L9(a) (5.8)

L9(q)

Let us sketch the proof of (5.8). From (5.5) and {(5.7) with 51 = 0
li{x,s)] < C|s|9

]
Setting w = ulv|9 'lsgn v in (2.3) with u > 0 small enough (p independent
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of v), we obtain

*(v) > ¢ [v|%dx, c¢>0, W eld ()
Q
Now (5.8) follows from (5.6).

Remark 5.1 B 1is continuous by (5.7) or by a well-known result for
Nemytskii operators on LP spaces. B 1is also surjective, since it is mono-
tone, continuous and coercive (from a theorem of Minty-Browder, see e.g. [8, p.
40] or [23, p. 171]1). Furthermore, J* is continuous. In fact, from H5.6,
(5.5)-(5.6) J(x,s) »C|s|%, C > 0. Then from (2.3) and lvw| < elw|9 + C€|v|ql
we obtain

J*(v) < C | |v|q'dx, vw e L9 (a)
f
This implies that J* is continuous, since it is convex, lower semicontinuous

and everywhere finite: see e.g. [18,p. 13].

Statement of the existence theorem

Theorem 5.1 Assume H5.1 to H5.7 and

ug € L(q), fe P (0,T:W' (%)) (5.9)

where 0 < T < «=, Then there exists u such that

u e LP(0,T:u(x)) (5.10)
Bu(0) = Bu, (5.11)
L (Bu) +Au=f  dn LP'(0,TiH' () (5.12)

where the derjvative d/dt 1is in the sense of {vector-valued) distributions of

D' (0,T;W' ().
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((5.12) holds if and only if the differential equation holds in D'(Q):

see Remark 5.3 below. In addition, the above relations imply (5.13) to (5.15):

see below).
Remark 5.2 From H5.4 and (5.10)
Au, S (Bu) € LP'(0,TsH' (a)) (5.13)
Thus Bu{0) makes sense {Remark 3.1). Furthermore, from Proposition 3.1
Bu € C([0,T1; L9 (2) weak) (5.14)
u € L%0,T;L9(R)) (5.15)

where we use also (5.8) to obtain (5.15). For Bg(x,s) = |s|q'1 sgn s (Example

2.1) we know (Remark 3.3) that u € C({[0,7];L%(9)) and the initial condition

(5.11) is equivalent to wu(0) = ug.

Remark 5.3 LP' (0,T;W'(8)) fis the dual of LP(0,T;W(R)), because W(R) is
reflexive. Since CSTQ) is dense in W(q), Lpl(O,T;w'(Q)) is identified to a
subspace of D'(Q). (More details are found in Appendix I.) Thus (5.12) holds
if and only if 3(Bu)/at + Au = f holds in D'(Q): see Brezis [14, Appendix],
specially Propositions A.6 and A.7 and Corollary A.2.

Examples of operators A satisfying H5.2 to H5.4

Example 5.1

Au = 7 (-1)|‘°‘l D"‘(|D"‘u|p"1 sgn D%)
rn<|a|<m

In particular, A = A, of (1.1) if m =m.

Example 5.2 Let m=m,
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Au = (-1)" D“(ln"'u|p'2n°‘u)
| ¢|=m 2

where |Dmu|2 is the euclidean norm of the vector of all m-order derivatives.

(For m =1, -A is the isotropic p-laplacian)., The operators of Examples 5.2

and 5.3 are isotropic (i.e. rotationally invariant).
Example 5.3 Let m be even and M=m » 2,

Au = Am/z(lamfzu[p'l sgn A2

. This operator satisfies H5.3 (coerciveness) because of Calderon-Zygmund ine-

quality and the density of Cg(n) in W(@). (This inequality establishes that

nAm/Zuup and quuﬂp are equivalent on CE(Q) if 1 <p < «),

Example 5.4 We give now a more general example. Let a be a multi-index of
integers as those used for derivatives, £ = {Ea:'ﬁ'< la] <m} and RN the vec-

tor space formed by the &. Consider the function
F:QxRN+R

such that F(x,£) 1is measurabie in x for each £t e RN, convex and con-

tinuously derivable in &£ for almost all «x € 2. Set Aa = aF/aga and assume
] —
A% 8| < cp[6]P™h + 91(x), g€ LP'(@), W< o] <m
F8) ] > cplelP - 55000, ¢, 5> 0, gy & L(0).

Finally, set

= T -ndelpm ooui)), 1) = Fex,0u(x) )dx
m<|a|<m @ 1;

where Du(x) = {D%(x): W < {a] <m}. Then I and A satisfy hypotheses H5.2
to H5.4.




Notice that for m = Q, A of Example 5.4 is a particular case of operator

of the calculus of variations and of quasilinear elliptic operator in genera-

lized divergence form (see e.g. [23] and [16], respectively).

Example for the operator B

Exampie 5.5 If we take (for any q > 1)
8(x,s) = a(x)lslq'lsgn s, a»0,a and 1/a & L7(Q)

the operator B defined by (5.4) satisfies H5.5 to H5.7. (Of course, for

a =1 we obtain Example 2.1).

Remark 5.4 We shall use the functional IG and the operator A induced by J
and A on an open subset G of Q. Since Cg(n) is dense in W(f), the opera-
tor L of zero extension from W(G) to W(Q) dis an isometric isomorphism and

commutes with D% m < |a] <m (proof as for the Sobolev spaces wg’p; see e.g.

[11). Thus if we define for U € W(G)
(V) = (L), AU = L*ALU

then I. and A; satisfy H5.2 to H5.4 with q replaced by G. Notice that

AGU is the restriction to G of the distribution ALU. An analogous remark

for the operator B is straightforward.

6. Proof of Theorem 5.1

We shall use the capital letter Uk for the solution of the approximating

problem (defined on Q x (0,T)) and the small letter u, for the zero exten-

sion of Uk to g x {0,7).
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Approximating problems

Let {G,} be an increasing sequence of open balls covering R". We set
Let {fk} be a sequence of CS((O,T);N'(Q)) such that
fe > T in LP(0,T;0'(0)) (6.1)

{Convergence will be in the strong sense unless otherwise stated). Let

{uOk} C:CSYQ) and Gy be so chosen that
Support Uy C @, ug *uy in LI(a) (6.2)

We shall use the same symbols for the restrictions of Ugy to @ and of fk

to 2 x (0,T). Consider the equation

d _
It BU) + AU + & U 21 sgn U = f on @ x (0,T) (6.3)

where Ak and B, are the operators induced on Q by A and B (see Remark

5.4) and

A > max{p,q}

We are going to apply the existence theorem of Grange-Mignot (Theorem 4.1)

in the following way. We take
Vi = WprPla) NN e, v, = Lay)

(The norm of the intersection is defined as the sum of the norms). The

A

imbedding Vl + V, 1is compact, since the weak convergence in L* and the a.e.

convergence imply the strong convergence in L9 if g < 2 and the domain is

bounded (see e.g. [23, p. 144]). The operator A of Theorem 4.1 is now defined
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by

u -+ A+ (1/k) Ju|*1sgn u

Hypothesis H4.3 holds with v = p. This follows from H5.3, p < A and
Poincaré-Friedrichs inequality. (This inequality implies that the seminorm

|U|w is equivalent on bounded domains to the norm of wg’p). Thus, from

Theorem 4.1 equation (6.3) has a solution Uk (3 L”(O,T;Vl) such that
BkUk(O) = Bk”Ok on @
Estimates of u
We take the duality product of (6.3) and Uk' integrate in t between 0

and t and apply Proposition 3.1. 1In addition, we consider the zero extension

U of U, to ax(0,T). Notice that (AkUk’Uk) = (Auk,uk) by Remark 5.4.
So we obtain for all t e [0,T]

9*(Buy (t)) . (A 1" A
k $ u (o) u (1) )de + F-é é luy | *dx dr =
(6.4)

t
= é (fk(T),uk(r))dr + J*(Buk(O))

{The initial condition for Uy reads Bu,(0) = Bugy by the first relation of

(6.2)). From (6.2) and Lemma 2.2, J*(Buk(O)) is bounded (independently of k).
Now, the coerciveness properties (5.3) and (5.8) imply in the usua) way (see

e.g. [23, p. 163]) that

Ui s bounded in L7(0,T;L9(a)) and in LP(0,T;W(a)) (6.5)
Thus from H5.4 and the boundedness of B
'
Au . 1s bounded in LP (0,T;W'(9))

o0 ]
Bu, is bounded in L™(0,T;L9 (@)
Bu (T) 1is bounded in L9 (g)
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~ (We recall that Buk is continuous from [0,T] to Lq'(n) weak and thus
. §
Buk(T) makes sense and belongs to LY (q)), Therefore, there exist u,v,E&,x

and a subsequence of {uk} (which we denote 4s the original sequence) such that

u +u in L%(0,T;L9Q)) weak star | (6.6}

u, »u in LP(0,T;W(8)) weak (6.7)

Bu, »v in L7(0,T;L9'(8)) weak star (6.8)

4 (Buy) s 40 0'(0,T;L9°(2)) and in D'(Q) (6.9)
Bu (T) » ¢ in L9 (a) weak (6.10)
Aug + x in LP(0,TsM'(R)) weak (6.11)

In addition, we are going to prove that

W = (1/k)|uk|*'1 sgn u, + 0 in L*'(Q) (6.12)

From (6.4) and {6.5)

T
(i/k) | | lukll dxdt < C (a constant)
0Q
T , . T ,
[ f I} dxdt = (KR f S fu | P dxdt < c/kA
0@ 0@

which proves (6.12).

Passing to the 1imit in the differential equation

Let be any ¢ ¢ Cg(q). We use ¢ as test function for (6.3). Since sup-
port ¢ C q x (0,T) for k 1large enough, we can replace Uy by its zero
extension u . Furthermore, taking into account that (6.1), (6.9), (6.11) and

{6.12) imply the convergence in D'(Q), we successively obtain:

dv/dt + x = f (6.13)
dv/dt € LP' (0,T;W' () (6.14)

*
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B + 3 weakly in LP(0,Tsu () + LM (Q)  (6.15)

Proof of v

Bu

This is the key point of the existence proof. Let G be an open ball such
that G C Q. We shall use a compactness lemma of Lions-Aubin {Lemma IV.1, in

Appendix IV) and the compact imbedding

H*P06) » LPO(a)

s
where H ’pU(G) is a Nikol'skii space (see Appendix II). In fact
p S,p
Bu, 1is bounded in L 9(0,T;H ~ 0(g)) (6.16)

This follows from (6.5) and Lemma III1.3 (in Appendix III) taking Pg <P {and
Now we apply Lemma IV.l with Vi = Bug, Py = A,

S, p '
Eqg = H ), £ = L %), E; = W'(G) + LM (6) + L"0()

Recall that x> p (thus A' < p') and notice that LA'(Q) = LA'(O,T;LAl(n)).
Thus from Lemma IV.1l, (6.15), (6.16) and {6.8)
8 in ("% 1:.P0g)y = PO
u, +v (strongly) in L “(0,T;L “(G)) = L Y(Gx(0,T)) (6.17)

and for some subsequence

Bu, »v a.e. on Gx(0,T) (6.18)

Now we use a monotonicity argument (we follow e.g. [3, p. 3231). For any

R > 0, we define a truncation operator PR by

-R if w(x) < -R
(Paw)(x) =4 w(x) if {w(x)| <R

R if w(x) >R
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Take any e > 0 andy any ¢elL9(6x(0,T)). Since Pe(B(u + €¢) - Bu,) is uni-
formly bounded (for fixed R), (6.18) implies that as k + w
PR(B(u + £¢) - Buk) +> PR(B(u_+ €¢) - v)

a.e. in Gx(0,T) and strongly in L¥(Gx(0,T)) for any uw»1, u# e Inpar-

ticular, in LY, This, (6.6) and the monotonicity of B imply that as k + =

.
0 < é é PRB(U + €4) - Buy) + (u + ¢ - u,)dxdt »
.
*e ) [ Pa(B{u + e¢) - v) » ¢ dxdt
06

Dividing by e, letting e » 0% and using Lebesque's dominated convergence we

obtain

-.-'

0 < é Pa(Bu - v} « ¢ dxdt

[e=]

Which implies v

Bu on Gx(0,T), thus v =Bu on @ x (0,T) z Q.

Proof of £ = Bu(T) and Bu{0) = Buo

From Lemma IV.1 and v = Bu we also obtain

Buk + Bu (strongly) in C{[0,T]; Ey) (6.19)

(6.19) and (6.10) imply £ = Bu(T) on & (thus on Q) and
Bu (T) » Bu(T) in 19'(a) weak (6.20)

Analogously, (6.19), (6.2), Bu,(0) = Buy, and the continuity of B imply
B“U = Bu{0) and

J*{Bu, (0)) = J*(Bugy) » J*(Bug) = J*(Bu(0)) (6.21)
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where we have used that the functional u + J*(Bu) is continuous (Lemma 2.2).

Alternatively, we can use that J* 1is also continuous (Remark 5.1).

Proof of y = Au

From (6.13), (6.14), v = Bu, u e LP(0,T;W(2)) and Proposition 3.1 we

obtain

T T
(JJ (x{t),u({t))dt = 9*(Bu(0)) - J*(Bu(T)) + (JJ (F(t),u(t))dt (6.22)

We recall that J* 4s weakly lower semicontinuous on Lq'(n). Let k + = in

(6.4) with t = T. From (6.1), (6.7), (6.20) and (6.21) we obtain
T T
1im sup é (Auk(t),uk(t))dt < J*(Bu(0)) - J*(Bu(T)) + é (f(t),u(t))dt

k + =

This and (6.22) imply x = Au by a standard monotonicity argument: see e.g.
{23, p. 160].

The proof of Theorem 5.1 is complete.

7. Formula of integration by parts for sums of spaces

Let Xi, i1=1,...,N, and Y be real Banach spaces. We set

Ax, g )
X = X;p fully = fui
i=1 07 gd

H7.1 (a) For i = 1,...,N, X 1is dense in xi and X' 1is identified to

(b) X and Y satisfy H3.1.
H7.2 J and B satisfy (2.1).

N Ps
H7.3 ue ML 1(0,T;x1.), 1<py <=, 0<T<am,
~ i=1 .
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H7.4 Bu, g¢ (Bu) € 121 L *(0,T;x3)

where the derivative d/dt 1is in the sense of distributions of D'(0,TyXx').

Proposition 7.1 Under hypotheses H7.1 to H7.4, conclusions I and II of

Proposition 3.1 hold.

The proof is as that of Proposition 3.1. The convergence of the differen-

tial quotient to the derivative in

N ¥
z L (O,T;X%)
i=1

follows splitting Bu and d(Bu)/dt 4n the form

dv, dv. D}
1, 1 1 Lyl
T3V and g €L 0T

Bu =
3

i~ =
et =Z

d
Vis (Bu) =
p Pt i

8. Existence theorem for sums of operators

We consider the spaces Ni(n), i = 1,.e.,N:

defined in H5.1, excepting that now we only require m; > 1 for at least one

ie {1,...,N} (rather than for each 1).

Theorem 8.1 Assume the hypotheses of Theorem 5.1 with the following two

modifications:

N

1) A= 7 A; and each operator Ay, 1= 1,...,N, satisfies hypotheses
§=1
H5.2 to H5.4 with respect to the space Ni(g).

N p; ]
2) fe J L 0,TiWi(n))
i=1
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Then there exists u such that (5.14), (5.15), Bu(0) = Buy and the

following relations hold:
N

ue N Lpi(O,T;Ni(n))
i=1

%5 (Bu) + Au = f 1in D'(Q)

The proof is as that of Theorem 5.1, using now the formula of integration

by parts of Proposition 7.1. This device on sums of spaces and operators can be

found also in the book of Lions [23].

Example 8.1 Theorem 8.1 applies to problem (1.2)-(1.5) (Yp,q,r > 1;
Ym,n > 1) taking N = 2, Nl(n) = W(Q,p,q,m,m} and Nz(n) = W(Q,r,q,0,0) =
= L") N LYR). (We recall that @ is an arbitrary open set of R")., As
noted in Remark 5.2, for this example we know, in addition, that

u € C([0,71;L.9(a)) and the initial condition can be written u(0) = u,.

Remark 8.1 Set E = Wi(a) of Example 8.1 and
F =3 P(a) N LYa)

Assume that 1 <q <p or 1<r < p or Q bounded. Then Theorem 8.1 also
applies to problem (1.2)-(1.5) with E replaced by F. (This replacement is
used in [10].) This follows from the following four points. (1) FC E 1in any
case. (2) F=E if 1 <q<p or @ is bounded (see Appendix I). (3) If
1<r<p<qg then L(Q)N LYQ)c LP(Q), thus

LP(0,T;6) N L7(Q) N L™(0,T;L%a)) = LP(0,T;F) N LT(Q) N L%0,T;L9(x))

and (4) a coerciveness argument as that connecting (6.4) and (6.5) is stiil

valid.
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Appendix I. The Sobolev-like space W(Q) and the space Lp'(O,T;N‘(Q)

In this appendix we allow 1 < p,q < = and refer to Adams [1] for
background material. The space W(R) (defined in Section 5, see H5.1) is
reflexive if 1 < p,q and separable if 1 < p,q.

(1) The equality

W(Q) = wg'P(g)!ﬁ L9( )

holds (with equivalent norms) in each of the following three cases. [} For all
qQ >1 if @ 1is bounded is some direction, because of Poincaré-Friedrichs ine-

quality. 1II) For any open set g if 1 < g < p, because of Gagliardo-Nirenberg

Tnequalities (see e.g. [26]1). III) If W=10 (trivally).

(2) Combining point I above with Sobolev imbedding and Holder inequality,

we obtain W(Q) = Wg’p(n) if Q@ 1is bounded and 1l/q > 1/p - m/n.

{(3) In any case

w(n):3wgsp(n)r\Lq(n)

Furthermore, this inclusion is strict for @ =1R" if q > p. This follows from
the counterexample of {26, Comment 3, p. 125].
On the other hand, we use repeatedly the space Lp'(O,T;N'(Si))(: D'(Q). A

distribution fe D'(Q) belongs to Lp‘(O,T;N'(n)) if and only if f has the

form

fefos_ 5 D%, foelP(0,T;09°(2), f_ eLP (Q)
m<|a|an

where the sum extends to x-derivatives (t-derivatives excluded). This is proved

as for Sobolev spaces: see e.g. [1, Theorems 3.8 and 3.10].
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Appendix II Nikol'skii spaces HS:P(g)

For simplicity we assume 0 <s <1 and 1< p < = A function ué€ LP(%)

belongs to HS:P(Q) if and only if the norm

fui L + sup —L_ ya P P
- u
H3+P(q) [ Mo P T Lp(ﬂe)]

is finite, where the supremum extends to h & R", € > 0, 0 < |h] < e. &

h and

Q. are defined by

(8u)(x} = u(x + h) - u(x)

(Il.1)
ﬂs = {x e Q: dist{x,3n) » e}

If o satisfies the cone condition, HS:P(p) is continuously imbedded in
LA(Q) for some A > p. The ranges of the parameters s,p,A for the imbeddings
of Nikol'skii spaces are the same as for the spaces W5:P, excepting some
1imiting cases. See Adams [1, p. 2251 for precise references about these
results. An alternative reference is Triebel [29, pp. 327-328]. 1In [29] the
Nikol'skii space H3:P(q) is named B;,m(g), p. 170.

If, in addition, @ is bounded, the former continuous imbedding and the

definition of the H®*P norm imply that the imbedding
H3*P(q) » LP(q)

is compact by the standard characterization of LP strong compactness, applied

as e.g. in Brézis {15, p. 170].

Remark I1.1 H%+P(R") is neither reflexive [29, p. 199] nor separable [29, p.
237] and CS(R") is not dense in H%*P(R") [29, p. 172]. Nevertheless, for
0 <e<s HP(g) is continuously imbedded in the reflexive space WS~€:P(q)

and this is compactly imbedded in LP(Q) if @ is bounded and smooth. Thus,

S-€,p
the proof of v = Bu (Section 6) can be rewritten taking Eqy =W ’ O(G),

. Sspo
0 < £ < s, instead of E0 = H {G).
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Appendix I1I An estimate of the Nikol'skii norm of Bu

We consider the operator B from L9(g) to L9 (a) defined by (5.4),
under hypotheses H5.5 and HS.7, except relation (5.6). (Hypothesis H5.6 is not

required). We set the notation

fo|<m

Lemma I11.1 let 2 <q <= and ue L9a) MulsP(g), 1<p<w (2 is an
arbitrary open set of R"). Assume that o s an open set, wC 9, h ¢ R" and
|h| < dist{w,30). Then there exists s such that 0<s <1, r>1 (r

defined by (III.3) below) and

-1-s ,nl .S s
1A Bui < C rur 1D ud In|
L LM (w) L9(q) LP (%)

where notations (II.1) and (IT1.0) are used and the constant ¢ depends only on

P»q,s and the constant of (5.7). (Thus, C is independent of h,w and @).
Proof. From (5.7), 0 < s < 1 {to be chosen below) and
S 1-s
|t2-t1|<|t2-t1|(‘t2[+|t1|)

we obtain

<C J (lulx +h)| + |u(x)|)r(q'1*s)|Ahu(x)|r5dx (II1.1}

||%Bun[r(w) J

We are going to apply Holder inequality with exponents p/(p - rs) and p/{rs).

This needs some explanations. We choose r,s so that

r{q-1-s)p/{(p - rs) = g (111.2)

which is equivalent to
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1/r = 1/q"' + s/p - s/q (I11.3)

Since r +q' as s » 0, it is actually possible to choose r > 1 and

0 <s < 1. In addition, p/(rs) > 1 follows from q > 2, 0 < s <1 and the
identity

p/(rs) - 1 =1p(q -1 -s)/(gs)

Now the lemma follows from (II1.1), (III.2), HGlder inequality (applied as

explained above) and the well-known relation (see e.g. [15, Proposition IX.31)

i

HAhUle(w) <C D uan(n)|h| (I111.4)

Remark III.1 Given p, for q and n large enough we cannot assure that

Bu € Nl’l(n), A »1. This and the study of the case 1 < g < 2 suggest the use
of fractional order spaces. (For 1 < q < 2 we shall take s = q-1 and

r=p/{q-1)).

Lemma I11.2 Assume the hypotheses of Lemma III.1, excepting that now 1 <

q < 2. Then

1. .g9-1 gq-1
PA Bul <C 1D ul [h|
A" LP/(Q'l)(m) Lp(ﬂ)
the constant C depending only on p,q and the constant of (5.7).

Proof. Notice that p/(q - 1) >p > 1, Weset r =p/(q-1). From (5.7)

i r
AhBunLr(w)

<C J |au(x)|Pdx

The lemma follows from (III.4).
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Lemma 111.3 Assume ue LI(6), D" e LP(G), m> 1, 1 < p,q < =, where G is a
bpunded open set satisfying the cone condition (see e.g. [1]1). Then there exist

S,p
Pp and s such that Pp> 1, 0<s<1,BuceH 0(G) and

"Bul <Cy + C, 10"ur®
S,Pp 1 2 P
T O(G) L¥(G)
where Cl and C, depend only on PsPg-4,5, the constant of (5.7), G and
fus and remain bounded if fut remains bounded. Notation (II1.0)
L9(g) L4(a)
is used.

Proof. We are going to use the inequality

)

Tk c(6){ 1™
ul & )(l UHLP(G) + uuqu(G) (11L.5)

LP(6)
which holds for all p,q » 1 if G 1s bounded and satisfies the cone con-
dition. (This form of Gagliardo-Nirenberg tnequality is found e.g. in Nirenberg
[271).

Consider the HS:*P norm defined in Appendix 1I. The desired bound for
the second term of this norm is obtained from (I11.5), Lemma III.1 for gq > 2
and Lemma II1.2 for 1 <q < 2. (We take s = q-1 if 1 <q < 2). For the
first term of the HS:P norm we take into account that

1But < Crynd-?
L9 (@) L9(6)

(this follows from (5.5) and (5.7) with Sy = 0) and choose Pp > 1 1in the

following way {recall that G is bounded):

Pg <min {r,q"'} if g »2
P <min {p/{q - 1),q'} if 1 <q<2
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Appendix IV A compactness lemma of Lions-Aubin

Let E;, E and E; be Banach spaces such that Eg C E C Eq, the imbedding

E0 + E is compact and the imbedding E + E; 1is continuous. Assume
1< pU'pl < o,

Lemma IV.1l Under the above hypotheses, assume that the sequence {Vk} is
p p
bounded in L O(O,T;EO) and {dv,/dt} is bounded in L l(U,T;E ). Then there

: . - * pO 0 T'E) d
exists a subsequence of {vk} which converges strongly both in L (0,T; an
in C([D,T];El).

For E0 and E; reflexive the lemma was proved by Lions, see e.g. [23, p.
58 and p. 142]. Aubin [5] proves the lemma without reflexivity hypotheses.

(In Section 6 we apply the lemma with E0 nonreflexive.
explain that this can be avoided through an additional argument.)

In Remark I1.1 we
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