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Abstract

Let G be a bounded convex set. Then the solution to the Skorokhod problem
for a given path ¢ may be considered as a reflected version of ¢ with
respect to G. By use of estimates on the behavior of this deterministic trans-
formation, large deviations type asymptotic estimates for reflected diffusions
are shown to hold. Let N be the projection onto G and {g,} be an i.i.d.
Gaussian sequence. Then from the diffusion results estimates on the asymptotic
behavior of recursive algorithms of the type
XFoy = Mg(XE + e(b(XD) + o(XFVE)) (or Xn4q = glxy + 2 (b(X,) + olX)E)),

0 < a, » g, ¢ a, = =) are shown to follow., Let 6 be a stable point of the
algorithm, let D be a neighborhood of 6 with respect to G, let

A= {¢ G;Ce[O,T] : ¢{t) €D for some t < T}, and define x&(*) to be the
piecewise linear interpolation of Xﬁ starting at € and having interpolation
interval e. Then estimates on P{x%(+)(& A}, the probability of escape from D
before time T, are obtained. This analysis yields an alternative to convergence
results on the 'asymptotic normality' of errors about @, which are in any case
not applicable if 8 & 3. These and other estimates provided by the large
deviations methods are often more useful in applications. Extensions are outlined

for correlated noise, unbounded domains, and domains that are smooth with 'convex

corners’,



1. Introduction

We shall be concerned in this paper with proving large deviations type
theorems for dynamical systems driven by small noises and which are constrained
in some way or other to lie in a given bounded, convex subset of Rd. We shall
consider first the case of a reflected diffusion in which the domain G is con-
vex and the reflection is along the normal (or normais). From this we derive
results for a class of stochastic approximation (SA) algorithms which are driven
by white Gaussian noise and which are constrained to lie in G via projection.
We then indicate extensions for both types of processes such as the case in
which 3G 1is an intersection of smooth manifolds with 'convex corners', the case
of correlated driving noises in the SA algorithms, and unbounded domains.

In the case where 3G is C> the reflected diffusion problem has been
treated previously by Anderson and Qrey [1], and Doss and Priouret [3]. 1In
both cases localization arguments were used which cannot be applied when the set
is not assumed to have a smooth boundary. These references, as well as {61,
consider the application of large deviations theory to the analysis of singu-
larly perturbed partial differential equations.

Tanaka [11] considers the problems of construction and uniqueness of
solutions for a normally reflected diffusion in a convex set, and we shall make
use of several facts derived there. See also Snitzman and Lions [8], who con-
sider these problems for more general domains and types of reflection.

Typical results are the following. To be specific, we concentrate first on
the reflected diffusion. Let x%(-) denote the solution to a stochastic dif-
ferential equation with reflection with drift b and diffusion matrix o (a precise
definition will be given later). Let x be the initial value of xe(-), let Px
denote probability given x%(0) = x, and let Cx[O,T] be the set of continuous
paths on [0,T] with initial point x and values in R4 . Then it is shown that

there is a functional (known as an action functional, or rate functional)

SX(T’.) : CXEOsT] ke [0,"0]
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such that for any set of paths AC:CXEU,T]

; lim 2 £
(1.1) -¢12£° SX(T,¢) <= ¢ log P, {x () & A}
<"1€—1:n3' e’ log Px{xe(')éﬁ\}

< - inf_SX(T,¢)
¢ CA

where A° and A are the interior and closure of A, respectively.
Let 1#,(x) be the projection of x onto the point in & nearest it, and

consider the projected recursive (or stochastic approximation) algorithm

(1.2) Xpa1 = Mg (Xp + & (b(XT) + o(X7) £)), X5 = x.

where En is a sequence of i.i.d. Gaussian random vectors.

If we define x%(+) as the piecewise linear interpolated version of Xﬁ
with interpolation interval e then estimates analogous to {1.1) are obtained.

Let 6 be a stable point of the "mean" algorithm given by (1.2) (described
below). Let D be a neighborhood of 6 with respect to G. By defining
A= {9&Cyl0,T]: ¢(t) £ D some t < T}, (1.1) gives an estimate of important
quantities such as Pe{rg < T}, where TS is the time of first escape from D,
Under additional hypotheses, quantities such as Ee ﬁg and most likely escape
routes may be estimated [5]. As an example of how such estimates are useful one
may consider the information they provide when comparing the relative stability
of different algorithms., Alternative methods such as those based on lineariza-
tion of errors about 6 use only local information, to prove (for example) that
if 8 &£ G then the normalized errors (X®(s) - 8)/e converge weakly to the
solution of a stable Ito equation. Such a result does not provide a good
estimate for Polty < T}, and unlike (1.1) it reflects only the local structure
af the dynamics. If 6 £ 3G the such a linearization cannot in any case be done.

The paper 1is organized as follows. Section 2 introduces the basic assump-

tions and definitions, defines a deterministic transformation on paths which we
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shall consider to be the effect of reflection, and obtains estimates on this
transformation. Section 3 states and proves the large deviations theorem for
reflected diffusions, except for several important properties of the action
functional that are proved in section 4. 1In section 5 the results for SA
algorithms are shown to follow from those for reflected diffusions, and in sec-

tion 6 various extensions are outlined.

2. Assumptions, definitions and the Skorokhod problem.

Throughout this paper we shall assume
(1) We are given a d-dimensional drift b(-), and a dxd,-dimensional dif-

fusion matrix o{e), satisfying
[b()| <C, jo(e)]| < C
[b(x) - b(y)| < K|x=y|, |a(x) - oly)]| < K|x-yl.

(ii) The matrix a(x) = o(x)o'(x) is either uniformly nondegenerate or
else it has the following particular degenerate form
all(x) 0
a(x) =
L 0 0
where ay3(«) ds dyp xd; , 1 % dy < d, and there is a > 0 such that
all(x) > a|x|2 (i.e. all(-) is uniformly nondegenerate).

In sections 2 through 5 we shall assume

(111) G 1is convex and compact.

The Skorokhod Problem.

Let n{x) be the set valued function giving the outward normals at X & 3G,
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Ten(x)& W' ¢ 6, <y, x-x'> >0, and |y| = 1.

Denote the total variation of a function n(¢) on the interval (0,T] by |n|(T).
We will say that a triple of functions (¢,v,n) are associated, or that they

satisfy the Skorokhod problem, (with respect to G and on the interval [0,T]

being understood) if [n|(T) is finite, and if

o{«) = 9(+) + n(+), 6(0) = y(0)
#(t) &G for te<[0,T]
Inf{t)

IB Liatsy o agy dlnl(s)

n(t) = - & v(s)d[nl(s)

where y(s) € n(¢(s)}. (In the remainder of the paper we substitute n{4(s)) for
v(s), the above interpretation being understood.) Hence ¢(+) never leaves G,
n(t) changes only when ¢(t) € 3G, in which case the change points in the direc-
tion - n{p(t)). We interpret ¢(+) as the reflected version of v(+). We next

present several lemmas concerning the dependence of ¢ on .

Lemma 2.1. Let the triples (¢i’ s nf) be associated for i=1,2, with

wl(O) = ¢2(0) = X, Then

2
sup_[oy(t) ~ap(t) % < sup_ [wy(t) - wy(t)]
O<t<T 0<t<T

+ 4 P (t) - t) T) T))
up 1v () - (e} [ (Im H(T) + g €

Proof.

= 2901 (t) - gp(t), dlyy(t) - wylt) + np(t) - ny(t))>

< 2<0p (t) - oy(t), dlyy(t) - wy(t))>
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= d|yg(t) - vp(t) ] + 2<n(t) = np(t), d{w(t) - wy(t))>,
where the second inequality follows from <¢; (t) - ¢3-i(t)' d“i(t)> < 0. Hence

lop () = 6p(t)]% < Jyp(t) - wp(t)]?

te IE y(s) - nyls), dly(s) - vy{(s))>ds

= 1o (E) - wp(t) |+ 2¢ng(t) = my(t), (t) - wylt)>

-2 fa <Pils) - wy(s), dlny(s) - ny(s))>ds .
Q.E.D.

Lemma 2.2 Let the triple (¢,y,n) be associated. Then for s> 0, h>0,

sup [o(t) - o(s)|% < sup |w(t) - w(s)|?
s<t <s+h s <t <s+h

+ 4  sup | p(t) - w(s){{Inl(s+h) - |n}(s)).
s <t <s+h

Proof. In Lemma 2.1, substitute
¥ {t) = w(tes), w(t) = ¥(s),
and note that (¢(«+s) - ¢(s) + w(s), w{=#s), o(s+s) - 6(s) - p(45) + y(s))
and (¢(s), ¢(s),0) are associated triples. Q.E.D.

Remark. Note that no assumption is made on the continuity of the triples 1in

Lemmas 2.1 and 2.2.

Lemma 2.3. Let the triple (4,p,n) be associated., Let B be larger than

the diameter of G, and pick Xg € G and >0 such that {x: |x-x0| < B} < G.

Then there exists >0 and K' < = depending only on 8 and B (and not on

$(0)} such that if for h>0 we have

(2.1) sup {|9{t) - w(s)} | 0<s <t <T, t-s < h} <y



then for 0 <s <t < T,

In[{t) = In)(s) < (T/h + 1)K’ sup _[w(t) - w(s)|
O<s<t<T

Remark. The proof is contained in the proof of [11; Theorem 2.1].
Although Tanaka assumes that ¥ is continuous, the proof is valid in general,
The basis for the proof is the folliowing. If there were a unit vector e and

¢>0 satisfying <e,n(x)> > ¢ for all x & 3G, then we would have

<@,9(t) - o(s)> = <e,p(t) - p(s)> + <e,n(t) - n(s)>

»

so that

(2.2) clinl(t) - Inf(s)) < Jo(t) - o(s)| + Ju(t) - w(s)

From Lemma 2.2 we obtain that for some K1 < ®

[o{t) = a(s)] <Ky sup [w(t) - w(s)| + 5 (In](t) - In|(s)),
O<s<t<T

which together with (2.2) gives the correct bound. The boundedness and con-
vexity of G 1is then used to show that such an e <can be found for each of a
finite number of patches of 3G, and then the condition (2.1) is used to ensure
that ¢ will only visit T/h of these patches in [0,T]. Similar assumptions
were used in [8] 1in the case of a more complicated domain.

Using these estimates Tanaka shows by approximating a given ¢ éjCXEO,T]
by piecewise continuous functions that there exist {#sn) such that (¢,y,n)
are associated. Uniqueness follows from Lemmas 2.1 and 2.3. If v, € Cx[O,T]
goes to ¢ uniformly, then there are h>0 and n'<=s such that (2.1) holds for
n > n'. Hence by Lemma 2.1 the restriction of the mapping ¢ + ¢ to Cx [0,T]
is continuous. We shall denote this mapping both by ¢ = Fx(w) and ¢ = $.
We shall consider as a solution of the stochastic differential equation with

reflection (SDER) with initial point x a triple

(x(t), [gb(x(s))ds + [T olx(s))aw(s) + x, £(t))
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which is associated (almost surely) and for which x{t) is a continuous semimar-
tingale which is adapted to some g-algebra 3F(t), which has the property that
Wy is a Brownian motion with respect to § (t). We shall denote

z{t) = x{t) - &(t), and refer to z(«) as the unrestricted process.

Consider now a sequence (x%, z%, £f) of solutions of the SDER, where «

multiplies the diffusion matrix of-}, i.e.
x&(t) = fg b{x%(s))ds + ¢ fg o(x&(s))dw(s) + x + E5(t) .

Our goal is Ventsel-Freidlin type large deviations estimates for x%(+), which

describe the limiting behavior of x%(s) as e+0.

3. Large Deviations for Reflected Diffusions

We pause now to define the action functional associated with the process

x%. For a(s) uniformly nondegenerate let

L{x,8) = (8 - b{x))" a~1(x)(B-b(x))/2,

and for the special degenerate case considered above let

(8 - by ) At () (8)-b ()72, 8, = by(x)

o«

L(x,8) = ]
l o . By # bz(x).

For ¢ Q;Cx[O,T] the action functional is then given by

S.(T,8) = inf ([} L(¢,P)dt)

where the infimum is over all (-} satisfying ¢(+) = P(+). Here and below

we set ng(¢,¢)dt = o if ¢ is not absolutely continuous (AC), or if there is

no ¢ satisfying ¢ = §. Note that if ¢(t) & G for some t < T, then

SX(T,¢) = =, and if ¢(t) £ 6 for t < T, then there is at least one ¢ satisfying
¢ = ¥, namely ¢ = ¢.

Define ox(s) = {p<& Cx[O,T]: Sy (T,4) <s}. Our main result is the following.
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Theorem 3.1. The process x® defined above satisfies 2 large deviations

principle with action functional SX(T,-) and sequence ez, i.e.

(1) SX(T,-) is lower semicontinuous gﬂ_Cx[O,T],

(i1) ¢ (s) is compact,

for A CcC[0,T]
(111) TIm &® log P, {x%(+) € A} < - inf §,(T,4),
e+ ¢ €K

(iv) lim ¢ log Px{xe(-) € A} > - inf S (T,9).
e+ ¢ €A°

Comment. Let NC(¢) be the c-neighborhood of the path ¢. Then for small ¢

and g, (iii) and {iv) roughly say that

(3.1) e?10g P (x*(+) € N.(8)} = - inf [ L(6.¥)dt.
viy=¢

If the functional Fx(¢) were Lipschitz, we could actually prove (as in [1])

a large deviations result for the unrestricted process z® that would imply
2 £ T ,;~ =
e 1og P {z7(+) € N ()} ~» - [j L{y,p) dt.

Hence we may interpret (3.1) as stating that for small & the probability that
x® is near ¢ may be found by examining those unrestricted paths y which get
reflected into ¢, and choosing that which maximizes Px{za(-)ech(¢)}.
Contributions to Px{xe(-)4; Nc(¢)} from the neighborhoods of other paths that
are reflected into ¢ and having larger action jg L(¥,¥)dt are asymptotically

negligible. This is, of course, simply a reflection of the contraction principle,

which states that if z® satisfies a large deviations theorem with functional

Sl(-) (in the sense of Theorem 3.1), and x% = F(ze), with F being continuous,

then x® satisfies a large deviations theorem with functional 52(¢) = zng Sl(w)
p:F(9) = ¢
[6; Theorem 3.3.1], [12; p. 5].
We delay the proofs of parts (i) and (ii) until section 4, where we con-

sider these properties of the action functional and also give more useful alter-
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native expressions for SX(T,¢). Before proving (iii) and (iv) we present the
following estimate which will be used repeatedly.

Lemma 3.1 Let o(s) be nonanticipative with respect to the d-dimensional

Wiener process w{s), and bounded gx_cl. Then For c¢>0,

P{ sup_ le b ols)dw(s)| > c}
0<t<T1

< 2d exp - (CZ/ZeZC%dZTl).

Proof. The coefficient 2d appears since we work with one component at a

time, and assuming scalar o and w estimate

P{ sup ¢ jg o(s)dw(s) » c/d}.
0<t<T1

By the martingale inequality, for o > O,
P{sup exp a ¢ ft o(s) dw(s) » exp ac/d}
0<t<T1

T
<exp - ac/d E exp a € fol o(s)dw(s)

< exp - ac/d - exp a2 e? Cf T1/2.

We finish by minimizing with respect to o0. Q.E.D.

Consider now the x€ process:
x®(t) = [& b(x5(s))ds + e [L o(xS(s))dw(s) + x + ES(t).

To study this process, we adapt the technique of Azencott, and for A>0 consider
an associated triple (xE'A, ZE’A, EE’A) constructed as follows., We set

XE’A(O) = ZE’A(O) = X. We then define the process recursively on intervals of the

form [ia, ia+a] by requiring that

x© 8, [Fy b0 A))as + e fiy alxA1a))du(s) + xSA(1a), 8544(1))

be associated on [ia, 1A + A] and then setting
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EE’A(t) = BE,A(t) + ZE’A(iA)

ZS,A(t) = XE’A(t) - ZE’A(t)

on [ia, ia + a]. Let malt) = [t/ala, where [t] is the integer part of t. If
we define the mapping H:COEO,T] +> Cx[O,T] by f = H(g) when

F(8) = Fo (5 bUF(s))ds + fE o(f(n,(s)))dg(s) + x),

then by the continuity of Fx and since the coefficient o is constant on A-

intervals, the composed map H 1is continuous. Since x5'8(«) = H{ew(+)), by

the contraction principle and the large deviations properties of ew(+) [101, [12]
[

s

X satisfies a large deviations principle with action functional

SelTad) = Anf [0 (u(t) - b(8(6))) a™ a(n,(£))) (i(E) - bla(t)))dt/2,
v ¢=F ()

in the nondegenerate case and with an analogous formula in the degenerate case.

g,h €

We next give an estimate on the sup norm distance between x and x-.

This estimate will be strong enough to ensure that the targe deviations proper-

ties of x® may be deduced from those of x4,

Lemma 3.2. Given ¢>0, M < «» there is an arbitrarily small 4>0 and there

s e3> 0 such that for e < €

P, { sup IxS28(t) - x5(t)] » c} <exp - Me? .
<t <T

Proof. Define X2 = x€ _ x4 | Then

REh = fE b hs)ds + e fb o A(s) du(s) + B54t)

h
where b€ 8(s) = b(xE(s)) - b(xE24(s))

Q
™
-
o>

——

w

St
i

= o(x5(s)) - o(x®(n (5)))

g
n
£

——

o+
n

£E(t) - £S:8(t).
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By the Lipschitz conditions on b, o, we have

b€ 4(s)] < K|XS4(s) |

).

|65 8(s) | < K(IX®*4(s)| + sup_[x®*2(s) - x®*2(n (s))
0<s<T

Define the stopping time T = Tl(Kz) by 7t =inf {t >0: |z€’A(t) - x| » Kyl
Then Lemma 3.1 and the bound |b| < C 1imply that if K, > 2CT
P{t; < T} <2d exp - (k5/8¢%Cc%d?T).
Pick K, < » so that KkJ /8C%d*T > 2M.
Now let vy be as in Lemma 2.3, and define the stopping time T, = rz(h)

by

T, = inf{t>0: sup |z€’A(t) - ZE’A(S)I > vl

0<s<t<T
t-s<h

We obtain a bound on P{-r2 < T} as follows. Partition [0,T] into A - intervals.

Then by Lemma 3.1 and the bound on |b|, if h < v/4C
P{ sup 128 8(t) - 258(s)| >
jas <t <iAt2h

< 4d) exp - (v2/32¢2¢%d%h)

for any i < T/a. If A< h then it follows that

, < Ty < (25 exp - (v¥/32¢%c%d%n).

P{T 3

Pick h>0 so that +v/32C%d%h » 2M.
Define Ty = TS(p) by

1y = inf (€300 |25 8(t) - 298 ()] > o} .
If A < p/2C then

Plry <T} < ( S5-) exp - (p%/8e%C%da).

By Lemmas 2.2 and 2.3, on the set where

1]

T Tlt\TzATBAT=T,
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sup_[x%+8(t) - xS 8 ()]
0t <T

<p? + 4p(T/n + DK'K,.
Finally, given €1 > 0, we may pick p>0 such that

2 '
p° + 4p(T/h + 1) K KZ < Cl.

If &>0 1is chosen so that p2/8C2d2A » Z2M, then

Plty < T3 = PL sup [x®4(E) = x©4x (£))] > ¢}
O<t<T

< 2d(1+3T/ A)exp - 2M/¢&?
Now defipe T by

g = inf Lt X585 e .
Then

P{t5 < T} < P{r5 < T,1, = T}

4

+ P{r4 < T}.

But note that on the set {15 <T, Ty = T} we have

=) ), 1% 8(s)| < K(IXS4(s)] + ¢)).

2
Define ¢(x) = (cf + |x|2)1/E . By Ito's formula

2
( £ -l)<2;£,A(t),(bE,A(t) + dgs,A(t))>dt

d6(x%4t)) = L (2 + [k 41)(2)
£
+ €% trace (o%28(t) oE’A'(t) a¢ (XE28(t)))dt
+ dw(s) terms.
&2

(1/ )
< (4 [R5 )P U aR® e, (050 8(t) + dFSA(E))sdt
€

S CER R OIDE
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((1/€%)-1)

2
-2
{((1/e%) )|;6’A(t)|2 N z(ci + |§€,A(t)|2) 1dt

[4(c] + IR 4(8)1%)
+ dw(s) terms.
Since <X 8, de€s8(t)> < 0, the coefficient of the dt term can be bounded above
i K3 6(x=22 (£))/e2
Hence exp - (K3(r4 Atg A t)/€2)¢(xe,ﬁ(14 At A t))

is a supermartingale. By the supermartingale property

2\ (.2 . |>€,b 2,1/¢?
E{(exp - (K3(T4 ATy A T/ e ))(Cl + |x&» (T4A15AT)| ) }

2
2/¢e
<]
Since on the set {7, = T, 15 < T} we have |§£’A(T5)| = ¢ it follows that
2 2
E{(exp - (K315/52))(C§ + CZ)]./E a/e

so that

PLty =T, 15 < T} < exp KyT/e” (

Now pick ¢y > 0 small enough so that
2,02 . 2,\1/& 2
(cf/(cf + 2NVE cexp - (2M + k3T)/e?
Combining the above estimates gives

Pltg < T} < (1+2d(1+37/4))exp - %g_ .

Picking e, small yields the lemma. Q.E.D.

For any set A, define NC(A) to be the open neighborhood of radius ¢
about A. In order to complete the proof of (iii) and {iv) via the estimate in

Lemma 3.2, we shall use the fact that for any closed set D,
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(3.2) lim Anf S (T,¢) = inf 5,(T,4)
c+0 ¢cN_ (D) $CD

(3.3) lim inf  S3(T,¢) = inf S,(T.¢) .
a0 gD X 6€ D

(3.2) follows simply from the l.s.c. of 5. (T,¢). (3.3) will be proved in
Lemma 4.5 of section 4. If 1inf SX(T,¢) < « , then the 1.s.c. of SX(T,-) and the
compactness of

{(v:9): ¥ =9 and S (T,4) < s}
for all s < = (both proved in section 4) imply the existence of a pair (y*,¢*)

such that

f5 L(e=.3%)dt = inf S (T,4).
$€D
Proof of (ii1) and (iv).

Fix h>0. Choose c¢>0, M < w, and then >0 such that

inf_S,(T,0) < inf_ S (T,p) +h < inf_SB(T,4) + 2n

$€R 7 4N TR) $ €N TR)
and
(3.4) P, { sup |x® (t) - x &8 (t)] > c} <exp - M/e? .
X 0ct<T

It follows from the large deviations properties of xs’A that for small >0

PAXE () €Y <P x®h (o) ¢ N TA))
+ Px{ sup  |xE(t) - xE’A(t)l > ¢l
O<t<T
<exp - (S (T,¢) + 3n)/¢?
+ exp - M/ e?
Now let h+0 and M » =,
To obtain (iv), choose any ¢ ¢ A°. Then there is ¢>0 such that

N2c(¢)¢:jA°. For h>0, M<e, choose A>0 such that for small e {3.4) holds

and A
SX(T3¢) » SX(T’¢) - h,
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Then for small e
P XE() € A% > P IxE(0) € Ny (0))
> P (x5 8() €N (9)2

- P Usup [xB(t) - x%B (t)] > ¢}
0Lt <T

> exp - (SX(T,¢) + Zh)/e2 - exp - M/ez.
Letting h+0 and M+= gives

Vim ¢® Tog P {x(+) A°} > - S (T,¢)
]
for any ¢¢CA°. Now infimize over all such 4. Q.E.D.

Time dependent coefficients,

Anticipating a need in section 5 to allow o(+) to depend on t, we point
out here that if b(x,t) , o(x,t) satisfy the same boundedness, Lipschitz con-
tinuously, and nondegeneracy conditions as given in section 2 as functions of
the vector (x,t), then the above proof shows that the analogous nonhomogeneous

reflected diffusion satisfies a large deviations principle with rate function

given by
L{x,8,t) = (8 - b{x,t))" a~l{x,t)(B-b{x,t))
S, (T,e) = inf [T L(¢,¥,t) dt
X ML

in the uniformly nondegenerate case and with an analogous formula in the dege-
nerate case. The proof follows from defining t as a state variable and con-

sidering this new (degenerate) diffusion as being reflected in & x[0,T].

4. Properties of the action functional.

Lemma 4.1 jg L(¢,9)dt is jointly lower semicontinuous in

(¢>v) € C,[0,TIxC,[0,T].
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Proof. The proof is a simple adaptation of the standard result used in

large deviations {where one considers fg L{¢,d)dt). See for example Stroock
{10;p.51.

Lemma 4.2. For any collection {(¢a, vo)ls (4, w,) €C,[0,T] x ¢.(0,T], if

T .
sup Jo Llog dg)dt < =,

then {¢a}‘ig precompact.

Proof. The result follows from the inequality

@i < KlL(¢a’ @a) + Ky, where the Ki are constants independent of a, and the
fact that sets of the form

v € C,10,7]: f] 4% dt < 5)
are compact [10; p. 5). Q.E.D.

Lemma 4.3, SX(T,¢) is l.s.c..

~

Proof. Fix ¢ such that SX(T,¢) < w. Choose ¥, such that ¢ = ¥, and

I3 Lead)dt + S (T,4).

By Lemma 4.2 we may choose a subsequence {which we also denote by n) such
that y = 1im ¥, exists.
Let (¢,¢n, Nn?s (¢*,¥,n) all be assaciated. By Lemma 2.3 we can select a

bound for 1nn|(T), In|(T) that is independent of n. By Lemma 2.1, ¢* = $.
By Lemma 4.1, fg L(¢, §) dt = 5,(T,¢).

Hence an infimizing vy always exists, and we denote such a minimizer by ¢¢.

Now let ¢ » ¢ . If lim S, (T.¢,) = =, we are done. Otherwise choose a sub-

sequence (denoted by n') such that

1im Sx(T’¢n‘) = liE_SX(T,¢n) < oo,
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By Lemma 4.2, choose a further subsequence (again denoted by n') such that

¢¢ converges, and call the limit . By the same argument as above, $ = %.
nl
By Lemma 4.1
Tim S, (T,e,) > f§ Lls, D)t > 5 (T,8).
Q.E.D.

Lemma 4.4. The set of paths @x(s) defined by

@x(s) = {¢€CXEO,T]: Sx(T,¢) < s}

s compact.

Proof. By Lemma 4.2,

to, + ¢c CL0,T], 5, (T,9) <5}

is precompact. Since the mapping given by the tilde is continuous, ¢x (s) is

precompact. By 1l.s.c. of SX(T.-), ¢x(s) is compact. Q.E.D.

Lemma 4.5. Let D be a closed set of paths in Cx[O,T], and et Sf(T,¢)

and 5,(T,¢) be as defined in section 3. Then

(4.1) lim inf sf (T,¢) = inf S (T,8).
A+) ¢ €D ¢eD
Proof. If the right hand side of (4.1) is infinite then the uniform non-
degeneracy assumptions on af(«) (or all(')) imply that the left hand side is
also infinite. Now assume that the right hand side is finite. By the l.s.c. of

SX(T,-) and the compactness of level sets, an infimizing path ¢* exists. As

in Lemma 4.3 we may select ¢* so that ¢* = §* and

S (Tae™) = [lL(e".¥%)at.

By dominated convergence
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T s A T T fax *yyr =1, * * % *
(4.2) Him ;2; 5.(Ts¢) < l:rg [o (37 - B(6™))'a™ (9™ (x,(£))) (¥*-b(4%))dt/2

S (T,¢%)

inf s (T,9),
$€D

with a corresponding inequality in the degenerate case. Now let ¢A, ¢A be such

that ¢% CD and %= 32 and

T 'A 1 - *
fo (8" = b(e™)) a™ (6% (£))) (42D (%)) dt /2
< inf s: (T,¢) + &
& D
(with an analogous statement here and below holding for the degenerate case).
By (4.2) and an inequality like that used in Lemma 4.2 we have a uniform bound on

4 A

jg(éﬂ)zdt. By precompactness of {4°} we may assume ¢~ converges. This implies

the equality statement below:

inf S (T,0) « L% 1T (3An(e%)) a7t (42)(32-0(6%))dts2
$&D 4+0

= L0 G - be®) T b (0)) (96 (o)) et /2

440
<0 inf sB(T,4).
040 ¢ED

Q.E.D.

We now show that a simpler and more easily computed expression for the
action functional may be found. Before presenting this formula, a few more
definitions are needed.

Recall that HG(x) is the projection of x onto the nearest point in G. Then
HG(x) =¥, ¥ C 3G if and only if y - x = an{x), for some a > 0. For x €& G,
and any vector v, define
Ax+ov) - x

g

HG(x,v) = 1im —_—

§+0

which we will call the projection of v at x. Finally, define
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Balx,v) = {u : Hg(x,u) = m(x,v)},

those vectors having the same projection at x as v. We note that for x € G°,

BG(x,v) = {v}, and that if absolutely continuous ¢ satisfies ¢(t}€G for
t<T, then M (¢(s), 4(s)) = 4(s) a.s..

Lemma 4.6. Let ¢ & CX[O,T] be absolutely continuous and satisfy

¢(t) €G for t<T. Then a measurable version of inf | L(4(s),B) exists
BEBG(s(s),4(s))
and
S(Toe) = fo dnf  L(e(s), B)ds.
BEBL(4(s),d(s))

Proof: The existence of such a measurable selection may be found in [9].

The proof of the second part of the statement is equivalent to showing that for

absolutely continuous vy we have § = ¢ if and only if

(4.3) ¥s) C Bg(o(s), 8(s)) a.s..

We first assume that for AC y we have

¢. Let n = $-y, so that

(#,¥,n) are associated. Decompose n into an AC part n, and a singular

a
part n.. By uniqueness of such decompositions ng s also the singular part

of ¢. Assume that ¢(t) € 36 for S} €t <s,. Since dns(t) points in the
direction - n (¢(t}), the constraint o¢(t) € 3G implies dns(t) =0 on sy <t
<S5, As dns(t) = 0 when ¢(t) € G°, ng = 0, and therefore ¢ s AC.

Consider again an interval [s;,s,] on which ¢(t) € 3. Then for a.e. t in
£Sl352]:

(4.4) <n{a(t}), 3(t)> = 0.

]

To see this, note that it is true when §(t) 0, and if it were not true for

a.e. t for which $(t) # 0 it would contradict the a.e. differentiability of
¢, since ¢ is assumed to lie in 2G.

Since P(t) = $(t) + alt) n(e(t)), alt) > O, (4.4) implies that
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T (6,9) = ¢ a.s. in [sq, s,],
or that G 1 2

VE B;(6,4) a.s. in [sq, s,l.

Since By (9, 3) = (§} and )= ¢ when ¢g G°, ¥ £ Bg(o, ) a.s. on [0,T].
Now assume ¢ s AC and § € By(4,4) a.s., i.e., Ta(é, ) = & a.s.

Then (4.4) implies that § - ¢ = an(¢) a.s., and hence (4, ¥, ¢-9) are asso-

ciated, so 9 = 4.

An alternate expression for SX(T,¢) may be obtained by replacing the noise

in the system equation by a control, that is

S, (T,4) = fg fu(t) | %dt

where u(t) is chosen to minimize lu(t)l2 subject to
Ta{a(t), b(e(t)) + ole(t))u(t)) = a(t). With u(+) = 0 we obtain
o(t) = M(e(t), b(4{t)), which gives the dynamics in the absence of naise, and also

the ‘mean' dynamics of the SDER. Hence via this equivalent 'control’ formulation

we can replace variational problems such as

inf S (T,¢)
€A

by ‘optimal contrel' problems.

5. Stochastic Approximation

We now turn our attention to the constrained stochastic approximation (SA)
algorithms

(5.1) L g (Xn +ab(X) + apa(X)g,), Xg = x

(5.2) Xne1 = Hg(Xy + apb (X)) + aje(X ) g /c), Xy = x

where HG(') is the nearest point projection of section 4, £, 1s a sequence

of N{0,I} random vectors, a, 1is a positive sequence satisfying a, +0 as
o@D

n+e I a == and <, is a positive sequence going to zero more siowly
n=0

than a . (5.1) is of Robbins - Monro (RM) type and {5.2) is of Kiefer-Wolfowitz
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(KW) type. The SA algorithms and related recursive algorithms occur frequently
in applications in control and communication.

In an earlier paper [5], the form

Xn+1 = I[G(Xn + anb(xn,gn))

but with bounded {and possibly correllated) noise was studied.

To study the asymptotic properties of (5.1) we define for n>N

N

N N N N
Xpa1™ Mg(Xy * ab(X)} + ano(xn)r,n) , X

n - X

and define the analogous process for (5.2). We define piecewise linear and

constant interpolated versions with interpolation intervals a, by defining

n
n-1
t, = g a;
and setting
N X2+1(t-tn + tN) - Xﬂ(t-tn+1 + tN)
x (t) =
tn+1 -t
Xty = N

Let m(t) = max {n:t, < t}. Then m(tn) = n., Let mN(t) = m(ty+tt). Then

mN(t) is the index corresponding to the interpolation interval a, in which t

1ies, if the first interpolation interval (that which abuts t=0) is aye

Hence a_ (t) 1is roughly by the size of the coefficient at time t. We shall in
N

the RM case require that

fy(t) /o ()
uniformly on [0,T] as N + «», where h(t) is continuous and positive on [0,T1.
The analogous condition in the KW case is

(amN(t)/CmN(t))/(aN/CN) + h(t).
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Examples. If a, = 1/n, then mN(t) ~ Nexp t in the sense that
mN(t)fNexp t + 1 uniformly on [0,T] and h(t) = exp - t; if a, = 1/n, 0 <p <1,
then my(t) ~ N+ tN°, and h(t) = 1; if a, =1/n, ¢, = 1/nY, 2y < 1, then
h(t) = exp (2y - 1)t; if 4= /P, 0 <p <1, ¢ =1/, 2y < p, then h(t) = 1,
We shall prove the large deviations properties of fN by showing that it is
in a certain sense sufficiently close to an appropriate reflected diffusion,
and then use the results of section 3. We first consider the following alter-
native way of formulating the large deviations property. The equivalence of

this definition and that of Theorem 3.1 is discussed in (6, sect. 3.3].

Lemma 5.1. The conditions in Theorem 3.1 ((i) - (iv)) under which the pro-

cess x®(+) is said to satisfy a large deviations principle with functional

5.(T,¢) and rate e are equivalent to (i) and (i) together with

(i11') For any &> 0, h>0, and ¢ € C,[0,T], there is an en>0 such that

for ¢ <eo

Petd(x® o) < 8} <exp - €[S (T,4) + h]

(iv') For any &0, h>0 and s>0 there is an €9 > 0 such that for e<gg

P {d(x®, o,(s)) > & <exp - e2[s-hl.

We now consider an alternative way of expressing YN(-)in the RM case. We
may assume that the independent vectors Ei are imbedded in a Wiener process in

the sense that for t( [tn, ther)

t t
XN(t) = HG(;N(tn-l) £ [ b(fN(tn_l))ds + alf'r2 I G(EN(tn_l))dw(s)).
thoy noothg

Since on this interval a#? ~ a&?h(t)LQ

reflected diffusion to compare Eﬂ with is that which is driven by the same

» it is clear that the appropriate

Wiener process, and which has drift b{.), diffusion coefficient h(t)]’/2 o(+), and

1
an

a
denote this process by x N(+).

coefficient ¢ = . Inbéeeping with our notation of the previous sections, we
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Lemma 5.2 Under the assumptions on the sequence {an} above, for given c¢>0

M<w, there is Nj < « such that for N>Np

a2
P L sup L) - x Nit)| > ¢}
0<t<T

< exp - M/aN.

Proof. The method of proof is very similar to that used to show Lemma 3.2,

and will only be sketched. Define

Moy - T (t)[b(?‘(tn_l)an + a2 a@(ty_1)) (w(tg) Wty )] + x,
N

) = M) - ).

Then the triple (YN, EN, Eﬁ) is associated. (EN(-) is just the piecewise

constant version of the algorithm without the projections,

i
nZN[anb(xn) *apo(X Vg0 + x,

with interpolation intervals ai). Finally define

Pt) =[5 oMs)ds + a2 [T n(s)Y2 o(N(s))du(s) + x,

and :)'(-‘", =EN such that (—;N, ?N, fN) are associated, Define
1y = inf {6z [XME) - XL > e} AT,

Using Lemmas 2.1, 2.2, 2.3, and 3.1 in a manner similar to that used in Lemma

3.2, we may show that for large N

P lty < T} <exp - M/ay.

More specifically we use Lemma 3.1 and the assumption on the a, sequence to
show Z and Z' are close. We then bound IENI and |EV| except on a suf-
ficiently small set via Lemma 2.3, and then use Lemma 2.1 to show that EN and

xN are close. Subsequent to this we use the same argument as in Lemma 3.2 to
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A2
=N N .
show that x~ and x are close, by using that
12 a?
[YN-X N| < XV - x N| + oy

on the set where T4 = To Q.E.D.

Theorem 5.1 Under the assumptions on {a,} above, the RM process ;N(.)

satisfies a large deviations property in the sense of Theorem 3.1 with

the functional corresponding to the reflected diffusion with drift b(s) and

}

diffusion matrix h(t)ygc('), and sequence ay, Under the assumptions on f{a
N

n

and {c } given above, the KW process x (+) satisfies a large deviations pro-

perty with the same functional and sequence aN/cﬁ.

Proof. First consider the RM case. Given the estimate of Lemma 5.2 aon the
YN process it is a simple matter to show that for ¢>0, M<e= there is NO

such that for NaN

0
2 Y2
N N
P Usup [x7(t) - x "(t)]| > e}
0<t<T
< exp - M/aN .

The theorem now follows from this estimate, Lemma 5.1, and Theorem 3.1. The proof
for the KW case is entirely analogous. Q.E.D.
It is interesting to note that the L-functional for this system is

given in the nondegenerate case by
L{x,8,t) = h7i(£)(B-b(x))'a" (x)(B-b(x)).

The weighting factor h"l(t) becomes larger in regions where the a inter-
polation intervals ‘'bunch up', and where the probability that the system tracks
a given path is relatively less Tikely than where h”l(t) is smaller, since a
relatively greater number of the independent random variables must have the

'correct' value.
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We note in passing that the constant gain recursive algorithm considered in sec-
tion 1 may be treated with the same methods used here, and is in fact simpler since

the convergence assumption on an/aN may be dispensed with,

6. Extensions and comments

6.1 Correlated Gaussian driving noise.

By using the lemmas derived in section 2 and the method of Lemma 5.2 it is
a simple matter to extend the results for i.i.d. driving noises to correlated
driving noises of the form
En+l = AE, + BB,
where 6, are f.1.d. mean zero Gaussian and the roots of A are contained in

the unit circle. For simplicity, we consider only the KW case. We will obtain

results for

Xae1 = TglXy +aja(X)) + 2 0(X )8 /cp), Xy = x
by comparing it with
Yoo = Tg(Y, + ab(¥,) + a ol )(-(A-1)71 Be, /¢ )), ¥y = x
for which results have already been obtained. The intermediate process that

will be needed is defined by

Vo1 = To(Tp + ad (X)) + 2 a(X ) (=(A-1)71B8, / ¢ )), Yy = x .
1

Here X Y

/2
—a N
. XN

ns Yo Pplay the roles of Fa , X', respectively in the proof of

Lemma 5.2.

In order to complete the argument an estimate analogous to that of Lemma

3.1 is required.

Lemma 6.1. Let o, be nonanticipative with respect to the sequence {8},

and bounded by Cy- Then for n<w, ¢>0 there is Ng < = such that for N>,

P{ sup |
N<nmw(T) i=N

W e~13

ayo; {& + (a-1y71 Bos)/esl > e} <exp - Mcs/aN-
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The proof follows from using g = (A-I)'l(A-I)Ei = (A—I)'1[51+1 - & - Bo;l

and a summation by parts to get

I3

; Nai o (&5 + (A-I)-1 B8y )/c;
= %nonbn+1/Cn - Aoy Ey/cy
n
+1§N(a"+1 944+1/C141 = 24 04/¢5) &4y
Estimates on these terms, which are lengthy but straightforward, may be found in

[4].

6.2. Unbounded Convex Domains

The results for the various systems described above continue to hold when
the domain G is an unbounded convex set, but the large deviations estimates
may no longer be uniform with respect to the starting position, since the esti-
mates of Lemma 2.3 need not hold uniformly in x£G. See [11] for a discussion on
this point.

The method of proof may be outlined as follows. First note that for given

M < = there is R < «» such that the infimum of SX(T,¢) over
{¢: ¢(0) = x, ¢{t)C G\NR(x) for some t < T}

is greater than M. This follows from the inequality

. .2
inf  1(¢,8) » Kyo° - K
BEBL(4,¢) ! 2

and the fact the path ¢ connecting x to any point y - and minimizing fgizdt
is given by

o(t) = ({y-x}/T)t+x.

(We may in fact take R » ((K2T2+MT)/K1)L?)-
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Consider now the alternative formulation of the large deviations property
given in Lemma 5.1. For simplicity we make all comments with reference to the
reflected diffusion. Define xg to be the strong solution of the SDER in the
convex domain G (\Na(x}, which agrees with x® up till the first hitting time

of aNR(x). For fixed ¢ or ¢x(s), by choosing R suitably large we have

P d(x5,0) < 8} = P {d(xg, ¢) < &

P Ld(x®.0 (s)) » & = P {d(xg » 2 (5)) > &}

Since the action functionals for the different paths under consideration agree (at

least for large R) the result is immediate.

6.3. Domains with smooth boundaries except at convex corners:

The results presented above are also valid if the boundary of G 1is given
by a collection of smooth surfaces which intersect in a convex way (by which we
mean that if at a point of intersection the surfaces were to be replaced by their
tangent hyperplanes, then the domain formed would be convex.) Such domains are
natural, at least in the SA case, where one may be is attempting to optimize subject
to constraints, which often take the form of inequalities involving smooth func-
tions.

For the proof of these results in the case of SDER, no more is required than
substituting for Lemmas 2.1, 2.2, 2.3, the analogous lemmas for the type of domain
considered here. Proofs of such lemmas for more general domains may be found in
[8], which in fact covers the 'convex corner' case described here as well as the
convex case considered above,

Since these lemmas are proved only for continuous paths extensions are
required to obtain the results in the SA case, due to the possibility of jumps out-

side of G. The extensions can in fact be obtained, but only for paths for which
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the sizes of all the jump discontinuities are bounded by a small number depending
on G (essentially the distance ¢ for which we may define a unique nearest point
projection wG(-) on NC(G)). Since one can easily show that the probability of
sample paths having one or more jumps larger than a fixed positive number is

negligible in the large deviations exponential sense (< exp - M/aN for any M if

N is sufficiently large), the indicated results may be obtained.

6.4 Oblique Reflections

In the case of smooth boundaries, results similar to those above have been
obtained [1], {3], (for the SDER), when the normal vector field on 3G is
replaced by a smoothly varying vector field satisfying a uniform non-tangency
condition. Smooth mappings of the state space are used to reduce to the case of
normal reflect,

For nonsmooth boundaries, such mappings do not exist in any generality and
we were only able to obtain results when such a map fortuitously did happen to
exist. This is not surprising, since the estimates on the Skorokhod problem are

no longer available in this general setting. For more detail and some examples,

see [8].
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