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AN ANALYSIS OF THE MINIMAL DISSIPATION LOCAL
DISCONTINUOUS GALERKIN METHOD FOR

CONVECTION-DIFFUSION PROBLEMS

BERNARDO COCKBURN AND BO DONG

Abstract. We analyze the so-called the minimal dissipation local discontin-
uous Galerkin method for convection-diffusion or diffusion problems. The dis-
tinctive feature of this method is that the stabilization parameters associated
with the numerical trace of the flux are identically equal to zero in the interior
of the domain; this is why its dissipation is said to be minimal. We show that
the orders of convergence of the approximations for the potential and the flux
using polynomials of degree k are the same as those of all known discontinu-
ous Galerkin methods for both unknowns, namely, (k + 1) and k, respectively.
Our numerical results verify that these orders of convergence are sharp. The
novelty of the analysis is that it bypasses a seemingly indispensable condition,
namely, the positivity of the above mentioned stabilization parameters, by us-
ing a new, carefully defined projection tailored to the very definition of the
numerical traces.

1. Introduction

In this paper, we analyze the so-called minimal dissipation local discontinuous
Galerkin method (MD-LDG) and show that it has the same convergence proper-
ties as all other known DG methods even though its stabilization parameters are
identically equal to zero in the interior of the domain. To carry out the analysis,
we consider the model convection-diffusion problem

c q +∇u = 0 in Ω,(1.1a)

∇ · (q + v u) = f in Ω,(1.1b)

u = g on ∂ΩD,(1.1c)

q · n = qN on ∂ΩN ,(1.1d)

where Ω ⊂ Rd is a polyhedral domain (d ≥ 2), ∂ΩD is nonempty, f ∈ L2(Ω) and the
diffusion coefficient c = c(x) is a symmetric positive definite d× d matrix function
such that

(cx,x) ≤ η2(x,x) and (c−1 x,x) ≤ γ2(x,x) ∀x ∈ Rd,

for some positive constants η and γ. The convective velocity v = v(x) is assumed
to be divergence-free with components in L∞(Ω). We assume that v · n ≥ 0 on
∂ΩN . Note that the convective velocity v can be taken to be identically zero.

Key words and phrases. minimal dissipation local discontinuous Galerkin method, convection-
diffusion equation.
The first author was supported in part by the National Science Foundation (Grant DMS-0411254)
and by the University of Minnesota Supercomputing Institute.
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2 B. COCKBURN AND B. DONG

Let us put our results in perspective. In [2] a unified analysis of DG methods for
second-order elliptic equations was carried out; it included the interior penalty (IP)
method [3, 1], the NIPG method [15], the method of Brezzi et al. [7], the method
of Bassi et al. [4], and the local discontinuous Galerkin (LDG) method introduced
by Cockburn and Shu in [14]. It was shown that if the stabilization parameters
are positive (and suitably chosen), the L2-norm of the error of the flux q and the
potential u are of order k and k +1, respectively, when polynomials of degree k are
used. In [10], it was shown that when the stabilization parameters associated to
the numerical trace of the flux are taken to be O(1), the orders of convergence of
the errors in the flux and the potential given by the LDG method are k and k + 1

2 ,
respectively; when the stabilization parameters are taken to be O(h−1), they are
k and k + 1. All these analyses depend on a seemingly indispensable condition,
namely, the positivity of the stabilization parameters on all the faces. Since the
MD-LDG method we consider is a special LDG method for which the stabilization
parameter is taken to be identically zero on all interior faces, a new technique is
required to carry out its analysis.

The MD-LDG method has been analyzed in the one-dimensional case in the
framework of time-dependent convection-diffusion problems in [11], where optimal
error estimates of the hp-version of the method were obtained. It was also analyzed
in the framework of steady-state convection-diffusion problems in [12] where super-
convergence results of the numerical traces were obtained for the h-version of the
method. In both cases, it was shown that the orders of convergence of the approx-
imations to the flux and to the potential are k + 1 when polynomials of degree k
are used. The only analysis of a MD-LDG method in several-space dimensions was
carried out in [13] for time-dependent convection-diffusion problems. Therein, the
numerical traces associated with the diffusion term were chosen to be the averages;
the stabilization parameters were thus taken to be zero. By taking advantage of the
time-dependent nature of the problem and of the stabilization effect of the convec-
tion, error estimates were obtained; the order of convergence of the approximation
to the flux was shown to be k. In our case, we do not rely on the stabilization effect
of the convection to compensate for the lack of stabilization in the interior of the
domain; our results hold even when the convective term vanishes. Moreover, for
our steady state problem, the above mentioned choice of numerical fluxes for the
diffusive term does not give a well-defined method if the convection terms vanish.

Although no analysis of the MD-LDG method is available for elliptic problems
in several space dimensions, the MD-LDG method seems to work well. Indeed, it
was successfully implemented by Siddarth and Carrero, in the case of piecewise lin-
ear approximations, for the system of linear elasticity; their numerical experiments
confirmed first order accuracy for the stress and second order for the displacement,
see [16]. In this paper, we present the first analysis of the MD-LDG method on
multidimensional steady state convection-diffusion problems with variable coeffi-
cients. The novelty of our analysis is the introduction of a projection which allows
us to compensate the lack of stabilization of the jumps at the interior borders of
the elements. We prove that the MD-LDG method using polynomials of degree k
converges with order k for the flux and with order k + 1 for the potential.

The organization of the paper is as follows. In section 2, we describe the
MD-LDG method, and state our main results, namely, the results on existence
and uniqueness of the approximation, the error estimates and the conditioning
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of the stiffness matrix. In section 3, we introduce the new projection and give
detailed proofs of all our results. We display numerical experiments that verify
the theoretical results in section 4. In section 5, we extend the results to more
general numerical traces and curved boundary domains in two dimensions. We end
in section 6 with some concluding remarks.

2. The Method and Main Results

In this section we describe the minimal dissipation local discontinuous Galerkin
method and state our main theorems.

2.1. The MD-LDG method. To describe the MD-LDG method, we begin by
introducing the finite element spaces associated to the triangulation Ωh = {K} of
the domain Ω of shape-regular tetrahedra K. We set

V h :={v ∈ L2(Ω) : v|K ∈ Pk(K) ∀K ∈ Ωh},(2.2)

Wh :={ω ∈ L2(Ω) : ω|K ∈ Pk(K) ∀K ∈ Ωh},(2.3)

where Pk(K) is the space of polynomial functions of degree at most k ≥ 1 on K,
and Pk(K) = [Pk(K)]d.

Next, we obtain the weak formulation of the exact solution. Multiplying the
first two equations of (1.1) by test functions v and ω, respectively, integrating for-
mally on each elements K, and adding over all K ∈ Ωh, we get the weak formulation
that is satisfied by the exact solution (q, u):

(c q,v)Ωh
− (u,∇ · v)Ωh

+ 〈u,v · n〉∂Ωh
= 0,(2.4a)

− (q + v u,∇ω)Ωh
+ 〈(q + v u) · n, ω〉∂Ωh

= (f, ω)Ωh
,(2.4b)

for all (v, ω) ∈ H1(Ωh) × H1(Ωh). Here n is the outward normal unit vector to
∂K, ∂Ωh := {∂K : K ∈ Ωh}, and we have used the notation

(σ,v)Ωh
:=

∑

K∈Ωh

∫

K

σ(x) · v(x) dx,

(ζ, ω)Ωh
:=

∑

K∈Ωh

∫

K

ζ(x) ω(x) dx,

〈ζ,v · n〉∂Ωh
:=

∑

K∈Ωh

∫

∂K

ζ(γ)v(γ) · n dγ.

The approximate solution (qh, uh) given by the MD-LDG method is defined by
a discrete version of the mixed formulation (2.4). It is defined as the only element
of V h ×Wh satisfying

(c qh,v)Ωh
− (uh,∇ · v)Ωh

+ 〈û v0
h ,v · n〉∂Ωh

= 0,(2.5a)

− (qh + v uh,∇ω)Ωh
+ 〈(q̂h + v û v

h) · n, ω〉∂Ωh
= (f, ω)Ωh

,(2.5b)

for all (v, ω) ∈ V h×Wh. Here û v0
h and q̂h are the numerical traces associated with

diffusion, and û v
h is the numerical trace associated with convection. To complete

the definition of the method, we need to define these numerical traces.
To do that, we need to introduce some notation. We denote by E i

h all the
interior faces, and Γ all the boundary faces. We say that e ∈ E i

h if there are two
simplexes K+ and K− in Ωh such that e = ∂K+ ∩ ∂K−, and we say that e ∈ Γ if
there is a simplex in Ωh such that e = ∂K ∩∂Ω. We set Eh := E i

h ∪Γ. Now let e be
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an interior face shared by elements K1 and K2, and define the unit normal vectors
n1 and n2 on e pointing exterior to K1 and K2, respectively. The average and the
jump of a scalar-valued function ζ on e ∈ E i

h are given by

{{ζ}} :=
1
2
(ζ1 + ζ2), [[ζ n]] := ζ1n1 + ζ2n2,

where ζi := ζ|∂Ki
. For a vector-valued function σ, we define σ1 and σ2 analogously

and set

{{σ}} :=
1
2
(σ1 + σ2), [[σ · n]] := σ1 · n1 + σ2 · n2 on e ∈ E i

h.

For e ∈ Γ, each ζ and σ has a uniquely defined restriction on e; we set

[[ζ n]] = ζne, {{σ}} = σ on e ∈ Γ.

We don’t require either of the quantities {{ζ}} or [[σ · n]] on boundary faces, and
leave them undefined.

The numerical trace for the potential associated with the convective term, û v
h,

is nothing but the classical upwinding trace. In our notation, it can be expressed
as

û v
h =





{{uh}}+ β · [[uh n]] if e ∈ E i
h,

uh if e ∈ Γ+
v ,

g if e ∈ Γ−v ,

(2.6a)

where β is any function on Eh such that, for x ∈ ∂K ∩ Eh,

β · nK(x) =
1
2
sign

(
v(x) · nK(x)

)
,(2.6b)

where nK(x) is the outward unit normal of K at x, and

Γ−v :={e ∈ Γ : v · ne < 0}, Γ+
v := Γ \ Γ−v .(2.6c)

Here, ne is the outward unit normal of e. As pointed out in the introduction, we
are assuming that Γ−v ⊂ ∂ΩD. We also assume that our triangulation Ωh is such
that if the face e ∈ Γ, then v · ne does not change sign on e.

The numerical trace for the potential associated with the diffusive term, û v0
h ,

has a similar definition, namely,

û v0
h =





{{uh}}+ β0 · [[uh n]] if e ∈ E i
h,

uh if e ∈ ∂ΩN ,

g if e ∈ ∂ΩD,

(2.7a)

where β0 is any function on Eh such that, for e ∈ ∂K ∩ Eh,

β0 · nK(e) =
1
2
sign

(
v0 · nK(e)

)
,(2.7b)

where v0 is any nonzero piecewise constant vector in H(div, Ω) and

Γ−v0
={e ∈ Γ : v0 · ne < 0}, Γ+

v0
= Γ \ Γ−v0

(2.7c)
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Finally, the numerical trace for the flux is given by

(2.8) q̂h =





{{qh}} − β0 [[qh · n]] if e ∈ E i
h,

qh, if e ∈ ∂ΩD ∩ Γ−v0
,

qh + α(uh − g)n if e ∈ ∂ΩD ∩ Γ+
v0

,

qNn if e ∈ ∂ΩN ,

.

where α is a positive parameter.
Note that the auxiliary function v0 does not need to be associated with the

convective velocity v; it can be chosen completely independently without changing
the convergence properties of the method. However, it is natural to link these two
functions (whenever v is not identically equal to zero in any domain containing an
element K ∈ Ωh) by taking, for example,

v0 = ΠRT
0 v,

where ΠRT
0 |K is the Raviart-Thomas projection onto P0(K) ⊕ xP0(K); see, [6].

Note that ΠRT
0 v is a constant vector on each element K given that v is divergence-

free.
This completes the definition of the MD-LDG method. Let us point out that

the numerical trace for the flux in the LDG methods considered in [10] and later
in [2], is of the form

q̂h =





{{qh}} − b [[qh · n]] + α [[uh n]] if e ∈ E i
h,

qh + α(uh − g)n if e ∈ ∂ΩD,

qNn if e ∈ ∂ΩN ,

.

Since α is taken to be different from zero in all the faces in E i
h ∪ ∂ΩD, each of the

jumps in the approximate potential induce a loss of energy. In the the MD-LDG
method, this dissipative effect is minimized by setting the stabilization parameter α
to zero on all Eh except on ∂ΩD ∩Γ+

v0
, where its positivity is essential to guarantee

that the method is well defined. Of course, if ∂ΩD ∩ Γ+
v0

= ∅, the stabilization
parameter α is identically zero in Eh!

2.2. A priori error estimates. First we give a theorem which guarantees the
existence and uniqueness of the solution defined by the MD-LDG method.

Theorem 2.1. The MD-LDG method defined by the weak formulation (2.5) and
the numerical traces (2.6), (2.7), and (2.8) has a unique solution.

Now we introduce new notation and state our approximation results. We let
H`(Ωh) be the space of functions on Ω whose restriction to each element K belongs
to the Sobolev space H`(K), and set H`(Ωh) := [H`(Ωh)]d. Similarly, we define
H`(∂Ωh) and H`(∂Ωh). For any real-valued function ζ in H l(Ωh), we set

| ζ |H`(Ωh) :=
( ∑

K∈Ωh

| ζ |2H`(K)

) 1
2 .

For a vector-valued function σ = (σ1, . . . , σd) ∈H`(Ωh) we set

|σ |H`(Ωh) :=
( d∑

i=1

|σi |2H`(Ωh)

) 1
2 .
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For each K ∈ Ωh, we denote by hK the diameter of K and we set h := maxK∈Ωh
hK .

We can now state our results.
We begin by measuring the error in the approximation of the flux q in the

norm
‖σ ‖L2(Ωh;c) = (cσ,σ)1/2

Ωh
.

Theorem 2.2. Suppose that the exact solution (q, u) of (1.1) belongs to Hr(Ωh)×
Hr+1(Ωh) for some r ∈ [1, k]. Let (qh, uh) ∈ V h×Wh be the approximate solution
given by the MD-LDG method with α = O(h−1), then we have

‖q − qh‖L2(Ωh;c) ≤ C1(q, u)hr,

where
C1(q, u) = C [(1 + γ)|u|Hr+1(Ωh) + (1 + η)|q|Hr(Ωh)]

and C is a constant independent of h.

In the one-dimensional case, the error estimate of q given by MD-LDG method
was shown to be of order k + 1 which is optimal; see [12] and [11]. However, the
best possible order of convergence of q given by the above result is only of order k.
Our numerical results confirm that this order is actually sharp.

Next, we give an a priori estimate of the error in the approximation of the
potential u.

Theorem 2.3. Suppose that Ω is convex and that the exact solution (q, u) of (1.1)
belongs to Hr(Ωh) × Hr+1(Ωh) for some r ∈ [1, k]. Let (qh, uh) ∈ V h × Wh be
the approximate solution given by the MD-LDG method with α = O(h−1), then we
have

‖eu‖L2(Ωh) ≤ C2(q, u)hr+1,

where
C2(q, u) = (1 + γ + η)C1(q, u)

Note that the hypothesis of convexity of the polyhedral domain is needed in
order to be able to use elliptic regularity results for the problem under consideration.
Note also that the above results do hold in the purely elliptic case, that is, when
the convective velocity v is identically equal to zero.

Finally, let us emphasize that the elimination of dissipativity effects, as imple-
mented in the multidimensional MD-LDG method, does not lead to an improvement
of the order of convergence of the flux, as it did in the one-dimensional case. Indeed,
for the standard LDG methods, for which the stabilization parameter α is O(h−1)
on all faces in Eh \ ∂ΩN , the order of convergence of the approximations for the
potential and the flux using polynomials of degree k is (k + 1) and k, respectively.
For the MD-LDG method, if we choose the stabilization parameter α to be O(h−1)
only on ∂ΩD∩Γ+

v0
and zero elsewhere, the orders of convergence remain unchanged.

2.3. The condition number of the Schur complement matrix. When the
convective velocity v is zero, it is easy to see that the matrix equations associated
with the formulation (2.5) are of the form(

M B
−Bt C

)(
[qh]
[uh]

)
=

(
E
F

)

where [qh] and [uh] are the degrees of freedom of qh and uh, respectively. Since the
method under consideration is an LDG method, the matrix M is block diagonal
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and the unknown [qh] can be easily eliminated from the equations to obtain

(2.9) (BtM−1B + C) [uh] = F −B2M
−1F.

The Schur-complement matrix BtM−1B + C can be easily seen to be symmetric
and positive definite. An upper bound for its condition number κ is given in the
following result.

Theorem 2.4. Assume that the triangulation Ωh = {K} of shape-regular tetrahe-
dra K is quasi-uniform. Then, if α is of order h−1,

κ ≤ C h−2,

where C is independent of h.

Let us compare our estimate with a similar result obtained in [9]. Therein
it was proved that the condition number for the Schur-complement matrix of the
LDG method is bounded by a quantity of order(

α h +
1

α h

)
h−2.

The sharpness of the above bound was suggested by strong numerically evidence,
see Figs. 3 and 4 in [9]. Note, however, that to deduce this upper bound, the
stabilization parameter α was taken to be constant over all the faces of the trian-
gulation. This is not true in our case since we have taken α to be constant over
∂ΩD ∩ Γ+

v0
. Another difference is that in the above mentioned numerical results,

the parameter β of the LDG method was taken to be equal to zero [8]. This is not
true in our case since β is given by (2.6b).

3. Proofs

3.1. A key projection. We begin by introducing a projection which plays an
important role in our analysis. For any function σ ∈ H1(Ωh) and an arbitrary
simplex K ∈ Ωh, the restriction of Πσ to K is defined to be an element of Pk(K)
that satisfies

(Πσ − σ,v)K =0, ∀v ∈ Pk−1(K),(3.10a)

〈(Πσ − σ) · ni, ω〉ei =0, ∀ω ∈ Pk(ei), i = 1, ..., d(3.10b)

where ei is a face of K, and ni is the outward normal unit vector of ei, i = 1, ..., d.
Let us recall that the Raviart-Thomas projection ΠRTσ restricted to the sim-

plex K is defined as the element of Pk(K)⊕ xP(K)k that satisfies

(ΠRTσ − σ,v)K =0, ∀v ∈ Pk−1(K),(3.11a)

〈(ΠRTσ − σ) · n, ω〉e =0, ∀ω ∈ Pk(e), for all faces e of K.(3.11b)

for any given function σ ∈ H1(Ωh) and an arbitrary simplex K ∈ Ωh. It is thus
easy to see that the new projection Π is defined in a similar way to the Raviart-
Thomas projection ΠRT. The difference between the two projections is that the
local space of the projection Π has less degrees of freedom and, accordingly, less
constraints on ∂K.

The projection Π is a well defined operator, as the next result states.

Lemma 3.1. The projection Π is well-defined.

To prove this lemma, we are going to rely on the following auxiliary result.
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Lemma 3.2. Given the faces e1, ..., ed of the simplex K and functions σ ∈ L2(K)
and ζi ∈ L2(ei), i = 1, ..., d, there is a unique function Z ∈ Pk(K) such that,

(Z − σ,v)K =0, ∀v ∈ Pk−1(K),(3.12a)

〈Z · ni − ζi, ω〉ei
=0, ∀ω ∈ Pk(ei), i = 1, ..., d.(3.12b)

where ni is the outward normal unit vector of ei. Moreover,

(3.13) ‖Z‖L2(K) ≤ C(‖σ‖L2(K) + h
1/2
K

d∑

i=1

‖ζi‖L2(ei))

where C depends only on d, k and the shape regular constant.

Proof of Lemma 3.1. If we set ζi := σ ·n|ei
, i = 1, ..., d, we can see that the Lemma

immediately follows from Lemma 3.2. ¤

The following lemma shows that the projection Π has optimal approximation
order.

Lemma 3.3. For any σ ∈Hr(K), 1 ≤ r ≤ k + 1, 0 ≤ s ≤ r, we have

‖Πσ − σ‖Hs(K) ≤ Chr−s
K |σ|Hr(K).

Proof. The estimate follows from the fact that Π leaves invariant functions in
Pk(K) and from (3.13). ¤

It remains to prove Lemma 3.2.

Proof. Since the linear system determined by equations (3.12a) and (3.12b) is
square, indeed, since

dim(Pk−1(K)) =
(

k − 1 + d

d

)
× d,

d∑

i=1

dim(Pk(ei)) =
(

k + d− 1
d− 1

)
× d,

dim(Pk(K)) =
(

k + d

d

)
× d,

and
(

k − 1 + d

d

)
+

(
k + d− 1

d− 1

)
=

(
k + d

d

)
,

we only need to show that if Z ∈ Pk(K) satisfies

(Z,v)K = 0, ∀v ∈ Pk−1(K),

〈Z · ni, ω〉ei = 0, ∀ω ∈ Pk(ei), i = 1, 2, ..., d,
(3.14)

then Z ≡ 0 on K.
Let T be an affine transformation that transforms the element K to the refer-

ence simplex K̃. We denote by ei, i = 1, 2, ..., d, any d faces of K and assume that
the transformation T is such that ẽi = T (ei) is the face of K̃ lying on the plane
x̃i = 0. The outward normal unit vectors ni of ei are linearly independent. We let
ñi, i = 1, ..., d, be the unit vectors so that

ñi · nj = δij
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Suppose Z is transformed to Z̃ which can be decomposed as

Z̃ =
d∑

i=1

p̃iñi, where p̃i ∈ Pk(K̃).

From (3.14) we get

(
d∑

i=1

p̃iñi, ṽ)K̃ = 0, ∀ ṽ ∈ Pk−1(K̃),(3.15a)

〈
d∑

i=1

p̃iñi · nj , ω̃〉ẽj
= 0, ∀ ω̃ ∈ Pk(ẽj), i = 1, ..., d.(3.15b)

From (3.15b) we have p̃j |ẽj
= 0 for j = 1, ..., d. Thus, p̃j = x̃j p̃j for some polyno-

mial p̃j ∈ Pk−1(K̃).
Taking v = p̃j nj in (3.15a), we get

(3.16)
∫

K̃

p̃j p̃jdx =
∫

K̃

x̃j p̃
2
jdx = 0.

Since x̃j > 0 on K̃, we conclude that p̃j = 0, j = 1, ..., d, which implies that Z ≡ 0.
The estimate (3.13) following from a simple scaling argument. This completes

the proof of the lemma. ¤

3.2. The MD-LDG is well defined: Proof of Theorem 2.1. Due to the lin-
earity of the problem it is enough to show that, when f = 0, g = 0 and qN = 0,
the only solution (qh, uh) ∈ V h×Wh of (2.5) with the numerical traces defined by
(2.6), (2.7), and (2.8), is the trivial solution.

Taking (v, w) := (qh, uh) in (2.5), adding the equations and performing some
simple algebraic manipulations, see [10], we easily get that

(cqh, qh)Ωh
+

1
2
〈|v · n|, [[uhn]]2〉Eh

+ 〈α, u2
h〉∂ΩD∩Γ+

v0
= 0.

Since c is uniformly positive definite and α is positive, we conclude that qh = 0
and uh|∂ΩD∩Γ+

v0
= 0.

Since qh = 0, we can rewrite the equation (2.5a) as

−(uh,∇ · v)Ωh
+ 〈û v0

h , v · n〉∂Ωh
= 0 ∀v ∈ V h,

or, after a simple integration by parts, as

(∇uh,v)Ωh
− 〈uh − û v0

h , v · n〉∂Ωh
= 0 ∀v ∈ V h.

By the definition of the numerical trace û v0
h , (2.7a), and since we are taking g = 0,

we have

(uh − û v0
h )|∂K =





( 1
2 − β0 · n) [[uh n]] · n on ∂K ∩ E i

h,

0 on ∂K ∩ ∂ΩN ,

uh on ∂K ∩ ∂ΩD,

and since uh|∂ΩD∩Γ+
v0

= 0,

(3.17) (uh − û v0
h )|∂K =

{
( 1
2 − β0 · n) [[uh n]] · n on ∂K \ ∂ΩN ,

0 on ∂K ∩ ∂ΩN .
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This implies that

(3.18) (∇uh,v)Ωh
− 〈(1

2
− β0 · n) [[uh n]] · n, v · n〉∂Ωh\∂ΩN

= 0 ∀v ∈ V h.

we only have to find a suitably chosen test function v ∈ V h to conclude the proof.
Such a choice is based on the observation that, since v0 is divergence-free, on each
K ∈ Ωh, there is at least one face e of K on which ( 1

2 −β0 ·ne) = 0. Let us denote
by eK one of those faces. Then, on the simplex K ∈ Ωh, we take v := Z given by
Lemma 3.2 with

σ := ∇uh and ζi := −(
1
2
− β0 · nei

) [[uh n]] · nei
,

where ei 6= eK for i = 1, . . . , d, to obtain that

(∇uh,∇uh)Ωh
+ 〈1, (

1
2
− β0 · n)2 [[uh n]]2〉∂Ωh\∂ΩN

= 0.

This implies that, on each simplex K ∈ Ωh, uh is a constant and that

[[uh n]] |E i
h

= 0 and uh|∂ΩD∩Γ−v0
= 0.

Since uh|∂ΩD∩Γ+
v0

= 0, we have that uh|Ωh
is a constant and uh|∂ΩD

= 0, and hence
that uh is equal to zero. This completes the proof of Theorem 2.1.

3.3. The error estimates: Proof of Theorem 2.2 and 2.3.

3.3.1. Preliminaries. In what follows, we are going to use the following inverse and
trace inequalities.

Lemma 3.4. For any σ ∈ Pk(K) and ζ ∈ Pk(K) there exist positive constants C1

and C2 such that

‖σ · n‖2L2(e) ≤ C1h
−1
K ‖σ‖2L2(K),(3.19a)

‖ζ‖2L2(e) ≤ C1h
−1
K ‖ζ‖2L2(K),(3.19b)

‖∇ζ‖2L2(K) ≤ C2h
−2
K ‖ζ‖2L2(K);(3.19c)

where e is an face of ∂K, and C1 and C2 depend only on k and the shape regularity
constant of the triangulation.

Lemma 3.5. For any ψ ∈ H1(K) and ϕ ∈ H1(K) there exist positive constants
C0 such that

‖ψ · n‖2L2(e) ≤ C0‖ψ‖L2(K)‖ψ‖H1(K),(3.20a)

‖ϕ‖2L2(e) ≤ C0‖ϕ‖L2(K)‖ϕ‖H1(K),(3.20b)

where e is an face of ∂K, and C0 is independent of mesh size h.

To prove Theorem 2.2 and 2.3, we proceed as follows. We first get an interme-
diate error estimate in the approximation of the flux q which involves the error in
the approximation of the potential u. Then we use a duality argument to obtain
the error estimate of u in terms of the estimate of the error in the flux; we then
insert the intermediate error estimate obtained in the first step and obtain the error
estimate in the approximation of the potential. Finally, we insert the error estimate
of u into the intermediate estimate and get the final error estimate of q.
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To facilitate the analysis of the method, especially in the first step, we rewrite
it in compact form as follows. From the weak formulation (2.5a) and (2.5b), we get

B(qh, uh;v, ω) =F(v, ω) for all (v, ω) ∈ V h ×Wh,(3.21a)

where

B(σ, ζ;v, ω) =(cσ,v)Ωh
− (ζ,∇ · v)Ωh

+ 〈ζ̂ v0 ,v · n〉∂Ωh\∂ΩD

− (σ + v ζ,∇ω)Ωh
+ 〈σ̂ · n, ω〉∂Ωh\Γ + 〈σ, ωn〉∂ΩD

+ 〈v · n ζ̂ v, ω〉∂Ωh\Γ−v + 〈αζ, ω〉∂ΩD∩Γ+
v0

,

(3.21b)

and

F(v, ω) =(f, ω)Ωh
+ 〈g,v · n〉∂ΩD

− 〈qN , ω〉∂ΩN

− 〈v · n g, ω〉Γ−v + 〈g, ω〉∂ΩD∩Γ+
v0

.
(3.21c)

3.3.2. Step 1: Intermediate estimate of the error in q. In this step, we prove an
estimate of the error in the approximation to q which is expressed in terms of the
error in u. To state it, we need to introduce some notation. We estimate the
quantity |||(σ, ζ)|||, where

|||(σ, ζ)|||2 := B(σ, ζ;σ, ζ) = (cσ,σ)Ωh
+

1
2
〈|v · n|, [[ζn]]2〉Eh

+ 〈α, ζ2〉∂ΩD∩Γ+
v0

.

We also need to introduce two projections. For any simplex K ∈ Ωh, let P|K be
the L2-projection onto Pk(K), and let Π|K be the projection defined in (3.10) with
{ei, i = 1, ..., d} ⊇ {e ∈ ∂K : ne · β0(e) ≤ 0}.

Lemma 3.6. Under the same assumption as Theorem 2.2 we have

|||(Πq − qh, Pu− uh)||| ≤ C(hrΘ +
√

Φ)

where

Θ =(η + α−1/2h−1/2)|q|Hr(Ωh) + (γ + α1/2h1/2 + h1/2‖v‖1/2
L∞(Ωh))|u|Hr+1(Ωh)

and
Φ = ‖v‖L∞(Ωh)h

r|u|Hr+1(Ωh)‖Peu‖L2(Ωh).

Proof. Set eq = q − qh and eu = u − uh, and note that, since Πqh = qh and
Puh = uh, we have Πq − qh = Πeq and Pu − uh = Peu. Hence, by Galerkin
orthogonality,

B(Πeq,Peu;v, ω) = B(Πq − q,Pu− u;v, ω) ∀(v, ω) ∈ V h ×Wh,

and so

|||(Πeq, Peu)|||2 =B(Πeq,Peu;Πeq,Peu)

=B(Πq − q, Pu− u;Πeq, Peu) =:
6∑

i=1

Ti +
2∑

i=1

T v
i ,
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where

T1 =(c (Πq − q),Πeq)Ωh
,

T2 =− (Pu− u,∇ ·Πeq)Ωh
,

T3 =〈P̂u
v0 − u,Πeq · n〉∂Ωh\∂ΩD

,

T4 =− (Πq − q,∇Peu)Ωh
,

T5 =〈(Π̂q − q) · n, Peu〉∂Ωh\Γ + 〈(Πq − q) · n, Peu〉∂ΩD
,

T6 =〈α(Pu− u), Peu〉∂ΩD∩Γ+
v0

,

and

T v
1 =− (v (Pu− u),∇Peu)Ωh

,

T v
2 =〈v · n (P̂u

v − u), Peu〉∂Ωh\Γ−v .

Note that the terms Ti, i = 1, ..., 6, are associated with diffusion, and T v
i , i = 1, 2,

are associated with convection.
Let us estimate each of these terms. By Cauchy-Schwarz inequality and the

approximation result of the projection Π, Lemma 3.3, we have

T1 ≤ η‖q −Πq‖L2(Ωh)‖Πeq‖L2(Ωh,c)

≤ Cηhr|q|Hr(Ωh)‖Πeq‖L2(Ωh,c).

From the orthogonality property of the L2-projection P, we have that

T2 = 0.

Using trace inequality (3.20b) and inverse inequality (3.19a), we get

T3 ≤ C‖Pu− u‖1/2
L2(Ωh)‖Pu− u‖1/2

H1(Ωh)γh−1/2‖Πeq‖L2(Ωh;c)

≤ Cγ hr|u|Hr+1(Ωh)‖Πeq‖L2(Ωh;c).

Note that better orders of convergence of other terms can be obtained, if we ask
for more regularity of q or v, or pick a different α. However, the best order of
convergence of the term T3 is of order at most hr. Thus, it is this term the one
preventing us from obtaining better convergence order for q.

Next, from the definition of the projection Π, (3.10a), we have that

T4 = 0.

By using the trace inequality (3.20a), we have

T6 ≤ ‖Pu− u‖L2(∂ΩD∩Γ+
v0 ) ‖αPeu‖L2(∂ΩD∩Γ+

v0 )

≤ Cα1/2hr+1/2|u|Hr+1(Ωh) 〈α, (Peu)2〉1/2

∂ΩD∩Γ+
v0

.

Let now us consider the term T5. Using the definition of β0, (2.7b), we rewrite T5

as

T5 = T ′5 + 〈(Πq − q) · n,Peu〉∂ΩD∩Γ+
v0

,
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where

T ′5 =〈(Π̂q − q) · n,Peu〉∂Ωh\(∂ΩN∪Γ+
v0 )

=
∑

K∈Ωh

∑

e∈∂K\∂ΩN

ne·β0≤0

〈Πq − q, [[Peun]]〉e

=0,

by the definition of the projection Π, (3.10b). Let us empahsize the fact that the
projection Π was constructed as to ensure the very last equality; Its definition of
projection Π is thus strongly related to those of the numerical traces. So, using the
trace inequality (3.20a), we obtain that

T5 = 〈(Πq − q) · n,Peu〉∂ΩD∩Γ+
v0

≤ ‖(Πq − q) · n‖L2(∂ΩD∩Γ+
v0 ) ‖Peu‖L2(∂ΩD∩Γ+

v0 )

≤ Cα−1/2hr−1/2|q|Hr(Ωh) 〈α, (Peu)2 〉1/2

∂ΩD∩Γ+
v0

.

Here we want to point out that if we use L2-projection instead of the projection
Π, then T ′5 is no longer zero; indeed, after using a trace and an inverse inequalities,
the upper bound of this term is Chr−1‖Peu‖L2(Ωh). This would make the order of
error estimate of the potential u not optimal unless we ask for additional regularity
of the flux q. The use of the projection Π allows us ot avoid having to do that.

We have finished estimating the terms associated with the diffusion. If there is no
convection, namely, v = 0, then we get

|||(Πeq, Peu)|||2 ≤
6∑

i=1

Ti ≤ ChrΘ|||(Πeq, Peu)|||.

which implies that

|||(Πeq, Peu)||| ≤ ChrΘ.

If the convection velocity v 6= 0, we need to estimate the terms T v
1 and T v

2 . Using
Cauchy-Schwarz inequality and inverse inequality (3.19c), we get that

T v
1 ≤ ‖v‖L∞(Ωh)‖Pu− u‖L2(Ωh)‖Peu‖H1(Ωh)

≤ C‖v‖L∞(Ωh)h
r‖u‖Hr+1(Ωh)‖Peu‖L2(Ωh).

Using Cauchy-Schwarz inequality and trace inequality (3.20b), we get

T v
2 ≤ C‖Pu− u‖L2(∂Ωh\Γ−v ) ‖(v · n) [[Peu n]]‖L2(Eh\Γ−v )

≤ C‖v‖1/2
L∞(∂Ωh)h

r+1/2|u|Hr+1(Ωh) 〈|v · n|, [[Peu n]]2〉1/2
Eh

.

Hence, we have

|||(Πeq, Peu)|||2 ≤
6∑

i=1

Ti +
2∑

i=1

T v
i ≤ C(hrΘ|||(Πeq, Peu)|||+ Φ).

where Θ and Φ are given by Theorem 2.2, and the result follows. This completes
the proof of Lemma 3.6. ¤
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3.3.3. Step 2: Estimate of the error in u. In this step, we estimate the error in u.
Thanks to the identity

‖eu‖L2(Ωh) = sup
θ∈C∞0 (Ω)

(eu, θ)Ωh

‖θ‖L2(Ω)
,

we only need to estimate the term (eu, θ)Ωh
. Since we do that by using a duality

argument, we have to introduce the corresponding adjoint problem, namely,
cψ +∇ϕ = 0 in Ω,

∇ · (ψ − vϕ) = θ in Ω,

ϕ = 0 on ∂ΩD,

(ψ − vϕ) · n = 0 on ∂ΩN .

Multiplying both sides of the first two equations by test functions v and ω respec-
tively, and integrating by parts, we get the weak formulation

(cψ,v)Ωh
+ (∇ϕ,v)Ωh

= 0,(3.22a)

(∇ · (ψ − vϕ), ω)Ωh
= (θ, ω)Ωh

.(3.22b)

These equations are going to be combined with the error equations

(ceq,v)Ωh
− (eu,∇ · v)Ωh

+ 〈u− û v0
h ,v · n〉∂Ωh

= 0,(3.23a)

− (eq + veu,∇ω)Ωh
+ 〈(q − q̂h) + v(u− û v

h), ωn〉∂Ωh
= 0,(3.23b)

where the numerical traces û v0
h , û v

h and q̂h are defined by (2.6), (2.7), and (2.8),
respectively.

Let P and Π be the projections used in Lemma 3.6. Taking ω = eu in the
weak formulation of the adjoint problem, (3.22b), and integrating by parts, we get

(θ, eu)Ωh
=

(∇ · (ψ − vϕ), eu

)
Ωh

=
(∇ · (ψ −Πψ), eu

)
Ωh

+ (∇ ·Πψ, eu)Ωh
− (v · ∇ϕ, eu)Ωh

=− (
ψ −Πψ,∇eu

)
Ωh

+ 〈eu, (ψ −Πψ) · n〉∂Ωh

+ (∇ ·Πψ, eu)Ωh
− (v · ∇ϕ, eu)Ωh

.

Using the orthogonality property of the projection Π, (3.10a),

(θ, eu)Ωh
=− (

ψ −Πψ,∇(u− Pu)
)
Ωh

+ 〈eu, (ψ −Πψ) · n〉∂Ωh
(3.24)

− (v · ∇ϕ, eu)Ωh
+ (∇ ·Πψ, eu)Ωh

.

Now let us we rewrite the last term on the right hand side. From the error equations
(3.23a), we get

(∇ ·Πψ, eu)Ωh
=(ceq,Πψ)Ωh

+ 〈u− û v0
h ,Πψ · n〉∂Ωh

.

Using the weak formulation of the adjoint problem, (3.22a), we get

(∇ ·Πψ, eu)Ωh
=(ceq,Πψ −ψ)Ωh

− (eq,∇(ϕ− Pϕ))Ωh

− (eq,∇Pϕ)Ωh
+ 〈u− û v0

h ,Πψ · n〉∂Ωh
.
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Then using the error equation (3.23b), we get

(∇ ·Πψ, eu)Ωh
=(ceq,Πψ −ψ)Ωh

− (eq,∇(ϕ− Pϕ))Ωh

+ (veu,∇Pϕ)Ωh
− 〈(q − q̂h) + v(u− û v

h), Pϕn〉∂Ωh

+ 〈u− û v0
h ,Πψ · n〉∂Ωh

.

Noting that

〈v(u− û v
h), ϕn〉∂Ωh\∂ΩN

= 〈u− û v0
h ,ψ · n〉∂Ωh\∂ΩN

= 0

and
〈v(u− û v

h), ϕn〉∂ΩN
− 〈u− û v0

h ,ψ · n〉∂ΩN
= 0,

we obtain that

(∇ ·Πψ, eu)Ωh
=(ceq,Πψ −ψ)Ωh

− (eq,∇(ϕ− Pϕ))Ωh

+ (veu,∇Pϕ)Ωh
− 〈q − q̂h,Pϕn〉∂Ωh

+ 〈v · n(u− û v
h), ϕ− Pϕ〉∂Ωh

+ 〈u− û v0
h , (Πψ −ψ) · n〉∂Ωh

.

Hence, from above equality and (3.24) we have

(θ, eu)Ωh
=

4∑

i=1

Si + Sv,

where
S1 =− (

ψ −Πψ,∇(u− Pu)
)
Ωh

,

S2 =(ceq,Πψ −ψ)Ωh
− (eq,∇(ϕ− Pϕ))Ωh

,

S3 =〈(q − q̂h), Pϕn〉∂Ωh
,

S4 =〈eu, (ψ −Πψ) · n〉∂Ωh
+ 〈u− û v0

h , (Πψ −ψ) · n〉∂Ωh
,

Sv =〈v · n(u− û v
h), ϕ− Pϕ〉∂Ωh

+ (veu,∇(Pϕ− ϕ))Ωh
.

The terms Si, i = 1, · · · , 4, are associated with diffusion and the term Sv is asso-
ciated with convection. Now we only need to estimate these terms. Since Ω is a
convex polyhedral domain, we have the elliptic regularity

‖ψ‖H1(Ωh) + ‖ϕ‖H2(Ωh) ≤ C‖θ‖L2(Ωh).

By the approximation properties of projections Π and P, we have

S1 ≤‖ψ −Πψ‖L2(Ωh)‖u− Pu‖H1(Ωh)

≤Chr+1|ψ|H1(Ωh)|u|Hr+1(Ωh)

≤Chr+1|u|Hk+1(Ωh)‖θ‖L2(Ωh),

and

S2 ≤‖eq‖L2(Ωh;c)(‖Πψ −ψ‖L2(Ωh;c) + ‖∇(ϕ− Pϕ)‖L2(Ωh;c−1))

≤C(‖q −Πq‖L2(Ωh;c) + ‖Πeq‖L2(Ωh;c)) h(η|ψ|H1(Ωh) + γ|ϕ|H2(Ωh))

≤Ch(η + γ)(ηhr|q|Hr(Ωh) + |||(Πeq, Peu)|||)‖θ‖L2(Ωh),
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Because 〈(q − q̂h), ϕn〉∂Ωh
= 0, we have

S3 =〈(q − q̂h), Pϕ− ϕn〉∂Ωh

≤‖(q − q̂h) · n‖L2(∂Ωh)‖Pϕ− ϕ‖L2(∂Ωh)

≤C(‖q − qh‖L2(∂Ωh) + ‖αeu‖L2(∂ΩD∩Γ+
v0 ))‖Pϕ− ϕ‖L2(∂Ωh).

Using the trace inequality (3.20a) and the inverse inequality (3.19a), we get

‖q−qh‖L2(∂Ωh) ≤ ‖q −Πq‖L2(∂Ωh) + ‖Πeq‖L2(∂Ωh)

≤ Chr−1/2‖q‖Hr(Ωh) + Cγh−1/2‖Πeq‖L2(Ωh;c),

Using trace inequality (3.20b), we get

‖α eu‖L2(∂ΩD∩Γ+
v0 ) ≤ ‖α(u− Pu)‖L2(∂Ωh∩Γ+

v0 ) + ‖αPeu‖L2(∂Ωh∩Γ+
v0 )

≤ αhr+1/2‖u‖Hr+1(Ωh) + α1/2‖α(Peu)2‖1/2

L2(∂ΩD∩Γ+
v0 )

,

and

‖Pϕ− ϕ‖L2(∂Ωh) ≤ ‖Pϕ− ϕ‖1/2
L2(Ωh)‖Pϕ− ϕ‖1/2

H1(Ωh) ≤ Ch3/2‖θ‖L2(Ωh).

Hence

S3 ≤C(hr+1‖q‖Hr(Ωh) + αhr+2‖u‖Hr+1(Ωh))‖θ‖L2(Ωh)

+ Ch(γ + α1/2h1/2)|||(Πeq, Peu)||| ‖θ‖L2(Ωh).

Using (3.17), we obtain

S4 =〈û v0
h − uh, (ψ −Πψ) · n〉∂Ωh

=S′4 + 〈Peu, (ψ −Πψ) · n〉∂ΩD∩Γ+
v0

+ 〈u− Pu, (ψ −Πψ) · n〉∂ΩD
.

where

S′4 =〈(β0 · n−
1
2
) [[uhn]],ψ −Πψ〉∂Ωh\Γ + 〈Peu, (ψ −Πψ) · n〉∂ΩD∩Γ−v0

=0,

by the definition of the projection Π, (3.10b). So by the trace inequalities (3.20a)
and (3.20b), we get

S4 ≤α−1/2〈αPeu, Peu〉1/2

∂ΩD∩Γ+
v0
‖(ψ −Πψ) · n‖L2(∂ΩD∩Γ+

v0 )

+ ‖u− Pu‖L2(∂ΩD)‖(ψ −Πψ) · n‖L2(∂ΩD)

≤C
(
α−1/2h1/2|||(Πeq, Peu)|||+ hr+1‖u‖Hr+1(Ωh)

)‖θ‖L2(Ωh).

Note that if we use L2-projection instead of the projection Π, the term S′4 is
nonzero and is bounded by C‖eu‖L2(Ωh)‖θ‖L2(Ωh). This will make us unable to get
a error estimate of u. So we see that it is here that the use the projection Π is
necessary, in this approach. We can see again that, the definition of the projection
is tailored to the definition of the numerical traces.
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We have finished estimating the first four terms associated with diffusion. Now we
only need to estimate the last term associated with convection. By using the trace
inequality (3.20b), we get

Sv ≤Ch‖v‖L∞(Ωh)‖eu‖L2(Ωh)‖θ‖L2(Ωh).

Therefore, we have that

‖eu‖L2(Ωh) ≤(
4∑

i=1

Si + Sv)/‖θ‖L2(Ωh)

≤Chr+1(1 + αh)|u|Hr+1(Ωh) + Chr+1η(η + γ)|q|Hr(Ωh)

+ Ch(η + γ + α1/2h1/2 + α−1/2h−1/2)|||(Πeq,Peu)|||
+ Ch‖v‖L∞(Ωh)‖eu‖L2(Ωh).

We let Ch,α = η+γ+h1/2α1/2+α−1/2h−1/2. Using the intermediate error estimate
of q, Lemma 3.6, we get

‖eu‖L2(Ωh) ≤Chr+1 Ch,α(γ + α1/2h1/2 + h1/2‖v‖1/2
L∞(Ωh)))|u|Hr+1(Ωh)

+ Chr+1Ch,α(η + α−1/2h−1/2)|q|Hr(Ωh)

+ Ch(r+2)/2Ch,α‖v‖1/2
L∞(Ωh)|u|

1/2
Hr+1(Ωh)‖eu‖1/2

L2(Ωh)

+ Ch‖v‖L∞(Ωh)‖eu‖L2(Ωh).

If there is no convection, namely, v = 0, then the last two terms on the right
hand side of the inequality are zero, and the error estimate of u is obtained. If the
convection velocity v is not zero, then for h small enough we have

‖eu‖L2(Ωh) ≤Chr+1 Ch,α(γ + α1/2h1/2 + h1/2‖v‖1/2
L∞(Ωh)))|u|Hr+1(Ωh)

+ Chr+1Ch,α(η + α−1/2h−1/2)|q|Hr(Ωh)

+ Chr+2C2
h,α‖v‖1/2

L∞(Ωh)|u|Hr+1(Ωh).

This completes the proof of Theorem 2.3.

3.3.4. Step 3: Error estimate in q. To end the proof of Theorem 2.2, we only need
to insert the result in Theorem 2.3 into the estimate of Lemma 3.6 and use Lemma
3.3.

3.4. The condition number of the Schur-complement matrix: Proof of
Theorem 2.4. To prove the estimate of the condition number of the Schur-complement
matrix

A := (Bt M−1 B + C)
given by (2.9), we begin by proving the following simple result.

Lemma 3.7. We have that, for all ζ ∈ Wh,

[ζ]tA[ζ] = A(ζ, ζ) := (cσ(ζ),σ(ζ))Ωh
+ 〈α, ζ2〉∂ΩD∩Γ+

v0
,

where σ(ζ) is the element of V h such that

(3.25) (cσ(ζ),v)Ωh
= (ζ,∇ · v)Ωh

− 〈ζ̂ v0 ,v · n〉∂Ωh\∂ΩD

for all v ∈ V h.
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Proof. By the definition of A(ζ, ζ), we have

A(ζ, ζ) = [σ]tM [σ] + [ζ]tC[ζ].

It is easy to see that (3.25) is equivalent to the following matrix expression,

(3.26) M [σ] = −B[ζ].

Using the definition of A and (3.26), we get

[ζ]tA[ζ] =[ζ]t(BtM−1B + C)[ζ]

=[ζ]tBtM−1B [ζ] + [ζ]tC[ζ]

=(−M [σ])t M−1 (−M [σ]) + [ζ]tC[ζ]

=[σ]tM [σ] + [ζ]tC[ζ].

Hence, A(ζ, ζ) = [ζ]tA[ζ] for all ζ ∈ Wh. This completes the proof. ¤

We are now ready to estimate the condition number of the matrix A, κ. Since
A is symmetric and positive definite, we immediately have that

κ ≤ Cl

Cu
,

where
Cl [ζ]2L2(Ωh) ≤ A(ζ, ζ) ≤ Cu [ζ]2L2(Ωh) ∀ζ ∈ Wh.

Thus, we only have to find expressions for Cl and Cu.
Let us begin by finding Cu. Integrating by parts in the formulation defining

σ := σ(ζ), (3.25), we get

(cσ,v)Ωh
=− (∇ζ,v)Ωh

+ 〈ζ − ζ̂ v0 ,v · n〉∂Ωh
,

and inserting the expression of the numerical trace given by (3.17), we obtain

(cσ,v)Ωh
=− (∇ζ,v)Ωh

+ 〈(1
2
− β0 · n) [[ζn]],v〉∂Ωh\Γ + 〈ζ,v · n〉∂ΩD

.(3.27)

Taking v = σ, we obtain, after a simple application of the Cauchy-Schwarz inequal-
ity and the trace inequality of Lemma 3.7,

(cσ,σ)Ωh
≤γ(1 + C2

1 )1/2 ‖ ζ ‖1,h (cσ,σ)1/2
Ωh

,

where

‖ ζ ‖21,h :=‖∇ζ‖2L2(Ωh) + 〈h−1, [[ζn]]2〉E i
h∪∂ΩD

,

This implies that

(cσ,σ)Ωh
≤γ2(1 + C2

1 ) ‖ ζ ‖21,h,

and so,

A(ζ, ζ) ≤C3

(
h−2 + α h−1

) ‖ζ‖2L2(Ωh),

≤C3

(
h−2 + α h−1

)
Cqu hd [ ζ ]2,

where C3 depends on γ2 and an inverse inequality constant; Cqu is a constant given
the assumption of quasi-uniformity of the triangulation. This implies that we can
take

Cu = C3

(
h−2 + α h−1

)
Cqu hd.
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Let us now find Cl. To do that we take, on each K ∈ Ωh, v := Z as given in
Lemma 3.2 with

(Z,∇ζ)K =− (∇ζ,∇ζ)K ,

〈Z, [[ζn]]〉ei =

{
〈h−1 [[ζn]], [[ζn]]〉ei

if ei * ∂ΩN ,

0 if ei ⊆ ∂ΩN ,
i = 1, ..., d,

where {e1, ..., ed} ⊇ {e ∈ ∂K : β0 · ne 6= 1
2}, and insert it in (3.27) to get

(cσ,Z)Ωh
= (∇ζ,∇ζ)Ωh

+ 〈h−1, [[ζn]]2〉E i
h∪(∂ΩD∩Γ−v0 ) + 〈 [[ζn]],Z〉∂ΩD∩Γ+

v0
.

This implies that

(∇ζ,∇ζ)Ωh
+ 〈h−1, [[ζn]]2〉E i

h∪(∂ΩD∩Γ−v0 ) =(cσ,Z)Ωh
− 〈 [[ζn]],Z〉∂ΩD∩Γ+

v0

≤η(cσ,σ)1/2
Ωh
‖Z‖L2(Ωh)

+ C1〈h−1, [[ζn]]2〉1/2

∂ΩD∩Γ+
v0
‖Z‖L2(Ωh).

So by (3.13),

(∇ζ,∇ζ)Ωh
+ 〈h−1, [[ζn]]2〉E i

h∪(∂ΩD∩Γ−v0 ) ≤C4(η(cσ,σ)Ωh
+ C1〈h−1, [[ζn]]2〉∂ΩD∩Γ+

v0
)

where C4 depends only on d, k and the shape regularity constant. Then

‖ζ‖21,h ≤ max{C4η, (1 + C4C1)h−1α−1}A(ζ, ζ).

Since, by the inequality (1.8) in [5], we have that

‖ζ‖2L2(Ωh) ≤ C5‖ζ‖21,h

where C5 depends only on the shape regularity constant, we obtain that

Cl [ ζ ]2 ≤ (C6max{1, h−1α−1})−1‖ζ‖2L2(Ωh) ≤ A(ζ, ζ)

where
Cl = C ′qu hd (C6max{1, h−1α−1})−1,

C6 depend on η, d, k, an inverse inequality constant and the shape regularity
constant, and C ′qu is a constant by the assumption on the quasi-uniformity of the
mesh.

We then have that
κ ≤ Cu

Cl
≤ C h−2,

whenever α is of order h−1. This completes the proof of Theorem 2.4.

4. Numerical experiment

In this section, we numerically verify the sharpness of our theoretical results.
We take the diffusion coefficient c to be the identity matrix , the convection velocity
v to be zero, and ∂ΩN to be empty. We take the domain to be the unit square
[0, 1]× [0, 1]. The boundary data uD is chosen so that the exact solution is u(x) =
1
2 ln((x + 0.1)2 + (y + 0.1)2); as a consequence, f = 0.

We take the stabilization parameter α in the numerical trace of q to be α =
h−1. Here we use uniform meshes, and “mesh=i” means that we used a uniform
mesh with 2(4)i evenly distributed elements.

The history of convergence of our methods is displayed in table 1 and 2. In
both tables, the first column shows the polynomial degree k we used to approximate
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the unknown q and u; the second column in the tables displays the mesh number;
the third column is the L2-norm of error of the approximation, and the last column
is the order of convergence. The approximate order of convergence, ri, is defined
by

ri :=
ln( e(i−1)

e(i) )

ln 2
, i > 1,

where e(i) is the error of the approximation computed on the mesh i.

Table 1. History of convergence for q.

k mesh ‖q − qh‖L2(Ωh) convergence order

1 0.18E+00 –
2 0.91E-01 0.99

1 3 0.45E-01 1.00
4 0.23E-01 0.99
5 0.12E-01 0.99

1 0.46E-01 –
2 0.14E-01 1.73

2 3 0.36E-02 1.95
4 0.88E-03 2.02
5 0.22E-03 1.98

In Table 1 we can see that when polynomials of degree k = 1, 2 are used, the
L2-norms of the error in q are of order k. So our error estimate in Theorem 2.2 is
sharp.

Table 2. History of convergence for u.

k mesh ‖u− uh‖L2(Ωh) convergence order

1 0.80E-02 –
2 0.21E-02 1.92

1 3 0.53E-03 2.02
4 0.13E-03 2.03
5 0.32E-04 2.02

1 0.20E-02 –
2 0.33E-03 2.59

2 3 0.45E-04 2.87
4 0.57E-05 2.98
5 0.72E-06 2.99

In Table 2 we can see that when polynomials of degree k = 1, 2 are used, the
L2-norms of the error in u converge with optimal order k + 1.
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5. Some extensions

5.1. Extension to more general numerical traces. In section 2.1, the functions
β and β0 in numerical traces are defined by (2.6b) and (2.7b). Here we show that
our results actually hold for any functions β ∈ H(div, Ωh) and β0 ∈ H(div, Ωh)
which satisfy that

sign
(
β · nK(x)

)
=sign

(
v(x) · nK(x)

)
,(5.1a)

sign
(
β0 · nK(e)

)
=sign

(
v0 · nK(e)

)
.(5.1b)

The proof of the existence and uniqueness of the solution is almost the same as
what we showed in section 3.2. The only difference is that in the equation (3.18),
( 1
2 − β0 · n) might not be zero on any faces. But we can take v = v0uh in (3.18)

and get that [[uhn]] = 0 on at least one face eK for each simplex K, then follow the
original argument.

Since our error analysis relies on a suitable definition projection Π, closely
related to that of the numerical traces, we need to modify it. For the generalized
numerical traces, (5.1), we define the projection Π as follows. The restriction of Π
to K is such that for any given σ ∈H1(Ωh), Πσ ∈ P(K) satisfies

(Πσ − σ,v)K =0 ∀ v ∈ Pk−1(K),(5.2a)

〈(Πσ − σ) · n, ω〉ei =0 ∀ω ∈ Pk(ei), if β0 · nei ≥ 0 or ei ∈ Γ,(5.2b)

〈(Π̂σ − σ) · n, ω〉ei =0 ∀ω ∈ Pk(ei), if β0 · nei < 0 and ei 6∈ Γ,(5.2c)

where ei, i = 1, ..., d are d faces of the simplex K, and {ei, i = 1, ..., d} ⊇ {e ∈
∂K : ne · β0(e) ≤ 0}. The well-definiteness and the approximation order of the
projection can be proved in a same way as in section 3.1.

In the error estimates, the only steps associating the definition of the projection
Π with the numerical traces are the eliminations of T ′5 and S′4. So it is enough to
show that for the numerical traces with β and β0 defined in (5.1), the projection
defined above in (5.2) can still make T ′5 and S′4 zero. Since

T ′5 = 〈(Π̂q − q) · n, Peu〉∂Ωh\(∂ΩN∪Γ+
v0 ) = 〈Π̂q − q, [[Peun]]〉E i

h∪(∂ΩD∩Γ−v0 )

and S′4 can be rewrite as

S′4 = 〈ψ − Π̂ψ, [[uhn]]〉E i
h

+ 〈(ψ − Π̂ψ) · n, Peu〉∂ΩD∩Γ−v0
,

we only need to show that if e ∈ E i
h ∪ (∂ΩD ∩ Γ−v0

), then

(5.3) 〈(σ − Π̂σ) · n, ω〉e = 0 ∀ ω ∈ Pk(e)

for any σ ∈ H1(Ωh). This is true because for any e ∈ E i
h ∪ (∂ΩD ∩ Γ−v0

), there is
a simplex K such that e ∈ ∂K and β0 · nK(e) ≤ 0. If β0 · nK(e) < 0, then (5.3)
follows from (5.2c). If β0 · nK(e) = 0, (5.3) follows from (5.2b).

5.2. Extension to curved domain. At the beginning of the paper, we assumed
Ω to be a polyhedral domain in Rd (d ≥ 2). Here we show that when d = 2 we can
extend our results to curved boundary domains.
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We assume that v0 ·n does not change sign on any face e ∈ Γ, and we modify
the numerical trace q̂h to be

q̂h =





{{qh}} − β0 [[qh · n]], if e ∈ E i
h,

qh + α(uh − g)n, if e ∈ ∂ΩD,
qNn, if e ∈ ∂ΩN .

Note that in the case of a polyhedral domain, the stabilization parameters α is
nonzero only on ∂ΩD ∩ Γ+

v0
. In the curved boundary domain, we take α different

from zero on ∂ΩD.
The proof of the existence and uniqueness of the solution for the curved bound-

ary domain is almost the same as that for the polyhedral convex domain.
In the analysis of the error estimates, if K has no curved faces, the restriction of

Π to K is defined in the same way as for the polygonal domain, namely, {e1, e2} ⊇
{e ∈ ∂K : ne · β0(e) ≤ 0}. If K has a curved face, the restriction of Π to K is
defined with e1, e2 are the straight faces.

For the intermediate estimate of q, the proof is almost the same as that for
the polyhedral domain. The only difference is that the terms in form of 〈(Πq−q) ·
n,Peu〉e do not vanish when e ∈ ∂ΩD ∩ Γ−v0

. But the stabilization parameters α is
nonzero on ∂ΩD ∩ Γ−v0

, so these terms can be estimated.
For the estimate of u, we use the projection Π defined above and the rest part

of the proof is the same. So the orders of convergence for q and u are the also same
as in the polyhedral domain case.

6. Conclusions

In this paper, we investigated the convergence properties of the MD-LDG
method for two or higher dimensional convection-diffusion equations with variable
coefficients. We showed that, even though the stabilization parameters on the inte-
rior faces are identically equal to zero, the L2-norm error estimates of the auxiliary
variable q and the primary variable u are of order k and (k + 1), respectively,
when polynomials of degree k are used. Our numerical experiments indicate the
sharpness of the L2-error estimates in R2.
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