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1. Introduction.

We study the fractal and Hausdorff dimensions of the uni-
versal attractor for the Navier-Stokes equations in two space di-
mensions. The finite dimensionality of the attractors for the
Navier—-Stokes equation was first implicitly proven in [16] and ex-
plicitely in [fb]. The subject has been investigated recently by
several authors ([15], L1], [21], [2]).

For a large class of dissipative systems ,including the Navier-
Stokes system, the finite dimensionality of the attractors, the
existence of a finite number of determing modes [9], the expon-
ential decay of finite dimensional volume elements in the phase
space [3], and the squeezing property [10], seem to indicate that
the chaotic behavior of the flow has a finite number of degrees
of freedom. It is important, for theoretical as well as for prac-
tical reasons to egstimate this number in terms of physically
significant gquantities.

Iin [8] the generalized Grashof number (corresponding to

the Grashof number in the Bénard convection) was defined by

(1.1) G = —ZEJ-
v kl
where |f| is the L2 norm of the driving forces,

supposed to be time independent (see Eg. (2.1) and (2.5)), v 1is

the viscosity of the flow and Al is the smalles eigenvalue of
the Stokes operator. G 1s a non-dimensional number. The long

time behavior of the solutions of the Navier-Stokes equations is




determined by the behavior of a finite number, N , of explicit

paramceters, the determinant modes. An estimate of N o©of the form
(1.2) N < cOG((log G)% + 1)

in the case of periodic boundary conditions (periodic case) and
(1.3) N <c.Gg

in the case of homogeneous boundary conditions (aperiodic case)

was obtained in [3g] . (The constants Cqr C c are dimen-

17 Coe--
sionless. They might depend on the shape of the domain filled
with fluid but not on its size.)

The previously known estimates for the fractal and Hausdorff
dimensions D of the universal attractor (largest bounded in-

variant set) for the Navier-Stokes equations, in terms of the

Grashof number were of the form

(1.4) D < c3G2(log G+1) in the periodic case [11] angd

4
{1.5) D= g, Ge in the aperiodic case.
In this work we prove estimates of the form
1/2
{1.6) D < CGG((log G} *+1) in the periodic case

(1.7) D < G2 in the aperiodic case.

“7



The paper is organized as follows. In section 2 we recall
the functional setting and give the precise definition of the
universal attractor. 1In section 3 we establish the eguations
governing the transport of finite dimensional volume elements
(in the phase $pace) under the action of the Navier-Stokes system.
Section 4 is dévoted to the definition and study of global Ly-
apunov exponents. In section 5 we prove the existence of a ecri-
tical dimension No(f) which enjoys the property that every N
dimensional volume element in the phase space, for N 2 N0 + 1
decays exponentially in time. We give estimates for No(f) in
terms of the Grashof number, separately for the periodic and
aperiodic cases. The techniques are inspired from those of 8] ,
[7] and adapted for the traces of operators which appear in the
equations obtained in section 3. Recently, Kaplan and Yorke ([13],
[5]) were lead by numerical evidence to conjecture that the in-
formation dimension of the attractor of a dynamical system is equal
to an expression given in terms of (local) Lyapunov exponents., In
section 6 we prove that the Kaplan-Yorke expressions, with the
global Lyapunov exponents we introduced in section 4 replacing the
local ones, yield upper bounds for the fractal and Hausdorff di-
mensions of the universal attractor. 1In particular it follows
that these dimensions do not exceed No(f) + 1 . The proof relies
on an idea first used in [4] for dynamical systems. In the last
section we give an example (an infinite dimensional version of a
system appearing in [19]) for which the theorems in section 6 give
the upper bound G + 1 for the dimensions of the universal at-
tractor. We show that this attractor has at least dimension

G - 3 . Thus, our formulation of the Kaplan-Yorke conjecture leads



to sharp (up to abéolute constants) upper bounds for the dimen-
sions of the attractors of systems in the class of Navier-Stokes
abstract equations we treat.

One of the authors enjoyed the hospitality of the Institute
for Mathematicg and its Applications (Univ. of Minnesota) and
wishes to express his thanks to Professor G. Sell and H. Weinberger
for very useful discusssions which lead us to the introduction and

use of the global Lyapunov exponents.

2. Preliminaries.

Let £ be an open bounded set in IR2 with sufficiently smooth

boundary I . The Navier-Stokes equations for the velocities
u(x,t) = (ul(x,t), uz(x,t)) and the pressure p(x,t) are
aut i i3 i
Se - vhut o+ (wWut 4+ 2B =FY in o2 1=1,2
i
(2.1)

div u = 0 -

They are supplemented by the conditions

ul{x,t) =0 for x in T
(2.2)

u(x,0} = uy(x} in @a.
The functions F = (Fl,F2) and u, are given. Let us denote by
}ﬂj(g)z (Hj(ﬂ))2 j = 1,2 , where Hj(ﬂ) , jJ = 1,2 are the usual
Sobolev spaces and by 'mz(ﬁ) = (Lz(n))2 . We consider the linear

space



o 2 .
V = 1{¢ ¢ (Cgylal)) | div ¢ = 0}
and denote by H and V respectively the closures of V in

n}(n) and {g%ﬂ) . The scalar product and norm in H are de-

noted by (-,+) and |-| respectively. The scalar product in

V is

2 ., v,
(2.3) ((u,v)) = 7§ [ 2 —*ax
- : )

and the corresponding norm will be denoted by |- .

We denote by P the orthogonal projection of ILZ(Q) onto
H . We define A = ~PA , the operator with domain U(A) =}ﬂ2(n) n V
acting in H . We use the same notation for the (bounded) exten-
sion of A to an operator from V +to its dual V' . It is well
known that, as an operator in H , A 1is selfadjoint and that

its spectrum consists of a sequence

of eigenvalues counted according to their multiplicites.
There exists an orthonormal basis of H formed with eigen-

vectors (wm) m=1,2,... for A

We denote, for every m > 1 by P, the orthogonal projection

of H onto the span of wl . wz,...,wm .




For u , Vv in HHUU we define B{u,v) € V' by
2 avk
(2.4) (B(u,v),w) = ) J u. —— w, dx , for every w e V
Lo J 3ax. k
Jlk_l o] ]

We refer to [23]for the various inequalities concerning B(u,V)

that will be used.

The equations (2.1), (2.2) are equivalent to
du + vAu + B(u,u) = £ in V'
dt !
(2.5)
u(d) = U,

where f = PF and u(0) can be defined in a suitable natural way

(see [23] for details).

Throughtout the work f will be a fixed element of H . For
v, € H the problem (2.5) has a unique solution, u(t), defined for
all £ =2 0 . We denote u{t) by S(t)uO . It is known that

s(t)uo is a real analytic p(A}) valued function on (0,=) . The
range of S(t)u0 t > 0 is bounded in V . Moreover, if one con-

siders the set

(2.6) X = n S(t)BV (0)
t> 0 P
where BZ(O) ={ue V llhl” < p} and p 1is given by
4
3 ch
(2.7} p > CO\))‘lGe



then, it can be easily checked that X has the following

properties
(1) S5(t})X = X for every t 2 0
(1i) X is bounded in H

(iii) For eveny U, € H , lim distv(s(t)uo,X) = 0.
X ‘is the largest set in H enjoying (i) and (ii). X
will be called the universal attractor for (s(t)) .

When the homogeneous boundary conditions (2.2) are replaced
by periodic ones and the data Uy F  are periodic (with the
same period L ) then the problem (2.1), (2.2) admits a similar
abstract treatment to the one described for the homogeneocus
boundary conditions case. The description of the spaces H , V,

of the formB(-.,+) and of the operator A are carried out in

detail in [23]. Let us only notice that in this case
(B(u,u},Au) =0 ¥Yu ¢ D(a)

and consequently that in the definition of X in (2.6) we can

take instead of (2.7)

1/2
(2.8) P> covll G

3. The transport of finite dimensional rmanifolds by the solutions

of the Navier-Stokes equation.

In this section we establish the eguations governing the
transport of finite dimensional volume elements under the action

of S (t)




Let ¢ be a smooth function defined on an open set D of

®Y  and taking values in V . Let us denote by XO the image of
¢ and by Et=s(t)20.
Let us denote by (+;*) and |+| the scalar product and

norm in ANH .  The volume element in Et is

9 d 3
FeT(S (8 6 ) A (s (8 6l ) g (S (8) ¢l ) da .. .doy

If we put uy = ¢(a) , the functions v;(t) = %(s(t)q;(a)), i=1,,,N
i

satisfy the equation

dav =
(3.1) 3¢ T ARIviE) =0
for A(t) given by
(3.2) A(t) =vA + B(S{t)uy, -} + B(-,5{t)uy),

Using the same technique as in [6] one can prove the following

Theorem 3.1. Let u0 be an element of V , £ an element of H

The problem

dv
.1 av =
{(3.1) It + A(E)Vv(t) 0

(3.3) v(0) = ¢
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with A(t) given by (3.2) has a unigue solution, v{t), satisfying
(1) v is a real analytic ©D(A) - valued function on ¢t > 0
(ii) there exists a constant k depending only on |f| such
that
vit) | s Xt 1 s e 20
ekt
iii vt < = ;> 0.
(iii) Ivierll = = |¢|

We need now some algebraic tools. First, let us recall the

useful formula

(3.4) (VlA...AvN ; WlA...AwN) = det[(vi,wj).].

i, ji=1l,...,N

where Vi r W. are elements in H and det

j stands for determin-

ant.

Suppose Vl""'VN are elements in H . We denote by
P(Vl""'vn) ‘the orthogonal projection of H onto the span of

v., i=1,...,N .
l!’ I r

Lemma 3.2. For any w ¢ H

2
(3.5) [vlh...AVN] P(Vl,...,vN)w

N ‘L A
= ¥ (-1)3 l(w AVIA--AVLAL. LAY

N . .
where () means ( ) 1s omitted.
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Proof , oObviously

N
P(vl,v2,...,vN)w = £ Y.(w)vj and the Yj satisfy

(3.5) follows from the Cramer rule and (3.4}.
et now T be a linear operator in -H , T :D_ =+ H

Vyress sV be elements of H . One can define TN in ANH by
TN = TAIA...AL + TATAIA,...AI +...+ IAIA...AT

Lemma 3.3. The following formula holds

Ao eV

2
(3.6) (T(ViAe.oAv) § ViA...AV) = | v NI . Trace(TP(vl,...,vN))

1

provided Vire-saVy € DT

Proof. Indeed let wj be an orthonormal basis for H such that

the span of Vios i=1,..N is spanned by W; 2 =1,...,L .

From {(3.5) we obtain, for every -2 , 1l < % < L

|via...av (-1)37L

P(Vly---rVN)w 1

2

Il
Il e~

J

A
. (wlAVlA,..AVjA...AVN H VlA...AVN)Vj

N N .
= 5 1 0T En e

) .
j=1 x=1 k

A A
u(levz...AvjA...AvN ; le...Ava...vN)v. .



Therefore

2 L
ViAo, = -2
| 1 AVNI Trace(TP(vl,...,vNJ) = IVlA...AVNI lzl (Twz'wz) =
N N L e ‘
Yool X,(-l)J+k2 C ATV W) (W v)
j=1 k=1 2=1 ]
lupaeabia vy oA Al uy) = 1; } -1 2 e v
j=1 k=1 J
N
. A A _ ]—l
(VIAeee AV ALLLAVL 5 ViALLLAV AL Ay ) = Hz (-1) .
j=1
. (TvuAle...AvN : le...vN) = (TN(le...AvN) ; le...AvN) R

Remark 3.4. Suppose that T

i=1,...,N i.e. (Tvi,vj) + (Vi,TVj) =0,1=< i

it follows from (3.6) that

Let us consider N solutions

(3.2).

lh...AVN

never wvanishes and satisfies.

Lemma 3.5. The Wronskian | v

d
(3.7) % loglle...Ale

is antisymmetric on the (vi)

Vs
1

of (3.1) with A(t) given by

is either identically zero or

+ Trace (A(t)P(vl(t),...,vN(t)) =0

11
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a
(3.8) = log|le...AvN| FV et A)

dat N

+ Trace (B(-,S(t)uO)P(vl(t),...,vN(t))) < 0 -

Proof. Let us rémark first that from (3.1) follows that

é%%vl(t)A..tAvN(t)) + A (t) (v (E)A...avg (t) = 0 . Therefore

l.é%lle...Av 2 + (AN(t)le...Av v

2
we have

ul g ¢ ViA---Avy) =0 . From (3.6)

3 2 2
(3.9) % 52 |le...AvN| + lle...Ale Trace(A(t)P(vl(t),...,vN(t)) = 0.

If ]vl(to)A...AvN(to)l = 0 for some t0 > 0 then from (3.9)
it follows that [vl(t)A...AvN(t)|2 =0 for all t =t,; and from
the analicity part of Thm. 3.1 it follows that [via...avy| is

identically zero. If not, then we can divide in (3.9) by

[le...Alez and get (3.7). To prove (3.8) we remark that for
every ﬂl,...,ﬂN in 0(A) we have

2
(3-10) ((UA)N(nlAuo-Anld) r nlA"'AnN) ?- v(}\l+..-+;\N) lnlA---Aan -

Also by Remark 3.4 the termcorresponding to B(S(t)uo,.) in the
trace part of formulae(3.7), (3.9) vanishes,so that (3.8) fol-

lows from (3.10) and (3.7).
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4. Global Lyapunov exponents.

Definition 4.1, Let t > 0 , Uy € V . We define the linear operator

S'(t,uy) : H > H by
(4.1) §'(t,ug)E = v(t,ug,¢)

where v is the solution to problem (3.1), (3.3) with A(t)
given by (3.2).
From Theorem 3.1 we deduce that S'(t,uo) is a bounded opera-
tor from H to V and therefore compact as an operator in H .
Let us denote by M(t,uo) : = [s'(t,uo)*s'(t,uo)]% ] M(t'uo)
is a compact, non-negative operator in H . Let us denote by
mj(t,uo) the eigenvalues of M(t,uo) counted according to their

multiplicites:
0 <. ..=% mN(t,uO) < mN_l(t,uO) £...% ml(t,uo)

Let us consider an orthonormal family ¢j(t,u0) of eigenvectors
for M(t,uo) corresponding to the eigenvalues mj(t,uo) . From

the uniqueness part in Thm. 3.1 it follows that

for any ¢ ¢eH , t,s = 0 .
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Therefore, if S'(s,uo)g = (0 for some S > 0 it remains zero

for any <t > s . From the analicity part in Thm. 3.1 it follows

that S'(T,uo)g =0 for every 1t > 0 and from the strong con-
tinuity in H it follows that ¢ = 0 . Therefore M(t,uo) is
injective for é%ery t > 0 and ¢j(t,u0) form a basis. We de-

note by wj(t;uo) the vectors
wj(t,uo) = S'(t,u0)¢j(t.u0)=
then

(wj(t,uo),wk(t,uo)) = 84k mj(t,uo)mk(t,uo)

where 44y is the Kronecker symbol. We have then a representa-
3

tion of S'(t,uo) of the form:

(4-3) S'(tpuo) = jll (¢j(tru0)r')wj(tru0) -

Lemma 4.2. There exists a positive continuous function c¢(t) defined for

every t > 0, depending on Ifl such that, for every u , uy € v

!

the following estimate holds

(4.4) |s(t,u)—S(t,u0)—S'(t,uo)(u-uo)l < c(t) |u-u,| 2/4

The proof follows from standard energy estimates and will not
be given here. (See for instance [6] for similar results).

The inequality is true for 3-D Navier Stokes equations, too.
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We remark that (4.4) implies inparticular that §'{t,u

DS (t)

Du0

Combining (4.3) with Lemma 4.2 we obtain

0) is

the Fréchet derivative of 5(t)

Lemma 4.3. For any u , u, € V and any N 2 1

N
(4.5) IS(t,u)-(S(t,uO) + jZl (¢j(t,u0), u“uo”’j(t'“o”l

$ (my,q (Brug) + c(t)|u-u0[l/4)|u—u

-

0

The geometrical interpretation of (4.3) and {(4.4) is that,

up to an error of r5/4 » S(t) transforms a ball in H centered

at Uy and of radius r into an infinite dimensional ellipsoid,

centered at S(t)u0 and with axes of lengths rmj(t,uo)

(] =1,2,...) . The N dimensional ellipsoid

N
(4.6) Fu(t,ug) := {S(t,uy) + 1

] (‘i’j(truo)r u—uo)wj(t,u0)| |u—-uO] < r}

1

has volume less than the corresponding box:

r
(4.7) N-vol | (touy) < 2'my (t,ug)...m (t,u)r",
N

The classical Lyapunov exponents are numbers p.(uo) such
tu. (un)
that, asymptotically , e 3000 mj(t,uo) (More precisely pj(uo)

would be 1lim % log mj(t,uo) if the limit existed).

tro
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We want to define global Lyapunov exponents. In order to
do so we first denote by PN(t,uo) the guantity

\ =
PN(t,u ) ml(t'uO)"'mN(t'uO)'

0
This quantity, which is modulo a.(2r)bI factor the volume of the

box appearing in (4.7) can be expressed as

(4.8) P_(t,u, )= sup | 8" (t,uy) €9 A0 .A8" (t,u,4)E
N 0 g e, i=1,...,N 0" -1 0

le, =1

N |

(See {20] for a similar approach for dynamical systems).
' 2 .
Indeed, we can compute |S'(t,uo)glA...AS'(t,uO)gN[ using

{(3.4):

(4.9) |S'(t,up)gyAm..nS! (t,u0)€N]2 = det[(S'(t,uO)Ei,S'(t,uo)Ej)]=

1<i,j=<N

det [(M(truo) El rM(truO) EJ)] = 1M(truo) El"\- . -AM(t:uo) £N|2 =

1<i,i=<sWd
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- 2 2 2
= 3 my (t,ug)...ml (t,u,) det“[(c.,s. )
L5 <, 3q 0 3, 0o ity ]

1 .
1<1,k=N

1A

2 2
PN(t,uO)IglA...AgN| .

So ]S'(t,uo)glA...AS'(t,uO)gN[ < PN{t,uO) if ]gi] <1,

l1<i< N . Since, for . = ¢.(t,u,) there is equality, (4.8)
g1 1 0

is proven. It follows, from (4.8) and (4.2) that
(4.10) PN(t+s,u0) < PN(t,S(s)uO)PN(s,uO)

for any ¢, s > 0 and Uy e v
We start defining the Lyapunov exponents. Let p satisfy
(2.7) or (2.8). Then 5(5)32(0) < 32(0) for any s = 0 (BZ(O)

is the ball in V centered in 0 of radius p} . We define

PN(t) = sup PN(t,uo) ’ N z1
V .
uOEBp(U)
E%(t) = sup ?j(t,uo) ’ j oz 1 -
BV'O)
une ot

The finiteness of PN(t) , mj(t) follow from that of ﬁi(t) which

is a consequence of (4.8) for N = 1 and of point (ii) of Thm. 3.1.

We note the inequality which is thus obtained;

(4.11) m (t) < e*®  (x given in Thm. 3.1).
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From (4.10) it follows that the function log PN(t) is subaddi-
tive. The functions PN(t,uO) ’ mj(t,uo) are never zero from

the injectivity of M(t,u Therefore we can define

0!

Definition 4.4. For every Jj =z 1, N 2z 1 , we put

— . 1 _

(4.12) p. = lim sup = log m.{t)

J tow t J

- 1. L
(4.13) Mg = 1im g log P (t) .
troe

Ja define inductively uj by
{4.14) Hq = Ty o My = Ty “T-1 N =z 2

We note that if the classical uj(uo) exists then

uj(uo) < Ej . Also it is clear that the sequence vy is nonin-

creasing and that

(4.15)

3 3 3] ’

Proposition 4.5. For every N 2 1 there exists a positive con-

tinuous function CN(t) defined for every t > 0 such that, for

every u; , Uze V

!

2 2
(4.16) P2 (t,up)-p2(t,u)f = Cp (o)t uy—uyit2,
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Proof, Let t1r--+&y be vectors in H with |£i| < 1 Since (*)

HM(t,uj)|i < ekt

r J = 1,2 (Thm. 3.1,ii) we infer that
L{H,H)

Idet[ (M(t,ul) EirM(trul) 3 )]
1<i,j=N

- det[ (M(t,u )&, ,M(t,u,)eg.)]|
2’71 2 1<i,j<n

-1k .
< 2nelVKt (N-1)kt HM(t'ul)'M(t'“z)‘lL(H.H)

In virtue of (4.8) we obtain easily

2 2 2N-1)kt
IPN(trul)-PN(tfuz)I < 2Ne( ) ”M(t'ul)_M(t'uz)H L(H,H)

For any two bounded nonnegative selfadjoint operators T ; S

V2
1/2_.1/2 472 ||p_g (172

T Wi, m = = L(H,H)

(See [14], lemma V. 3.43. p. 284). Therefore

8 kt/2
M(tru )"M(tru )“ s T e
“ 1 2 L(H,H) T

1/2

S'(t,u;)=8"(t,u,) _
i[8" (t,u;) { uz)llL(H,H)

One can estimate HS'(t’ul)_s'(t'uZHIL(H,H) < ékt)[ul—uzl with

a suitable C(t) by standard energy inequalities and (4.16) follows.

As a consequence of Prop. 4.5 we note

Lemma 4.6 . For every t > 0 , N > 1

(*) Here after

”‘IIL(H y) denotes the norm of the bounded linear
operators on H !
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inf v mN(t,uO) > 0.
quBp(O)
Proof. Indeed, suppose inf mI(t,u y =0 for some t >0 ,
el vV \| 0
uoeBp(O)

o2 (N-1)kt "ﬁ(t'“o’ (see (4.11)), the

2
N z 1 . Then, by PN(t,uO) <
compacity in H of BX(O) and the continuity of Pﬁ(t,-) (Prop.
4.5) there exists Uy € BS(O) such that Pé(t,uo) =0 . This

implies mj(t,uo) = 0§ for some 1 = j < N and thus contradicts

the injectivity of M(t,uo) .

5. Estimates ror the critical dimension.

Let us rewrite the equations.of transport of volume elements

(eq. (3.7

L'y

or (3.9)) in the form

(5.1) | VA o an vy |2

2
1 N + |V1A...AVNI [2v Trace(AP(vl,...,vN)

o

+ 2 Trace(B(yS(t)uO)P(Vlf---,VN))] =0 .

where V.o 1< i< N, satisfy (3.1), (3.3) with A(t) given by

(3.2), ¢ BZ(D) and N> 0 .

Yo
In this section we shall prove the existence of (and estimate)
a critical dimension N, = No(f) enjoying the property that every

N-volume |viA...AV decays exponentially if N> N, + 1 . We

NI 0
shall treat separately the periodic boundary conditions case and

the homogeneous boundary conditions case.
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A . The periodic case.

This case is special because of the absence of boundary layers
which is reflected, in particular, in the identity B(w,w,Aw) = 0
for all w e D(A) . [See [23] for details] . &an easy but impor-

tant consequence of this identity is the inequality

t 2 2
(5.2) | jaufar< ET 71
t 2 v t
0 v
valid for any t > 0 and any solution u(1t) = S(T)u0 of the
Navier-Stokes equations with initial data u, € BX(O) .

We intend to obtain an estimate of the form
1 t
(5.3) E‘J 2[v Trace(AP(vl(T),...,v,(T))
0 o
+ Trace(B(-,S(T)uO)P(vl(T),...,VN(T)))]dT
2 CN(f) for t = t0 , N 2 N0 '
with Cw(f)rto(f,o) and No(f) (Yarge) positive constants. The

dependence of these constants on N , £, v will be specified

later. From (5.3) it would follow that

Oor, more precisely
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(5.4) sup sup 18" (t,u ) E4A.. .8  (t,u )& |2
0" "1 0" °N
. eB'(0) e, =<1
0 "p il”
l<i<N
} -C. .t
< e N, ¢ tg *

The way to obtain (5.3) is the following: We notice that the term

involving A 1is very large, namely

(AN(le...AvN); le...AuN)

2v Trace(AP(v |2

1,...VN}) = 2V

| v Aue oAV

1

p 2v(A1+...+A Y.

N
We keep part of this term and use part of it to kill contributions
from Trace(B(-,S(t)uO)P(vl,...vN)) . Also it is useful to split
this last term into two parts, corresponding to the finite spec-
trum of u{t) = S(t)u0 and respectively the tail of the spectrum.
Let us take A a positive large number, to be fixed later. Let
us denote by P, the projection in H on the eigenspace of A
corresponding to eigenvalues A< A and Q = I-P,; . We

]
shall use the estimate

1/2
(5.5) B, 2wl g4 =clflog &) + 11aP, u]
! i

for u ¢ P(A) , which is an immedliate consequence of

. A 1/2
(5.6} ivP uf = < cl[(log KI -bl}]APAu
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The proof of (5.6) is elementary in the periodic case since the
eigenfunctions and eigenvalues of A are explicitly computable.

From (5.5) it follows that

(5.7) ITraCE(B(',PAU(T))P(Vl(T),..-UN(T)))i

< o [(Log 79 /2 +1] (AP u(v) |,
1
In order to estimate the tail part of Trace(B(-,u(r))P(vl,..,vN))

we shall use the inequality

2 1/2

1
(5.8)[Trace(TlT2PH < ITrace(TETZP)| /2, |Trace(TlTiP)|

valid for instance if P 1is a finite dimensional orthogonal pro-

jection on a subspace of the domain of T and Tl is bounded.

2
We take first T, = c, (u} = B(-,QAu)A_l/4 and T, = at’? | e
remark that CA(u) is bounded and
1/2 1/2
(5.9) llc, (il < c |}Q,ull / |QAAu| /2
L(H,H)
Indeed, (5.9} is a consequence of
(5.10) |B(w,u)| < c|Al/4w| [| al] 1/2|Au|l/2 (see, for instance [23]).

Using (5.8), (5.9) we proceed to estimate the term involving Q u
/.

as follows:
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lTrace(B(-,Qku(T))P(vl(t),...VN(T))H

\TraCE(C“(u(T))Al/4P(Vl(T),...,VN(T)ﬂ]

1/2

1A

[Tracq(ck(u(r))C;(u(r))P(Vl(T),---.VN(T)”l

lTrace(Al/zP(vl(T)---VN(tDll/2

1/2

1A

n/2 Jlc, (o) || |rrace (AY2p (v, (1) v e e v (0N
L(H,H)

A

N3/4CHQAU(T)Ill/2 IAQAu(t)|1/2 1Trace(AP(vl(A),...,vN(rnll/4

(We used (5.8) with T, = at/% 0 = D).
We use Young's inequality and obtain, using “qulls A_l/zlAu|,
(5.11) lTraCE(B(',QAU(T))P(Vl(T),...VN(T)D‘
4/3
v 3¢ lAau(n) |
< 35 |Trace(AP(vl(T),...,VN(r)nl + 27/3 N (vx)l/B

We start proving (5.3). We use (5.7), (5.11) and get

ot

t
L} [ 2y Trace(AP(vl(f),...,vN(r)) + 2 Trace(B(-,PkS(T)uO)

P(vy (1) serrsvy (1)) + 2 Trace(B(+,Q,8(1)ug) Pvy (1), ..., V() Jdr

N R Jh t2¢[ (log {i)l/z-bl]IAu(TH

0

+ 3¢ lAu(tll4/3}dT .
A)l/B

(v
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t
VA *..4ay) - 20N [ (log f&)1/2-+1] (% L | au(r) |%)1/2

3¢ N 1t 2 . .2/3
- (= Au d1) .
75 =iy & Il

From (5.2) we ogbtain

t
E(t) := % ! [2v Trace(AP(Vl(T),...,VN(r)) + 2 Trace B(-,S(T)uo)

1/2

Pvi(r)revovg€))]dr 2 v +...400) - 2eN[ (log 7%-) +1]

2 2 2 2
lf] p” 1q1/2 3c N |f p~ 142/3
L T £ 2373 on /3 L Z T 1777 -

It is now time to recall the dimensioniess constant that it

is natural to use instead of [£f]| , namely the Grashof number

Let us take t t, where t0 depends on |f| and , only and

is defined by

-2 92

3.2
\ ll

(5.12) tg = tolo,f) =G

AL

It is well known that the asymptotic behavior of Tl is
1

j, therefore, there exists a constant ¢y such that

v(ll+...+lN) z clvklN(N+l)




We obtain, for t 2 to(o,f) '

-1/3

- AL 1/2 3¢, X 4/3
+ - ! —-— +1JG - - G
E(t) 2 vA Nicy (N+1) 2/2c [{log A1) 1] 577§( )i) }
A . ' = 3c
Now we cheose A such that ;— = G . Taking ¢, = 2¥2¢c + 573
1 2 /
one can write
€2 1/2
E(t) 2 cquh NN + 1 - 2= G [(1og G) + 1]},
€1

it is clear now that the choice for No(f) given by

€2 1/2
(5.13) Ny (f) = integer part of = c[ (log G) + 1]
1

gives the inequality

E(t) = clvxlN(N—NO) for t 2 to(p,f). N ZP%(f)-

e proved

Theorem 5.2. There exist cy >0 , c, > 0 such that

the following inequality holds

1 1 1 2
{5.4") sup sup | s (t,uO)ElA...AS (t,uO)ENI

u eBg(O) &i,lsisN

0
‘giISl

—clvlltN(N—No)
< e
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for any t » to(p,f) (t0 given in (5.12)) and N 2 NO(f)'

(No(f) given by (5.13)),

Corollary 5.3. a) For any N 2 No(f) , t 2 to(f,p) (with N0 given in

(5.13) and to in (5.12)),

€1
*?r vll(N—NO)Nt
(5.4") P (t) < e

b) For any N 2 No(f)

“1
+...4p.. £ vklN(N-NO).

(5.4"!) N S __-2_

M1

Proof. a) is a consequence of (4.8), the definition of PN(tL

and the relation (5.4). b) is a consequence of a) and of the de-

finition (4.4) of uj

B. The general case.

In this subsection we give estimates for No(f) which are
valid for both the periodic and the aperiodic cases.
Let us take, as before, N solutions, Vi o i=1,...,N, of

the equation (3.1) with A(t) given in (3.2) and initial data

£ .

i = vi(O) . Since we want to estimate ViA.. AV we may assume

N
that the initial data are linearly independent. Consequently,
for any t 2 0 we can find an orthonormal basis, xl(t),...,xw(t) ,

for the linear space spannad by vl(t),...,vN(t) in H . Then
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(5.14) Trace(B(-,S(t)uo)P(Vl(t):---,VN(t))) =

i
= Y B{(x.(t),uflt),x;(t))
=1 ’

\"
where uf{t) = S(vt)u0 and uy € Bp(O)

Using the estimate
(5.15) |B(w,u,w)| < clwi [Iw]| [[uf (see [23])

we obtain from (5.14)

(5.16) | Trace (B(+,S(t)ug) P(vy(t),... v (£)))]
N . N 2.1
< e 1 lxglDlull < o0 3 lixg 1157 flull
j=l j=l
v N 2 02 u 2
s 5 _Z ij[l + 5 N
J.....
We notice that
N 2
(5.17) Trace (AP (v, (t) , ..., vy (t))) = DB
=1

and thus, for any fixed T , the integrand of (5.3) satisfies
(5.18)2[v Trace (AP(vy (1}, ..., vyl{1))

+ Trace(B(-,S(T)uo)P(Vl(T):---:VN(T)))]

2 2 2
s vty oy - o2 Ll o1 - & Aul® )y
. N v C 2

A
1w 1

2 CluAl
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since there exists a constant ¢y such that

U(Al+...+RN) 2 clUllN(N+l) (see [18])

Now, from the inequality

3%

t -y 2
2
(5.19) I 1 f fluj “ar « 42 £
2.t ;
1 0 v Al v

Wwivo

veaA

[l V]
t

wWe obtain

t
(5.20) % I Z[Trace(AP(vl(r),...,VN(r)))
0

+ Trace(B(-,S(T)uo)P(vl(r) reeepv(1))) jdr

2 —5 2 2
> ¢ v N[N+l - S (13’*4fl +
1 ) Al v A

)1

N

t

We define Gy = G, (f) by
=
(5.21) G, = 18 “f|

We remark that G, is nondimensional and clearly G, < G . (More-

over G* may be much smaller than G if f has only high wave

number modes.) Let us define No(f) by

2
(5.22) 2c 52

No(f) = integer part of =G

and put
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(5.23) - tyle,£) = G,

From (5.20) we obtain, as in 5.A,

Theorem 5.4. There exist nondimensicnal constants ¢ , ¢; such

that the following inecuality holds

(5.24) sup sup |S* (t,u )gln...AS'(t,uo)g ]2
v N
quBp(D) Igilsl
1<isN

-clvllN(N—No)t
<= e

for any t =z to(p,f) , N 2 No(f) . (t0 and NO are defined in

(5.23), (5.22)).

Corollary 5.5. a) For any N 2 No(f) , £t 2 to(p,f) {(given in

(5.22), (5.23})

€1
_TTuAlN(N—NO)t
(5.25) P () = e )

b)) TFor any N zNo(f)

€1
+...tu <-———vAlN(N—NO) .

(5.26) Myt NS




6. Dimension of the attractor. The Kaplan-Yorke conjecture.

We start by recalling the definitions of the Hausdorff and

fractal (or Kolmogorov-Mandelbrot) dimensions.

Definition 6.1.. Let X ¢ H be a compact set. We define the

Hausdorff dimension of X , dH(X) by

. d
dy(X) := inf{d > 0 | u(X) = 0}
where
ad . d
u, (X) = lim (x)
H r+0 H,r
r>0
and
d k d k .
H (X) =inf{) r; | X < v B, , B, open balls in H of
H,r ;2 1 j=1 * i

Definition 6.2, We define the fractal dimension of the compact

set X c H , dM(X) by

dy(X) = inf{d » 0 US(X) = 0}
where

ud(X) = lim sup rdn (r) ,
M X
r—+0

nx(r) being the minimal number of balls of H of radii equal

to r required to cover X . (See [17].)

31
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Remark 6.3.- The definition 6.2 agrees with the conventional one

1og(nx(r))
dy,(x} = 1lim sup .
M r+0 log{i/r)
Remark 6.4. dﬁ(x) < dy(X) . However, it might happen that dH(X)

is finite whilé dM(x) is infinite. For example, consider

(e, ), _ an orthonormal family in H and take for X the
k k—1'2'-..

continuous, piecewise linear curve joining the points x(0) =0 ,

x(%) = TB%TF e » k 22, x(1) = e; . The Hausdorff dimension
of X is 1 but the fractal dimension is *= since, if one
= 1 1
takes r = ISETE‘?? , m =2 2 then
1
Y2 ro
nx(rm) >2m-1=e - 1.

Indeead x(l) ’ x(%) cannot belong to the same ball of radius r

J
unless both j and k are larger or equal than m .

m

In[13] , Kaplan and Yorke conjectured that, for a finite
dimensional dynamical system, the information dimension (which is
smaller than the fractal dimension) of the attractor should be

equal to the expression

H+...o+p.
] 1 "o
(6.1) d((X) = JO + lu' ]
jo+l
where u; are {classical) Lyapunov exponents and j0 is defined

by

6.2 g = 3 +o..4ps 2 0} .
(6.2) Jg = max{j | u; My }
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We are going to prove in this section that expressions like (6.1)

constructed with the global Lyapunov exponents My + By are
upper bounds for the Hausdorff and fractal dimension of any bounded,
invariant under S(t), set in H .
Let X be a set in H which satisfies
(i) X 1is bounded in H

(ii) S(t)Xx = x for any tz 0 .,

Such a set is, for instance,the universal attractor

X= n S(t)B'(0) where , is given in (2.7) or (2.8).
£50 e ‘
A set satisfying (i) and (ii) is compact in H .

The general idea of our approach to estimate the dimension
of X , which appeared for the first time in [4] , is the follow-
ing: Suppose X is covered by a finite number of balls. After
a sufficiently long time these balls become slightly distorted
infinite dimensional ellipsoids with axes of lengths given in terms
of the Lyapunov exponents. Comparing the expressions defining
the dimensions obtained by means of the initial covering with
those corresponding to the covering by ellipsoids, the Kaplan-

Yorke expressions appear naturaily.

Lemma 6.5. ILet N > j0 be an integer and D be a number satis-
fying
(i) N <D <N + 1

(ii) {(D-N) ”N+l + ul'l'. . .+UN < 0.

Then ug(x) =0.
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Proof. We note that N 2 30 implies Myteeotbgy < 0 so that

Hntr © 0 by (4.15). Let us take ¢ 2 0 such that

{(6.3) (D-N)pN+l + ul+...+uN + 3 < 0 .

Let us choose t = t(e) large enough to satisfy

(6.4) t > t,(G,p,) where G = EL = P and X < BY(0)
0 0 , 0 173 0
v A VA
1 1
(6.5) N log lo + D ﬁ?g 2 < &

— 1
log P (t) log P (t)
N N+1
(6.8) T < ul+...+uN + €, T < ul+...+uN+l + £ .
condition (6.7) can be satisfied since EN+1 < 0 and (6.8) can

be satisfied because of the definition of “j . Let us fix t

enjoying (6.4)-(6.8). We choose Iy = ro(e) such that

c:(t)r(])’/4
. + g <
(6.9) 1 (D) 2
where c(t) appears in (4.4), (4.5) and %N+l(t) = inf (myg,q (E,ug) ).
\
Uq eBp(O)
By Lzmma 4.6, 5N+l(t) >0 . Since D-N=z20,1+N-D=020

we have, using (6.8), (6.5) and (6.3) that
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{(1+N-D) log PN(t) + (D-N)log PN+l(t} + N log 10 + D log 2 < -¢t .

From (6.6) it follows that

D=-N -{(D-N)-1
N+l(t) g 2

lo-NZD PN(t) 1+N-D . p
and therefore
N.D D-N +N-D ~ (D-N) -
(6-10) 10727y, (t,u0) 177 N[p (t,u,) J1HND ¢ - (D-N) -1
v
for any u, € B (0) .
p

Let us consider a ball of radius . r < Iy o centered at u; . By

Lemma 4.3 we have that

(6.11) dist (S (t)u, E;(t,uo)) < 8(t,uy,r) +x

for any u in the ball Iu—uol < r . In (6.11) 8(t,uy,r) is
given by

(6.12) 8(t,ug,r) = m o (t,uy) + c(t)rl/4

and Jl(t,u;) is the N dimensional ellipsoid defined in (4.6).

We remark that (6.9) implies that

(6.13 6 (t ) < (t,u.) (1L + C‘tlfiffo < 2 (t
-13) rUg. ) < my., (t,u, Ty, (£ 5 2Mnap (taug)

and (6.7) together with {6.13) gives
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— 1
(6.14) ‘ e(t,uo,r) < 2mN+l(t) < -

We know (see (4.6)) that the N-volume of f;(t,uo) is smaller
than ZNPN(t,uO)rN . Thus, using a vitali type argument. [22], we

infer that:

(6.15) the number of balls of radii S(t,uo,r)- r necessary to

cover {r(t,uo) does not exceed

N
N N
2 PN(t,uo)r

5

(0 1is the volume of SN—l).

< 10Y

e(t,uo,r)'NPN(t,uo)

From (6.11) and (6.15) we infer that

(6.16) the number of balls of radii 29(t,u0,r)-r necessary to

cover S(t)BH(uO,r) does not exceed
N -N
10 e(t,uo,r) PN(t'uO) .

We denoted by Byfuy,r) = {u] Ju-ugl = r} . We remark that the
radii appearing in (6.16) are smaller than r/2 {see {6.14)).
Let us take now a finite covering of X by balls BH(ui,ri),

1 <i<y , 1y < r(sro) . From the invariance property of X

X <

£
U
i=

ls(t)BH(uirri)
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We cover each S(t)BH(ui,ri) by balls of radii 26(t,ui,ri)ri

and obtain thus a new covering of X with balls of radii not

larger than r/2 . Using (6.16) we obtain
2
D N -N DD D
u (X) < _£ 107 ¢ (t,ui,ri)PN(t,ui)Z B (t,ui,ri)ri
r i=1
H,2~
L .D,.N c(B)ry DN 1+1
< 2P1oMN(1 4t Py(t,u;) ~*ND p oy D-N D
iZ]_ mN+l(t)) N( l) N+l( ,ul) i

Now (6.10) and (6.9) imply
L
D 1

u (x) £ 5 'z r. .

Since the covering BH(ui,ri) was arbitrary we obtained

D

(6.17) u 0

K

(X) < % ug {X) for every r<r
H"f

D

n.r (X} is nonincreasing so the proof of the
r

The function r-ou

lemma is complete.

Theorem 6.6. Let X be a invariant set which is bounded in H

Then U

d,X) = j, + -
H 0 ]“j0+1|
where jo is defined by (6.2).

Proof, If D = jO + 1 , taking N = integer part of D we can

apply Lemma 6.5 since (ii) is true in virtue of P+l <0
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p1_+...+uN < 0 . Therefore ug(X) = 0 and soO dH(x) <D . If

D satisfies

Ul+ --+Uj0
. <D < jo + 1
ot s |
Jo
we can apply Lemma 6.5 for N = j; (since ‘ujJJJ = _uj0+l)
and so lig(x) = 0 ; thus dH(X) < D.
Theorem 6.7 a) In the periodic case, if X 1is as above

C
dy (%) < 2 G [(log G)1/% +1] + 2
©1
where ¢, , ¢y are absolute constants (depending on the shape
of @ only).

b) In the general case,

2 2
dy(X) < €_ G5 + 2

€1

wnere © , c, are absolute constants.

pl-i-. .ot

3
Proof. We remark that 0 = 0 « 1 since

|“j0+1|

M Lo+ M, L
1Tty 5 41 1 34
0 0 _ -
0 > = 1.

ug 411
% g | Jott

Since (5.4™) in the periodic case and Corollary 5.5 (b) in the

aperiodic case imply that j0 < No(f) , the estimates follow from

Thm. 6.6 and (5.13) in the periodic case,respectively (5.22) in

the aperiodic case.
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We shall consider now the fractal dimension.

Lemma 6.8. Let N be a natural number, D a real number satis-

fying
(1) D=zN

{ii) (D—N)uN+l + u1+...+uN < 0

(iidi) Mg+ © 0.

D
Then uM(X) = 0.

Proof. Let us take € > 0 small enough such that

(6.18) (D—N)uN 1 P Hptee tHo + (D-N+2)e < @

+ N

Let us choose t = t(e¢) large enough to insure the validity of

(6.4), (6.7},

log m (t) log P_(t)
+ —
(6.19) 271 SHysp T €5 tN Sul+...+uN + €
and
(6.20) {2t log 2 Nlogs .

Let us take r < rq . Where ¥y 1s defined by condition (6.9).
Let us consider a ball BH(uO,r) centered at Uy € X . We define

8(t) by
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(6.21) B(t) = 2my,, (£),

~

We remark that (6.7) gives 8(t) < % . Reasoning as in the proof

of Lemma 6.5 we infer that

(6.22) the number of balls of radii 29 (t)r reqguired to cover

Nr— -N
S(t)B(uy,r) does not exceed 5 [mN+l(t)] PN(t) .

We infer that

(6.23) n (280 5 [5 7 (g, (£) 70

Py ()] n (r)
{see Def. 6.2 for nx(-)L
Thus we obtain
(6.24)  (28(t)r)Pn (28(t)r) = [ 4D5N(ﬁN+l(t))D'N Py(t)] 2Pn_(n) .
We remark that {(6.18), (6.19) and (6.20) imply that
(6.25) 4D5N(r‘n'N+1(t))D'N Py (t) < 1/2

so that (6.24) becomes

(6.26) (26 (t)r)°n X(2"6(t)r) < (1/2)anX(r) for every T

A
H
[}

We remark that
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D - -
sup{r'n (r) | 28(t)ry < r < ry) < M = rgnx(29(t)r0) < w .

In virtue of the simple Lemma 6.9 given below,applied for

a = 23(t) and ¢ (r) = anX(r) + the proof is complete.

Lemma 6.9 Let ¢(r) 2 0 defined for 0 < r < ry be a function satis-

fying, for some a , 0 < g < 1
(i) sup {¢(r) laro ST <rgl=Mc<e

(ii) ¢(ar) < %¢(r) for every 0 < r

1A
a]
o

Then 1lim ¢(r) = 0 .
r-+{

Proof. From (ii) we have

(11)' ¢(a’r) = (P* 4(r)  for every r < ro o221 .

If a2+lr0 £ r < agro then algy < a—lr s Ty SO by (1) ,¢(a-2r) < M
and by (ii)® p(xr) = ¢(a2a_2r) < (%)R M . It follows that, if

r < akro r oY) < (%)kbﬁ (since there exists g > k with

a2+1r0 < r < akrd) .

Theorem 6.10. Let X be a bounded set in H which is invariant under

S{(t) . Then

dM(X) < jO + 1
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Furthermore,

a) In the periodic case

d, (0 < ¢G[(log G)1/2-+1]+ 2

c
with c(=63) a nondimensional constant depending on @ only,
1

b) ih the genasral case
d < G2 + 2
M(X) < cG,
2c2 . .
with c¢(= 7;-) a nondimensional constant.

Proof. It is enough to prove that dM(X) < j0 + 1 since, as we
noted in the proof of Thm. 6.8, j0 < No(f) and a) and b) are the
estimates that we obtained for No(f) + 1 .

If D 2z jg *+ 1 then, taking N = j0 + 1 we can apply Lemma

6.9 {((ii) is true since both "j0+2 and ul+"'+“j0+l are ne-
gative) and conclude that
D -

From the definition of the fractal dimension it follows that

dM(X} <D .

Theorem 6.11. Let X Dbe a bounded set in H which is invariant un-der

S(t) . Then
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u-
Jo
u1+...+u-0
Proof. 1If T | 2 1 the result is covered by Thm. 6.10. 1If
Jo%1
ul+.-.+uj0 . ’ _ Ul+...+uj0
-7::—————— < 1 then, since . <0, from D > ja + —
EISY Jo* ° luj(ﬁﬂ
it follows that the conditions (i), (ii), (iii) of Lemma 6.9 are
fulfilled for N = j0 « Therefore BS(X) = 0 and
Mot . +H,
1 30

dM'(X) = jo +

|Eﬁo+17_
7. An example,
In this section we consider the following infinite dimensional

generalization of a differential system considered in[19] :

du
2

Tﬁ} + vup + u2+...+u§+... = fl
(7.1)

du. _ .

J + vu. - ulu- =9 (i = 2,3,...)

qt J ]

in H = 12 - This system is amenable to the same abstract treat-

ment as the one used for the Navier-Stokes equations. Indeed

setting

(7.2) A=

Y=y
GO N O
TWO o
L)
L[]
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B(v,u) = =ujv + (u,v)el for u , v ¢ H, the system (7.1} becomes

the abstract differential equation in {(2.5).
Because of the special from (7.2) of B{+,-) the relation

(5.3) becomes in this case
1 t
{7.3) T ZL)'DJTrace(AP(vl(T),...,vN(T))+

+ Trace((B(-,S(T)uO)P(vl,...,VN)))]dT

=
-

VN (N+1) - ZTNJ lu(r) |dr
0

\%

[\

wN[N+1 - G - -—232-]_
tv

l

where G = ﬂ££l = ——%— and p 1is subjected to a similar condi-
v A v

tion to (2.7)." Hence Nj(f) which appears in (5.3) and in the

proof of Thm. 6.10 can be taken
No(f) = integer part of G .

Thus Thm. 6.10 vields, in this case that the fractal dimension of

the universal attractor X of the system (7.1) satisfies

(7.4) dM(X)S G+ 1.

On the other hand one can obtain a lower bound for dH(X) as

follows.

2

Let w = /flfl[ - VN

!
<
&
Il
._l
3]
<
s
H
=
3
|_l
I
<
zZ
%

r




and wWj =0 for j 41, N, where N is chosen such that
(7.5) VAR<IE)] < 2wl

Then w 1is a stationary solution of (7.1) such that the nonposi-

tive eigenvalues of the operator
A(w) = vA + B(-,w) + B(w, )

are precisely -wv r T2V, ao. = (N=2)v . Therefore the unstaple
manifold at w , Zw » has the dimension N-2 (see [127 P. 242).
Clearly Ew is included in X and hence dH()ﬂ Z N-2 . Frem

(7.5) it follows
(7.6) dy(x) 2 G - 3 .

Comparing (7.5) and (7.6) we see that our formulation of the
Kaplan-Yorke conjecture, proven in this paper gives, for systems

amenable to the abstract form (2.5), a sharp upper bound of the

dimensions of their universal attractors.
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