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RESTORATION AND ZOOM OF IRREGULARLY SAMPLED,
BLURRED AND NOISY IMAGES BY ACCURATE TOTAL

VARIATION MINIMIZATION WITH LOCAL CONSTRAINTS.

ANDRÉS ALMANSA ∗, VICENT CASELLES † , GLORIA HARO ‡ , AND BERNARD

ROUGÉ §

Abstract. We propose an algorithm to solve a problem in image restoration which considers
several different aspects of it, namely: irregular sampling, denoising, deconvolution, and zooming.
Our algorithm is based on an extension of a previous image denoising algorithm proposed by A.
Chambolle using total variation, combined with irregular to regular sampling algorithms proposed
by H.G. Feichtinger, K. Gröchenig, M. Rauth and T. Strohmer. Finally we present some experimental
results and we compare them with those obtained with the algorithm proposed by K. Gröchenig et
al.
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1. Introduction. A general image acquisition system may be modelled by the
following image formation model

g(λk) = (h ∗ u)(λk) + nλk
, λk ∈ Λ, (1.1)

where Λ = {λk}N2

k=1 ⊆ R2 is a finite set of regular or irregular samples, u : R2 → R is
the ideal undistorted image, h : R2 → R is a blurring kernel whose Fourier spectrum
(MTF) has most of its energy concentrated in [−1/2, 1/2]2, g is the observed sampled
image which is represented as a function g : Λ → R, and nλk

is, as usual, a white
Gaussian noise with zero mean and standard deviation σ.

Let us denote by ΩN the interval [0, N [2. We shall concentrate in the particular
case of perturbed sampling and we shall assume that Λ is a set of N2 samples which
take the particular form

Λ = Z2 ∩ ΩN + ε(Z2 ∩ ΩN ) (1.2)

where ε : R2 → R2 is a “smooth and small” perturbation function in the sense that
supp ε̂ ⊆ [− 1

Tε
, 1

Tε
]2 for some period Tε > 2 corresponding to the maximum vibration

frequency and the amplitude A, which can be measured as the maximum of the
standard deviation of each component of the vector ε(x), is small with respect to 1
pixel (we refer to Section 2 for a model (2.1) of this perturbation and also for a general
overview of irregular sampling aspects).

As in most of works, in order to simplify this problem, we shall assume that
the functions h and u are periodic of period N in each direction. That amounts to
neglecting some boundary effects. Therefore, we shall assume that h, u are functions
defined in ΩN . To fix ideas, we assume that h, u ∈ L2(ΩN ), so that h∗u is a continuous
function in ΩN [29] (which may be extended to a continuous periodic function in R2)
and the samples h ∗ u(λk), λk ∈ Λ, have sense.
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2 A. ALMANSA, V. CASELLES, G. HARO AND B. ROUGÉ

In a general setting where sampling is not necessarily perturbed, the well-posedness
of the sampling set is measured by its density. Let us recall that a sampling set Λ ⊆ Ω
is said to be γ-dense if ⋃

λk∈Λ

Dγ(λk) = Ω (1.3)

i.e. if the image domain Ω can be covered by disks Dγ(λk) of radius γ that are centered
on the sampling points λk. The value υ := 2γ will be called the “maximal gap” of
the sampling set Λ whenever γ is the minimal value such that Λ is γ-dense.

Our problem is to recover as much as possible of u, from our knowledge of the
sampling geometry Λ, the blurring kernel h, the statistics of the noise n, and the
irregular samples g.

The case of recovering an irregularly sampled image on a regular sampling grid was
already considered by the first author in [2], but the MTF was assumed to be an ideal
window (with Nyquist frequency cutoff), i.e., ĥ = χ[−1/2,1/2]2 . Different numerical
algorithms were tested in the case where the sampling set is perturbed according
to (1.2) and the period of the maximum vibration frequency satisfies Tε > 2, and
they worked relatively well only within a low-frequency spectral region R ⊆ [−α, α]2,
where α ≈ 1

2 − 1/Tε. When attempting to recover û on the high frequency band
[−1/2, 1/2]2\R serious theoretical and numerical problems appeared and, actually,
restoration errors were most important in that band.

A second problem considered in [2] was the study of how to circumvent the aliasing
artifacts when the sampling is assumed to be regular, but the MTF ĥ is not restricted
to [−1/2, 1/2]2. As the author concluded (see also [3]), an optimal spectral region
R similar to [−1/2, 1/2]2 could be found (depending on h, and a statistical model of
the image u and the noise n) where sampled coefficients contain a minimal amount of
noise and aliasing. Then, following [38], Almansa proposed to extrapolate the restored
information on R to a region R′ containing [−1/2, 1/2]2 and R by minimizing the total
variation.

We consider in this paper the following variational model for restoring u, based
on the full image formation model given by equation (1.1):

min
u

J(u),

subject to ‖w · (∆Λ · (p ∗ h ∗ u)− g) ‖2
`2(Λ) ≤ N2σ2,

(1.4)

or its unconstrained formulation

min
u

1
2λ
‖w · (∆Λ · (p ∗ h ∗ u)− g) ‖2

`2(Λ) + J(u), (1.5)

where ∆Λ : C(R2) → `2(Λ) is given by ∆Λ(v) = {v(λk)}N2

k=1, J(u) =
∫
ΩN

|∇u| is the
total variation of u, w : Λ → R is a weighting function acting as a preconditionner
(typically is the Voronöı area of the sampling set Λ, see Section 2.1 ), and p is a spectral
projector (e.g. p̂ = χR or a prolate function, see Section 6) on a low-band region R
which depends both on the MTF and the irregularity of the sampling set. Notice
that the image model (1.1) has been introduced as a constraint in (1.4) expressing
that the σ2 is an upper estimate of the variance of the noise. The constraint has
been incorporated in (1.4) via a Lagrange multiplier λ−1 (with λ > 0), although
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one can also see λ as a penalization parameter. The total variation penalizes the
oscillations that may appear when we extrapolate the high frequencies in the spectral
region containing [−1/2, 1/2]2. Let us mention that, as discussed in [2] in the context
of regular sampling, the right choice of the spectral region R permits to reduce the
aliasing effects, but we shall not consider this problem here. For us p̂, the Fourier
transform of p, will be different from zero on the region R and zero on [−1/2, 1/2]2\R.
This is a way to impose that the restored image fits the data g at low frequencies and
the high ones are extrapolated via the total variation minimization.

The use of total variation for image restoration problems was originally proposed
by Rudin, Osher and Fatemi in [36]. Functions with finite total variation, usually
called bounded variation functions [4, 25, 46], are a reasonable functional model for
many problems in image processing, in particular, for image restoration problems
[36]. Typically, functions of bounded variation in the plane have discontinuities along
rectifiable curves, being continuous in some sense (in the measure theoretic sense)
away from discontinuities. These discontinuities could be identified with edges. The
ability of total variation regularization to recover edges is one of the main features
which advocates for the use of this model (its ability to describe textures is less clear,
some textures can be recovered, but up to a certain scale of oscillation). We refer to
[25, 46] for the definition of functions of bounded variation and its basic properties.

Many numerical algorithms have been proposed to minimize total variation sub-
ject to constraints (we refer to [6] for a survey). The particular case of total variation
image denoising, for which the image formation model (1.1) simplifies to g = u + n,
has been widely studied numerically [18, 19, 20, 21, 44]. Still, in a recent work [16], A.
Chambolle proposed a very interesting algorithm to solve it for which the convergence
could be proved (see [7] for a related work) . In this work, we shall extend Chambolle’s
result to the case of total variation image restoration under the constraint given by
the general image formation model (1.1). Let us say explicitly that both the PSF h (or
the MTF ĥ) and the sampling grid Λ (alternatively the grid perturbation function ε)
are assumed to be known exactly, and that the only thing known about the noise nλk

is that it is a white Gaussian noise with zero mean and known variance σ2. Several
methods exist to estimate all these parameters for a given acquisition device and we
shall not address this question here.

As we have just said, the main focus of the present work will be to tackle the
full image restoration model (1.1). For that, we study the case of irregular to regular
bandlimited sampling, and we observe that the ideas of the ACT algorithm proposed
by Feichtinger, Gröchenig, Strohmer and Rauth [27, 32, 41] fit perfectly within our
framework. Indeed, they can be easily combined with our extension of Chambolle’s
ideas to write a TV-regularized irregular to regular sampling algorithm. The proposed
variational model (1.5) includes not only irregular sampling but also deconvolution,
denoising, antialiasing and zoom. All these features, except the antialiasing, will
be considered in this work. We shall prove the feasibility of a numerical algorithm,
which combines Gröchenig and Chambolle’s techniques, for solving (1.5). Let us
mention that, as far as we know, in most of the irregular sampling literature, the only
regularizers considered are linear, akin to Tikhonov regularization.

Let us finally explain the plan of the paper. In Section 2 we introduce the problem
of irregular to regular sampling and we review the ACT algorithm of Gröchenig and
Strohmer [32]. Section 3 explains our extension of Chambolle’s algorithm [16] for
total variation based image denoising to the more general case of image restoration
which permits to include irregular to regular sampling, deconvolution, denoising, and
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zoom. The variational approach to the general image restoration problem formulated
in (1.5) is studied in Section 4. In Section 5 we discuss a method to incorporate the
constraint of the image acquisition model (1.1) in a local way. The inclusion of zoom
in the general algorithm is studied in more detail in Section 6. Finally, in Section 7
we display some experimental results. Section 8 summarizes the main conclusions of
this work.

2. Irregular to regular sampling. Micro-vibrations of satellites together with
irregularities in sensors position result in irregular sampling sets in satellite imaging.
In most cases, the knowledge of certain vibration modes and the analysis of acquired
images help to estimate with high accuracy the perturbations in the sampling grid,
which can be modeled [2] by

ε(x) =
q∑

k=1

ak(x)cos(2π〈ξk, x〉+ φk), x ∈ R2, (2.1)

for some q ≥ 1, where ak(x) are smooth modulation functions and the vibration
frequencies ξk are an order of magnitude (or even more) below the Nyquist frequency
of the sampling rate. The bound on the modulation functions is inversely proportional
to ξk and the number of vibration modes is small. This results in smooth and small
perturbations with |ε(x)| no larger than a few pixels, and perturbation slope |ε′(x)| no
larger than about one tenth of a pixel per pixel. As a consequence these perturbations
are hardly noticeable and we should talk of perturbed sampling rather than irregular
sampling in those cases. Even if the image distortion is not evident from a geometrical
point of view it is very important to correct the perturbations in image registration
applications where a sub-pixel accuracy is necessary.

In order to be less dependent on a particular physical instrument, in our exper-
iments we used a simplified version of this model which still captures its main char-
acteristics, namely the perturbation function ε = (ε1, ε2) is simulated as a discrete
colored noise, i.e. for ξ ∈ (Z/N)2 we define

ε̂i(ξ) ∼ N(0, σ̄2) if |ξ| ≤ 1/Tε

= 0 otherwise (2.2)

where σ̄ is chosen in such a way that the standard deviation of εi(x) is A for i ∈ {1, 2}.
This gives σ̄ = ATε

2 (we have taken the Fourier transform as an isometry). Thus the
behavior of the perturbation is governed by the two parameters ”amplitude” A and
maximal vibration frequency 1/Tε (or ”minimal vibration period” Tε), even though
these two parameters obviously do not completely determine ε. The precise values of
A and Tε will be specified in Section 7.

There exist many works on the literature dealing with the irregular sampling
problem. However, many of them are iterative algorithms which are adapted to
well-conditioned problems and small data sets but are inadequate to more realistic
problems with large sampling sets and their generalization to the two dimensional
case is not always evident. A comparison between several iterative methods can be
found in [9, 28]. In [2] the author makes a survey of other techniques [27, 32, 41, 1]
which are well-suited for the two dimensional case and also proposes a pseudo-inverse
algorithm.

2.1. ACT algorithm. One of the best performing reconstruction methods avail-
able for irregular to regular sampling is the ACT algorithm, initially developed by
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Feichtinger et al. [27], and further analyzed, refined and generalized by Gröchenig
and Strohmer [32], and Rauth [41]. The method intelligently combines an accelerated
version of the frame iteration derived from the proof of Kadec’s theorem [45, 34],
with adaptive weights in order to improve the condition number of the problem, a
conjugate gradient iteration which accelerates convergence, and the formulation of
the problem as a Toeplitz system in order to gain structure and, thus, numerical ef-
ficiency. Furthermore, the preparation steps before the conjugate gradient iteration
can start can benefit from the USFFT (for unequally spaced fast Fourier transform)
algorithm developed by Beylkin [13, 14].

More precisely, the algorithm is based on a representation of a discrete image
{u(i, j)}N−1

i,j=0 as a discretization of a trigonometric polynomial of order N/2 (for sim-
plicity of notation we shall assume that N is an even number) in each variable ([27, 32])

u(x) =
∑

n∈{−N
2 ,..., N

2 −1}2
ane

2πi
N 〈n,x〉, (2.3)

so that the interpolation conditions at the irregular sample points Λ = {λk}N2

k=1 ⊆ R2

become

gk = u(λk) =
∑

n∈{−N
2 ,..., N

2 −1}2
ane

2πi
N 〈n,λk〉, k ∈ {1, . . . , N2}, (2.4)

or, equivalently, in matrix form

g = Sa, where S = ((skn)), skn = e
2πi
N 〈n,λk〉, (2.5)

i.e. S is the Vandermonde matrix associated to the trigonometric polynomial in (2.4).
Note that S maps a ∈ `2({−N

2 , . . . , N
2 − 1}2) to {u(λk)} ∈ `2(Λ) defined in (2.4). Let

us write `2N instead of `2({−N
2 , . . . , N

2 − 1}2). Thus, the problem is reduced to solve
the linear system of equations (2.5). But, if Λ contains some regions with extremely
dense sampling or large gaps, then the system will not be well balanced. In order to
improve the condition number, the k-th equation is multiplied by a weight

wk = area ({x : |x− λk| < |x− λj |, ∀j 6= k}) , (2.6)

which is inversely proportional to the sampling density at λk. Thus, the use of weights
wk compensates the local variations in the sampling density. Moreover, the adaptive
weights method provides explicit estimates for the rate of convergence and, therefore,
gives useful stopping criteria. In addition, instead of solving the linear system (2.5)
directly, it will be more convenient to solve the system of normal equations

S∗WSa = S∗Wg (2.7)

because the N2 ×N2 matrix T := S∗WS (where W = diag({wk}k=1..N2)) is always
a square matrix which has a Toeplitz structure [27, 32], so that the multiplication
Ta can be efficiently computed in N2 log2(N2) time using Fourier methods. Defining
T = S∗WS = (tn−n′)nn′ and b = S∗Wg in equation (2.7), the non-harmonic series

tn =
N2∑
k=1

e−
2πi
N 〈n,λk〉wk (2.8)

bn =
N2∑
k=1

e−
2πi
N 〈n,λk〉wkgk, (2.9)
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n ∈ {−N
2 , . . . , N

2 − 1}2, can be approximated using the USFFT [13] in CN2 log2(N2)
time each, where C is a constant, which is inversely proportional to the required
precision. The theory developed in [27, 32] also permits to consider the case of more
irregular samples than frequencies but we shall not need this here.

Let us observe that, if T is not invertible, the solution of (2.7) is replaced by the
minimum norm solution of the problem

min
a
‖Ta− b‖2

`2N
, (2.10)

and we shall understand that this choice is always taken when T is not invertible.

The overall procedure can be summarized in the following algorithm.

Algorithm 1: ACT algorithm
Requires: N2 irregular samples in vector g.
Ensures: N2 regular samples in vector u.
1. Compute T = S∗WS and b = S∗Wg using the USFFT.
2. Solve Ta = b using conjugate gradients.
3. Compute the regular samples u(i, j) for (i, j) ∈ {0, . . . , N − 1}2 by applying

the inverse FFT to a.
The convergence rate of the CG algorithm is determined by the condition num-

ber κ = cond(T ), or the ratio of the largest to the smallest eigenvalue of T . More
precisely at each iteration the approximation error is decreased by a factor

√
κ−1√
κ+1

[30].
Gröchenig [31] and Gröchenig and Strohmer [32] provided a useful characterization of
the condition number of T in the 2-dimensional case,

Proposition 2.1 (ACT convergence rate). If the sampling set is γ-dense with

γ <
log 2
2π

,

then the matrix T is invertible, its condition number is

κ ≤ 4
(2− e2πγ)2

, (2.11)

and Algorithm 1 converges to the exact solution.
Remarks:
1. The invertibility of T does not depend on the choice of the weights wk. Indeed,

S∗WS and S∗S have the same kernel and the matrix T will be invertible if
and only if its kernel is {0}. Proposition 2.1 gives us a sufficient condition for
the invertibility of T which depends only on the maximal gap υ = 2γ.

2. The estimate (2.11) on κ is only valid if we are using adaptive weights.
3. As a consequence of using this kind of weights, the rate of convergence is

independent of possible clustering shapes in the set of samples and depends
only on the maximal gap between samples.

4. Increasing the number of samples (oversampling) improves the condition num-
ber (2.11).

5. The sampling density of a regular grid Γ := {n1e1 + n2e2 : n1, n2 ∈ Z}
(generated by a basis e1, e2 of R2) is the number of samples per unit area
and is given by ρ(Γ) := 1

det(Γ) . One would like to satisfy Shannon’s sampling
theorem with as least samples as possible, i.e., with the lowest possible value
of ρ(Γ), a number which is called the critical sampling rate (see [3] for a
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more precise definition). Now, concerning Proposition 2.1, we note that the
sampling has to be much more dense than the critical sampling rate (which is
one in our case), for the algorithm to ensure convergence to the exact result, a
condition which does not hold in the case of satellite imaging.1 Nevertheless,
even when T is not invertible (and has an infinite condition number), the CG
iteration chooses among the minimizers of ‖Ta − b‖`2N

the one of minimal
norm, i.e. a = T+b, where T+ is the pseudo-inverse of T .

6. In our particular case, we are working with perturbed sampling sets. The
perturbation in satellite imaging is of the form (2.1), producing smooth and
small perturbations over the uniform grid. Thus, the distribution of sampling
points is uniform and the use of weights wk is not relevant in that case (in
practice we fix wk = 1 for all k).

On the other hand, if we know the a-priori spectral decay rate of the image

|û(ω)| ≤ Cφ(ω),

and the known transfer function, we can regularize the solution by imposing this
decay rate (typically φ(ω) = (1 + |ω|)−r for r ∈ [1, 2], or a combination of these
natural decay rates). As proposed in [32], if T is not invertible or is ill-conditioned,
the a priori information about the frequency decay can be incorporated by using one
of the following two algorithms:
(i) we compute the minimum norm least squares solution of the modified system
DTa = Db, i.e., the minimum norm solution of the problem

min
a
‖DTa−Db‖`2N

, (2.12)

where D = diag
(
{φ( 2π

N n)}n∈{−N
2 ,..., N

2 −1}2
)

is a diagonal matrix containing the cor-

responding values of φ(ω). In this way we shall obtain the solution a = (DT )+Db,
where (DT )+ is the pseudo-inverse of DT .
(ii) we compute the minimum norm solution of the problem

min
c
‖TDc− b‖`2N

, (2.13)

where a = Dc; in this case the solution is a = D(TD)+b.
In either case the solution coincides with T−1b, if T is invertible. But in more

realistic cases where T is not invertible or ill-conditioned, the minimum norm solu-
tion of (2.13) is the one which best follows the prescribed spectral decay rate, i.e.
D−1a = c is of minimal norm, thus penalizing large Fourier coefficients in high fre-
quencies. Similarly, but more subtly, the minimization of residuals corresponding to
high frequencies in (2.12) (related to high frequency coefficients of a) will be neglected
–after multiplication by D which makes them smaller– in favor of the minimization
of ‖a‖`2N

leading also to solutions with smaller high frequency coefficients. This is a
heuristic approach in consonance with the experiments [32] (see also the experiments
in Section 7).

Note (still following [32]) that Algorithm 1 can be adapted to solve (2.12) and
(2.13), although we have only implemented the first approach: it suffices to replace

1The bound on the density γ can be significantly relaxed in the one-dimensional case and in
the case of a “separable” two-dimensional perturbation [32], which is a quite good approximation to
perturbed sampling by push-broom acquisition devices such as a vibrating satellite.
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the solution of Ta = b by conjugate gradients in step 2 by the solution of DTa = Db
by preconditioned conjugate gradients. In contrast to the original purpose of the pre-
conditioned conjugate gradients, here the matrix D is not acting as a preconditioner
(actually it is possible that we decrease the rate of convergence using D) but to obtain
an improved and regularized solution via incorporating a priori information about the
frequency decay [32].

This discussion explains why the ACT algorithm of Gröchenig and Strohmer
[32] provides good approximations to the exact solution, even when the convergence
conditions in Proposition 2.1 are not satisfied (as in the case of satellite imaging),
while at the same time the convergence rate is not that good.

3. Generalization of Chambolle’s algorithm. We shall denote by Ω the
image domain, which is assumed to be a rectangle in R2. For simplicity, we shall
write

J(u) :=


∫

Ω

|Du| if u ∈ BV (Ω)

+∞ if u ∈ L2(Ω) \BV (Ω),

(3.1)

where BV (Ω) denotes the space of functions of bounded variation in Ω (see [25, 46]).
In [16], Chambolle proposed a numerical algorithm to solve the total variation

approach to image denoising, which can be written as a constrained minimization
problem

min J(u)

with
∫

Ω

|u− g|2 dx ≤ σ2|Ω|.
(3.2)

The constraint corresponds to the assumption that σ is an upper bound of the stan-
dard deviation of the noise. The constraint is a way to incorporate the simplified
image acquisition model given by g = u+n, reflecting the fact that the ideal image u
has been distorted by a Gaussian white noise n. In practice, problem (3.2) is solved
via the following unconstrained minimization problem

min
u

J(u) +
1
2β

∫
Ω

(u− g)2 dx, (3.3)

where β−1 > 0 is some Lagrange multiplier. As it has been observed in many places
(see [17, 43, 6]), problem (3.3) has a unique solution in BV (Ω). Moreover, for any
β > 0, the solution u of (3.3) satisfies the Euler-Lagrange equation

u + β∂J(u) 3 g, (3.4)

where ∂J(u) denotes the subdifferential of J at u, i.e.,

∂J(u) = {w ∈ L2(Ω) : J(v)− J(u) ≥ 〈w, v − u〉,∀v ∈ L2(Ω)}.

We recall that u → ∂J(u) is a multivoque operator, this explains the 3 sign in (3.4)
instead of the more classical equality sign.

In [16], the author proposed an algorithm to solve the discrete version of (3.4)
and he proved its convergence. This algorithm was also proposed in [11], though in



RESTORATION AND ZOOM OF IRREGULARLY SAMPLED IMAGES 9

a different context. Our purpose is to extend this algorithm to be able to apply it in
the more general case where the image formation model is given by (1.1) (see Section
4).

Even if we shall need them only in the discrete case, let us first develop the basic
arguments in a continuous framework. For that, let Q be a bounded linear self-adjoint
operator in L2(Ω), and assume that Q is positive definite, hence invertible. We want
to solve the equation

Q(u) + β∂J(u) 3 b, (3.5)

where b ∈ L2(Ω), and β > 0, which is nothing else than the Euler-Lagrange equation
for the minimization problem

min
u

J(u) +
1
2β

∫
Ω

(Q1/2(u− g))2 dx, (3.6)

for g = Q−1b. We observe that, under our assumption of invertibility of Q, existence
and uniqueness of solutions of (3.6) has been proved in several papers, let us mention
[17, 38, 43, 6] to quote a few of them. Equation (3.5) could be written in a more
classical way as

Q(u)− βdiv
( Du

|Du|

)
= b,

[ξ, νΩ] = 0,

(3.7)

where ξ represents the vector field Du
|Du| , since ∂J(u) is nothing else than the operator

−div
(

Du
|Du|

)
coupled with Neumann boundary conditions, and νΩ(x) denotes the outer

unit normal at the point x ∈ ∂Ω (see, for instance, [23], vol. 5). For a precise
characterization of ∂J(u) we refer to [5, 43] (see also [6]) where it was introduced to
give a more classical PDE sense to ∂J(u).

Our next proposition extends the result in [16] to the case of a general operator
Q as above.

Proposition 3.1. Let Q be a bounded linear self-adjoint operator in L2(Ω).
Assume Q is positive definite, hence invertible. We define the sets

V := {ξ ∈ L∞(Ω, R2) : ‖ξ‖∞ ≤ 1, [ξ · νΩ]|∂Ω = 0},

and

K := {div ξ : ξ ∈ L∞(Ω, R2), ‖ξ‖∞ ≤ 1, [ξ · νΩ]|∂Ω = 0}.

Let u be the solution of (3.5). Then u = Q−1(b + βdiv ξ), where ξ is the solution of
the variational problem

min
{ξ∈V}

‖div ξ + β−1b‖Q (3.8)

and ‖ · ‖Q is the norm in L2(Ω) defined as, ‖w‖Q = ‖Q−1/2w‖. In other words, div ξ
is the projection of −β−1b onto the convex set K in the Hilbert space norm ‖ · ‖Q.
Proof. Following the arguments in [16], let us write (3.5) as

1
β

(b−Q(u)) ∈ ∂J(u). (3.9)
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Now, this implies that

u ∈ ∂J∗(
1
β

(b−Q(u))), (3.10)

where J∗ denotes the Legendre-Fenchel transform of J given by

J∗(v) = sup
u
{〈v, u〉 − J(u)},

since the relation v ∈ ∂J(w) is equivalent to w ∈ ∂J∗(v). Let

b̃ = Q−1b, w = b̃− u,

so that

Q(u) + Q(w) = b. (3.11)

Then we may write (3.10) as

u ∈ ∂J∗(
1
β

Q(w)), (3.12)

which, after multiplication by β−1Q becomes

β−1Q(u) ∈ β−1Q ◦ ∂J∗(
1
β

Q(w)). (3.13)

Since Q is a bounded self-adjoint operator in L2(Ω), we have ∂(J∗ ◦ (β−1Q)) =
(β−1Q) ◦ ∂J∗ ◦ (β−1Q) [24], hence we may write (3.13) as

β−1b− β−1Qw = β−1Q(u) ∈ ∂(J∗ ◦ (β−1Q)))(w). (3.14)

Now, we observe that (3.14) corresponds to the Euler-Lagrange equations of the vari-
ational problem

min
w

1
2
〈Qw,w〉 − 〈b, w〉+ β(J∗ ◦ (β−1Q))(w). (3.15)

Notice that, since J is homogeneous of degree one (i.e. J(λu) = λJ(u) for every
u and any λ > 0), then J∗ is the indicator function of a convex set K ([24]):

J∗(v) = δK(v) =:=

 0 if v ∈ K

+∞ if v 6∈ K.
(3.16)

Observe that K := {div ξ : ξ ∈ V}. Then we may write (3.15) as

min
{w:β−1Q(w)∈K}

1
2
〈Qw,w〉 − 〈b, w〉 (3.17)

Writing β−1Q(w) ∈ K as β−1Q(w) = −div ξ for some ξ ∈ V, we may write (3.17) as

min
{ξ∈V}

β

2
〈Q−1div ξ, div ξ〉+ 〈div ξ,Q−1b〉, (3.18)
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after dividing by β the energy functional. Now, observing that

β

2
‖Q−1/2div ξ + β−1Q−1/2b‖2 =

β

2
〈Q−1div ξ, div ξ〉+ 〈div ξ,Q−1b〉+

β

2
‖β−1Q−1/2b‖2

we may write the minimization problem (3.18) as

min
{ξ∈V}

‖div ξ + β−1b‖Q. (3.19)

�

3.1. The discrete case formulation. We denote by X the Euclidean space
RM×M . The Euclidean scalar product and the norm in X will be denoted by 〈·, ·〉X
and ‖ · ‖X , respectively. Then the image u ∈ X is the vector u = (u(i, j))M−1

i,j=0, and
the vector field ξ is the map ξ : {0, . . . ,M − 1}× {0, . . . ,M − 1} → R2. If u ∈ X, the
discrete gradient is a vector in Y = X ×X given by

∇+,+u := (∇+
x u,∇+

y u),

where

∇+
x u(i, j) =

{
u(i + 1, j)− u(i, j) if i < M − 1

0 if i = M − 1,
(3.20)

∇+
y u(i, j) =

{
u(i, j + 1)− u(i, j) if j < M − 1

0 if j = M − 1 (3.21)

for i, j = 0, . . . ,M − 1. Other choices of the gradient are possible, this one will be
convenient for the developments below.

The Euclidean scalar product in Y is defined in the standard way by

〈p, q〉Y =
∑

0≤i,j≤M−1

(p1
i,jq

1
i,j + p2

i,jq
2
i,j)

for every p = (p1, p2), q = (q1, q2) ∈ Y . The norm of p = (p1, p2) ∈ Y is, as usual,
‖p‖Y = 〈p, p〉1/2

Y . We denote the euclidean norm of a vector v ∈ R2 by |v|. Then the
discrete total variation is

Jd(u) = ‖∇+,+u‖Y =
∑

0≤i,j≤M−1

|∇+,+u(i, j)|. (3.22)

We have

Jd(u) = sup
p∈Y, |pi,j |≤1 ∀(i,j)

〈p,∇+,+u〉Y . (3.23)

When necessary we shall write XM , YM , JM
d instead of X, Y , Jd to stress the depen-

dence on M .
By analogy with the continuous setting, we introduce a discrete divergence div−,−

as the dual operator of ∇+,+, i.e., for every p ∈ Y and u ∈ X we have

〈−div−,− p, u〉X = 〈p,∇+,+u〉Y .
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One can easily check that div−,− is given by

div−,−p(i, j) =

 p1(i, j)− p1(i− 1, j) if 0 < i < M − 1
p1(i, j) if i = 0

−p1(i− 1, j) if i = M − 1

+

 p2(i, j)− p2(i, j − 1) if 0 < j < M − 1
p2(i, j) if j = 0

−p2(i, j − 1) if j = M − 1

(3.24)

for every p = (p1, p2) ∈ Y . In this setting, we have

J∗d (v) = δKd
(v) =:=

 0 if v ∈ Kd

+∞ if v 6∈ Kd,
(3.25)

where

Kd := {div−,− p : |pi,j | ≤ 1, ∀ i, j ∈ {0, . . . ,M − 1}}.

Let us also denote by Q a self-adjoint positive definite matrix acting on X, and let
b ∈ X. Our purpose is to solve the equation

Q(u) + β∂Jd(u) 3 b (3.26)

for some u ∈ X which corresponds to the Euler-Lagrange equation for the minimiza-
tion problem in X:

min
u∈X

Jd(u) +
1
2β
‖Q1/2(u− g)‖2

X (3.27)

for g = Q−1b. Again, under our assumptions on Q, there exists a unique solution of
(3.27) ([17, 38, 43, 6]). Proceeding as in the continuous framework we have to solve
the problem

min
{ξ∈Vd}

β

2
〈Q−1div−,− ξ, div−,− ξ〉X + 〈div−,− ξ,Q−1b〉X , (3.28)

which may be written as

min
{ξ∈Vd}

‖div−,− ξ + β−1b‖Q, (3.29)

where

Vd = {ξ ∈ Y : |ξ(i, j)|2 − 1 ≤ 0, ∀ i, j ∈ {0, . . . ,M − 1}}

and

‖w‖Q = ‖Q−1/2w‖X , w ∈ X.

The solution of (3.29) is the unique projection of −β−1b onto the convex set Kd ⊆
X, when X is endowed with the norm ‖ · ‖Q. We shall denote this projection by
ΠQ

Kd
(−β−1b).
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As in [16], the Karush-Kuhn-Tucker Theorem ([22], Theorem 9.2-4) yields the
existence of Lagrange multipliers α∗(i, j) ≥ 0 for the constraints ξ ∈ Vd, such that we
have for each (i, j) ∈ {0, . . . ,M − 1}2

∇+,+[Q−1div−,− ξ + Q−1(β−1b)](i, j)− α∗(i, j)ξ(i, j) = 0, (3.30)

with either α∗(i, j) > 0 and |ξ(i, j)| = 1, or α∗(i, j) = 0 and |ξ(i, j)| ≤ 1. In the later
case, we have ∇+,+[Q−1div−,− ξ + Q−1(β−1b)](i, j) = 0. In any case, we have

α∗(i, j) = |∇+,+[Q−1div−,− ξ + Q−1(β−1b)](i, j)|. (3.31)

Let ν > 0, ξ0 = 0, p ≥ 0. We solve (3.30) using the following gradient descent (or
fixed point) algorithm

ξp+1(i, j) = ξp(i, j) + ν∇+,+[Q−1div−,− ξp + Q−1(β−1b)](i, j)

−ν|∇+,+[Q−1div−,− ξp + Q−1(β−1b)](i, j)|ξp+1(i, j),
(3.32)

hence

ξp+1(i, j) =
ξp(i, j) + ν∇+,+[Q−1div−,− ξp + Q−1(β−1b)](i, j)

1 + ν|∇+,+[Q−1div−,− ξp + Q−1(β−1b)](i, j)|
. (3.33)

Observe that |ξp(i, j)| ≤ 1 for all i, j ∈ {0, . . . ,M − 1} and every p ≥ 0.
Theorem 3.2. In the discrete framework, assuming that ν < 1

8‖Q−1/2‖2 , ξp has a
subsequence which converges to a solution ξ of (3.30) where α∗ is given by (3.31). The
function ξ ∈ Y is a solution of (3.29). Moreover div−,− ξp converges to the unique
projection ΠQ

Kd
(−β−1b).

In particular, we deduce that wp = −βQ−1(div−,− ξp) converges to a solution
w = −βQ−1(div−,− ξ) of the discrete analogous of (3.17).

Finally, the solution u of (3.26) may be recovered from (3.11), i.e.,

u = Q−1(b + βdiv−,− ξ).

Proof. For simplicity, let us denote ∇ and div instead of ∇+,+ and div−,−. Let us fix
p ≥ 0, and let

η =
ξp+1 − ξp

ν
, ρ ∈ Y,

where ρ(i, j) = |∇Q−1(div ξp + (β−1b))(i, j)|ξp+1(i, j), so that

η = ∇Q−1(div ξp + (β−1b))− ρ.

Then

‖Q−1/2(div ξp+1 + β−1b)‖2
X = ‖Q−1/2(div ξp + νdiv η + β−1b)‖2

X

= ‖Q−1/2(div ξp + β−1b)‖2
X + ν2‖Q−1/2div η‖2

X + 2ν〈Q−1/2(div ξp + β−1b), Q−1/2div η〉X
≤ ‖Q−1/2(div ξp + β−1b)‖2

X + κ2ν2‖η‖2
Y − 2ν〈∇Q−1(div ξp + β−1b), η〉Y ,
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where κ is the norm of the operator Q−1/2div : Y → X, that will be estimated later
on. Since

2〈∇Q−1(div ξp + β−1b), η〉Y
= 〈∇Q−1(div ξp + β−1b), η〉Y + 〈∇Q−1(div ξp + β−1b), η〉Y
= 〈∇Q−1(div ξp + β−1b),∇Q−1(div ξp + β−1b)− ρ〉Y + 〈η + ρ, η〉Y
= ‖∇Q−1(div ξp + β−1b)‖2

Y + ‖η‖2
Y − 〈∇Q−1(div ξp + β−1b)− η, ρ〉Y

= ‖∇Q−1(div ξp + β−1b)‖2
Y + ‖η‖2

Y − ‖ρ‖2
Y ,

combining the last two computations, we have

‖Q−1/2(div ξp+1 + β−1b)‖2
X ≤ ‖Q−1/2(div ξp + β−1b)‖2

X + (κ2ν − 1)ν‖η‖2
Y

+ν(‖ρ‖2
Y − ‖∇Q−1(div ξp + β−1b)‖2

Y ).
(3.34)

Observe that

‖ρ‖Y ≤ ‖∇Q−1(div ξp + β−1b)‖Y ‖ξp+1‖Y ≤ ‖∇Q−1(div ξp + β−1b)‖Y .

By choosing ν < 1
κ2 we obtain

‖Q−1/2(div ξp+1 + β−1b)‖2
X ≤ ‖Q−1/2(div ξp + β−1b)‖2

X ,

i.e., the sequence ‖Q−1/2(div ξp + β−1b)‖2
X is decreasing. Let

m := lim
p
‖Q−1/2(div ξp + β−1b)‖2

X ,

and let ξ be the limit of a convergent subsequence {ξpj} of {ξp}. Modulo a extraction
of a subsequence, we may assume that {ξpj+1} converges to a vector ξ

′ ∈ Y . Observe
that

‖Q−1/2(div ξ
′
+ β−1b)‖2

X = ‖Q−1/2(div ξ + β−1b)‖2
X = m.

Letting pj →∞ in (3.33) we obtain

ξ
′
(i, j) =

ξ(i, j) + ν∇[Q−1div ξ + Q−1(β−1b)](i, j)
1 + ν|∇[Q−1div ξ + Q−1(β−1b)](i, j)|

. (3.35)

If we repeat here the above computations or, simply, we let pj → ∞ in (3.34) we
obtain

‖Q−1/2(div ξ
′
+ β−1b)‖2

X ≤ ‖Q−1/2(div ξ + β−1b)‖2
X + (κ2ν − 1)ν‖η‖2

Y

+ ν(‖ρ‖2
Y − ‖∇Q−1(div ξ + β−1b)‖2

Y ),

where

η :=
ξ
′ − ξ

ν
,

and

ρ := |∇Q−1(div ξ + β−1b)|ξ′.
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Hence

(κ2ν − 1)‖η‖2
Y + ν(‖ρ‖2

Y − ‖∇Q−1(div ξ + β−1b)‖2
Y ) = 0

If ν < 1
κ2 , then we deduce that η = 0, that is, ξ

′
= ξ. Hence

∇Q−1(div ξ + β−1b)− |∇Q−1(div ξ + β−1b)|ξ = 0,

which is nothing else than the Euler-Lagrange equation (3.30). Let α∗(i, j) = |∇Q−1(div ξ+
β−1b)(i, j)|. Observe that 〈α∗ξ, ξ〉 ≥ 〈α∗ξ, ξ′〉 for any ξ′ ∈ Vd. This implies that
t ∈ [0, 1] → ‖div (ξ + t(ξ′ − ξ)) + β−1b‖2

Q has a minimum at t = 0. That is, ξ is a
minimum of (3.29). Since the projection of −β−1b on Kd (when X is endowed with
the norm ‖ · ‖Q) is unique, we deduce that div ξ coincides with ΠQ

Kd
(−β−1b) and also

that all the sequence div ξp converges to ΠQ
Kd

(−β−1b).
Finally, since

‖div ξ‖2
X ≤ 8‖ξ‖2

Y

for every ξ ∈ Y , we have

κ2 ≤ 8‖Q−1/2‖2,

where ‖Q−1/2‖ is the norm of Q−1/2 on X. Thus, if ν < 1
8‖Q−1/2‖2 , we also have that

ν < 1
κ2 . �

A similar result has been proved in [8] (see also [33]) in the context of regular-
ization methods used for u + v decompositions. Minimization of (3.6), or its discrete
version (3.27), can be also accomplished with gradient descent methods on regularized
functionals Fε which Γ-converge to (3.6) [43]. Other numerical methods can be found
in [17, 18, 19, 20, 21, 38, 44].

Algorithm 2: Computing the solution of (3.26)
Assume that the datum b and the matrix Q are given, β > 0.
1. Solve w = Q−1b by CG up to precision θg.
2. Choose an initialization ξ0, take by default ξ0 = 0.

Set p = 0.
3. While |div ξp+1 − div ξp| > θz iterate in p:

(a) Solve vp = Q−1(div ξp) by CG up to precision θ′z, using as initial condi-
tion vp−1 for p > 0, or 0 if p = 0.

(b) Compute ξp+1 from equation (3.33), i.e.

Gp := ∇[vp + β−1w]
α∗p := |Gp|

ξp+1 := [ξp + νGp]/(1 + να∗p).

Let ξ̃ = ξp∗ , where p∗ is the last iteration where convergence is ensured.
4. Solve u = Q−1(b + βdiv ξ̃) by CG up to precision θu, with initial condition

w + βvp∗−1.
Since Algorithm 2 will be used in combination with Algorithm 3, we shall comment

on the parameters used after introducing Algorithm 3 in Section 4.
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4. TV-regularized irregular to regular sampling, deconvolution, denois-
ing and zoom. Let α ≥ 1 be an integer representing the oversampling factor. As-
sume that g ∈ `2(Λ) is a vector representing the N2 irregular samples. Our plan is
to compute a band limited approximation to the solution of the restoration problem
(1.5). For that we define

Bα := {u ∈ L2(ΩN ) : û is supported in {−αN

2
, . . . ,

αN

2
− 1}2}

If u ∈ Bα, then u is determined by a vector of αN × αN regular samples that,
with a slight abuse of notation, we shall also call u. Let F = FFT/(αN)2, where
FFT = (e−

2πi
αN 〈j,n〉)nj , so that a = Fu is defined by

an =
1

(αN)2
∑

j∈{0,...,αN−1}2
u(j/α)e−

2πi
αN 〈j,n〉,

where

n ∈ Iα := {−αN

2
, . . . ,

αN

2
− 1}2.

Then the inverse operator F−1 is

u(j/α) =
∑
n∈Iα

ane
2πi
αN 〈j,n〉, j ∈ {0, . . . , αN − 1}2

and we denote it as F−1 = IFFT . However the adjoint operator is F ∗ = IFFT/(αN)2,
and therefore F ∗F = I/(αN)2.

Similarly, let us call SΛ, or simply S, the irregular sampling operator mapping a ∈
`2({−N

2 , . . . , N
2 −1}2) to {v(λk)}N2

k=1 ∈ `2(Λ) where v is the trigonometric polynomial
whose Fourier coefficients are a, i.e., a = Fv, and

v(λk) = (Sa)k =
∑

n∈{−N
2 ,..., N

2 −1}2
ane

2πi
N 〈λk,n〉,

k ∈ {1, . . . , N2}. Let P = diag({p̂( 2πn
αN )}n∈Iα), H = diag({ĥ( 2πn

αN )}n∈Iα) be the diag-
onal operators containing along their diagonals the Fourier coefficients of the spectral
projector p and the blurring kernel h, respectively. We recall that the spectral projec-
tor vanishes for frequencies in Iα \ {−N

2 , . . . , N
2 − 1}2. Thus, the notation SPb, b =

(bn)n∈Iα
, is understood as S(Pb|{−N

2 ,..., N
2 −1}2). Finally, W = diag({wk}k∈{1,...,N2})

is a diagonal matrix containing the weights corresponding to the sampling points
λk ∈ Λ (see (2.6)).

We notice that Bα is a finite dimensional vector space of dimension (αN)2 which
can be identified with XαN . Both J(u) =

∫
ΩN

|∇u| and JαN
d (u) are norms on the

quotient space Bα/R, hence they are equivalent. As above, for simplicity, we shall
write Jd instead of JαN

d . We shall write X = XαN and with a slight abuse of notation
we shall indistinctly write u ∈ Bα or u ∈ X.

Now, based on the continuous model (1.5), in the discrete case we shall consider
the functional

min
u∈Bα

1
2
‖W (SHPFu− g)‖2

`2(Λ) + λJd(u), (4.1)
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for which existence is easily proved ([17, 38, 43, 6]). Uniqueness is only guaranteed
when the operator u ∈ X → WSHPFu ∈ `2(Λ) is injective ([17, 38, 43, 6]), and this
is not the case if we include zooming, i.e., when α > 1. When α = 1 we take P = I
and uniqueness is guaranteed if H(n) 6= 0 for n ∈ {−N

2 , . . . , N
2 − 1}2, S is injective

([27, 32]) and the weights wk 6= 0 for all k ∈ {1, . . . , N2}. Unfortunately we do not
know of any condition ensuring the injectivity of S in all cases of interest in satellite
imaging. Kadec’s 1

4 theorem and its extensions to the two-dimensional case cannot
ensure the stable invertibility of S if the perturbation |ε(x)| is larger than 0.11 (or
0.25 in the separable case). This fails short to be the case in satellite imaging where
perturbations can be of this order or slightly larger. For larger perturbations, or more
irregular (non-perturbed) sampling geometries we could use the results of Gröchenig
and Strohmer [31, 32] (such as the one reproduced in proposition 2.1). However,
these results only ensure the stable invertibility of S|B where B is an even smaller
frequency band than I1, i.e. only when the number of available irregular samples λk

is significantly higher than the number of Fourier coefficients an. Similarly, Beurling-
Landau type results only provide a sufficient condition for invertibility of S under a
similar constraint. For a thorough discussion on conditions under which S is known
to be invertible and well conditioned see [2]. But all these results search for a stronger
property (stability) than injectivity, or are stated in the infinite domain case. If we
only search for injectivity when we have a finite number of samples in an interval
more useful conditions have to be found.

If α > 1 and u1, u2 are two solutions of (4.1), then also u1+u2
2 is also a solution

and we have

Jd(u1 + u2) = Jd(u1) + Jd(u2),

and, since |∇+,+(u1 + u2)(i, j)| ≤ |∇+,+u1(i, j)|+ |∇+,+u2(i, j)|, we deduce that

|∇+,+(u1 + u2)(i, j)| = |∇+,+u1(i, j)|+ |∇+,+u2(i, j)|,

for all (i, j) ∈ {0, . . . , N − 1}2. This implies that for any (i, j) ∈ {0, . . . , N − 1}2

such that ∇+,+u1(i, j) 6= 0, there is a value of ηij ≥ 0 such that ∇+,+u2(i, j) =
ηij∇+,+u1(i, j), and similarly with u1 and u2 interchanged. This type of argument
is taken from [38]. A different argument but leading to the same conclusion was
considered in [10]. Observe that this is a weak uniqueness result in the sense that two
different solutions share a weak form of the topographic map, i.e., the normal to the
level lines of one of them is also normal to the level lines of the other (see [10, 38]).

Finally, the Euler-Lagrange equation corresponding to (4.1) is readily written as

0 ∈ F ∗P ∗H∗S∗W 2SHPFu− F ∗P ∗H∗S∗W 2g + λ∂Jd(u), (4.2)

where ∂Jd(u) is the subdifferential of Jd(u). Now define

T := S∗W 2S/(αN)2, T ′ := P ∗H∗THP,

r̂ := S∗W 2g/(αN)2, r̂′ := P ∗H∗r̂,
(4.3)

where the (αN)2 normalization factor is included to absorb the corresponding factor
from F−1 = F ∗/(αN)2. Recall that in this equation T and r̂ can be computed from g
and Λ in O(N2 log N2) time by means of the NFFT [40], where N2 is the number of
samples in Λ. In addition T has Toeplitz structure and the products of T by a vector
can be computed in O(N2 log N2) time using the FFT. Therefore products of T ′ by
a vector also take O(N2 log N2) time, since P and H are diagonal.
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Summarizing, the Euler-Lagrange equation (4.2) can be written as

0 ∈ F−1T ′Fu− F−1r̂′ + λ∂Jd(u), (4.4)

and can be solved by looking for a steady state solution of the evolution problem

∂u

∂t
∈ −[F−1T ′Fu− F−1r̂′ + λ∂Jd(u)]. (4.5)

For that, we use Euler’s implicit scheme, also known as Crandall-Liggett’s iteration
scheme,

um+1 − um ∈ −τ [F−1T ′Fum+1 − F−1r̂ + λ∂Jd(um+1)], (4.6)

which can be re-written as

Qum+1 + τλ∂Jd(um+1) 3 bm, (4.7)

where

Q = F−1UF

U = I + τT ′

bm = um + τr′

r′ = F−1r̂′.

(4.8)

Now for any positive τ , Q is hermitian and positive definite (hence invertible) because
T is hermitian positive semidefinite. Thus, we can solve equation (4.7) by applying
the extension of Chambolle’s technique presented in Section 3, i.e, we solve

Qum+1 − τλdiv ξ = bm, (4.9)

where ξ is the fixed point of

G(ξ) := ∇[τλQ−1(div ξ) + Q−1bm] = α∗ξ, (4.10)

with the Lagrange multipliers α∗ chosen in such a way that the constraint |ξ| ≤ 1
holds. This fixed point is obtained using the iterative scheme

α∗p = |G(ξp)|
ξp+1 = [ξp + νG(ξp)]/(1 + να∗p),

(4.11)

with ν satisfying the requirements of Theorem 3.2. In this case β = τλ, and ‖Q−1/2‖2 =
1

1+τr(T ′) , where r(T ′) denotes the spectral radius of T ′. The condition ν < 1
8‖Q−1/2‖2

can be written as

ν < 0.125(1 + τr(T ′))

and it is satisfied in particular if ν < 0.125.
The two inversions of Q that appear in equation (4.10) can be efficiently solved

by CG as in the ACT algorithm, since each product of Q by a vector only involves
multiplication by Toeplitz or diagonal matrices. In addition, for low values of τ , the
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matrix Q is better conditioned than T , which means that CG should converge faster.
The condition number of Q can be bounded by

cond(Q) =
λmax(Q)
λmin(Q)

=
λmax(T ′)τ + 1
λmin(T ′)τ + 1

≤ τλmax(T ′) + 1 (4.12)

In the particular case P = H = I (no deconvolution and no zoom), T = T ′, and
according to [27], λmax(T ) can be bounded, at least in the separable case, by (1+υ)4,
if υ is the “maximal gap” of the sampling set.

Putting all these pieces together, we have the following algorithm:
Algorithm 3: TV based restoration by solving (4.4)
1. Compute r̂ and (the first row and column in) T by means of the NFFT
2. Choose an initial condition u0 = 0, or a better guess based on the irregular

samples g.
Set m = 0.

3. While |um+1 − um| > θu τ iterate in m:
(a) Update bm = um + τr′.
(b) Solve Qu+λτ∂Jd(u) 3 bm using Algorithm 2. Let um+1 be the solution.

When using Algorithm 2 in Step 3.(b), better initializations in some of the Steps
(of Algorithm 2) can be used. For instance, in Step 1 of Algorithm 2 we solve the
system Q−1bm which we may initialize with the Q−1bm−1 if m > 0, or with 0 if m = 0.

In order to reduce the number of parameters so that the user only needs to specify
the TV regularization parameter λ and the precision θu of the final solution u, we
used the following criteria: The convergence of Chambolle’s fixed point iteration in
step 3.(b) of Algorithm 2 (used in Step 3 of Algorithm 3) imposes ν = 0.125 and the
maximal value of τ = λ−1. We set the tolerance θz = θu/2 since Q−1 is contractive
(i.e. this operation does not increase the error already present in bm + λτdiv ξ̃m+1)
and we want an error of order θu in um. As we want a precision θz in div ξp+1 (see
step 3.(b) in Algorithm 2), we set θg = θu/2 and θ′z = θz/10. The reason for the
tolerance θ′z = θz/10 in 3.(a) of Algorithm 2 is that, from numerical experimentation,
we know that the number of iterations in p done in step 3.(b) of Algorithm 2 does
not exceed 10.

For a full justification of Algorithm 3, we prove the convergence of the iterations
(4.6) as m →∞ to a solution of (4.1). This type of result was proved in the continuous
case by L. Vese in [43], Theorem 5.4. Our proof will be based on the techniques in
[15].

Proposition 4.1. Let X = XαN . For any u0 ∈ X, the sequence um converges
to a solution u of (4.1) as m →∞.
Proof. For convenience of notation, let us write

G(u) :=
1
2
‖W (SHPFu− g)‖2

`2(Λ).

Then for each m ≥ 0 um+1 is a solution of

um+1 − um

τ
+ λ∂Jd(um+1) + ∂G(um+1) 3 0. (4.13)

Let u ∈ X be a solution of the variational problem (4.1). Then we have

λ∂Jd(u) + ∂G(u) 3 0,
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and, therefore,

um+1 − u + τλ(∂Jd(um+1)− ∂Jd(u)) + τ(∂G(um+1)− ∂G(u)) 3 um − u. (4.14)

Multiplying (4.14) by um+1−u and using that both ∂Jd and ∂G are maximal monotone
operators, we have

|um+1 − u|2X ≤ 〈um − u, um+1 − u〉X ≤ |um − u|X |um+1 − u|X ,

hence

|um+1 − u|X ≤ |um − u|X , (4.15)

and, thus, um is bounded in X. Hence, we may extract a subsequence umj such that
umj converges to some function u∗ in X.

Now, multiplying (4.13) by um+1−um

τ , taking scalar products, and adding the
identities obtained we have

p∑
m=0

∥∥∥∥um+1 − um

τ

∥∥∥∥2

X

=
1
τ

p∑
m=0

〈∂(λJd + G)(um+1), um − um+1〉X

≤ 1
τ

p∑
m=0

((λJd + G)(um)− (λJd + G)(um+1)).

Hence,

τ

p∑
m=0

∥∥∥∥um+1 − um

τ

∥∥∥∥2

X

+ (λJd + G)(up+1) ≤ (λJd + G)(u0). (4.16)

This estimate implies that um+1 − um → 0 as m →∞.
Letting m →∞ in (4.13) along the sequence mi we have that u∗ is a solution of

λ∂Jd(u) + ∂G(u) 3 0.

In other words, u∗ is a solution of (4.1). Replacing u by u∗ in (4.15), we have

|um+1 − u∗|X ≤ |um − u∗|X , (4.17)

for all m. Together with umi
→ u∗, this implies that um → u∗ as m →∞. �

This result proves that, in spite of not having a strong form of uniqueness for
(4.1), the solutions of the discrete in time gradient descent converge to a solution of
it.

5. Constrained image restoration: working with local constraints. As
noticed in [12], the use of a global constraint in image restoration problems based
on total variation regularization may be inadequate in images which contain very
different regions. The usual formulation of the constrained total variation approach
to image restoration is based on the minimization problem

min
u∈X

Jd(u)

∑
λk∈Λ

|SHPFu(λk)− g(λk)|2 ≤ σ2N2,
(5.1)
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where the constraint incorporates our knowledge on the image acquisition model (1.1)
in an integral way. The unconstrained formulation of the problem is:

min
u∈X

max
γ≥0

Lg(u, γ) (5.2)

where

Lg(u, γ) := Jd(u) +
γ

2

[
1

N2

∑
λk∈Λ

|SHPFu(λk)− g(λk)|2 − σ2

]

and γ ≥ 0 is a Lagrange multiplier. The appropriate value of γ can be computed using
Uzawa’s algorithm [26] so that the constraint in (5.1) is satisfied. The parameter γ
is such that γ−1 can be identified with the penalization parameter λ in (4.1). Recall
that in this case λ controls the importance of the regularization term, and if we set
this parameter to be large, then homogeneous zones are well denoised while highly
textured regions will loose a great part of its structure. On the contrary, if λ is set
to be small, texture will be kept but noise will remain in homogeneous regions. On
the other hand, as the authors of [12] observed, if we use the constrained formulation
(5.1), or equivalently (5.2), then the Lagrange multiplier does not produce satisfactory
results since we do not keep textures and denoise flat regions simultaneously, and they
proposed to incorporate the image acquisition model as a set of local constraints,
adapted to the different regions of the image.

Following [12], in order to adapt the restoration of irregularly sampled images to
the use of local constraints on the data fidelity term, we assume that {O1, ..., Or} is
a partition of Λ into regions. We define

IOl
(u) :=

1
|Ol|

∑
λk∈Ol

|SHPFu(λk)− g(λk)|2 (5.3)

where |Ol| denotes the number of pixels in Ol. The problem (5.1) is replaced by

min
u∈X

Jd(u)

subject to IOl
(u) ≤ σ2, ∀ l = 1, ..., r.

(5.4)

The unconstrained formulation of this problem is

min
u∈X

max
γl≥0

L(u, {γl}) (5.5)

where

L(u, {γl}) := Jd(u) +
1
2

r∑
l=1

γl(IOl
(u)− σ2),

where γl, l = 1, . . . , r is a set Lagrange multipliers associated to the constraints in
(5.4). Let us recall that the partition {Ol}r

l=1 can be obtained with the simplified
version [35] of the Mumford-Shah segmentation algorithm [39] applied to the image
g. The segmentation algorithm is stopped to ensure that regions Ol have an area of
at least 200 pixels to ensure that the sum in (5.3) gives a good estimate of σ2 ([12]).

The strategy would be to use Uzawa’s method (see [26]) to solve problem (5.5).
To guarantee that the assumptions of Uzawa’s method hold we shall use a gradient
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descent strategy. For that, let τ > 0, v ∈ X. At each step we have to solve a problem
like

min
u∈X

1
2τ
‖u− v‖2

X + Jd(u)

subject to IOl
(u) ≤ σ2, ∀ l = 1, ..., r,

(5.6)

whose unconstrained formulation is

min
u∈X

max
γl≥0

Lτ (u, {γl}; v) (5.7)

where

Lτ (u, {γl}; v) :=
1
2τ
‖u− v‖2

X + Jd(u) +
1
2

r∑
l=1

γl(IOl
(u)− σ2).

Note that for fixed values of {γl}, the minimization with respect to u in (5.7)
amounts to solving a problem of type (4.7) if we recall how (4.7) was derived from
(4.1), and we observe that we may write

r∑
l=1

γlIOl
(u) =

∑
λk∈Λ

ω(λk)|SHPFu(λk)− g(λk)|2 = ‖W (SHPFu− g)‖`2(Λ)

where W = diag({
√

ω(λk)}k=1,...,N2), where ω(λk) =
∑r

l=1
γl

|Ol|χOl
(λk), and λ = 1

in (4.1). So, the structure of the algorithm adapted to the case of local constraints is
basically the same, except for the actualization of W , T ′ and r̂′ each time that the
values of γl change. Recall that in the previous case W = I, and T ′, r̂′ defined in
(4.3) were computed only at the beginning.

Thus, as regards the numerical implementation, the algorithm is:
Algorithm 4: TV based restoration algorithm with local constraints
1. Set u0 = 0 or a better guess based on the irregular samples g.

Set m = 0.
2. Use Uzawa’s algorithm to solve the problem

min
u∈X

max
γl≥0

Lτ (u, {γl};um), (5.8)

that is:
(a) Choose any set of values γ0

l ≥ 0, l = 1, . . . , r.
Iterate from p = 0 until convergence of γp

l the following steps:
(b) With the values of γp

l solve

min
u

Lτ (u, {γp
l };um)

using Algorithm 2 with λ = 1, W = diag({
√

ω(λk)}k=1,...,N2), where
ω(λk) =

∑r
l=1

γp
l

|Ol|χOl
(λk), starting with the initial condition up (if p =

0, we initialize it with um). Let up+1 be the solution obtained.
(c) Update γl, ∀ l = 1, ..., r, in the following way:

γp+1
l = max

(
γp

l + ρ(IOl
(up+1)− σ2), 0

)
.
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Let um+1 be the solution of (5.8). Stop when ‖um+1 − um‖X ≤ θuτ .
In practice, to reduce computations, step 2.(b) is performed by solving 10 iter-

ations of Step 3 in Algorithm 2, without observing great differences in the global
convergence.

Let us say some final words about the convergence of Algorithm 4.
Proposition 5.1. (i) Assume that g ∈ SHPF (X). Then Uzawa’s algorithm in

Step 2 of Algorithm 4 converges.
(ii) Assume that u0 satisfies the constraints. Then um tends to a solution u of (5.4)
as m →∞.
Proof. (i) Since τ > 0, the assumptions of Uzawa’s algorithm [26] are satisfied once
we prove that IOl

(u) is Lipschitz on bounded sets of X and we observe that the
sequence up constructed in Step 2.(b) is bounded in X. Assume that U ⊆ X is a
bounded set. Let u, u ∈ U , and denote H = SHPF . Then

|Ol||IOl
(u)− IOl

(u)| ≤ 2‖g‖`2(Λ)‖Hu−Hu‖`2(Λ) + |〈H(u− u), H(u + u)〉|
≤ C‖u− u‖X

where C is a constant depending on the norm of H and on the bound for U . Now, to
prove that {up}p is bounded we observe that

Lτ (up, {γp
l };um) ≤ Lτ (u, {γp

l };um), ∀u ∈ X,

for all p. Choosing u ∈ X such that g = Hu, we obtain that

1
2τ
‖up − v‖2

X + Jd(up) ≤ 1
2τ
‖u− v‖2

X + Jd(u),

hence {up}p is bounded in X. Now, (i) follows from Theorem 5 in [26], Sect. 3.1.
(ii) Let C be the convex set of functions u ∈ X such that IOl

(u) ≤ σ2. Let δC(u) = 0
if u ∈ C and = +∞, otherwise. Now, we observe that, by (i), um+1 are solutions of
(5.6) with v = um and, since the domain of Jd is all X, we have ∂(Jd+δC) = ∂Jd+∂δC

([15], Corollary 2.11), and we may write

um+1 − um

τ
+ ∂Jd(um+1) + ∂δC(um+1) 3 0. (5.9)

Now, the proof follows by proceeding as in the proof of Proposition 4.1. �

The assumption g ∈ SHPF (X) in (i) holds if H(n) 6= 0 for n ∈ {−N
2 , . . . , N

2 −1}2

and S is bijective. Concerning (ii), in practice we take u0 as the solution of the ACT
algorithm with g as set of irregular samples.

6. Zoom. In this section, we analyze in more detail the method introduced in
section 4 to increase the resolution of the image g.

If we denote by α the zoom factor, then the zoomed and restored image u is a
vector of size αN × αN (we recall that the size of g is N × N). The minimization
problem (4.1) with p̂d = χ{−N

2 ,..., N
2 −1}2 (we denote p̂d the discrete version of p̂) is a

direct extension of the oversampling and denoising method introduced by Malgouyres
and Guichard [37, 38] to the more general case of regular sampling, deconvolution,
denoising and oversampling.

The basic idea is to fit, inasmuch as this is possible, the low frequency compo-
nents of the restored and zoomed image to the original data, and to extrapolate the
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Fig. 7.1. Reference image (left), its Fourier spectrum (middle) and an example of perturbed
and noised image (right). The reference image has 149 × 149 pixels and was multiplied by a smooth
window on the borders in order to avoid periodization artifacts. The perturbation is a colored noise
with standard deviation of A = 1 pixels, and spectral contents inside [− 1

Tε
, 1

Tε
]2 for Tε = 20.

spectrum to the rest of the frequency domain by means of the total variation. This
regularization allows to reconstruct some high frequencies, which is indeed much more
convenient than just filling them with zeros, a technique which is known to produce
ringing. For that we require that p̂d 6= 0 in the spectral region {−N

2 , . . . , N
2 − 1}2

and p̂d = 0 in Iα\{−N
2 , . . . , N

2 − 1}2 so that we do not impose any restriction at high
frequencies and the extrapolation there is done by means of the total variation, which
limits the oscillations. The characteristic function p̂d = χ{−N

2 ,..., N
2 −1}2 fulfils both

conditions. We also used a prolate function but we have not noticed great changes in
the experiments.

As it is proved in [38], the pure zoom problem (without denoising) admits a
solution but uniqueness is not guaranteed. We only have the weak uniqueness result
mentioned in Section 4. The case of zooming with denoising has been considered in
[37].

7. Experiments.

7.1. Irregular to regular sampling and denoising. In order to test and
compare the performance of the different algorithms, we worked with the reference
image displayed in Figure 7.1 which is of size 149 × 149. Then, using (2.2), we
simulated different perturbations ε(x) such that supp ε̂ ⊆ [− 1

Tε
, 1

Tε
]2 for Tε = 20,

for different standard deviations A, typically, 0.25 and 1. Given the perturbation,
we simulated the perturbed images g with a high precision (usually 10−8) using the
transposed NFFT [40]. Finally, we added some white noise to the irregular samples
with standard deviation σ, for different values such as σ = 0.64 (i.e. 10−2 times smaller
than the standard deviation of the image, SNR = 40dB), and σ = 2 gray levels. In
this way, we obtained perturbed images such as the one displayed in Figure 7.1 with
A = 1 and σ = 2.

The aim of this section is to compare the results of our algorithm with those
obtained with the original ACT algorithm, i.e., without the regularization produced
by the total variation. In both cases we have used different types of weights D =
diag

(
{φ( 2π

N n)}n∈{−N
2 ,..., N

2 −1}2
)

in order to regularize the solution (recall that φ(ω) =

(1 + |ω|)−r for r ∈ [1, 2]).
Figure 7.2 displays the evolution of the relative error (in L2 norm) along the

iterations of the CG in the ACT algorithm (Algorithm 1). Observing the graphics in
Figure 7.2, we can say that the ACT algorithm attains a level of relative error which
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Fig. 7.2. Convergence graphics of the ACT algorithm. We display the relative error (in L2

norm) with respect to the reference image in Figure 7.1 along iterations of the ACT algorithm (with
different type of weights) for different values of perturbation amplitude A (0.25 and 1) and noise
level σ = 0.64. The weights impose a spectral decay (1 + |ω|)−r, we test values r = 0 (no weights
D = I) and r = 1, 1.5, and 2.

agrees with the SNR. The presence of the weights that regularize the solution and
impose a specific spectral decay make the algorithm more stable. We can also observe
that, if we do not use weights, the ACT algorithm begins to diverge after reaching
the minimum error and the rate of divergence grows as the standard deviation A
of the perturbation becomes larger. In addition, using weights, the relative error is
slightly smaller, and the errors in the high frequency band are significantly decreased.
However, the presence of weights makes the algorithm to have a poorer convergence
rate. This decrease in the convergence rate when using weights is also observed in
the case of the proposed algorithm, which combines the ACT algorithm with total
variation regularization (see Figure 7.3). Notice that the horizontal axis in Figure
7.3 corresponds to iterations of the CG in step 4 of Algorithm 2 which is called in
step 3 of Algorithm 3 (and thus for each time iteration m). We also notice that, in
Figure 7.3, the error is strongly reduced at some specific moments, they correspond
to a change from time step m to m + 1. This algorithm seems to be more stable than
the ACT algorithm for small perturbation amplitudes.

Figure 7.4 displays some examples of restoration with both algorithms, the ACT
and the TV based algorithm 3, for the perturbed image in Figure 7.1. We also display
the root mean square error (RMSE) in space, and the error images in space and Fourier
domains, with respect to the reference image (the restored images always correspond
to a final iteration before the algorithm begins to diverge).

Finally, let us say some words on the execution times. Our experiments were
made with a Pentium M, with a 2GHz processor and 2GB of RAM. The experiments
displayed in Figure 7.2 on the convergence of the ACT algorithm took between 20
seconds when A = 0.25, σ = 0.64 to 1 minute when A = 1, σ = 0.64. The experiments
displayed in Figure 7.3 on the convergence of the combined ACT algorithm with total
variation regularization took between 10 seconds in the case of no weights to 12
seconds in the case of weights for both cases A = 0.25, σ = 0.64 and A = 1, σ = 0.64.
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Fig. 7.3. Convergence graphics of the TV based algorithm 3. We display the relative error (in
L2 norm) with respect to the reference image in Figure 7.1 along the iterations of the proposed TV
based algorithm 3 (with different type of weights) for different values of perturbation amplitude A
(0.25 and 1) and noise level σ = 0.64. The weights impose a spectral decay of type (1 + |ω|)−r, and
we tested the values r = 0 (no weights D = I) and r = 1, 1.5, and 2.

The experiments displayed in Figure 7.6 on the convergence of the ACT algorithm
including deconvolution were quite slow, they took around 30 minutes in the case of
using weights (when we use no weights the algorithm started to diverge after some
iterations). The experiments displayed in Figure 7.7 on the convergence of the TV
based algorithm 3 for deconvolution took around 50 seconds when there are no weights
and 1 minute 20 seconds when we use weights (the number of time steps is 25). The
typical execution times per iteration are 1 second in the case of the ACT algorithm
and 2 seconds in the case of the TV based algorithm 3.

7.2. Adding deconvolution.

7.2.1. Test of convergence. After extending the ACT algorithm to include
deconvolution, we proceed to numerical tests of convergence, both for the ACT and
the TV based deconvolution algorithms.

Let us first explain how to extend the ACT algorithm to the deconvolution case.
In that case, the system to solve is

g = SHa,

where a = Fu are the Fourier coefficients of the restored image u. Then, as in the
original ACT algorithm, it is more convenient to solve the system of normal equations

H∗S∗WSHa = H∗S∗Wg, (7.1)

where W is as in Section 2.1 a matrix of weights (or to compute the minimum norm
solution of the optimization problem mina ‖Ta − b‖2

`2N
, where T = H∗TH is still

a Toeplitz matrix, and b = H∗b). Notice that the ACT algorithm does not need
structural changes in order to include deconvolution.

To simulate our data we use the modulation transfer function corresponding to
SPOT 5 HRG satellite with Hipermode sampling (see Appendix 9 and [2] for more
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(a) Results with ACT algorithm (space RMSE = 2.35)

(b) Results with ACT algorithm using weights D with r = 2 (space RMSE =

2.07)

(c) Results with TV minimization (space RMSE = 1.53)

(d) Results with TV minimization using weights D with r = 2 (space RMSE =

1.53)

Fig. 7.4. Irregular to regular sampling with the ACT and the TV based algorithms. The
perturbation amplitude is A = 1, and the noise level is σ = 2. The left column shows the restored
image; the middle column the error in the spatial domain; the right column the error in the Fourier
domain.
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(a) A = 0.25, σ =
0.64

(b) A = 1, σ = 2

Fig. 7.5. Filtered, perturbed and noised images. To construct these images we have used the
reference image displayed in Figure 7.1. We filtered this image with filter (7.2). The perturbation
is a colored noise with a standard deviation of A pixels, and spectral contents inside [− 1

Tε
, 1

Tε
]2 for

Tε = 20. Finally, we added a white noise of standard deviation σ.

details):

ĥ(ξ, η) = e−4πβ1|ξ|e−4πα
√

ξ2+η2
sinc(2ξ) sinc(2η) sinc(ξ), ξ, η ∈ [−1/2, 1/2],

(7.2)
where sinc(ξ) = sin(πξ)/(πξ), α = 0.58, and β1 = 0.14. Then we filter the reference
image given in Figure 7.1 with the filter (7.2) and use the same perturbation in
sampling as in the previous section. Finally, we add some white noise of standard
deviation σ to obtain the images 7.5(a), where A = 0.25, σ = 0.64, and 7.5(b), where
A = 1, σ = 2.

The relative errors (in L2 norm) along iterations for both algorithms can be
seen in Figures 7.6 and 7.7. From these experiments, we conclude that the TV based
algorithm 3 is always, for small and large values of A, stable in the deconvolution case,
unlike the ACT algorithm. We also note that the use of weights does not improve the
solution, still, it reduces the rate of convergence. Some restored images, obtained with
both methods, and their corresponding errors in space and frequency are displayed in
Figure 7.8.

7.2.2. Experiments using a global regularization parameter. In this sec-
tion we display some examples of the TV based deconvolution algorithm when we
use a single regularization parameter, i.e., when we use Algorithm 3. For that, we
use the reference image displayed in Figure 7.9(a) and we degrade it with the modu-
lation transfer function (7.2). Then we apply a perturbation in sampling which has
the same characteristics as the one used in previous examples (Tε = 20), and we add
white noise of standard deviation σ = 1. Figure 7.9(b) is generated with a large
perturbation (A = 1).

Some results of the TV based deconvolution algorithm for different values of the
regularization parameter λ are displayed in Figure 7.10. These examples show the
drawbacks of using a global regularization parameter. Figure 7.10(a) corresponds to
the restoration with the optimal λ such that the constraint

∑N2

k=1 |SHPFup(λk) −
g(λk)|2 = N2σ2 is verified but the result is not satisfactory because it is difficult to
get denoised smooth regions and keep the textures at the same time (see the detail
in Figure 7.11(a)). On the other hand, notice that most textures are lost when using
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Fig. 7.6. Convergence graphics of the ACT algorithm extended to include deconvolution. We
display the relative error (in L2 norm) with respect to the reference image in Figure 7.1 along
iterations of the ACT algorithm with deconvolution (with different type of weights) for different
values of the perturbation amplitude A (0.25 and 1), and noise level σ = 0.64. We used the weights
to impose a spectral decay of (1 + |ω|)−r, and we tested the values r = 0 (no weights D = I),
r = 1, 1.5, and 2.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

iterations

re
la

ti
ve

 e
rr

o
r

D=I
D with r=2
D with r=1.5
D with r=1

(a) A = 0.25, σ = 0.64

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

iterations

re
la

ti
ve

 e
rr

o
r

D=I
D with r=2
D with r=1.5
D with r=1

(b) A = 1, σ = 0.64

Fig. 7.7. Convergence graphics of the TV based algorithm 3 (deconvolution case). We display
the relative error (in L2 norm) with respect to the reference image in Figure 7.1 along iterations of
the proposed TV based algorithm (with different type of weights) for different values of the pertur-
bation amplitude A (0.25 and 1), and noise level σ = 0.64. We use the weights to impose a spectral
decay of (1 + |ω|)−r, and we tested the values r = 0 (no weights D = I), r = 1, 1.5, and 2.

a large value of λ (see Figure 7.10(b) and its detail in 7.11(b)) and how much noise
is present if we use a smaller value of λ (see Figure 7.10(c) and its detail in 7.11(c)).
In next subsection we will see how these problems can be solved by incorporating
the constraints in a local way. We also display in Figure 7.12(a) the result of the
ACT algorithm extended to the deconvolution case and using regularization weights
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(a) ACT algorithm (using weights D with r = 2), A = 1, σ = 2 (RMSE = 2.02)

(b) TV minimization (no weights, D = I), A = 1, σ = 2 (RMSE = 1.89)

Fig. 7.8. Irregular to regular sampling, deconvolution and denoising with the ACT algorithm
and the TV based algorithm 3. The perturbation amplitude is A = 1, and the noise level is σ = 2.
The left column displays the restored image; the middle column the error in the spatial domain; the
right column the error in the Fourier domain.

which impose a spectral quadratic decay. We notice that the root mean square error
(RMSE, measured in space) of the result is larger than in the TV based algorithm.
Moreover, visually, the restore image is not as good as the ones displayed in Figure
7.10 (obtained with the TV based algorithm).

7.2.3. Experiments using local parameters. Figure 7.12(b) displays the re-
stored image corresponding to the perturbed image in Figures 7.9(b). This result has
been obtained using Algorithm 4, i.e., we have used local data fidelity parameters.
Notice that the textures in buildings are recovered and noise is not so evident as in
the case of TV restoration with a small global parameter (see Figure 7.13). We also
note that the RMS error is reduced with respect to the global parameter case (see
Figure 7.10) and, specially, with respect to the ACT algorithm (see Figure 7.12(a)).

In order to test the performance of the Lagrange multipliers to impose the local
constraints we have measured in three regions Ol the evolution of the integrals

IOl
(up) =

1
|Ol|

∑
λk∈Ol

|SHPFup(λk)− g(λk)|2

along the iterations p and m of Algorithm 4. The two regions Ol, l = 1, 2, are displayed
in Figure 7.14(b). We have chosen a textured region (region 1) and a more regular one
(region 2). The segmentation of image 7.9(b) can be seen in Figure 7.14(a). Figure
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(a) reference image (b) filtered, perturbed and noised image

Fig. 7.9. Reference image and a filtered, perturbed and noised image. The reference image has
237 × 237 pixels. The perturbation in sampling is a colored noise with standard deviation of A = 1
pixels, and spectral contents inside [− 1

Tε
, 1

Tε
]2 for Tε = 20. The filtered, perturbed and noised image

with white noise of standard deviation σ = 1 is also displayed.

7.15 displays the two graphics corresponding to the evolution of IOl
for each each

one of the two regions marked in Figure 7.14(b). For each of these regions, the local
constraint IOl

≤ σ2 is satisfied and the convergence is quite fast. We observe here
that IOl

is computed on the pixels which are interior to the region Ol (we dismissed
the pixels on the boundary of Ol). We recall here that for each region Ol we have
IOl

(u) ≤ σ2 and the Lagrange multiplier γl satisfies γl(IOl
(u) − σ2) = 0, that is,

IOl
(u) = σ2 if γl > 0. While the evolution of IOl

really approaches 1 in the case of a
more regular area, it is slightly below 1 (0.85) in the case of the textured region.

7.3. Adding zoom. Finally we display an example with the full restoration
model: irregular to regular sampling, deconvolution, denoising and zoom. Zoom is
added by using a projector P as described in section 6. We also tested a prolate
function as a projector instead of the ideal window without noticeable changes in
the experiments. Figure 7.16 displays the result corresponding to the restoration and
zooming by a factor 2 of image 7.9(b). The result has been obtained with Algorithm
4 with a Lagrange multiplier for each region of the segmentation displayed in Figure
7.14(a).

8. Conclusions. We have proposed an algorithm to solve a general formula-
tion of the image restoration problem which considers several different aspects of it,
namely: irregular sampling, denoising, deconvolution, and zooming. Our algorithm
is based on an extension of a previous algorithm proposed by A. Chambolle [16] for
Total Variation based image denoising, combined with irregular to regular sampling
algorithms proposed by Gröchenig and his coauthors [27, 32].

Regarding the irregular to regular sampling and denoising problems, we have com-
pared our approach with the results obtained with the ACT algorithm of Gröchenig
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(a) restored with λ = 0.1 (RMSE = 8.05)

(b) restored with λ = 0.5 (RMSE = 9.86) (c) restored with λ = 0.01 (RMSE = 7.79)

Fig. 7.10. Restored images with a global TV regularization parameter. Some examples
of restoration of the image displayed in Figure 7.9(b) for three different values of λ. Fig-
ure 7.10(a) corresponds to the restoration with the optimal λ(= 0.1) such that the constraintPN2

k=1 |SHPFup(λk)− g(λk)|2 = N2σ2 is verified. (b) We notice that noise is reduced and textures
(high frequencies) are lost if we use a large value of λ. (c) If a small value of λ is used, noise is
still present in non-textured regions.

et al. [27, 32]. The ACT algorithm makes use of Fourier weights in order to regu-
larize and stabilize the solution. In our approach, the regularization is done by Total
Variation and the inclusion of Fourier weights does not really benefit the algorithm.
Whereas both approaches manage to control the artifacts on high frequencies, TV
minimization was found to be a better denoiser, and better reduce errors for fair
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(a) restored with λ = 0.1

(b) restored with λ = 0.5 (c) restored with λ = 0.01

Fig. 7.11. A detail of the restored images of Figure 7.10. (a), (b) and (c) represent a detail of
Figures 7.10.(a), (b), (c), respectively.

noise levels and perturbation amplitudes. In particular, the error measures behave
better. However, the RMS errors of both algorithms are comparable in the case of
small perturbations and small noise levels, if we use the regularized version of the
ACT algorithm.

To test the proposed algorithm in the case of deconvolution (with irregular to reg-
ular sampling and denoising) we have compared it with a direct extension of the ACT
algorithm which includes deconvolution. We conclude that the TV based algorithm is
more stable in this case. On the other hand, the ACT algorithm starts to diverge after
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(a) ACT algorithm extended to the decon-

volution case (RMSE = 10.16)

(b) TV based algorithm with local data fi-

delity parameters (RMSE = 7.36)

Fig. 7.12. Restored images with the ACT algorithm and TV based algorithm 4. Both images
are restorations of image in Figure 7.9(b). Left: result of the ACT algorithm extended to the
deconvolution case (uses regularization weights D with r = 2). Right: TV based algorithm with local
data fidelity parameters (Algorithm 4).

(a) Restored with the ACT algorithm ex-
tended to the deconvolution case

(b) Restored with the TV based algorithm
with local data fidelity parameters

Fig. 7.13. A detail of the restored images of Figure 7.12. (a), (b) represent a detail of Figures
7.12.(a), (b), respectively.
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(a) segmentation of image 7.9(b) (b) three segmented regions to study

Fig. 7.14. Segmented image and the three regions under study. The left image displays the
segmentation of image 7.9(b) obtained using the simplified Mumford-Shah functional. To ensure
that the segmented regions have an area greater than 200 pixels, the image 7.9(b) was filtered with a
grain filter with area threshold of 200 pixels. The right image displays three regions in image 7.9(b)
where we shall follow the evolution of the constraint.
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Fig. 7.15. Convergence along iterations of IOl
for two different regions. Recall that the restored

image is displayed Figure 7.9(b) and σ2 = 1. The regions under study are displayed in Figure
7.14(b). The evolution of IOl

corresponds to the restored image 7.12(b).

reaching the minimum, thus, it becomes crucial to choose a good stopping criterion.
In addition, the root mean square errors are smaller with the TV based algorithm,
specially if we use local constraints.

In our first experiments with the proposed TV based algorithm we use a global
TV regularization parameter λ. We have seen that for large values of λ the image
is well denoised, but high frequencies, or textures, are lost. In contrast, for smaller
values of λ textures are recovered, but the noise is becomes visible. To overcome
this difficulty, following [12], the data fidelity term is incorporated as a set of local
constraints.

Finally, we have displayed some results with the full restoration model including
zoom. To conclude, we can say that, in general, TV based restoration is more ro-
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Fig. 7.16. Restored and zoomed image obtained using local data fidelity parameters. The image
is a zoomed restoration of image in Figure 7.9(b).

bust and more versatile since many different aspects of the problem can be included.
Moreover, the more stable, regularized, version of the ACT algorithm needs the a
priori knowledge of the spectral decay of the image.

As a future work, a better error estimate is needed to stop the CG iterations at
the right point when inverting Q. Currently, we perform many more iterations than
needed, because our error estimate is not optimal. On the other hand, in our experi-
ments we have always worked with a MTF whose support is contained in [−1/2, 1/2]2.
When this is not true, antialiasing has to be included into the model and our algorithm
can be extended to incorporate it. For that, it suffices to adapt the projector to an
appropriate region where sampled coefficients contain a minimal amount of aliasing,
as proposed in [2, 3].
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9. Modulation Transfer Function. We describe here a simple model for the
Modulation Transfer Function of a general satellite. More details can be found in [42]
and [2] where specific examples of MTF for different acquisition systems are shown.

Recall that the MTF, that we denote by ĥ, is the Fourier transform of the im-
pulse response of the system. Let (ξ, η) ∈ [−1/2, 1/2] denote the coordinates in the
frequency domain. There are different parts in the acquisition system that contribute
to the global transfer function:
- Sensors: every sensor has a sensitive region where all the photons that arrive are

integrated. This region can be approximated by a unit square [−c/2, c/2]2

where c is the distance between consecutive sensors. Its impulse response
is then the convolution of two pulses, one in each spatial direction. The
corresponding transfer function also includes the effect of the conductivity
(diffusion of information) between neighbouring sensors, which is modeled by
an exponential decay factor, thus:

ĥS(ξ, η) = sinc(ξc) sinc(ηc)e−2πβ1c|ξ|e−2πβ2c|η|,

where sinc(ξ) = sin(πξ)/(πξ).
- Optical system: it is considered as an isotropic low-pass filter

ĥO(ξ, η) = e−2παc
√

ξ2+η2
.

- Motion: each sensor counts the number of photons that arrive to its sensitive region
during a certain time of acquisition. During the sampling time the system
moves a distance τ and so does the sensor; this produces a motion blur effect
in the motion direction (d1, d2):

ĥM (ξ, η) = sinc(〈(ξ, η), (d1, d2)〉τ).

Finally, the global MTF is the product of each of these intermediate transfer
functions modeling the different aspects of the satellite:

ĥ(ξ, η) = ĥS ĥOĥM .
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