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Fourth Order Partial Differential Equations on General Geometries
�

John B. Greer † Andrea L. Bertozzi ‡ Guillermo Sapiro§

Abstract

We extend a recently introduced method for numerically solving partial differential equations on
implicit surfaces (Bertalmı́o, Cheng, Osher, and Sapiro 2001) to fourth order PDEs including the Cahn-
Hilliard equation and a lubrication model for curved surfaces. By representing a surface in

� N as the
level set of a smooth function, φ � we compute the PDE using only finite differences on a standard
Cartesian mesh in

� N . The higher order equations introduce a number of challenges that are of small
concern when applying this method to first and second order PDEs. Many of these problems, such
as time-stepping restrictions and large stencil sizes, are shared by standard fourth order equations in
Euclidean domains, but others are caused by the extreme degeneracy of the PDEs that result from
this method and the general geometry. We approach these difficulties by applying convexity splitting
methods, ADI schemes, and iterative solvers. We discuss in detail the differences between computing
these fourth order equations and computing the first and second order PDEs considered in earlier
work. We explicitly derive schemes for the linear fourth order diffusion, the Cahn-Hilliard equation for
phase transition in a binary alloy, and surface tension driven flows on complex geometries. Numerical
examples validating our methods are presented for these flows for data on general surfaces.

1 Introduction

Partial differential equations (PDEs) defined on surfaces embedded in � 3 arise in a wide range of applica-
tions, including fluid dynamics, biology (e.g., fluids on the lungs), materials science (e.g., ice formation),
electromagnetism, image processing (e.g., images on manifolds and inverse problems such as EEG), com-
puter graphics (e.g., water flowing on a surface), computer aided geometric design (e.g., special curves
on surfaces), and pattern formation. The work in this paper is concerned with fourth order differential
equations, which have interests in all the areas mentioned above. Examples of physical flows modeled by
fourth order PDEs include ice formation [36, 37], fluids on lungs [21], brain warping [33, 53], and design-
ing special curves on surfaces [22, 33]. In this paper we extend the work in [6] to these high order flows.
We represent the surface with arbitrary geometry implicitly, as the level set of a smooth function defined
in all of the embedding space � 3 , and rewrite the relevant equations in terms of Euclidean coordinates
and derivatives of the level set function (see Section 2). This method has been used for solving first and
second order equations on static, [6, 27, 31, 32], as well as dynamic, [2, 57], surfaces. In [6], the authors
introduced the general framework and showed how to solve second order linear and nonlinear diffusions
and reaction-diffusion equations on implicitly defined surfaces. In [27, 31], the authors solved the Eikonal
equation on surfaces like those in [6] (while in the first paper the work is for triangulated surfaces, in the
second implicit representations are used). In these works, static surfaces were considered. The authors of
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[2] and [57] solve second order diffusion equations on interfaces that are deforming subject to an extrin-
sic flow. As discussed in the above papers in detail, implicit representations provide a natural means for
addressing these flows on arbitrary surfaces.

Solving PDEs and variational problems with polynomial meshes involves the non-trivial discretization
of the equations in general polygonal grids, as well as the difficult numerical computation of other quanti-
ties like projections onto the discretized surface (when computing gradients and Laplacians for example).
Although the use of triangulated surfaces is quite popular, there is still no consensus on how to compute
simple differential characteristics such as tangents, normals, principal directions, and curvatures. On the
other hand, it is commonly accepted that computing these objects for iso-surfaces (implicit representa-
tions) is simpler and more accurate and robust. This problem becomes even more significant when we not
only have to compute these first and second order differential characteristics of the surface, but also have to
use them to solve variational problems and PDEs for data defined on the surface. Formal analysis of finite
difference schemes on non-Cartesian meshes is a new area [3, 9, 10, 46], whereas finite difference schemes
on Cartesian meshes are better understood. Note also that working with polygonal representations is di-
mensionality dependent, and solving these equations for high dimensional ( � 2) surfaces becomes even
more challenging and significantly less studied. The work here developed is valid for all dimensions of
interest. The computational cost of working with implicit representations is not higher than with meshes,
since all the work is performed in a narrow band around the level-set(s) of interest.

The framework of implicit representations for solving PDEs on them, as introduced in [6, 32], enables
us to perform all the computations on the Cartesian grid corresponding to the embedding function. These
computations are, nevertheless, intrinsic to the surface. Advantages of using Cartesian grid instead of a
triangulated mesh include the availability of well studied numerical techniques (that we will extend in this
paper, see below) with accurate error measures, and the topological flexibility of the surface, all leading
to simple, accurate, robust and elegant implementations. The approach is general (applicable to PDEs
and variational problems beyond those derived in this paper) and dimensionality independent as well. We
should note of course that the computational framework here developed is only valid for manifolds which
can be represented in implicit form or as intersection of implicit forms. As mentioned above, several
disciplines of sciences have numerous problems that can be embedded within the implicit framework.

In a number of applications, surfaces are already given in implicit form, see for example [43, 49], there-
fore, the framework in this paper is not only simple and robust, but it is also natural in those applications.
Moreover, in the state-of-the-art and most commonly used packages to obtain 3D models from range data
and from segmented volumetric medical images, the algorithms output an implicit (e.g., distance) func-
tion (see for example graphics.stanford.edu/projects/mich/ and www.itk.org), and it is important to develop
computational frameworks where the surface representation is dictated by the data and application, and not
the other way around. On the other hand, not all surfaces (manifolds) are originally represented in implicit
form. For generic surfaces, we need to apply an algorithm that transforms the given explicit representation
into an implicit one. Although this is still a very active area of research, many very good algorithms have
been developed; see for example [17, 23, 29, 59]. This translation needs to be done only once for any
surface. For rendering, the volumetric data can be used directly, without the need for an intermediate mesh
representation.

Once the surface is in implicit form, using the results and the basic “dictionary” provided in [6, 32], we
can translate PDEs and variational problems based on intrinsic characteristics of the manifold, into PDEs
and variational problems that depend on the implicit manifold and the embedding space. This translation
is done in a systematic and generic fashion.

In this paper we consider fourth order equations on static surfaces. Although future work will un-
doubtedly extend these methods to solve related equations on dynamically changing surfaces, the jump
from second (as in [6, 32]) to fourth order equations on static surfaces is a significant computational chal-
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lenge unto itself. The computation of fourth order diffusions in flat Euclidean space is far less understood
than computation of second order diffusions. The literature on numerics for fourth order PDEs is an active
area of research [5, 11, 19, 20, 51, 56, 60]. Some work on solving equations with fourth order diffusions
on surfaces has been done for particular examples (see [37]), but methods for solving general fourth order
PDEs on arbitrary smooth surfaces remains untouched due to the very complicated nature of these high
order equations. We present a significant initial step in this direction.

Many difficulties arise when computing any fourth order diffusions. The dynamics depend highly
on the smoothness of initial data. Boundary conditions are often difficult to implement; fourth order
equations require prescribing two boundary conditions in contrast to the one needed for second order
diffusions. Time stepping is perhaps the crucial matter for fourth order diffusions. Stability requirements
restrict explicit time steps for fourth order diffusions to be on the order of h4 � where h is the grid size.
Compare that to second order diffusions, where time steps are only restricted to be O

�
h2 ��� The time step

restriction prohibits explicit schemes in any meaningful simulation of fourth order equations. On the other
hand, implicit schemes require the inversion of a linear system of equations that is typically very large for
fourth order equations. Furthermore, the literature on solving fourth order diffusions in arbitrary smooth
domains is virtually nonexistent. To date, a number of tools have proved successful for fourth order
diffusions occurring in areas such as thin film fluid flow and materials science, including ADI, spectral,
and finite element methods, as well as convexity splitting [5, 11, 19, 20, 51, 56, 60]. We address each
of these methods, and explain how they come into play with our own problem when addressing general
geometries.

Although our work shares many features with level set methods used for solving surface diffusion
[8, 51] and Willmore flow [15], there are significant differences. Both dynamics are driven by fourth order
equations, but unlike the problems we consider here, in surface diffusion and Willmore flow the surface
is given by the PDE dynamics. Our equations are fundamentally different as the PDE is in some sense
given by the surface. In the case of level set methods for surface diffusion, the dynamics quickly smooth
the surface while damping regions of high curvature. In our case, those regions of high curvature remain
unchanged and stay an integral part of the PDEs that we solve. Our computational methods also differ
from [8], [15], and [51]. Unlike the work in [8], we use implicit times stepping schemes. Also, since
we solve only in a band around the surface to speed-up the computation, we can not directly use the FFT
method discussed in [51]. However we use operator splitting schemes much like those in [51]. The authors
of [15] use finite element methods, whereas we use finite difference schemes.

In the next section we first provide the basic structure of the problem, explain its challenges, and
describe the particular equations we will address. The general organization of the paper is detailed after
this.

2 Basics, Challenges, and Goals

In order to adequately describe the challenge of computing higher order equations on surfaces, we first
summarize the ideas developed in [2, 6, 57], and then describe where those methods must be modified.
Let S be a given smooth closed curve or surface in � N � where N is assumed to be two when S is a curve,
or three, when S is a surface. Let φ : � N � � be a smooth function whose zero level set is given by S with
φ � 0 inside S and φ � 0 outside S � Thus ∇φ�

∇φ
� gives the outer pointing normal to S � Letting I denote the

identity matrix, define

P : � I 	 ∇φ 
 ∇φ�
∇φ

�
2 (1)
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so that P
�
x0

� v � x0
� gives the projection of a vector v at the point x0 � � N onto the tangent plane to the

surface
S � �

x � � 3 : φ
�
x � � φ

�
x0

��� �
Suppose u is a smooth function defined on S � We use ∇Su to denote the gradient of u intrinsic to the

surface S � This is simply the projection onto S of the gradient of (the extended) u in the embedded space
[50]. We similarly use ∆S f to denote the Laplacian of u intrinsic to S; in other words, ∆S is the Laplace-
Beltrami operator on S � Now suppose u is a function defined on all of � N � We use ∇u and ∆u to denote
the the standard Euclidean gradient and Laplacian of u � We calculate ∇S and ∆S using P and extrinsic
derivatives (i.e., derivatives in the Euclidean space containing S): for all points x on S �

∇Su
�
x � � P

�
x � ∇u

�
x � �

∇φ
�
x � � � (2)

Since φ and P are defined in some domain Ω � � 3 containing S � if u is defined in all of Ω � then equation (2)
makes sense in all of Ω � At each x � Ω � ∇Su

�
x � defined as above corresponds to the gradient of u intrinsic

to the level set of φ through x � We compute the Laplace-Beltrami operator in the same manner:

∆Su
�
x � � 1�

∇φ
�
x � � ∇ � � P �

x � ∇u
�
x � �

∇φ
�
x � � � � (3)

If φ is a signed distance function, �
∇φ

� � 1 �

then (2) and (3) simplify to
∇Su

�
x � � P

�
x � ∇u

�
x �

and
∆Su

�
x � � ∇ � � P �

x � ∇u
�
x � � �

It is thus desirable, though unnecessary, to define φ as a signed distance function.

2.1 Example: The Heat Equation

Consider the heat equation on a given surface S � This equation arises from the gradient descent [6] of the
energy

E
�
u � ���

S

1
2

�
∇Su

� 2ds � (4)

which is given by
ut � ∇S � ∇Su � ∆Su � (5)

We combine (5) with an initial condition,

u
�
y � 0 � � f

�
y � for y on S � (6)

to derive the heat equation on the surface S � We assume φ is a distance function as discussed above and
use (3) to write (5) in terms of Euclidean derivatives:

ut � ∇ � � P ∇u � � (7)

Equation (7) is defined in all of � N and can therefore be computed on a Cartesian grid. Solving (7) in all of
� N is equivalent to solving (5) on each level set of φ � In particular, it will be necessary to define an initial
condition u0 on the entire computational domain (a band around S) that is equal to f on S � Equation (7) is
discussed and computed in [2, 6, 57].
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2.2 Example: Linear Fourth Order Diffusion

This paper centers on fourth order equations, the simplest example being linear fourth order diffusion,

ut � 	 ∆S∆Su (8)

u
�
x � 0 � � u0

�

Equation (8) is the gradient descent of the energy

E
�
u � � 1

2
�

S

�
∆Su

� 2 �

If S is given by the level set of a distance function φ � then we can compute (8) in the Euclidean space
containing S (and then use Cartesian numerics) by the equation

ut � 	 ∇ � � P ∇
�
∇ � � P ∇u � � � (9)

u
�
x � 0 � � u0

�

where P is the projection operator given by (1).

2.3 Basic Observations and Challenges

Equation (9) shares a number of challenges with (7). These are problems that have been addressed for the
second order problem, but take on additional features and challenges in the high order equation:

1. Domain. We first note a key element of equations (7) and (9) as compared with equations (5) and
(8). The new PDEs are defined in all of � N � This is both the advantage of the method and one of its
main challenges. Since the new PDEs are defined in Eulerian coordinates, we can use a Cartesian
grid and apply the usual finite difference schemes for solving these surface equations. However since
the PDEs are defined in all of � N � we have increased the problem by a dimension. We minimize the
additional work by computing only in a band around the surface. Fixing c � 0 and considering a
signed distance function φ

�
x � � we compute only in the band

�
φ
�
x � ��� c � Unfortunately, this requires

computing on unusual domains with curved boundaries, while to date, most simulations of fourth
order equations have been done on rectangular domains. Thus we must simultaneously develop
methods for solving fourth order equations on Cartesian grids with complicated boundaries.

We also need to choose appropriate initial data for (7) and (9). For the underlying problem, our
initial data is only defined on the surface. We must extend these values to a function defined in the
entire band.

2. Degeneracy. Consider equation (7). At each point x � � N � (7) defines a diffusion that is degenerate
in one direction. There is no diffusion in the direction normal to S � so the equation is extremely
anisotropic. Similar anisotropic second order diffusions have been thoroughly studied; consider for
example anisotropic diffusions used for image processing. One might argue that the fourth order
equation (9) is even more degenerate, since it is a higher order diffusion with absolutely no diffusion
in one direction. To our knowledge, no such equation has been studied. The closest example we
know of is surface diffusion.

This degeneracy plays a central role in our choice of computational methods. It leads us to consider
convexity splitting methods similar to those used in [57] to deal with the degeneracy of the second
order problem. In Appendix B we look at an ADI method that has been previously suggested for
fourth order diffusions [56]. We examine this scheme and show why the degeneracy of the fourth

5



order problem prohibits a direct application of this method. We also show how the second order
degeneracy is better behaved, as it is amenable to the same approach. Although ADI can not be
applied directly to equation (9), we do use it to invert the linear biharmonic operator in convexity
splitting schemes that we discuss in Section 4.

3. Boundary Conditions. Suppose we are solving on the domain Sc � �
x
�
φ
�
x � � c � � No boundary

conditions are required to solve the above PDEs in Sc
� since no information is shared between level

sets. The values of u on the boundaries φ ��� c thus have no effect on u in the interior of the
band. However, since we discretize on a Cartesian grid, any numerical solution will depend on the
boundary, though this dependence should decrease as h � ∆t � 0 � We also note that solving fourth
order PDEs on bounded domains requires prescribing two boundary conditions; for example one
might fix u and ∆u � or ∇u � ν and ∇∆u � ν on the boundary (with normal ν).

Although we build upon previous work on equations like (7), we do not simply re-apply those meth-
ods. Equation (9) inherits all of the complications of other fourth order equations and has a few that are
particular to its nature as a higher order surface PDE. These complications have not been addressed in
the work on second order surface PDEs, and in fact many of them are central to current research on the
computation of general higher order equations:

1. Dependence on high derivatives. This obvious difference between equations (7) and (9) presents
many difficulties that were not apparent in the works discussed above. Equation (9) depends on
fourth derivatives of not only u � but of φ as well. This high order dependence places severe re-
strictions on u and φ � Both must be smooth and accurate to a high enough degree that they possess
smooth numerical derivatives. As we shall see, level set functions φ that are smooth enough to use in
computations of second order PDEs might not be smooth enough for their fourth order counterparts.
The initial condition u0 must also be sufficiently smooth. This plays a particularly important role
when extending the initial condition on S to a band containing S � See section 3.4 for more details.

2. Stencil Size. In one dimension, the standard centered difference discretization of the biharmonic
operator has a stencil width of 5 grid points. In three dimensions, the stencil size is 33 grid points.
Compare that to the 7 grid points in the standard discretization of the three dimensional Laplacian.
The stencil size becomes especially problematic when solving PDEs on a surface. In all likelihood,
all but one or two of these grid points will lie on neighboring contours of φ (φ �� 0), and not on the
surface of interest (φ � 0). Thus we must extend the initial data off of S carefully. We pick u0 to
be constant in directions perpendicular to S for this reason. Choosing u to be non-constant in this
direction could significantly increase the discretization error.

Stencil size also plays a central role in computation speed. Discretizing the Laplacian requires far
fewer operations than discretizing the biharmonic. There is an even greater difference in the number
of operations required between (7) and (9). Computing (7) requires at least one matrix multiplication
by P at each time step, whereas equation (9) requires at least two such multiplications. We must take
this need for heavy computation into consideration when considering the domain of computation,
much more so than in the case of (7).

3. Time stepping. Explicit methods for fourth order diffusions have a time step restriction requiring
the time step k to be on the order of h4 � where h denotes the grid cell width. This restriction is far
worse than the stability requirement for second order diffusions. Due to this drawback of explicit
schemes, we turn to implicit schemes that require the inversion of a linear system at each time
step. Since fourth order equations depend on high derivatives, we desire a highly resolved grid for
accuracy, however refined grids are detrimental to time stepping. Explicit schemes would be too
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slow, while the necessary inversion for implicit schemes might be too computationally expensive.
Time stepping remains a major challenge for solving fourth order equations.

2.4 Overview of computational examples

We consider three fundamental fourth order problems in this paper: linear fourth order diffusion,

ut � 	 ∆S∆Su �

the Cahn-Hilliard equation for phase transitions in a binary alloy,

ut � ∆S � 	 ε2∆S u � u3 	 u � �
and a PDE derived in [47] for the motion of thin films driven on a surface by gravity and surface tension,

∂ζ
∂t

� 	 1
3

∇S ��� u2ζ∇Sκ̃ 	 1
2

u4 �
κI 	 K � � ∇κ � (10)

	 1
3

Bo∇S � � u3ĝs 	 u4 � κI � 1
2

K � � ĝs � ĝnu3∇Su � �

In equation (10), k1 and k2 are the principle curvatures of the substrate, κ � k1 � k2
� κ̃ is curvature of the

free surface, ζ � u 	 1
2 κu2 � 1

3 k1k2u3 � and K is the curvature tensor for the curved substrate. The Bond
number Bo quantifies the relative strength of gravity to surface tension. The vector ĝs is the component of
gravity tangent to the surface S � and ĝn is the magnitude of the component of gravity normal to S �

For these problems, we address each of the issues discussed in Section 2.3, describe the methods we
used to deal with those issues, and mention some areas of possible future research. We compare with
second order problems throughout the discussion. In Section 3 we discuss the groundwork for implemen-
tation, including data structures, boundary conditions, extension of the initial data off of S � and intermittent
re-extension of the surface data. Although these elements have been discussed previously in [2, 6, 57], they
take on new features and challenges with the fourth order problem. Sections 4 and 6 concern the main chal-
lenge: time stepping of the fourth order highly degenerate diffusions. We discuss both ADI and convexity
splitting methods that have been successful for other fourth order equations and consider their relation to
our problem. The new challenges here include the extreme degeneracy of these surface equations and the
unusual computational domains.

The remaining sections demonstrate the generality of our methods by applying them to each of the
above equations. In Section 5 we consider linear fourth order diffusion (9) on the unit circle in � 2 and
the unit sphere in � 2 . We give pseudocode describing the basic steps of the method. We also check
convergence in the case of fourth order diffusion on a circle, for which we know exact solutions. Section 7
concerns the Cahn-Hilliard equation. We give a numerical scheme and discuss changes to the algorithm
given for the linear problem. These changes are minor, since the highest order term is still linear. Finally,
in Section 8 we apply these methods to a fully nonlinear model for thin film fluid flow on surfaces. We
consider flows driven by gravity and flows driven by curvature alone. To demonstrate the effects caused by
the curvature terms, we compare the model that takes curvature into consideration with a simpler model
that ignores curvature effects.

3 General Implementation Issues

We first describe methods for the general implementation of PDEs on implicit surfaces, including data
structures, extension of initial data off of the surface, boundary conditions, and modifications of the meth-
ods in [2, 6, 57] that are required to compute higher order PDEs. These are the essential building blocks for
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the numerical computations in sections 5-8. A number of these tools can be used to solve many different
PDEs on a variety of geometries.

We assume that we are given a level set function φ that determines S by S � �
x
�
φ
�
x � � 0 � with φ

�
x � � 0

for points x outside of S and φ
�
x � � 0 for x inside S � Works such as [43, 45, 52] and the papers mentioned

in the introduction discuss means of producing such an implicit representation (e.g. via highly accurate
WENO schemes). For fourth order equations, very high accuracy is required for the level set function
since we must take fourth order derivatives of φ as well as of u. As noted in Section 2, choosing φ to be a
signed distance function simplifies the PDEs.

3.1 Surface Complexity

The examples in this paper fall into two categories of implicit surfaces. The first are “simple” surfaces,
with small curvature, in which we have an analytical expression for the level set function. Such examples
include ellipses, the unit circle in � 2 � and the torus and sphere in � 3 � The second category are complex
surfaces defined computationally by a dataset, with regions of high curvature. Our example of such a
surface is the Stanford Bunny [30]. In this second case, we found that the level set function from the
original Stanford Bunny data is not smooth enough for fourth order differences. To address that problem,
we slightly smoothed the bunny by applying a few steps of the heat equation to the level set function. This
results in smoothing high derivatives of φ while retaining the essential bunny shape. Such smoothing is
not required for solving second order equations, and might be avoided for high order flows by using local
mesh refinement or adaptive grids.

Surface complexity also affects the choice of time stepping method. The geometry of the bunny has
regions of very high curvature that are not completely resolved by our 3D grid with 159 � 161 � 129 points.
The finite difference discretization of the projected PDE introduces terms with third and fourth derivatives
of φ that produce a time scale in the calculation on the order of 1

h3
� A stable method requires resolving

this time scale, thus introducing a time step limitation due to the geometry of the surface, as opposed to
the underlying scheme. When smaller time-steps are required by the surface geometry, we found ADI
schemes to be more efficient than iterative solvers. We discuss this further in sections 4 and 6.

3.2 Computational Domain: A Band Containing S

To reduce computational costs, we restrict computation to a band around the surface,

Sc � � �
φ
�
x � � � c � � c � 0 �

The value of the parameter c selected generally depends on the size of the numerical stencil and the
complexity of the working surface. This restriction to a band is similar in spirit to the local level set
method [1, 45]. For example, when computing linear fourth order diffusion on the unit circle, we could
compute (9) in a square containing the circle (

� 	 2 � 2 ��� � 	 2 � 2 � for example), but instead it is more efficient
to choose the annulus

1 	 c
���

x2 � y2
�

c � 1

as the computational domain (see Fig. 1).

3.3 Data Structures

Throughout we rely only on the implicit structure of arrays. We follow the example of the local level set
algorithm described in [45]. We first define an array that stores the values of φ within some box containing
S � For our discussion we assume an N-dimensional box with M grid-points on each side, so φ is stored in
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cφ = 
cφ = −

S
(φ = 0)

Sc

Figure 1: S denotes the surface corresponding to the zero level set of φ � and Sc is a band around that surface
used for the computations.

an array with MN elements. We then make a list of all points that are within the band Sc
� For simplicity,

we also store the values of u and any other functions necessary for solving the PDE in arrays of length
MN � Particular entries of each array correspond to particular grid-points in the box containing S � however,
to minimize memory use, one could use only one array of length MN and at grid-points lying in the band,
store pointers to the necessary function values. By using array storage we access each grid-point’s nearest
neighbors without any searching. This is useful for PDEs discretized by finite differences. To illustrate
how this would work in practice, for our simple example of the annulus in R2, we define φ in all of
Ω � � 	 2 � 2 � � � 	 2 � 2 � on a Cartesian grid with M2 grid-points and cell width h � 4

� �
M 	 1 ��� We mark the

grid-points xi � j satisfying
�
φ
�
xi � j

� �
c. For simplicity we also define u on the entire grid, but we compute

using only the values of u within the band.

3.4 Extension of Initial Surface Data

Since u0 is assumed to be defined only on the surface S, we must extend u0 to the other level sets of φ
within the band. We extend u0 by requiring

∇u0 � ∇φ � 0 � (11)

In other words, we require u0 to be constant perpendicular to the surface. In our simple example of the
annulus, condition (11) states that in polar coordinates

�
r� θ � � u is a function of θ alone.

One way of forcing (11) is to solve

ut � Hh
�
φ � ∇φ�

∇φ
� � ∇u � 0 (12)

to steady state within the band, where Hh
�
s � is a smoothed version of the Heaviside function depending on

the gridsize h �
Hh

�
s � � s

�
s2 � h2

�
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Since H
�
0 � � 0 � values on S remain unchanged while the information is propagated both inside (where

H
�
φ � � 0) and outside (H

�
φ � � 0) the surface. Discussion of this method, including the selection of Hh,

can be found in [43] and [45]. For second order equations on surfaces, equation (12) can be solved using
simple first order up-winding. However this is inadequate for our purposes, as such simple integration
results in an extended u that has very noisy high derivatives. We compute (12) using fifth-order WENO
[25, 26] for spatial derivatives and integrate in time with second order Runge-Kutta.

3.5 Re-extension of Surface Data

We also note that u must be intermittently re-extended off of the surface, so the method used to compute
(12) must be both accurate and efficient, further suggesting the use of a high order WENO scheme. The
frequency of re-extension depends on time steps used in the integration of the surface PDE. If large time
steps are taken, we re-extend each time step by solving (12) to steady state. This can often be done in one
or two iterations of the numerical scheme for (12). When taking small time steps, we only re-extend every
few steps as needed. This need to re-extend surface data is also discussed in [57]. In the simple example
of an annular domain, the re-extension is a means of adjusting the values of u off of S so that it depends
only on θ � In general, doing a re-extension enables us to minimize effects on surface values of u by values
of u off of the surface.

3.6 Boundary Conditions

Consider, for example, equation (9) defined only in the band Sc � �
x
� �

φ
�
x � � � c � � The boundary of Sc

consists of the disjoint curves φ � � c (see Figure 1). Since the boundary is given by level sets of φ �
information is not transferred from the boundary, and thus boundary conditions are not needed to solve the
PDE. However, when the PDE (9) is discretized using finite differences on a Cartesian grid in Sc

� because
the grid directions do not run parallel to the boundary of the annulus, we must impose numerical boundary
conditions for computation which then affect the solution. However for short times and a large enough
band size, these boundary conditions should have minimal effect on the value of the solution at the surface
itself. We have some choice in the selection of the numerical boundary conditions on the edge of the band,
and in this paper we choose the boundary conditions that are easiest to calculate.

Consider solving the second order problem, equation (7), in Sc
� Since we extend u off of S in such a

way that ∇u � ∇φ � 0 � Neumann conditions would be the natural boundary conditions to apply. However
for the analogous fourth order problem, Neumann conditions are trickier to apply, especially on curved
domains. Instead, for that problem, we pick Dirichlet boundary conditions, which are easier to implement
for the fourth order problem. Moreover, Dirichlet boundary conditions assure us of a symmetric matrix
when we invert the linear biharmonic operator, thus allowing us to use the Jacobian Conjugate Gradient
method. We prescribe u and ∆Su on the boundary, which is more natural in computations than prescribing
u and ∆u on the boundary – otherwise we will be required to compute ∆Su from ∆u � Our choice for ∆Su on
the boundary actually results from extending the initial condition far enough past the boundary to compute
a finite difference approximation of ∆Su �

The numerical values of u near the band boundary are often strongly affected by the boundary con-
ditions. We significantly reduce this effect by regularly re-extensions of u off of S and re-initializing the
Dirichlet conditions based on this re-extension. By re-extending u up to the boundary, we will have a more
appropriate boundary condition of u for the next time-step. By re-extending u at least one grid cell beyond
the boundary, we can compute more appropriate values of ∆Su for the next time step. In the special case
of the annular geometry of in Fig. 1, fixing u and ∆Su at the boundary is equivalent to fixing u and uθθ in
polar coordinates.
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3.7 Visualization

We use MATLAB to visualize the PDE dynamics in all of our examples. The MATLAB routine isosurface
provides an easy means of interpolating values of φ to produce the surface S and rendering a color map of
u on S �

4 Time Stepping

A number of choices are available for time integration of the finite difference schemes, each with its own
advantages and disadvantages. Explicit schemes are often used for second order diffusion equations since
they are easy to implement; to date they are the most commonly used schemes for these surface problems
[2, 6]. For fourth order diffusions, however, stability considerations restrict explicit time steps to be on the
order of h4 � This severe restriction prohibits calculating on fine meshes by explicit schemes. We thus turn
to implicit schemes which have no time step restriction for linear fourth order diffusion, though solving the
linear system may require extensive computation. Inverting the matrices for solving fourth order diffusions
in three dimensions is computationally expensive due to the 33 point stencil of the biharmonic operator.
Nonlinear systems are even more difficult to solve, as they require repeated Newton iterations, and time
steps may be restricted by convergence of the Newton method.

All the above issues come into play when picking a method for time stepping. We seek a method
that is effective for strongly degenerate PDEs while being easy to implement and robust to changes in
both the PDE and computational domain. These goals lead us to convexity splitting methods, which have
proved successful for the Cahn-Hilliard equation [16], degenerate fourth order diffusions including models
for thin films [18], and for surface diffusion [51], and for second order diffusions on surfaces [57]. Our
convexity splitting schemes require the inversion of a linear system at each time step. We consider two
methods for inverting these systems: the conjugate gradient method and an Alternating Direction Implicit
(ADI) method. Each method is advantageous for particular surfaces, as will be discussed below.

In this section, we first describe convexity splitting methods, then demonstrate their application to
linear diffusion with Jacobian Conjugate Gradient for solving the linear systems. For now we restrict our
discussion to “simple” surfaces with relatively small curvature. In section 6 we turn to more complicated
surfaces, and discuss how we use ADI methods to invert the linear systems arising from solving PDEs on
these surfaces.

4.1 Convexity Splitting

Given a gradient flow PDE of the form
ut � F

�
u � �

we split it into two parts
ut � F1

�
u � � F2

�
u � � (13)

where F1 has a strictly convex energy and F2 has a strictly concave energy. Note this decomposition is
non-unique. We update each time step by integrating F1

�
u � implicitly and F2

�
u � explicitly; for example,

we might use the scheme
un � 1 � un � k

�
F1

�
un � 1 � � F2

�
un � � � (14)

where un denotes the value of u after n time steps of size k � Scheme (14) is unconditionally stable in most
cases, and it has an O

�
k � error [16]. For gradient flows, this low time stepping accuracy is not an issue,

since the objective is to reach a local minimum of the energy. Although (14) may be unconditionally
stable, larger time steps do not necessarily bring the solution to this minimum any faster, rather there is
typically an optimal finite k for obtaining a local minimum of the gradient flow’s energy.
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This same method may be applied to problems that are not a gradient descent; for example, consider
the equation

ut � 	 ∇ � � a �
x � ∇∆u ���

Instead of computing this equation directly, we rewrite it as

ut � 	 C∆∆u � ∇ � � � C 	 a
�
x � � ∇∆u � � (15)

If C is chosen large enough, then we can set

F1
�
u � � 	 C∆∆u

and
F2

�
u � � ∇ � � � C 	 a

�
x � � ∇∆u � �

to derive the unconditionally stable scheme

un � 1 	 un

k
� 	 C∆∆un � 1 � ∇ � � � C 	 a

�
x � � ∇∆un � � (16)

The same method has been used for other fourth order PDEs, including surface diffusion [51], the
Cahn-Hilliard equation [16, 54], and Hele-Shaw flow [18]. Xu and Zhao used the same idea to compute
second order diffusion on surfaces in [57]. We describe exactly how C is chosen for each of our numerical
examples in later sections. The different equations we consider each require different choices.

Our main challenge is to solve (16) quickly with a method applicable to non-rectangular domains.
Since they computed in rectangular domains, the authors of [18] and [51] were able to use Fast Fourier
Transform (FFT) methods effectively. We experimented with similar methods for our particular problem,
and found computing in a three dimensional box with FFT to be slower than using the methods we present
here for computing in a narrow band around the surface. Depending on the complexity of the surface
under consideration, we use one of two different methods for the linear inversion – Conjugate Gradient or
Aternate Direction Implicit.

4.2 Example: Linear Fourth Order Diffusion

We first demonstrate convexity splitting methods applied to linear fourth order diffusion on surfaces,

ut � 	 ∆2
Su � (17)

Assume
�
∇φ

� � 1 and let P denote the projection matrix of Section 2, so that (17) can be rewritten as

ut � 	 ∇ � � P∇∆Su � �

Noting that P � I 	 N where N is a matrix projecting onto the surface normal, ∇φ � we see

∆2
Su � ∆2u 	 ∇ � � N∇∆Su � � (18)

Equation (18) also results from setting C � 1 in (15). At each time step, we integrate the first term on the
right of (18) implicitly and the remaining term explicitly:

un � 1 	 un

k
� 	 ∆2un � 1 � ∇ � � N∇∆Sun � � (19)
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To simplify (19), we use an approach suggested in [56]. Let L � �
I � k∆2 � � subtract Lun from both

sides of (19), and group terms to get

L
�
un � 1 	 un � � 	 k∆2un � k∇ � � N∇∆Sun � � (20)

We define vn � 1 � un � 1 	 un and notice the right side of (20) is 	 k∆2
Sun to derive the O

�
k � scheme,

Lvn � 1 � 	 k∆2
Sun � (21)

When solving with Dirichlet boundary conditions, v � 0 on the boundary, thus simplifying L � Boundary
conditions only affect the explicit term, 	 ∆2

Sun � which suggests fixing ∆Su on the boundary, instead of
∆u � Note that solving the original form (19) requires using the boundary values of both ∆u and ∆Su: the
boundary values of ∆u are required to define L near the boundary and ∆Su is needed to compute the explicit
term near the boundary. We discuss the discretizations of all the spatial operators in Appendix A. As the
reader will notice, we use standard finite difference stencils.

4.3 Iterative Solver: Conjugate Gradient Method

On domains with Dirichlet boundary conditions, the standard stencil for ∆2u is symmetric, so we can solve
(21) using the Conjugate Gradient Method. We use the Conjugate Gradient solver provided by ITPACK
[28]. Unfortunately a large number of iterations may be required at each time step, especially for the
typically large computations in three space dimensions. In cases where time steps are not limited by
stability, the large number of iterations is not prohibitive, and this method is a tremendous improvement
over explicit schemes. However, if the time steps taken must be very small (as we found to be the case
for surfaces with regions of high curvature), this method provides little, if any, improvement over explicit
methods, which require no iteration at each time step.

5 Numerical Examples: Linear Diffusion on Simple Surfaces

In this section we present the first example, and the simplest one, linear fourth order diffusion on simple
surfaces. Our basic computational framework follows the following algorithm:

1. Store values of the signed distance function φ on a Cartesian grid in a rectangular domain containing
S �

2. Mark grid points xi j (array entries) satisfying
�
φ
�
xi j

� ��� c for the user-defined bandwidth c �

3. Store an initial value u0 that satisfies u0 � f on S �

4. Evolve u0 by solving (12) until (11) is satisfied in some domain containing the band (far enough to
compute ∆Su0 on the band’s boundary).

5. Compute values of ∆Su0 on the band’s boundary.

6. Do while tn � tMax

(a) Solve for un � 1 in (21) using Jacobi Conjugate Gradient method.

(b) Solve (12) to re-extend values of u off of surface past band boundary.

(c) Recompute ∆Su on boundary.

We now present computational results for (19) on both the unit circle in � 2 and the unit sphere in � 3 � We
remind the reader that discretizations of all spatial derivatives are described in Appendix A.
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5.1 Diffusion on the Unit Circle

We compare our computations with an exact solution of (17) on the unit circle. In this case, solving (17)
is exactly the same as solving

ut � 	 ussss (22)

u
�
s � 0 � � f

�
s � (23)

on
�
0 � 2π � with periodic boundary conditions. Equation (22) can be solved exactly using separation of

variables. We choose f
�
s � � cos

�
4s � � giving the exact solution

u
�
x � t � � cos

�
4s � e � 64t �

We use conjugate gradient method to invert the implicit term. We compare our results with the exact value
of u at times t � 0 � 001 and t � 0 � 01 � Although these times are small, the half life of (17) for this initial data
is approximately t � 0 � 01 � We define the level set function on the box

� 	 2 � 2 � � � 	 2 � 2 � using grid sizes of
h � 4

M � 1 where M � 40 � 80 � 160 � and 320 � We compute in a band of width 3/8 in these calculations. Since
our scheme is O

�
k � � we use a time-step of k � 1

100 h2 � We must choose a small constant of proportionality to
get adequate results. We expect this is due to the high degeneracy of the equation. We must choose a small
constant of proportionality to get adequate results. We expect this is due to the high degeneracy of the
equation. The error in the long-time calculation is of course improved by careful re-extension, although
we report here the results without it in order to better identify the contributions of the different components
of our scheme. Note that for M � 320 � over 300 time steps are necessary to reach t � 0 � 01 � Without re-
extension of data off of the surface, the Dirichlet boundary conditions increase the solution’s error. Figure
2 demonstrates an error of O

�
h2 � in the short-time calculation and O

�
h � in the long-time calculation. This

decrease in accuracy is caused by the choice of Dirichlet Boundary conditions. We found that we maintain
O
�
h2 � accuracy by re-extending the initial data after every five time steps. To calculate the error, we

interpolated to find the values of u on the circle and then used the l∞ norm of the difference of these values
from the exact solution.

5.2 Diffusion on the Unit Sphere

Figure 3 shows linear fourth order diffusion on the unit sphere. Implementation requires only slight
changes from the example of a circle. We only need to change the level set function and use finite dif-
ferences in three dimensions. This easy adaptability to higher dimensions is typical of level set methods.
In addition, we may easily compute on surfaces such as ellipsoids or tori by changing only the level set
function.

In our example, the level set function φ isdefined on
� 	 2 � 2 � � � 	 2 � 2 � � � 	 2 � 2 � with 100 � 100 � 100

grid points. The initial condition is defined using polar coordinates by u0
�
ρ � θ � β � � sin

�
3θ � sin

�
7β � � We

take time steps k � 5h2 where h is the grid cell width. Figure 3 displays the solution at t � 0 � t � 0 � 2 �
and t � 0 � 9 � We use a bandwidth of ten grid cells (five cells off the surface in each direction), and re-
extend the initial data every four time steps by solving (12) to steady state. See Appendix A for the spatial
discretizations of the operators in (21).

6 ADI and Complex Geometry Surfaces

In Section 5, we solved linear diffusion on two simple geometries: the unit circle, and the unit sphere. For
these examples, Conjugate Gradient Method provided an efficient means of inverting the linear systems
in our implicit schemes. Unfortunately, as we discovered experimentally, the Conjugate Gradient Method
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Figure 2: Error plot for linear fourth order diffusion on the unit circle, without re-extension.

often requires a large number of iterations. This becomes prohibitive when forced to take small time
steps, as we found to be the case for solving PDEs on surfaces with regions of high curvature (see Section
3.1). For these surfaces, we turn to Alternate Direction Implicit (ADI) schemes, which do not require
repeated iterations. ADI schemes involve the inversion of only banded matrices, which require only O

�
M �

operations for an M-by-M matrix. ADI schemes have been used for both second and fourth order PDEs
[12, 13, 14, 56, 58]. For example, assume we are solving the heat equation on a rectangle with an implicit
scheme:

un � 1 	 un

k
� un � 1

xx � un � 1
yy

� (24)

The following is an O
�
k � approximation of (24):

�
I 	 k∂2

x
� � I 	 k∂2

y
� un � 1 � un � (25)

Unlike (24), equation (25) only requires the inversion of tridiagonal matrices.
Linear fourth order diffusion,

ut � 	 ∆2u � (26)

is more difficult to implement with ADI, as ∆2 includes a cross-term, 2∂2
x∂2

y
� In [56], Witelski and Bowen

suggest an ADI scheme in which the mixed derivative term is computed explicitly. They showed that
�
I � k∂4

x
� � I � k∂4

y
� un � 1 � �

I 	 2k∂2
x∂2

y
� un (27)

is an unconditionally stable O
�
k � scheme for (26). Higher order accurate ADI schemes following from the

same idea are discussed in [56].
Unfortunately, applying an ADI scheme directly to the degenerate diffusions we consider here yields a

scheme with a stability restriction that is no better than for explicit schemes. The interested reader will find
a discussion of this in Appendix B. In order to improve upon the stability restrictions of explicit schemes,
we combine ADI with convexity splitting.
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Figure 3: Linear fourth order diffusion on the sphere after 0, 4, and 18 time steps. Red denotes u � 1 and
blue denotes u � 	 1 �
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6.1 Example: Linear Fourth Order Diffusion

As a first example, consider solving (19) with an ADI method. Rewrite (19) as
�
I � k∆2 � un � 1 � un � k∇ � � N∇∆Sun � � (28)

Letting Lx � �
I � k∂4

x
� and Ly � �

I � k∂4
y
� � we introduce O

�
k � errors by modifying (28) to

LxLyun � 1 � �
I 	 2k∂2

x∂2
y
� un � k∇ � � N∇∆Sun � � (29)

Now subtract LxLyun from both sides and define vn � 1 	 vn to derive the compact scheme

LxLyvn � 1 � 	 ∆2
Sun � (30)

Unlike Locally One-Dimensional (LOD) schemes, this method easily extends to three dimensions,
producing an unconditionally stable scheme,

LxLyLzv
n � 1 � 	 ∆2

Sun � (31)

with Lz � �
I � k∂4

z
��� This easy application to three dimensions is obviously important for the problems we

consider. However ADI schemes have a disadvantage in non-rectangular domains such as the narrow band
(
�
φ
�
x � � � c) we consider. This is best seen by rewriting (27) as

w � Lyun � 1

Lxw � �
I 	 2k∂2

x∂2
y
� un � (32)

At the half time step we solve for w� which does not have the same boundary conditions as u � Solving
for these boundary conditions on non-rectangular domains is a tricky problem that becomes more difficult
for complicated domains – domains like the bands we wish to compute in. Instead we approximate the
boundary condition by fixing w � u on the boundary, as suggested in [58]. Unfortunately this method
is not unconditionally stable as we discovered in our numerical experiments. Even with this restriction,
however, we found this ADI method to be more efficient than Conjugate Gradient Method for solving
PDEs on surfaces with complicated geometries.

6.2 Numerical Example: Linear Fourth Order Diffusion on the Stanford Bunny

The bunny data for this example is taken from [30]. Due to the existence of regions of high curvature on
the bunny, we first run the standard heat equation in � 3 on the bunny’s level set function for a very short
time period. This smoothes any singularities in the level set function for the bunny while maintaining its
essential structure, as Figure 4 shows. We found this surface smoothing to be unnecessary for solving
second order equations on the bunny – it is required for higher order equations at the grid resolution with
which we work. After smoothing φ � we can either use this new φ as is, or we may keep only its zero level
set then reinitialize φ so that it is again a distance function.

We follow the algorithm in Section 5 with only two modifications. As just discussed, there is an
added preprocessing step where the level set function for the bunny is smoothed, and instead of solving
our numerical scheme with the Conjugate Gradient method at each time step, we use the ADI scheme
(31). Figure 4 shows fourth order linear diffusion on the surface of the bunny. We use a cubic grid
with cell width h � 1

4
� There are 159 � 161 � 129 grid cells. We use a bandwidth of about 10 grid cells.

The time step is k � 1
250 h3 � When computing with an explicit scheme, we needed k � 1

500 h4 � so there
is still significant improvement over the explicit method. We define the initial condition in all of R3 by
u0

�
x � y � z � � 1

2

�
cos

� 5
2 x � � sin

� 2
5 y � ��� We then fix u on the bunny and use the extension procedure to change

the values of u off of the surface so that the initial condition satisfies ∇u0 � ∇φ � 0 � We re-extend every
four time steps.
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t � 0

t � 0 � 2

Figure 4: Linear fourth order diffusion. Each row shows two views of the surface at the same point in
time.
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7 Cahn-Hilliard Equation

We now consider a classical phase-field model for spinodal decomposition of alloys, the Cahn-Hilliard
equation [41]. Such models describe coarsening dynamics such as the phase separation following a quench
from a disordered to an ordered phase. Computer simulations play an important role in the characterization
of late-stage coarsening processes. Recent efforts have focused on developing numerical methods for
the Cahn-Hilliard equation in Euclidean geometries using finite element methods [4] and psuedospectral
methods [54]. Here we develop a numerical method for solving the Cahn-Hilliard equation on a general
surface, using the implicit representation approach.

We solve
ut � ∆S � 	 ε2∆S u � u3 	 u � � (33)

for which u � 1 and u � 	 1 are both stable steady states. In our examples we use an initial condition of
u � 0 plus a very small zero mean perturbation. The solution u quickly separates the surface S into two
regions S � and S � where u takes on values of 1 and 	 1 respectively. The remaining points of S lie on the
interface of width O

�
ε � between these two regions. In later stages, u undergoes spinodal decomposition;

S � and S � change shape so that the length of the interface between the two regions decreases while
maintaining the area of each region (and the mean value of u). This coarsening of S � and S � slows with
time.

In free space, the Cahn-Hilliard equation is a diffuse interface model for Mullins-Sekerka dynamics
[40, 44], and a version of the Cahn-Hilliard equation with degenerate mobility is a diffuse interface model
for Hele-Shaw [18]. For flows on surfaces, we might expect to be able to use these models as diffuse
interface models of curve evolution on complicated geometries. This idea is further suggested by the
simulations shown in figures 5 and 6.

Equation (33) is slightly more complicated than (17) due to the nonlinear second order term. We pick
F1

�
u � � 	 ε2∆2u in (13) to derive the scheme

un � 1 	 un

k
� 	 ε2∆2un � 1 � ε2∇ � � N∇∆Sun � � ∆S

� �
un � 3 	 un � � (34)

which has a stability requirement of k � O
�
h2 ��� We define vn � 1 � un � 1 	 un and L � I � kε2∆2 to simplify

(34) as was done in Section 4.2:

Lvn � 1 � ∆S
� 	 ε2∆Sun � �

un � 3 	 un ��� (35)

Note that our method does not split the energy for (33) into convex and concave parts. Doing so requires
inverting an operator involving ∆Sun � 1 � and we found this to be prohibitively slow in practice.

We first solve (33) on a torus. The surface does not seem to affect the stability of (35), so we take large
time steps (relative to explicit schemes) and solve the linear systems with Jacobi Conjugate Gradient, as
discussed in Section 4.3. We choose ε � 2h and fix the initial condition to be u0 � 0 � η � where η is a small
random perturbation across the surface. Our choice of ε is similar to that used in [54] for Cahn-Hilliard
with constant mobility and in [18] for Cahn-Hilliard with degenerate mobility. Our results have transition
layers approximately four to six grid cells thick. We compute on a 120 � 120 � 120 grid with cell width
h � 1

30 . The time step taken is k � 1
10 h2 � We observe the spinodal decomposition expected; see Figure 5.

Figure 6 shows spinodal decomposition in the Cahn-Hilliard equation on the smoothed bunny. We
use ADI to compute (35) as in Section 6. We are constrained to take the same time step as in the linear
problem, k � O

�
h3 ��� Again ε � 2h and u0 � 0 � η � where η is a small zero mean perturbation.
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t � 0 � 12

t � 0 � 45

t � 3 � 5

Figure 5: Spinodal decomposition in the Cahn-Hilliard equation. Initial condition is u � 0 (slightly per-
turbed), red denotes u � 1 and blue denotes u � 	 1 � Each row shows two views of the surface at the same
point in time. 20



t � 3

t � 20

t � 950

Figure 6: Spinodal decomposition in the Cahn-Hilliard equation. Initial condition is u � 0 (slightly per-
turbed), red denotes u � 1 and blue denotes u � 	 1 � Each row shows two views of the surface at the same
point in time. 21



8 Thin Film Fluid Flow

An interesting class of problems described by nonlinear fourth order diffusion equations are thin film
flows involving a layer of viscous liquid on a solid surface. Surface tension forces lead to the fourth order
motion, due to curvature affects on the air-liquid interface of the film [7, 34, 42]. In the case of such flows
on curved surfaces, the underlying curvature of the substrate plays a role in the motion of the film, with
flow out of regions of high curvature. Recently there has been some interest in the fluids community in
deriving equations of motion for such flows on general surfaces. The most comprehensive paper to date on
this problem is that of Roy, Roberts and Simpson [47], building on previous work of Schwartz and Weidner
[48]. Several authors have developed numerical methods for thin films on surfaces using coordinates on
the surface. This work includes flows on cylinders [24, 48, 55] and more general surfaces [37], as well as
icing of airplane wings [39, 35, 36, 38]. We develop a numerical method for thin films on general surfaces
using the implicit representation methodology.

Letting u denote the film thickness, Roy, Roberts, and Simpson derived the following for the dimen-
sionless flow of a thin film in the absence of gravity [47]:

∂ζ
∂t

� 	 1
3

∇S � � u2ζ∇Sκ̃ 	 1
2

u4 �
κI 	 K � � ∇Sκ � � (36)

K is the curvature tensor for the curved substrate. The quantities k1 and k2 are the principle curvatures of
the substrate, and κ � k1 � k2 is twice the mean curvature. κ̃ is curvature of the free surface, which we
approximate as

κ̃ � κ � �
k2

1 � k2
2
� � ∆Su �

The variable ζ is the amount of fluid above a surface patch, which we approximate by ζ � u 	 1
2 κu2 �

1
3 k1k2u3 �

Using the framework of our level set function φ � we can easily compute κ and K � as well as the
quantities k1

� k2
� and k2

1 � k2
2
� We note that K is the Jacobian of the Gauss Map of the substrate. In terms

of the implicit representation, the Gauss Map is ∇φ�
∇φ

� � The trace of K gives 	 κ � and the determinant of

A � K � ∇φ � ∇φ�
∇φ

�
2 gives the Gauss curvature, k1k2

� We finally note that

k2
1 � k2

2 � κ2 	 2k1k2
�

This model differs from both linear diffusion and the Cahn-Hilliard equation in that the highest order
term of (36) is nonlinear. Our convexity splitting must take this nonlinearity into account. To derive the
evolution scheme, we carry out the differentiation on the left of (36) to get an evolution equation for u :

∂u
∂t

� 	 1
3ζ

� ∇S � � u2ζ∇Sκ̃ 	 1
2

u4 �
κI 	 K � � ∇Sκ � � (37)

where ζ
� � 1 	 κu � κ1κ2u2 � Following our earlier examples, we pick an appropriate C and evolve

un � 1 	 un

k
� 	 Cn∆∆un � 1 � Cn∆∆un 	 F

�
un � � (38)

where F
�
un � denotes the right hand side of (37). The dependence of C on the time step reflects the depen-

dence of the highest order term of (37) on un � Noting that the highest order term of F
�
un � is 1

3ζ � u
2ζ∆2

Sun �
we see that choosing Cn � 1

3ζ � u
2ζ might cause the method to be unstable. On the other hand, picking C too

large significantly slows the dynamics. So again using Sc to denote the computational band
�
φi � j � k

� �
c � we

pick

Cn � max
xi � j � k � Sc

1
3
�
1 	 κun

i � j � k � κ1κ2
�
un

i � j � k
� 2 � � un

i � j � k � 2 ζn
i � j � k

� (39)
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8.1 Example: Thin Film on an Ellipse

The curvature dependent terms in (36) reflect fluid motion driven by curvature of the surface. Fluid builds
up in regions of high negative curvature while leaving areas of high positive curvature. We consider an
example discussed in [47] and study the flow of an initially constant layer of film on an ellipse. The authors
of [47] discussed the plausible motion of the fluid, however they did not compute (36) for this example.
We provide numerical evidence supporting their claims for the fluid dynamics.

We place a layer of fluid with constant thickness u � 0 � 02 on the outside of the ellipse

x2 � 3y2 � 2 � (40)

We computed on
� 	 2 � 2 � � � 	 2 � 2 � with 200 � 200 grid points. We used a constant time step k � 10h2

where h denotes the grid cell width. We used the algorithm in Section 5 with only one change: C is
updated dynamically as described above. As seen in Figure 7, the fluid moves away from the ellipse’s
regions of high curvature near y � 0 �

Now consider placing the same constant layer of fluid on the inside of the ellipse (40). Once the im-
plicit function φ for the above problem is defined, we easily adjust our simulation to this case by mapping
φ � 	 φ � On the inside of the ellipse, the film builds up in the areas of high curvature. See Figure 8.

8.2 Sphere with Gravity: Fingering Instability

The following model, derived in [47], includes the effects of gravity:

∂ζ
∂t

� 	 1
3

∇S � � u2ζ∇Sκ̃ 	 1
2

u4 �
κI 	 K � � ∇κ �

	 1
3

Bo∇S � � u3ĝs 	 u4 � κI � 1
2

K � � ĝs � ĝnu3∇Su � � (41)

The Bond number Bo quantifies the relative strength of gravity to surface tension, and it is given by

Bo � ρgH2σ �

where ρ is the fluid density, g is acceleration due to gravity, σ is the surface tension, and H is the charac-
teristic thickness of the film. The vector ĝs is the component of gravity tangent to the surface S � and ĝn

is the magnitude of the component of gravity normal to S � In our example, ĝ � 	 �
0 � 0 � 1 � � so ĝs � Pĝ and

ĝn � �
ĝ 	 ĝs

� �
We place a ring of fluid with sinusoidally varying height near the top of the sphere. The remainder

of the sphere has a precursor layer of thickness u � 5 � 10
� 3 � Gravity drives the fluid to the bottom of

the sphere while the non-constant thickness causes a fingering effect. We used up-winding to compute the
gravity terms in (41). We computed in

� 	 2 � 2 � � � 	 2 � 2 � � � 	 2 � 2 � on a 128 � 128 � 128 grid. We used a
constant time step k � 1

2 h2 where h denotes the grid spacing. We compute in a band that is about ten grid
cells wide and re-extend data off of the surface after every five time steps. The Bond number is Bo � 100 in
this simulation. The results are given in figures 9, 10, and 11. Note that the fluid drips down the sphere and
eventually begins to collect at the bottom of the sphere. Equation (41) is derived from lubrication theory
and thus does not capture later time dynamics in which fluid might drop off the bottom of the sphere.
Although the computation is performed on a spherical surface, the method is very general and can easily
be applied to surfaces that lack the symmetry of the sphere.
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Figure 7: Thin film driven by curvature on the outside of an ellipse.
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Figure 8: Thin film driven by curvature on the inside of an ellipse.
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t � 0 � 0

t � 1 � 0

Figure 9: Equation (41) solved on the sphere. Each row gives a side and bottom view of the sphere at the
same point in time. The sphere is covered with a precursor layer of thickness of u � 5 � 10

� 3 � The color
scheme is used to display film thickness.
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t � 2 � 0

t � 4 � 0

Figure 10: Equation (41) solved on the sphere. Each row gives a side and bottom view of the sphere at the
same point in time. The sphere is covered with a precursor layer of thickness of u � 5 � 10

� 3 � The color
scheme is used to display film thickness.
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t � 10 � 0

t � 16 � 0

Figure 11: Later dynamics of equation (41) solved on the sphere. Each row gives a side and bottom view
of the sphere at the same point in time. The sphere is covered with a precursor layer of thickness of
u � 5 � 10

� 3 � The color scheme is used to display film thickness.
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9 Conclusions

We have presented a method for solving fourth order PDEs on surfaces of arbitrary geometry with finite
difference schemes on a Cartesian mesh. With our methods, the same code can be easily applied to many
different surfaces by changing only the function implicitly defining the surface. In computing higher
order PDEs on surfaces, we derive equations that are solved in an augmented band around the surface in
Euclidean space. As PDEs on � N � these equations are unique in the severity of their degeneracy – we
know of no other fourth order diffusions being studied where all diffusion locally is in one coordinate
direction only.

The higher order equations introduce a number of challenges that are of little consequence for first or
second order PDEs. Stability restrictions for time stepping fourth order equations require using implicit
schemes, unlike most previous work on solving PDEs on implicit surfaces [2, 6, 32]. We derived semi-
implicit schemes using convexity splitting ideas explored in [16, 18, 51] and presented a new means of
combining convexity splitting schemes with ADI methods. Compared to lower order equations, fourth
order PDEs require more careful extension and re-extension of data off of the surface, and they have more
complicated boundary conditions. We discussed each of these issues in detail and applied our methods to
linear fourth order diffusion, the Cahn-Hilliard equation, and a recently derived model for surface tension
driven flows on curved substrates.

Our work is only a first step. Although our schemes are faster than explicit schemes, there is room
for improvement. It remains a difficult problem to improve the time step restriction for flows on complex
surfaces with high curvature, because the inherent geometry is embedded in the projection operator.

It is an interesting problem to develop schemes with higher numerical accuracy, in particular for the
time step, as this might allow for computations with a larger time step. If the geometry introduces stiffness
into the dynamics, these terms could also be dealt with using splitting methods. Local mesh refinement,
while still taking advantage of the Cartesian geometry, might also help address this issue.

It is our hope that the techniques developed in this paper will be useful for scientists interested in
computing higher order PDEs on complicated geometries. Thin film flow is a particularly relevant problem
where there is interest in modeling the liquid lining of the lungs, icing of airplane winds, and numerous
other problems in which the underlying surface geometry is complex.

A Spatial Discretization

We now present the specific discretizations for the gradient, Laplacian, and Laplace-Beltrami operators.
We compute everything on a Cartesian grid in � N � Assume the domain is given by 0

�
xi

�
L for 1

�
i
�

N �
We use a cubic grid with ∆xi � h for each i � Let ω � �

ωi
� be a vector of integers 0

�
ωi

� L
h and denote

the coordinate directions by ei
� so that each grid point is given by

xω � ∑
0 � i � N

hωiei
�

Our discretizations follow the example of [6]. We calculate ∇φ with centered differences,

∇φ
�
xω

� � 1
2h

�
φ
�
xω � hei

� 	 φ
�
xω 	 hei

� �
i
� (42)

but use forward differences to compute gradients for everything else:

∇u
�
xω

� � 1
h

�
u
�
xω � hei

� 	 u
�
xω

� �
i
� (43)

29



Let v
�
xω

� be a vector whose ith component is vi � xω
� . We compute the divergence of v using backward

differences:

∇ � v �
xω

� � 1
h ∑

0 � i � N

vi � xω
� 	 vi � xω 	 hei

��� (44)

The Laplacian of a scalar quantity u is computed by applying (44) to (43), and the biharmonic is computed
by repeated application of the Laplacian.

Projected derivatives are computed using appropriate averaging of the projection matrix. Given a
projection matrix P � �

pi j � � we compute

P∇u
�
xω

� � �
∑

1 � j � N

p̄i jux j

�
xω

� �
i
� (45)

where

p̄i jux j

�
xω

� � 1
2h

�
pi j � xω � he j

� � pi j � xω
� � � u �

xω � he j
� 	 u

�
xω

� ���

Assuming that φ is a signed distance function, by applying (44) to (45) we compute

∆Su
�
xω

� � ∇ � � P∇u
�
xω

� � � ∑
1 � i � j � N

p̄i jux j

�
xω

� 	 p̄i jux j

�
xω 	 hei

�
h

� (46)

We repeat (46) to calculate ∆S∆Su �

B Degeneracy and ADI

To demonstrate the strong degeneracy of the fourth order equations considered in this paper, we apply
standard ADI schemes to both (7) and (9) without the assistance of the operator splitting discussed in
Section 4.1. Our calculations suggest the need for an indirect method (such as convexity splitting), while
also showing that the second order problem is far less delicate than its higher order counterpart.

We examine the special case where S is the line in � 2 making an angle of θ with the x-axis. We first
discuss the ADI method applied to second order diffusion on the line, then continue with a discussion of
ADI for intrinsic fourth order diffusion on the same line. We show that the stability of the fourth order
diffusion scheme depends on θ � which hardly affects the second order diffusion scheme. For simplicity we
discuss only the two dimensional problem, but note that similar results hold for three dimensions.

B.1 ADI without Convexity Splitting

To apply ADI to equations (7) and (9) without convexity splitting, we follow the example of [56] and
compute terms with mixed derivatives explicitly and all remaining terms implicitly. We first examine
equation (7), leaving equation (9) for Section B.2. Letting S be the line making angle θ with the x-axis,
our distance function is

φ � 	 sinθ x � cosθ y �

and the projection matrix is

P � � cos2 θ cos θsinθ
cosθsin θ sin2 θ � � (47)

For this example, (5) simplifies to

ut � cos2 θ uxx � 2cosθsin θ uxy � sin2 θ uyy
� (48)
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Define
Dx � cos2 θ ∂xx

�

Dy � sin2 θ ∂yy
�

Lx � I 	 kDx
�

and
Ly � I 	 kDy

�

Note that LxLyun � �
I 	 kDx 	 kDy � k2DxDy

� so ignoring the term of O
�
k2 � � we see that LxLy approx-

imates (48) without its mixed partials. We now introduce O
�
k � errors by computing the mixed partials

explicitly. This can be done more accurately so that these errors are reduced – see [56]. So we have

LxLy un � 1 � 	 2k cosθsin θ un
xy
�

We know subtract LxLyun from both sides of the above equation and let vn � 1 � un � 1 	 un to get

LxLyvn � 1 � k∇ � � P∇un � � k � cos2 θ un
xx � 2cosθsin θ un

xy � sin2 θ un
yy � � (49)

We use Von Neumann stability analysis to study scheme (49) for this example. Solutions of the con-
tinuous in space and discrete in time solutions of (49) can be written as

un � x � y � � σ
�
α � n exp i

�
α1x � α2y � � (50)

where the superscript n on the left corresponds to the n-th time step, while the superscript on the right
corresponds to a power of σ � Following the example of [56], we rescale the wave number as α̂ � 1

k2 α and
substitute (50) into (49) to get

σ
�
α̂ � 	 1 � 	

�
cos θα1 � sinθα2

� 2

1 � cos2 θα2
1 � sin2 θα2

2 � sin2 θcos2 θα2
1α2

2

�

We see (49) is unconditional stable, since

�
cosθα1 � sinθα2

� 2

1 � cos2 θα2
1 � sin2 θα2

2 � sin2 θcos2 θα2
1α2

2

�
2 (51)

is satisfied for all α and θ � Though simpler than (7) on general surfaces, this example shows that (49) is
stable even when the diffusion is not in the direction of the x or y axes. We next show that the fourth order
problem is very different, as it is too degenerate for this type of ADI scheme.

B.2 Fourth Order Problem

We now discretize (9) as in [56]. Define

Dx � cos4 θ ∂xxxx
�

Dy � sin4 θ ∂yyyy
�

Lx � I � kDx �

and
Ly � I � kDy �
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Once again letting vn � 1 � un � 1 	 un � the scheme

LxLyvn � 1 � 	 k∇ � � P∇ � � P∇un � � (52)

is an O
�
k � approximation of (9).

We repeat the Von Neumann analysis used for (49), this time rescaling α̂ � 1
k4 α to get

σ
�
α̂ � 	 1 � 	

�
cos θα1 � sinθα2

� 4

1 � cos4 θα4
1 � sin4 θα4

2 � sin4 θcos4 θα4
1α4

2

�

Stability of (52) thus requires

�
cosθα1 � sinθα2

� 4

1 � cos4 θα4
1 � sin4 θα4

2 � sin4 θcos4 θα4
1α4

2

�
2 (53)

Note that (53) is clearly satisfied when sinθ � 0 or cosθ � 0, which corresponds to diffusion in the
direction of one of the coordinate axes. To show that (52) is only conditionally stable for certain choices
of θ we consider the special case θ � π

2
� so we require

�
α1 � α2

� 4

4 � α4
1 � α4

2 � 1
4 α4

1α4
2

�
2 �

This is not satisfied, for example, when α1 � α2 � 1 � The instability is easily demonstrated in numerical
simulations and avoiding it requires using time steps on the same order of magnitude as an explicit scheme,
k � O

�
h4 ���
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