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Abstract

We investigate the asymptotic behavior of minimizers to sequences
of elliptic variational problems posed on thin three-dimensional do-
mains. These domains arise as thin neighborhoods of artibrary graphs
that contain severe constrictions near the graph nodes. We charac-
terize an appropriate limit of minimizers as a function of one variable
defined on the graph that necessarily minimizes a one-dimensional
variational problem. The most salient feature of these limits of mini-
mizers is the emergence of jump discontinuities across the graph nodes.
While the approach can handle quite general elliptic problems, we pay
particular attention to an application to generalized Josephson junc-
tions within the Ginzburg-Landau theory of superconductivity.
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1 Introduction

This paper concerns asymptotic limits for elliptic variational problems in

networks with constrictions. By a constricted network we mean a three-

dimensional domain representing a thin neighborhood of a three-dimensional

graph. This graph may consist of a finite number of smooth curves joined

at a finite number of nodes and the three-dimensional domain is taken to be

particularly thin in a neighborhood of each of the nodes. In the limit where

the thickness of the domain shrinks to zero and the domain collapses to the

graph, we characterize the asymptotic behavior of minimizers by identifying

a limiting variational problem defined on the graph in the spirit of Gamma-

convergence. We then argue that this limiting functional is minimized by a

limit of minimizers of the finite thickness problems.

Elliptic problems posed on constricted domains arise in a number of set-

tings. One can for example find in [4] a study of the elasticity of notched

beams. Another setting is the study of diffusion processes taking place over

a collection of thin constricted pipes. One of our primary motivations lies in

applications to the Ginzburg-Landau theory of superconductivity. For the

case of superconductivity, we have in mind the modeling of a weak link in a

superconducting wire, cf. [12], [1]. This is a kind of “geometrical” Joseph-

son junction [9] in which a supercurrent successfully tunnels across a very

narrow portion of a wire. Such constrictions are of interest because they are

known to give rise to currents which are proportional to the sine of the phase

jump across the constriction. When more than one constriction is present in

a looped wire, interference patterns can develop leading to interesting rela-

tionships between the supercurrent and the magnetic flux through the loop.

The most famous device exploiting this phenomenon is the SQUID, used to

measure tiny fluctuations in magnetic flux. In [15] we initiated this kind of

investigation for the case of a three-dimensional torus with a single constric-

tion. Here we develop an asymptotic theory of elliptic variational problems

posed on constricted networks that accomodates arbitrary geometries and

multiple incoming branches at each constriction.

Before describing our results as they apply to Ginzburg-Landau, we first

explain them in the simplest possible setting, that of minimizing the Dirichlet

integral

inf
Aε

∫
Ωε

|∇u|2 dx (1.1)

over an admissible set Aε consisting of functions with square-integrable gra-
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dients which additionally satisfy some inhomogeneous boundary condition

such as Dirichlet on part of the domain so as to keep the minimizer uε from

being constant. Here Ωε is taken to be a thickened graph consisting of N

smooth curves in R3 sharing the origin as an endpoint and a constant Dirich-

let condition is applied at the end of each cylindrical thickening of the graph.

(See Figure 1 for a depiction with the curves taken to be line segments.) We

first take appropriately scaled integral averages of the uε taken over cross-

sections of the cylinders and prove a compactness result that establishes a

subsequential limit U0 defined on the limiting graph Γ, cf. Proposition 2.4.

Then we show in Theorem 2.5 that U0 minimizes the limiting energy

inf
U∈AΓ, α∈R1

{ N∑
k=1

∫
Γk

(U ′
k)

2
ds+ b

N∑
k=1

|Uk(0) − α|2
}
, (1.2)

where Uk is the restriction of a function U ∈ H1(Γ \ {0}) to the kth branch

Γk of the graph and Uk(0) denotes its limiting value as one approaches the

origin along Γk. The admissible set AΓ is given by

AΓ := {U ∈ H1(Γ \ {0}) : Uk(Lk) = ck for k = 1, . . . , N},

where Lk denotes the length of Γk and the constants c1 . . . , cN denote the N

Dirichlet conditions referred to above. The constant b > 0 is a factor related

to the geometry of the constriction.

By proving that a limit of the sequence {uε} minimizes (1.2), we conclude

that in particular, a limit of minimizers is discontinuous at the origin. Note

that minimization of (1.2) over α leads easily to the fact that the optimal α

is simply the average of the numbers U1(0), . . . UN(0), but in general these

N numbers will be distinct. Heuristically speaking, we are thus finding that

minimizers of (1.1) will undergo a relatively inexpensive, rapid transition

across the constriction, with a jump discontinuity emerging in the limit.

This behavior is in stark contrast to the kind of results found in [10] and

[11], where less severe (2-d) constrictions, or even swellings are considered

at nodes of a graph and the limit of minimizers is characterized as being

continuous at the junctions.

Regarding the application of our techniques to Ginzburg-Landau theory,

we develop much further here the approach initiated in [15]. In [15], we

already demonstrated that an asymptotic analysis of the Ginzburg-Landau

energy (for a definition, see (3.1)) in the presence of a constriction can lead to

a sinusoidal Josephson condition mentioned earlier in the introduction. This
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investigation considered a circular torus with one constriction which collapses

to a circle in the zero thickness limit. This torus was subjected to an applied

magnetic field directed orthogonal to the circle. In the present article, we

wish to consider arbitrary applied magnetic fields and to replace the circle

with a consideration of arbitrary three-dimensional graphs, graphs which in

particular may possess nodes joining an arbitrary number of curves (wires).

As in the study of the harmonic minimizers of (1.1), we derive a compactness

result for minimizers of the Ginzburg-Landau energy on constricted networks

collapsing to a graph, and then show the limit of minimizers necessarily min-

imizes a limiting variatonal problem posed on the graph, cf. Theorem 3.6.

Through consideration of the resulting natural boundary conditions at each

node, this will allow us to derive a kind of generalized Josephson condition

at each node involving a finite sum of sine functions. Suppose, for example,

that for a particular node P on the graph, there are N curves Γ1, . . . ,ΓN

sharing the endpoint P . Let us denote the supercurrent directed along Γk

towards P by Jk, and let φ1, . . . , φN denote the phases of the complex order

parameter minimizing the Ginzburg-Landau energy. Then through the nat-

ural boundary conditions satisfied by a minimizer of the limiting energy, we

find the formula

Jk ∝
∑
l �=k

sin (φk − φl) for k = 1, . . . , N. (1.3)

In particular, for the case N = 2 of two wires joined at a constriction, one

recovers the standard Josephson condition

J1 ∝ sin (φ1 − φ2) and J2 = −J1.

The discontinuity of the minimizer to the 1-d limit contrasts with the con-

tinuity of minimizers obtained for Ginzburg-Landau under the collapse of

domains with less severe constrictions in [13].

Having derived (1.3), and through a (formal) manipulation that allows us

to relate phase jumps to magnetic flux through holes of a graph, our hope is

to obtain current/flux relationships for arbitrarily complicated configurations

of wires with weak links in order to perhaps suggest new and interesting

superconducting devices. We pursue these ideas in [16].

In Section 2 we describe and prove our results for the simplest setting

(1.1) for a domain Ωε collapsing to a finite set of line segments meeting at

the origin. Then in Section 3 we extend the results to arbitrary graphs and

to the Ginzburg-Landau setting.

4



Acknowledgment. P.S. would like to thank the Institute for Mathematics

and its Applications in Minneapolis for its hospitality during the writing of

this article.

2 Asymptotic behavior of harmonic functions

in multiply constricted domains

We begin with a description of the geometry of the region Ωε to be considered.

To this end, we begin with a graph in R3 consisting of a union of N line

segments Γk of length Lk, k = 1, . . . , N , all having one endpoint in common,

located at the origin of a Cartesian coordinate system with points denoted

by x = (x1, x2, x3). It will be convenient to express each line segment Γk

parametrically as the image of the interval 0 ≤ s ≤ Lk under the map

γk : R1 → R3 given by γi(s) = γ′i(0)s for some constant γ′k(0) ∈ R3.

The domain under consideration will be a certain neighborhood of this

graph and to describe it precisely, we also introduce for every positive ε, a

piecewise linear function gε : [0,∞) → R
1 that will govern the thickness of

the N branches of our domain. Fixing any numbers p ∈ (0, 1) and b > 0, we

define

gε(s) :=



bε1+p for 0 ≤ s ≤ ε1+p,

linear for ε1+p < s < εp,

ε for εp ≤ s <∞.

(2.1)

Now for each vector γ′k(0) we select unit vectors nk and bk so that

(γ′k(0),nk,bk) forms an orthonormal basis for R
3. The notation nk and bk is

chosen so as to make for a smoother transition in the next section to a Frenet

frame in the case of curved graphs. Then define the maps T εk : R
3 → R

3 via

the formula

T εk (s, y, z) = γk(s) + ygε(s)nk + zgε(s)bk. (2.2)

Using the notation CL := {(s, y, z) : 0 ≤ s ≤ L, y2 + z2 < 1} to denote the

cylinder of length L, note that the set Cε
k := T εk (CLk

) consists of a tapered

cylinder with central axis along Γk of length Lk and cross-sectional radius

gε(s). We can now define an N -branched region Ωε ⊂ R3 as the union of the

N solid open cylinders with central axis along Γk and radius gε(s), s ∈ (0, Lk)

and the open ball centered at the origin of radius bε1+p; that is

Ωε := Cε
1 ∪ . . . ∪ Cε

N ∪B(0, bε1+p).
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Figure 1: A domain Ωε consisting of multiple branches constricted at a node.

Please note that the figure is not drawn to scale.

See Figure 1.

We devote this section to the model problem of determining the asymp-

totic behavior of the harmonic functions minimizing the Dirichlet integral

taken over Ωε, subject to specified inhomogeneous constant Dirichlet bound-

ary conditions on the ends of the branches. We wish to emphasize that this

example has been chosen in order to exhibit the result through perhaps the

simplest possible setting yielding a nontrivial minimizer. The result holds

for much more general elliptic operators and for other kinds of boundary

conditions and the approach of this section can serve as a building block for

these generalizations. In particular, a more complicated and more interesting

example relating to superconductivity appears in the following section.

Let Eε
k, k = 1, 2, . . . , N denote the discs of radius ε forming the ends of the

N cylindrical branches, corresponding to s = L1, . . . , LN and let c1, . . . , cN

denote any N constants. We will pursue an asymptotic description of a

sequence of minimizers to the variational problems

inf
Aε

∫
Ωε

|∇u|2 dx, (2.3)

6



where

Aε := {u ∈ H1(Ωε) : u(x) = ck for x ∈ Eε
k, k = 1, . . . , N}.

By a standard application of the direct method, a minimizer uε exists

for each ε > 0. This minimizer will clearly be a harmonic function in Ωε,

satisfying the Dirichlet condition on the discs Eε
k and satisfying the ‘natural’

homogeneous Neumann conditions on the remainder of ∂Ωε. Furthermore,

elementary use of the maximum principle implies that

|uε(x)| ≤ max{|c1| , . . . , |cN |} for all x ∈ Ωε. (2.4)

Next we construct a sequence of simple test functions {vε} on Ωε in order

to bound the energy of uε as follows. Along the kth branch, define vε to

be a linear function of the variable running along Γk, taking the value 0

on the disc Dε
k := T εk ({(ε1+p, y, z) : y2 + z2 < 1} and ck along the disc

T εk ({Lk, y, z) : y2 + z2 < 1}, and then set vε ≡ 0 on the region

B̃ε := Ωε \
N⋃
k=1

T εk ({(s, y, z) : ε1+p < s < Lk, y
2 + z2 < 1}). (2.5)

One then readily checks that∫
Ωε

|∇uε|2 dx ≤
∫

Ωε

|∇vε|2 dx ≤ Cε2, (2.6)

since the volume of Ωε is O(ε2).

We will describe the asymptotic behavior of the minimizers using the

variables (s, y, z). To this end, we now introduce Uε
k through the relation

Uε
k(s, y, z) = uε(T εk (s, y, z)), (2.7)

In light of the estimate (2.6), it is apparent that one should rescale the

energy by dividing by ε2 in order to capture the leading order behavior in

the ε → 0 limit. With this in mind, for any numbers δ1 and δ2 satisfying

0 ≤ δ1 < δ2 ≤ Lk, we use (2.2) to change variables and compute

1

ε2

∫
T ε

k

(
{(s,y,z): δ1<s<δ2, y2+z2<1}

) |∇uε|2 dx =

∫ δ2

δ1

∫
{y2+z2<1}

∣∣∣∣(Uε
k)s −

(gε)′

gε

(
y(Uε

k)y + z(Uε
k)z

)∣∣∣∣
2
gε(s)2

ε2
dy dz ds

+
1

ε2

∫ δ2

δ1

∫
{y2+z2<1}

|(Uε
k)y|2 + |(Uε

k)z|2 dy dz ds, (2.8)
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One immediate consequence of combining (2.6) and (2.8) is the estimate

∫ Lk

0

∫
{y2+z2<1}

|(Uε
k)y|2 + |(Uε

k)z|2 dy dz ds ≤ Cε2 (2.9)

which suggests (not surprisingly) that in the limit, what will matter is the

s-dependence of the minimizers.

A crucial aspect of the approach is to gain some control on the asymptotic

behavior of the minimizers uε within B̃ε. While the gradient of uε is typically

blowing up near the constriction, we see from the following proposition that

the average of uε over each of the discs Dε
k is under control:

2.1 Proposition. There exists a subsequence {εj} → 0 and a number α0

such that

lim
εj→0

∫
D

εj
k

uεjdS = α0 for k = 1, . . . , N. (2.10)

2.2 Remark. Here and throughout, and notation
∫
S
· denotes the integral

average of a function over the domain of integration S, i.e. 1
|S|
∫
S
·.

As we shall see, this proposition follows easily from the following elemen-

tary lemma.

2.3 Lemma. Let Ω ⊂ Rn be a bounded domain with a smooth boundary. Let

D1, . . .DN ⊂ ∂Ω be mutually disjoint domains. Given constants {ak} ⊂ R1,

1 ≤ k ≤ N , define

CΩ(a1, . . . aN ) = inf
u∈H1(Ω)

{∫
Ω

|∇u|2 dx :

∫
Dk

u dHn−1(x) = ak, k = 1, . . . , N

}
.

(2.11)

Then function CΩ is a quadratic form on RN , namely

CΩ(a1, . . . aN ) = aCBat

where a = (a1, . . . aN), at denotes its transpose, and CΩ is an N × N sym-

metric, non-negative matrix satisfying

aCBat = 0 iff a = λ(1, . . . , 1) for some λ ∈ R
1. (2.12)

In addition, if for any δ > 0 we let δΩ := {x ∈ Rn : x
δ
∈ Ω} denote a δ

contraction of Ω, then

CδΩ = δnCΩ. (2.13)
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Proof of Lemma 2.3. A standard application of the direct method goes to

show that a minimizer v of (2.11) exists and one readily checks that such a

solution satisfies the conditions

∆v = 0 in Ω,

∫
Dk

v = ak, ∇v · ν = 0 on ∂Ω \ ∪Nk=1Dk,

and ∇v · ν = βk on Dk for some βk ∈ R
1, k = 1, . . . , N,

(2.14)

where ν denotes a unit normal to ∂Ω. Furthermore, any function v satisfying

(2.14) must necessarily be the unique minimizer of (2.11).

Letting ui to be the minimizer of (2.11) subjected to ai = 1, ak = 0

∀k �= i we obtain from the above reasoning and the linearity of the problem

that u =
∑N

i=1 aiui is the minimizer of (2.11) for general constants a1, . . . , aN ,

so that

C(a1, . . . aN) =
∑
i

∑
k

aiak

∫
Ω

∇ui · ∇uj dx

and the first part of the lemma follows. The second part follows from applying

the transformation

u(x) → w(x) = u(x/δ)

which preserves
∫
Dk
u =

∫
δDk

w and transforms a minimizer u of CΩ(a) to a

minimizer w of CδΩ(a), while∫
δΩ

|∇w|2 = δn−2

∫
Ω

|∇u|2 .

Condition (2.12) is obvious since only a constant minimizer to (2.11) can

make CΩ(a) vanish.

Proof of Proposition 2.1. Let B̃ ⊂ R3 denote the union of the ball B(0, b) and

the N right circular cylinders of radius one, height one, central axis directed

along Γk and base passing through the origin. Recalling the definition (2.5)

of the set B̃ε, we observe that B̃ε = ε1+pB̃. Now from (2.6) we see that∫
B̃ε

|∇uε|2 ≤
∫

Ωε

|∇uε|2 ≤ Cε2.

If we let

a
(ε)
k :=

∫
Dε

k

uε,

then by definition (2.11) we have

a(ε)Cε1+pB̃a(ε),t ≤
∫
B̃ε

|∇uε|2 ≤ Cε2.
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Thus, from (2.13) we obtain

a(ε)CB̃a(ε),t ≤ Cε1−p → 0 as ε → 0.

Consequently, after passing to a subsequence if necessary, it follows from

(2.12) that for some α0 ∈ R
1 one has

lim
εj→0

a(εj) → α0(1, . . . , 1)

and the proposition is proved.

We turn next to the compactness of the minimizers {uε}. More precisely,

we wish to identify a subsequential limit that is a function of one variable

defined on the graph Γ. We will accomplish this by considering integral

averages of Uε
k (cf. (2.7)) taken over cross-sections of each branch Γk. That

is, on the kth branch of Ωε we let U
ε

k : [ε1+p, Lk] → R
1 be defined by

U
ε

k(s) :=

∫
{(s,y,z): y2+z2<1}

Uε
k(s, y, z) dy dz. (2.15)

In the analysis to follow, we will be considering the sequence of mea-

sures {Uε

k(s) ds} and we wish to emphasize here one of the subtleties of the

problem. Because the sequence {uε} tends to have a huge gradient near the

constriction in the domain Ωε, the limit of these measures will have a singular

part at the origin. Capturing this singular part is the key to correctly charac-

terizing the limit of minimizers to the original problem. For this reason, we

find it convenient to view U
ε

k as a function defined on [−1, Lk] by extending

it to be constant for values below s = ε1+p. Thus, we take

U
ε

k(s) := U
ε

k(ε
1+p) for − 1 ≤ s < ε1+p. (2.16)

This will ultimately place the support of the singular part of the limiting

measure in the interior of the interval of definition rather than having it

“leak” out at an endpoint.

2.4 Proposition. There exists a subsequence {εj} → 0 and a function U0 ∈
H1(Γ \ {0}) such that for any δ > 0 one has

U
εj

k → U0
k on δ ≤ s ≤ Lk (2.17)

weakly in H1 and uniformly as εj → 0, where U0
k refers to the restriction of

U0 to Γk.
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Furthermore, we have the convergences

U
εj

k →
{
U0
k for s > 0

α0 for s < 0
(2.18)

in L1((−1, Lk)) and

(U
εj

k )′ ∗
⇀ (U0

k )
′ {0 < s < Lk} + (U0

k (0) − α0)δ{s=0}, (2.19)

weakly as measures for each k ∈ {1, . . . , N} where

U0
k (0) := lim

s→0+
U0
k (s)

.

Proof. This result follows from ideas developed in [3], [4] and [15], along with

the result from Proposition 2.1.

A consequence of (2.8) and the bound (2.6) is the estimate∫ Lk

ε1+p

∫
{y2+z2<1}

aε(s)

∣∣∣∣(Uε
k)s −

(gε)′

gε

(
y(Uε

k)y + z(Uε
k)z

)∣∣∣∣
2

dy dz ds ≤
1

ε2

∫
T ε

k

(
{(s,y,z): ε1+p<s<Lk, y2+z2<1}

) |∇uε|2 dx < C, (2.20)

where we have introduced the quantity

aε(s) :=
g2
ε(s)

ε2
(2.21)

which will play a major role in the analysis to follow.

In view of (2.1) and (2.9), we then note that∫ Lk

ε1+p

∫
{y2+z2<1}

aε(s)

∣∣∣∣(gε)′gε

(
y(Uε

k)y + z(Uε
k)z

)∣∣∣∣
2

dy dz ds ≤
∫ Lk

ε1+p

∫
{y2+z2<1}

(
(gε)′

ε

)2

|y(Uε
k)y + z(Uε

k)z|2 dy dz ds ≤ Cε2−2p.

(2.22)

Hence, we obtain∫ Lk

ε1+p

∫
{y2+z2<1}

aε(s) |(Uε
k)s|2 dy dz ds ≤ C (2.23)

Then it follows from the Cauchy-Schwartz inequality that∫ Lk

ε1+p

aε(s)[(U
ε

k)
′]2 ds ≤ 1

π

∫ Lk

ε1+p

∫
{y2+z2<1}

aε(s) |(Uε
k)s|2 dy dz ds < C. (2.24)

11



Fixing any δ > 0 we observe that aε(s) ≡ 1 on δ ≤ s ≤ Lk for ε small.

Then since U
ε

k is uniformly bounded by (2.4), we see from (2.24) that the

sequence {Uε

k} is uniformly bounded inH1((δ, Lk)) with a bound independent

of δ. Thus, we obtain an H1-subsequential limit U0
i as asserted in (2.17), and

this limit will be continuous in light of the embedding of continuous (in fact,

Hölder continuous) functions in H1 in one-dimension, cf. [7] or [17].

To establish more delicate compactness near the constriction, we pause

to list the crucial properties of the factor aε, all of which are easily derivable

from the definition of gε (cf. (2.1)):∫ Lk

εp

1

aε(s)
ds→ Lk, (2.25)∫ εp

ε1+p

1

aε(s)
ds→ 1

b
, and (2.26)

∫ ε1+p

0

1

aε(s)
ds→ 0 as ε→ 0. (2.27)

In particular, we see that ∫ Lk

ε1+p

1

aε(s)
ds < C. (2.28)

Now, writing∫ Lk

ε1+p

∣∣(Uε

k)
′∣∣ ds =

∫ Lk

ε1+p

1√
aε(s)

√
aε(s)

∣∣(Uε

k)
′∣∣ ds

≤
(∫ Lk

ε1+p

1

aε(s)
ds

)1/2(∫ Lk

ε1+p

aε(s)[(U
ε

k)
′]2 ds

)1/2

,

we conclude via (2.24) and (2.28) that {U ε

k} is uniformly bounded inBV ((−1, Lk)),

in fact in W 1,1((−1, Lk)), as well. Thus, the sequence has a subsequential

limit in L1((−1, Lk)), and it must be equal to α0 for s < 0 in view of (2.16)

and Lemma 2.1. This yields (2.18). The uniform bound on the L1-norms of

the sequence {(Uε

k)
′} implies the weak convergence as measures of a subse-

quence of derivatives which is the content of assertion (2.19).

We are now able to state our main result characterizing the asymptotic

behavior of the minimizers uε through a Γ-convergence type of result saying

that the limit minimizes a limiting problem on the graph Γ.

2.5 Theorem. Let {uε} ∈ Aε be any sequence of minimizers of the Dirich-

let integral taken over Ωε. Then the subsequential limit U0 ∈ H1(Γ \ {0})

12



guaranteed by Proposition 2.4 and the value α0 emerging in Proposition 2.1

solve the problem

inf
U∈AΓ, α∈R1

{ N∑
k=1

∫
Γk

(U ′
k)

2
ds+ b

N∑
k=1

|Uk(0) − α|2
}
, (2.29)

where the admissible set AΓ is given by

AΓ := {U ∈ H1(Γ \ {0}) : Uk(Lk) = ck for k = 1, . . . , N},

and we have denoted Uk := U ◦ γk.

2.6 Remark. We observe through minimization over α that the minimizing

pair (U0, α0) are related via the condition

α0 =
1

N

N∑
k=1

U0
k (0).

2.7 Remark. With a little extra effort, one could establish a full Γ-convergence

result as was done in e.g. [4]. This would involve strengthening (2.30) below

to the assertion that

lim inf
ε→0

1

ε2

∫
Ωε

|∇vε|2 dx ≥ π

[ N∑
k=1

∫
Γk

(Vk)
′2 ds+ b

N∑
k=1

|Vk(0) − α|2
]
,

for any V ∈ H1(Γ \ {0}), constant α and sequence {vε} such that the ana-

logues of the convergences (2.18) and (2.19) are satisfied. One motivation for

pursuing this would be to look for possible local minimizers of the original

problem (2.3).

2.8 Remark. There are numerous fairly obvious generalizations of Theo-

rem 2.5 that one can similarly obtain. Certainly such a result will hold in

n dimensions as well. One could also take non-constant Dirichlet data ck(x)

with the limiting energy picking up the average for its data. Another allow-

able generalizations would involve replacing the Laplacian by a more general

elliptic operator. Also, one could take the constrictions to differ from each

other in geometry. This could most easily be accomplished by replacing b

in definition (2.1) by bi along each branch. Then the limiting energy would

take the form
N∑
k=1

∫
Γk

(U ′
k)

2
ds+

N∑
k=1

bk |Uk(0) − α|2 .
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Finally, without any substantive change, one could phrase the result on more

general graphs, that is, structures consisting of finitely many smooth curves

joined at finitely many nodes. In the next section, we will discuss a general-

ization to the setting of the Ginzburg-Landau energy along these lines.

2.9 Remark. The severity of the constriction is controlled by the parameter

p appearing in the definition of gε, which we take to satisfy 0 < p < 1. If

one instead considers a more extreme constriction by taking p > 1 then it is

not hard to check that the limiting variational problem will include no jump

term at the junction whatsoever. In other words, a limit of minimizers U0

would then simply minimize the functional

N∑
k=1

∫
Γk

(U ′
k)

2
ds,

and there would be no transmission across the origin of the graph. Conse-

quently, U0 would equal the constant ck on Γk for each k. We did not explore

the critical case p = 1.

Proof. The identification of U0 as a minimizer of (2.29) will result from es-

tablishing the following two claims. First we will show that

lim inf
εj→0

1

ε2
j

∫
Ωεj

|∇uεj |2 dx ≥ π

[ N∑
k=1

∫
Γk

(U0
k )

′2 ds+ b

N∑
k=1

∣∣U0
k (0) − α0

∣∣2 ],
(2.30)

where α0 is the value emerging in Lemma 2.1. Then we will show that for

any V ∈ AΓ, and for any α ∈ R1, there exists a sequence {vε} ⊂ H1(Ωε)

such that

lim
ε→0

1

ε2

∫
Ωε

|∇vε|2 dx = π

[ N∑
k=1

∫
Γk

V ′
k
2
ds+ b

N∑
k=1

|Vk(0) − α|2
]
, (2.31)

where we denote by Vk the restriction of V to the branch Γk. Using the

minimizing property of the sequence {uε}, we can then combine (2.30) and

(2.31) to conclude that U0 solves (2.29) as asserted, namely

N∑
k=1

∫
Γk

(U0
k )

′2 ds+ b

N∑
k=1

∣∣U0
k (0) − α0

∣∣2 ≤ N∑
k=1

∫
Γk

V ′
k
2
ds+ b

N∑
k=1

|Vk(0) − α|2 ,

for arbitrary V ∈ H1(Γ \ {0}) and α ∈ R1.
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Proof of Claim (2.30): To establish (2.30), we first invoke (2.21), (2.22)

and (2.24) to obtain

1

ε2

∫
Ωε

|∇uε|2 dx ≥ π

N∑
k=1

∫ Lk

ε1+p

aε(s)[(U
ε

k)
′]2 ds. (2.32)

Let us now denote by µεk and νUε
k

the measures on [−1, Lk] given by

dµεk(s) :=

{
1

aε(s)
ds for s ≥ 0

1 ds for s < 0
and dνUε

k
(s) := (U

ε

k)
′(s) ds

respectively. Using the constancy of U
ε

k for s < ε1+p, this allows us to write∫ Lk

ε1+p

aε(s)
∣∣(Uε

k)
′∣∣2 ds =

∫ Lk

−1

∣∣∣∣dνUε
k

dµεk

∣∣∣∣
2

d µεk(s) for each k, (2.33)

where in the last integral the quantity
dνU

ε
k

dµε
k

refers to the (Radon-Nikodym)

derivative of νUε
k

with respect to µεk.

Then, using the definition of gε and aε one can easily check that

dµεk(s)
∗
⇀ 1 ds+

1

b
δ{s=0} =: dµ0

k. (2.34)

Also, recall that (2.19) asserts the convergence

dν
U

εj
k

∗
⇀ (U0

k )
′(s) ds {s > 0} + (U0

k (0) − α0)δ{s=0} =: dνU0
k
.

Hence, invoking Theorem 3.1 of [3], we conclude that

lim inf
εj→0

N∑
i=1

∫ Lk

−1

∣∣∣∣∣
dν

U
εj
k

dµεj

∣∣∣∣∣
2

dµ
εj

k (s) ≥
N∑
k=1

∫ Lk

−1

∣∣∣∣dνU0
k

dµ0
k

∣∣∣∣
2

dµ0
k(s)

=

N∑
k=1

∫
Γi

∣∣(U0
k )

′∣∣2 ds+ b
∣∣U0

k (0) − α0

∣∣2 .
Combining this last inequality with (2.32) and (2.33), we obtain (2.30).

Proof of Claim (2.31): Fix any function V ∈ AΓ and any α ∈ R1. The

construction is similar to that used in [15]. We introduce the function λε :

[0,∞) → R1 via the formula

1

aε(s)
= 1 + λε(s). (2.35)

We observe from (2.34) that λε behaves like a δ-function at the origin with

mass 1/b. In particular, if we introduce

βεk :=

∫ Lk

ε1+p

λε(s) ds,
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then from (2.25)-(2.26) we see that βεk → 1
b

as ε→ 0.

Now we can define a sequence vε ∈ H1(Ωε) that will serve to verify (2.31).

Recalling the definition of B̃ε given below (2.4), we set vε ≡ α in B̃ε. Then, on

the kth branch of Ωε outside of B̃ε, we define vε = V ε
k (s) (that is, independent

of y and z) by

V ε
k (s) = Vk(s)+

1

βεk
(α−Vk(ε1+p))

∫ Lk

s

λε(s′) ds′ for ε1+p ≤ s ≤ Lk. (2.36)

Observe, in light of (2.35), that V ε
k (s) = Vk(s) for s > εp. We now essentially

follow the calculation from [15]. We present it here to keep the treatment

self-contained. Through the change of variables formula (2.8) employed for

a function of s only, and through extensive use of (2.35), one finds

1

π
lim
ε→0

1

ε2

∫
Ωε

|∇vε|2 dx =
1

π
lim
ε→0

1

ε2

∫
Ωε\B̃ε

|∇vε|2 dx =

lim
ε→0

N∑
k=1

∫ Lk

ε1+p

g2
ε(s)

ε2
|(V ε

k )s|2 ds =

lim
ε→0

N∑
k=1

∫ Lk

ε1+p

aε(s)

∣∣∣∣V ′
k(s) −

1

βεk
(α− Vk(0))λε(s)

∣∣∣∣
2

ds =

lim
ε→0

N∑
k=1

[ ∫ Lk

ε1+p

aε(s) |V ′
k|2 ds+

1

(βεk)
2
(Vk(0) − α)2

∫ Lk

ε1+p

aε(s)λ
ε(s)2 ds

+
2(Vk(0) − α)

βεk

∫ Lk

ε1+p

V ′
k(s)aε(s)λ

ε(s) ds

]
= lim

ε→0

N∑
k=1

I + II + III.

(2.37)

Since aε → 1 in L2((0, Lk)), one immediately sees that

lim
ε→0

I =

∫ Lk

0

|V ′
k|2 ds.

Then, since∫ Lk

ε1+p

aε(s)λ
ε(s)2 ds =

∫ Lk

ε1+p

(1 − aε(s))λ
ε(s) ds = βεk −

∫ Lk

ε1+p

(1 − aε(s)) ds

we can use the fact that βεk → 1
b

to check that

lim
ε→0

II = b(Vk(0) − α)2.

Finally, the estimate∣∣∣∣2(Vk(0) − α)

βεk

∫ Lk

ε1+p

V ′
k(s)aε(s)λ

ε(s) ds

∣∣∣∣ ≤ C

∫ Lk

ε1+p

∣∣V ′
k(s)

(
1 − aε(s)

)∣∣ ds
≤ C

(∫ Lk

ε1+p

|V ′
k|2 ds

)1/2(∫ Lk

ε1+p

(
1 − aε(s)

)2
ds

)1/2

→ 0,
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implies that limε→0 III = 0 and we return to (2.37) to obtain (2.31).

We conclude this section with a discussion of the minimization problem

(2.29) solved by U0 and α = α0 = 1
N

∑N
k=1 U

0
k (0). Taking a first variation in

the variable U on each branch, that is substituting in U0
k + δWk on Γk for

Wk ∈ H1(Γk) with Wk(Lk) = 0 and setting the δ-derivative of the energy

equal to zero, one obtains

N∑
k=1

∫ Lk

0

(U0
k )

′W ′
k ds+ b

N∑
k=1

(U0
k (0) − α0)Wk(0) = 0. (2.38)

Integrating by parts, we conclude, not surprisingly, that U0 is linear on each

branch. Then, taking Wk(0) = 0 for all k except k = j for some j ∈
{1, . . . , N} we obtain N natural boundary conditions at the origin of the

graph:

(U0
j )

′(0) = b
(
U0
j (0) − α0

)
for j = 1, . . . , N. (2.39)

Recalling that α0 is simply the average of the values {U0
k (0)}, we note that

summing over the k conditions in (2.39) leads to a zero net flux condition at

the origin of the graph
N∑
k=1

(U0
k )

′(0) = 0. (2.40)

Since the U0
k are linear, one can view (2.39) as a system of N linear equations

for the N unknown slopes, namely

ck − Uk(0)

Lk
= b

(
Uk(0) − 1

N

N∑
k′=1

Uk′(0)

)
.

Finally, we note that even in the most trivial case N = 2, the solution

will not in general be continuous at the origin. For example, taking b = L1 =

L2 = 1 one can explicitly calculate the minimizer U0 to be given by

U0
1 (s1) =

1

4
(c1 − c2)(s1 − 1) + c1, U0

2 (s2) = −1

4
(c1 − c2)(s2 − 1) + c2

so that U0
1 (0) − U0

2 (0) = 1
2
(c1 − c2).

3 Generalization to Ginzburg-Landau along

a network of constricted arcs.

In this section we pursue a generalization of the results of the previous section

in various directions by extending this analysis to the case of the Ginzburg-
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Landau energy as was accomplished in [15]. In [15], we took the limiting

graph forming the skeleton of the domain Ωε to be one circle and the domain

possessed one constriction (one node on the circle). Also, in [15] we took an

applied magnetic field directed depending only on x1 and x2 and directed

along the x3-axis. Here we wish to consider domains that shrink in the

ε → 0 limit to graphs consisting of a finite number of smooth arcs in R3

joined at a finite number of nodes, and we will consider arbitrary smooth

applied magnetic fields. Let us first introduce the Ginzburg-Landau model

for superconductivity.

We will use the following non-dimensional version of the Ginzburg-Landau

energy functional taken over a sample Ωε ⊂ R
3 to be described shortly:

Gε(ψ,A) =
1

ε2

∫
Ωε

(
|(∇− iA)ψ|2 +

ν̃2

2

(|ψ|2 − µ2
)2)

dx+

1

ε2

∫
R3

|∇ × A −He|2 dx. (3.1)

Here Ψ : Ωε → C is the order parameter whose square modulus measures

the superconducting electron density, A : R3 → R3 is the effective magnetic

potential associated with the effective magnetic field H through ∇×A = H,

and He : R3 → R3 is an arbitrary given, smoothly varying, applied magnetic

field. The quantities ν̃ and µ are material parameters with µ2 proportional

to the difference between the critical temperature Tc and the temperature of

the sample. We assume we are in the superconducting temperature regime

where this difference is positive. We have retained µ in the formulation in

order to highlight the possibility of using it as a bifurcation parameter in

future studies of the onset problem. Note that the energy Gε has already

been scaled so that the minimum energy remains uniformly bounded away

from both zero and infinity for small ε.

Next we describe the sample Ωε. We begin with a graph Γ consisting of a

finite number of C2 arcs Γk, k = 1, . . . , N joined at points {Pl}, l = 1, . . . ,M .

For each k, we denote by γk : [0, Lk] → R3 a smooth parametrization of Γk

by arclength, and we allow for the possibility that γk(0) = γk(Lk), in which

case, γ′k(0) is not necessarily assumed to be parallel to γ′(Lk). See Figure 2.

As in Section 2, the domain Ωε arises through a “thickening” of this graph

by taking the union of a tubular neighborhood of Γ along with small balls

centered at the points {Pl}. To make this precise we introduce a function

gεk(s) to govern the thickness of the kth branch of Ωε as an even extension of
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Figure 2: A general graph Γ in R3.

the function gε defined in (2.1) via the formula

gεk(s) =

{
gε(s) for 0 ≤ s ≤ Lk

2

gε(Lk − s) for Lk

2
≤ s ≤ Lk.

(3.2)

Then we define the kth branch, Cε
k of Ωε via

Cε
k := {x : (x1, x2, x3) = T kε (s, y, z) for (s, y, z) ∈ Ck},

where Ck := {(s, y, z) : 0 ≤ s ≤ Lk, y
2 + z2 < 1} and where T εk : Ck → R3 is

given by

T εk (s, y, z) = γk(s) + ygεk(s)nk(s) + zgεk(s)bk(s). (3.3)

Here nk denotes the normal to the arc Γk and bk denotes the binormal in a

standard Frenet frame. For future reference, we recall the Frenet equations

that serve to define the curvature κk and torsion τk of the kth arc Γk:

γ′′k(s) = κk(s)nk(s), n′
k(s) = −κk(s)γ′k(s)−τk(s)bk(s), b′

k(s) = −τk(s)nk(s).
(3.4)

3.1 Remark. In case a particular arc, or section of an arc, consists of a line

segment, of course the frame is not well-defined. In this case, however, we

simply use a coordinate system such as that used in Section 2. This does not

affect the analysis and we will not comment further on this issue.

Now, as in the previous section, we define Ωε as the union of these N

branches described above with the M balls B(Pl, bε
1+p), where for every l we

have at least one k such that Pl = γk(0) or Pl = γk(Lk) or both. (See Figure

3).
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Figure 3: A domain Ωε consisting of multiple branches constricted at a node.

The pipes Cε
1, . . . , C

ε
4 are tapered tubular neighborhoods of the branches Γk

of the graph Γ.

Our goal in this section is again to characterize the asymptotic behavior of

minimizers. To set up the minimization of Gε in the proper function spaces,

we introduce the space H as the completion of the set

{φ ∈ C∞(R3; R3) : φ compactly supported}

with respect to the norm ‖∇φ‖L2(R3;R3) =
(∫

R3 |∇φ|2 dx
)1/2

. Then we define

H0 to be

H0 = {φ ∈ H : div φ = 0},
and consider competitors A satisfying A−Ae ∈ H0, where Ae is the applied

magnetic potential satisfying

∇× Ae = He and divAe = 0 in R
3, . (3.5)

We summarize below two results we will need about minimizers of the

Ginzburg-Landau energy.

3.2 Theorem. For all positive ε < 1, there exists a pair (ψε,Aε) solving the

variational problem

inf
{ψ∈H1(Ωε;C),A−Ae∈H0}

Gε(ψ,A). (3.6)

The function ψε is smooth in Ωε while the function Aε is smooth in

R3 \ ∂Ωε and continuously differentiable across ∂Ωε. Furthermore, the mini-
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mizers satisfy the Ginzburg-Landau system

(∇− iAε)2ψε = ν̃2(|ψε|2 − µ2)ψε in Ωε, (3.7)

∇×∇× (Aε − Ae)
(

= −∆(Aε − Ae)
)

={
i
2

(
(ψε)∗∇ψε − ψε∇(ψε)∗

)− |ψε|2 Aε for x ∈ Ωε

0 for x ∈ R3 \ Ωε

(3.8)

and the boundary condition

(∇− iAε)ψε · νε = 0 on ∂Ωε. (3.9)

Here ·∗ denotes complex conjugation and νε denotes the outer unit normal

along ∂Ωε.

Finally, the order parameter ψε satisfies the condition

|ψε| ≤ µ in Ωε. (3.10)

Existence follows from a standard application of the direct method to the

Ginzburg-Landau energy; such an apporach can be found for instance in [6]

or [14]. The regularity theory follows from standard elliptic theory, which

in this context can be found for instance in [8]. Inequality (3.10) is an easy

consequence of the maximum principle, see e.g. [6].

3.3 Proposition. There exist positive constants C1 and C2 independent of

ε such that

Gε(ψ
ε,Aε) ≤ C1 and (3.11)∫

Ωε

|∇ψε|2 dx ≤ C2ε
2. (3.12)

Furthermore, one has the uniform convergence

‖Aε − Ae‖L∞(BR(0);R3) → 0 as ε→ 0 for every R > 0, (3.13)

where BR(0) = {x ∈ R3 : |x| < R}. Condition (3.13) in particular implies

that

sup
(s,y,z)∈Ci

|Aε(T εk (s, y, z)) − Ae(T εk (s, 0, 0))| → 0 as ε→ 0. (3.14)

The inequality (3.11) follows by comparing the minimal energy to that

of the admissible pair (µ,Ae). The proof of the rest of the proposition is

identical to that of Proposition 2.2 of [15].
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Before proceeding we will need to convert the term arising in the Ginzburg-

Landau energy involving integration of the expression |(∇− iAε)ψε|2 over

the kth branch of Ωε into an integral phrased in terms of the coordinates

(s, y, z) and in terms of the orthonormal frame (γ′k,nk,bk). To this end, we

introduce Ψε
k : Ck → C via

Ψε
k(s, y, z) = ψε(T εk (s, y, z)).

Then we use (3.3) and (3.4) to calculate

(Ψε
k)s = ζ∇xψ

ε · γ′k + δ∇xψ
ε · nk + θ∇ψε · bk

(Ψε)y = gεk∇xψ
ε · nk and

(Ψε
k)z = gεk∇xψ

ε · bk,

where we define

ζ = ζ(s, y, ε, k) := 1 − κk(s)yg
ε
k(s), (3.15)

δ = δ(s, y, z, ε, k) := y(gεk)
′(s) − zgεk(s)τk(s), (3.16)

θ = θ(s, y, z, ε, k) := z(gεk)
′(s) − ygεk(s)τk(s). (3.17)

From here it easily follows that

∇xψ
ε =

(
1

ζ
(Ψε

k)s −
δ

ζgεk
(Ψε

k)y −
θ

ζgεk
(Ψε

k)z

)
γ′k +

1

gεk
(Ψε

k)ynk +
1

gεk
(Ψε

k)zbk.

Using the fact that the Jacobian of the transformation T εk is given by

J(T εk ) = (gεk)
2ζ, (3.18)

we then conclude from (3.11) that

C1 ≥ 1

ε2

∫
T ε

k (Ck)

|(∇− iAε)ψε|2 dx =

∫
Ck

∣∣∣∣
(

1

ζ
(Ψε

k)s − iAε,TΨε
k

)
−
(

δ

ζgεk
(Ψε

k)y +
θ

ζgεk
(Ψε

k)z

)∣∣∣∣
2

(gεk)
2ζ

ε2
ds dy dz

+

∫
Ck

{
|(Ψε

k)y − igεkA
ε,nΨε

k|2 +
∣∣(Ψε

k)z − igεkA
ε,bΨε

k

∣∣2} ζ

ε2
ds dy dz,

(3.19)

where we have introduced

Aε,T := Aε · γ′k, Aε,n := Aε · nk and Aε,b := Aε · bk (3.20)
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to denote the tangential, normal and binormal components of the minimizing

potential Aε. Since (3.14) implies a uniform bound on Aε,n and Aε,b, and

(3.15) implies e.g. that ζ ≥ 1
2
, one immediate consequence of (3.19) along

with (3.10) is that ∫
Ck

((Ψε
k)y)

2 + ((Ψε
k)z)

2 ds dy dz ≤ Cε2. (3.21)

We now require a generalization of Proposition 2.1. To this end, consider a

node Pl such that Ml arcs of the graph Γ meet there. For ease of notation, let

us assume we have perhaps relabeled the arcs so that the collection meeting Pl

is given by parametrizations {γk}, k = 1, . . . ,Ml. Without loss of generality,

assume Pl = γk(0) for each k and denote by Dε
k the disc

{x : x = γk(ε
1+p) + yε1+pnk(ε

1+p) + zε1+pbk(ε
1+p) for y2 + z2 < 1}.

(If Pl = γk(Lk) one would simply replace ε1+p by Lk − ε1+p in the definition

of Dε
k.) Then we can establish:

3.4 Proposition. There exists a subsequence {εj} → 0 such that for each l ∈
{1, . . . ,M} there is a number α0

l , independent of k, satisfying the condition

lim
εj→0

∫
D

εj
k

ψεjdS = α0
l for k = 1, . . . ,Ml. (3.22)

Proof. In light of (3.12), as in the proof of Proposition 2.1 we may apply

Lemma 2.3 to obtain the desired conclusion.

With Proposition 3.4 in hand, we now focus on the kth branch Γk of the

graph, whose two endpoints we denote by Pl1 and Pl2. We recall that we

allow Pl1 = Pl2 in the case of a closed arc. Now, as before, we take integral

averages over cross-sections of Ck in defining Ψ
ε

k : [ε1+p, Lk − ε1+p] → C via

Ψ
ε

k(s) =
1

π

∫
{y2+z2<1}

Ψε
k(s, y, z) dy dz.

Finally, we extend the definition so that Ψ
ε

k(s) ≡ Ψ
ε

k(ε
1+p) for all s < ε1+p

and Ψ
ε

k(s) ≡ Ψ
ε

k(Lk − ε1+p) for all s > Lk − ε1+p.

Now we are ready to state the analogue of the compactness result Propo-

sition 2.4 in the setting of constricted networks for the Ginzburg-Landau

functional:
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3.5 Proposition. There exists a subsequence {εj} → 0 and a function Ψ0 ∈
H1(Γ \ {P1 ∪ . . .∪ PM}) such that for any k ∈ {1, . . . , N} and for any δ > 0

one has

Ψ
εj

k ⇀ Ψ0
k weakly in H1 for δ ≤ s ≤ Lk − δ, (3.23)

and

Ψ
εj

k ⇀ Ψ0
k on δ ≤ s ≤ Lk − δ (3.24)

weakly in H1 as well as uniformly as εj → 0. Here we have denoted Ψ0
k :=

Ψ0 ◦ γk.
Furthermore, we have the convergences

Ψ
εj

k →



αl10 for s < 0

Ψ0
k for 0 < s < Lk

αl20 for s > Lk

(3.25)

in L1((−1, Lk + 1)) and

(Ψ
εj

k )′ ∗
⇀

(Ψ0
k)

′ {0 < s < Lk} + (Ψ0
k(0) − αl10 )δ{s=0} + (αl20 − Ψ0

k(Lk))δ{s=Lk},

(3.26)

weakly as measures, where we suppose the endpoints of the curve Γk are Pl1
and Pl2.

Proof. The proof is very similar to that of Proposition 2.4 except that the

inequalities (2.6) and (2.8) are replaced by (3.19). We will comment only on

this distinction and leave out the rest of the details. Note that from (3.19)

one obtains∫
Ck

∣∣∣∣
(

1

ζ
(Ψε

k)s − iAε,TΨε
k

)
−
(

δ

ζgεk
(Ψε

k)y +
θ

ζgεk
(Ψε

k)z

)∣∣∣∣
2

(gεk)
2ζ

ε2
ds dy dz ≤ C1.

Since ζ ≥ 1
2

while

|δ| + |θ| ≤ Cε1−p (3.27)

(cf. (3.16))–(3.17)), we may invoke (3.14) and (3.21) to conclude that∫
Ck

aεk(s) |(Ψε
k)s|2 ds dy dz ≤ C, (3.28)

for some constant C, where we have defined

aεk(s) :=
gεk(s)

2

ε2
. (3.29)
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Note that (3.28), along with (3.21), in particular yield a uniformH1-bound on

the sequence {Ψε
k} restricted to the set {(s, y, z) : δ ≤ s ≤ Lk − δ, y2 + z2 <

1} for any δ > 0. This establishes (3.23) Furthermore, we have obtained

the direct analogue of (2.24) and the remainder of the proof follows that

of Proposition 2.4 exactly with the use of Proposition 3.4 replacing that of

Proposition 2.1.

Now we can state the main result of this section, asserting that the limit

of minimizers of the Ginzburg-Landau energy necessarily solves a variational

problem posed on the graph Γ:

3.6 Theorem. The function Ψ0 arising as a subsequential limit of mini-

mizers of the Ginzburg-Landau energy in Proposition 3.5 along with the M

complex numbers α1
0, . . . , α

M
0 arising in Proposition 3.4 together solve the

problem

inf
Ψ∈H1(Γ\(∪Pl)), α1,..,αM∈C{ N∑

k=1

[ ∫
Γk

∣∣∣Ψ′
k − iAe,T

k Ψk

∣∣∣2 +
ν̃

2
(|Ψk|2 − µ2)2 ds

]

+b

M∑
l=1

Ml∑
l′=1

∣∣Ψkl′ (Pl) − αl
∣∣2}, (3.30)

where Ψk := Ψ ◦ γk, A
e,T
k denotes the component of the applied potential Ae

tangent to Γk evaluated along Γk, that is,

A
e,T
k (s) := Ae(γk(s)) · γ′k(s), (3.31)

and in the last sum, kl′ ranges only over those curves Γkl′ having Pl as an

endpoint.

3.7 Remark. Setting the first variation of the limiting energy to zero, one

finds that Ψ0 satisfies the Euler-Lagrange equation

( d
ds

− iAe,T
k

)2
Ψ0
k = (1 − ∣∣Ψ0

k

∣∣2)Ψ0
k on each Γk (3.32)

along with Ml natural boundary conditions at each point Pl:

(
d

ds
− iAe,Tkl′

)
Ψ0
kl′

(0) = b

(
Ψ0
kl′

(0) − 1

Ml

Ml∑
j=1

Ψ0
kj

(0)

)
(3.33)
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for l′ = 1, . . . ,Ml. In writing (3.33) we adopt the convention that γkl′ (0) = Pl

with arclength s being measured starting from Pl. In the case of a closed

curve where γkl′ (0) = γkl′ (Lk) we would write the corresponding term in the

sum using Ψ0
kl′

(Lk) on the right and replacing
(
d
ds

− iAe,Tkl′

)
Ψ0
kl′

(0) with(− d
ds

− iAe,Tkl′

)
Ψ0
kl′

(Lk) on the left.

3.8 Remark. Summing over l′ in (3.33) we obtain a generalization of the

“zero-flux” type condition (2.40) obtained in Section 2:

Ml∑
kl′=1

(
d

ds
− iAe,Tkl′

)
Ψ0
kl′

(0) = 0.

3.9 Remark. In a one-dimensional Ginzburg-Landau model, the supercur-

rent along a curve Γkl
is defined as

Jkl
:= Im

[
(Ψ0

kl
)∗
( d
ds

− iAe,T
kl

)
Ψ0
kl

]

and consideration of the imaginary part of (3.32) leads to the conclusion that

the current is constant on each branch of Γ. We can identify this constant if

we express Ψ0
kl′

and Ψ0
kj

in polar form: Ψ0
kl′

= ρkl′e
iφkl′ and Ψ0

kj
= ρkj

eiφkj .

Simply multiply (3.33) by (Ψ0
kl′

)∗ and a short calculation yields the following

generalized Josephson condition:

Jkl′ =
b

Ml

Ml∑
j=1

ρkj
ρkl′ sin (φkj

− φkl′ ) for l′ = 1, 2, . . . ,Ml. (3.34)

Note that there will be Ml − 1 terms in the sum (3.34), since the term

corresponding to kj = kl′ vanishes. Also, due to the oddness of the sine

function, note that the total current coming into a node on the graph will be

zero, that is
Ml∑
l′=1

Jkl′ = 0.

Proof. Since the parameters ν̃ and µ play no significant role in the argument,

we will set both equal to one in the proof. The proof mirrors that of The-

orem 2.5. The identification of Ψ0 and (α1
0, . . . , α

M
0 ) as minimizers of (3.30)

will result from establishing the following two claims. First we will show that

lim inf
εj→0

Gεj
(ψεj ,Aεj) ≥

π

{ N∑
k=1

[ ∫
Γk

∣∣∣(Ψ0
k)

′ − iAe,T
k Ψ0

k

∣∣∣2 +
1

2
(
∣∣Ψ0

k

∣∣2 − 1)2 ds

]
+ b

M∑
l=1

Ml∑
l′=1

∣∣∣Ψ0
kl′

(Pl) − αl0

∣∣∣2}.
(3.35)
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Then we will show that for any Ψ ∈ H1(Γ \ ∪{Pl}) and any numbers

α1, . . . , αM ∈ C, there exists a sequence {Φε} with Φε ∈ H1(Ωε) such that

lim
ε→0

Gε(Φ
ε,Ae) =

π

{ N∑
k=1

[ ∫
Γk

∣∣∣Ψ′
k − iAe,T

k Ψk

∣∣∣2 +
1

2
(|Ψk|2 − 1)2 ds

]
+ b

M∑
l=1

Ml∑
l′=1

∣∣Ψkl′ (Pl) − αl
∣∣2}.

(3.36)

Conditions (3.35), (3.36) and the fact that the pair (ψε,Aε) minimizes Gε

then yield the desired result.

Proof of Claim (3.35). Invoking (3.18), (3.19), (3.21) and the fact that ζ → 1

as ε→ 0, it is straight-forward to check that

lim inf
εj→0

Gεj
(ψεj ,Aεj) ≥

lim inf
εj→0

N∑
k=1

∫ Lk−ε1+p
j

ε1+p
j

∫
{y2+z2<1}∣∣∣∣

(
1

ζ
(Ψ

εj

k )s − iAεj ,TΨ
εj

k

)
−
(

δ

ζg
εj

k

(Ψ
εj

k )y +
θ

ζg
εj

k

(Ψ
εj

k )z

)∣∣∣∣
2

(g
εj

k )2ζ

ε2
j

dy dz ds

+ lim inf
εj→0

N∑
k=1

1

2

∫ Lk−εp
j

εp
j

∫
{y2+z2<1}

(
∣∣Ψεj

k

∣∣2 − 1)2ζ dy dz ds ≥

lim inf
εj→0

N∑
k=1

∫ Lk−ε1+p
j

ε1+p
j

∫
{y2+z2<1}

a
εj

k (s)
∣∣(Ψεj

k )s − iA
εj

1 Ψ
εj

k

∣∣2 dy dz ds
+ lim inf

εj→0

N∑
k=1

1

2

∫ Lk−εp
j

εp
j

∫
{y2+z2<1}

(
∣∣Ψεj

k

∣∣2 − 1)2 dy dz ds.

Observe next that (3.23) implies strong L4-convergence of Ψ
εj

k to Ψ0
k along a

subsequence and that (3.14) in particular implies that Aεj ,T → A
e,T
k in L∞.

Applying these facts to the last limit above, one finds that

lim inf
εj→0

Gεj
(ψεj ,Aεj) ≥

lim inf
εj→0

N∑
k=1

∫ Lk−ε1+p
j

ε1+p
j

∫
{y2+z2<1}

aεk(s)
∣∣∣(Ψεj

k )s − iAe,T
k Ψ

εj

k

∣∣∣2 dy dz ds
+π

N∑
k=1

1

2

∫ Lk

0

(
∣∣Ψ0

k

∣∣2 − 1)2 ds. (3.37)

Let us now fix any k ∈ {1, . . . , N} and suppose the curve Γk has endpoints Pl1
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and Pl2. Expanding the square
∣∣∣(Ψεj

k )s − iAe,T
k Ψ

εj

k

∣∣∣2 , we can invoke Proposi-

tion 3.5 to obtain

lim
εj→0

∫ Lk−ε1+p
j

ε1+p
j

∫
{y2+z2<1}

i
(
(Ψ

εj

k )∗(Ψεj

k )s − (Ψ
εj

k )(Ψ
εj

k )∗s
)
A
e,T
k +

∣∣∣Ae,T
k Ψ

εj

k

∣∣∣2 dy dz ds
= π

∫ Lk

0

i
(
(Ψ0

k)
∗(Ψ0

k)s − (Ψ0
k)(Ψ

0
k)

∗
s

)
A
e,T
k +

∣∣Ae,TΨ0
k

∣∣2 ds (3.38)

Now we appeal to Theorem 3.1 of [3] (see also [2]) to handle the limit of the

integral of the remaining term

a
εj

k (s)
∣∣(Ψεj

k )s
∣∣2 ,

as was done in the proof of claim (2.30) in Section 2. Specifically, we apply the

Cauchy-Schwartz inequality followed by (2.21)–(2.27), (3.2), (3.24), (3.26) to

see that

lim inf
εj→0

∫ Lk−ε1+p
j

ε1+p
j

∫
{y2+z2<1}

a
εj

k (s)
∣∣(Ψεj

k )s
∣∣2 dy dz ds ≥

π lim inf
εj→0

∫ Lk−ε1+p
j

ε1+p
j

a
εj

k (s)
∣∣(Ψεj

k )′
∣∣2 ds = π lim inf

εj→0

∫ Lk+1

−1

a
εj

k (s)
∣∣(Ψεj

k )′
∣∣2 ds ≥

π

{∫ Lk

0

∣∣(Ψ0
k)

′∣∣2 ds+ b
∣∣Ψ0

k(0) − αl10
∣∣2 + b

∣∣Ψ0
k(Lk) − αl20

∣∣2}. (3.39)

Claim (3.35) follows from (3.37)–(3.39).

Proof of Claim (3.36). Fix any Ψ ∈ H1(Γ \ ∪{Pl}) and any numbers

α1, . . . , αM ∈ C. As has been our convention throughout, we write Ψk for the

composition Ψ◦γk. In order to define the desired sequence {Φε}, we will need

to make a few definitions. In addition to the previously defined tangential

component of the applied potential A
e,T
k , for each k we now introduce

A
e,n
k (s) := Ae(γk(s)) · nk(s) and A

e,b
k (s) := Ae(γk(s)) · bk(s)

as the normal and binormal components evaluated along Γk. We also define

λεk(s) :=
1

aεk(s)
− 1 and βεk :=

∫ Lk/2

ε1+p

λεk(s) ds.

Note that

λεk(s) ≡ 0 for εp < s < Lk − εp, (3.40)

since aεk(s) ≡ 1 on that s interval, while from (3.2) and (2.26) we have that

βεk =

∫ Lk−ε1+p

Lk/2

λεk(s) ds and βεk →
1

b
as ε→ 0. (3.41)

28



With these definition in hand, let us consider any k ∈ {1, . . . , N} with the

curve Γk having endpoints Pl1 and Pl2 . On the interval ε1+p < s < Lk − ε1+p

we first define a sequence of functions Φ̃ε
k depending only on s by the formula

Φ̃ε
k(s) =

{
Ψk(s) − 1

βε
k
(Ψk(ε

1+p) − αl1)
∫ Lk/2

s
λεk(s

′) ds′ for ε1+p < s ≤ Lk/2,

Ψk(s) − 1
βε

k
(Ψk(Lk − ε1+p) − αl2)

∫ s
Lk/2

λεk(s
′) ds′ for Lk/2 < s < Lk − ε1+p.

(3.42)

Then on the set

Ωε,k := T εk

(
{(s, y, z) : ε1+p < s < Lk − ε1+p, y2 + z2 < 1}

)

(cf. (3.3)), we define our sequence {Φε} as a function of s, y and z via

Φε
k(s, y, z) := Φ̃ε

k(s)e
igε

k(s)
[
Ae,n

k (s)y+Ae,b
k (s)z

]
ηε

k(s) (3.43)

where ηεk : [ε1+p, Lk − ε1+p] → R1 is the cut-off function given by ηεk(s) = 1

for 2ε1+p < s < Lk − 2ε1+p, ηεk(ε
1+p) = 0 = ηεk(Lk − ε1+p) and ηεk linear on

the intervals ε1+p < s < 2ε1+p and Lk − 2ε1+p < s < Lk − ε1+p. The reason

for the additional phase exhibited in (3.43) will become apparent in (3.47)

below.

Since Φε should be a function defined on Ωε, strictly speaking, we really

mean that on the kth branch of Ωε, Φε = Φε
k((T

ε
k )

−1(x1, x2, x3)) when we

write Φε
k(s, y, z) but we will not make this distinction and we trust that this

will not lead to confusion.

To complete the definition of Φε on Ωε we set Φε ≡ αl on the component

of Ωε \
( ∪k Ωε,k

)
that contains the point Pl.

Now we are ready to compute limε→0Gε(Φ
ε,Ae). Let us first remark that

since Φε is constant on Ωε \
( ∪k Ωε,k

)
, a set whose measure is O(ε3+3p), the

contribution to the total energy from integration over this set will be O(ε1+3p)

and so it can be ignored in the limit.

We next compute the limit of the potential term in the Ginzburg-Landau

energy. Since (3.40) implies that |Φε
k(s, y, z)| = |Ψk(s)| for εp < s < Lk − εp

we can easily check that

1

ε2

∫
Ωε,k

(|Φε|2 − 1)2 dx = π

∫ Lk−ε1+p

εp

(|Ψk|2 − 1)2 ds+ O(εp)

and so

lim
ε→0

1

ε2

∫
Ωε,k

(|Φε|2 − 1)2 dx = π

∫ Lk

0

(|Ψk|2 − 1)2 ds. (3.44)
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Now we turn to the limit of the term

1

ε2

∫
Ωε,k

|(∇− iAe)Φε|2 dx.

In a calculation analogous to (3.19), we find

lim
ε→0

1

ε2

∫
Ωε,k

|(∇− iAe)Φε|2 dx = (3.45)

lim
ε→0

∫ Lk−ε1+p

ε1+p

∫
{y2+z2<1}∣∣∣∣

(
1

ζ
(Φε

k)s − iAe,TΦε
k

)
−
(

δ

ζgεk
(Φε

k)y +
θ

ζgεk
(Φε

k)z

)∣∣∣∣
2

(gεk)
2ζ

ε2
dy dz ds.

(3.46)

Notice that there is no integral above corresponding to the last one in (3.19)

since

(Φε
k)y − igεkA

e(T εk ) · nkΦε
k = igεkΦ

ε
k

[
Ae(T εk (s, 0, 0) − Ae(T εk (s, y, z)) · nk(s))

]
so that ∫ Lk−εp

εp

∫
{y2+z2<1}

|(Φε
k)y − igεkA

e(T εk ) · nkΦε
k|2

ζ

ε2
dy dz ds =

O

(
(gεk)

2

ε2

)
· o(1) → 0, (3.47)

with a similar estimate holding for the difference between the z-derivative of

Φε
k and the bk component of Ae.

Returning then to (3.46), we observe through (3.27) and (3.43) that∣∣∣∣
(

δ

ζgεk
(Φε

k)y +
θ

ζgεk
(Φε

k)z

)∣∣∣∣
2

(gεk)
2ζ

ε2
= O

(
(gεk(s))

2

ε2p

)
= O(ε2−2p) → 0,

This fact, along with ζ → 1, allows us to conclude that

lim
ε→0

1

ε2

∫
Ωε,k

|(∇− iAe)Φε|2 dx = (3.48)

lim
ε→0

∫ Lk−ε1+p

ε1+p

∫
{y2+z2<1}

aεk(s)
∣∣(Φε

k)s − iAe,TΦε
k

∣∣2 dy dz ds. (3.49)

Then we note in light of (3.43) that

lim
ε→0

∫ Lk−ε1+p

ε1+p

∫
{y2+z2<1}

aεk(s)
∣∣(Φε

k)s − iAe,TΦε
k

∣∣2 dy dz ds = (3.50)

lim
ε→0

∫ Lk−ε1+p

ε1+p

∫
{y2+z2<1}

aεk(s)
∣∣∣(Φ̃ε

k)s − iAe,T Φ̃ε
k

∣∣∣2 dy dz ds (3.51)
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since

(Φε
k)s =

[
(Φ̃ε

k)s+Φ̃ε
k

d

ds

{
igεk(s)

[
A
e,n
k (s)y+A

e,b
k (s)z

]
ηεk(s)

}]
eig

ε
k(s)
[
Ae,n

k (s)y+Ae,b
k (s)z

]
ηε

k(s).

Then using the definition of the cut-off function ηεk one readily confirms that

∫ Lk−ε1+p

ε1+p

∫
{y2+z2<1}

aεk(s)

∣∣∣∣ dds
{
igεk(s)

[
A
e,n
k (s)y + A

e,b
k (s)z

]
ηεk(s)

}∣∣∣∣
2

dy dz ds→ 0.

Invoking (3.40), we can then substitute the definition of Φ̃ε
k into (3.51) to

find

lim
ε→0

∫ Lk−ε1+p

ε1+p

∫
{y2+z2<1}

aεk(s)
∣∣∣(Φ̃ε

k)s − iAe,T
k Φ̃ε

k

∣∣∣2 dy dz ds =

lim
ε→0

∫ Lk−εp

εp

∫
{y2+z2<1}

∣∣∣(Ψk)s − iAe,T
k Ψk

∣∣∣2 dy dz ds+

lim
ε→0

∫ εp

ε1+p

∫
{y2+z2<1}

aεk(s) |(Ψk)s|2 dy dz ds+

lim
ε→0

∫ Lk−ε1+p

Lk−εp

∫
{y2+z2<1}

aεk(s) |(Ψk)s|2 dy dz ds, (3.52)

since

lim
ε→0

∫ εp

ε1+p

∫
{y2+z2<1}

aεk(s)
∣∣∣Ae,T

k Ψk

∣∣∣2 dy dz ds = 0

= lim
ε→0

∫ Lk−ε1+p

Lk−εp

∫
{y2+z2<1}

aεk(s)
∣∣∣Ae,T

k Ψk

∣∣∣2 dy dz ds.
We conclude that

lim
ε→0

1

ε2

∫
Ωε,k

|(∇− iAe)Φε|2 dx =

π

{∫
Γk

∣∣∣Ψ′
k − iAe,T

k Ψk

∣∣∣2 +
1

2
(1 − |Ψk|2)2 ds+ b |Ψk(0) − αl1|2 + b |Ψk(Lk) − αl2 |2

}

using the same type of calculation that concluded the proof of (2.31). Com-

bining this with (3.44) and summing over k we arrive at (3.36).

4 Discussion

We have characterized the asymptotic behavior of minimizers to two ener-

gies, the Dirichlet integral and the Ginzburg-Landau energy, taken over thin
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domains with constrictions. In both cases, the limit of these minimizers

turns out to minimize a variational problem posed on the limiting graph.

Certainly the most prominent feature of the limiting variational problem is

that in general solutions will develop jump discontinuities at the nodes of

the graph that mark the location of the constrictions. On an intuitive level,

it is perhaps not surprising that large gradients might develop near the con-

strictions for the problems on the thickened graphs (i.e. when ε > 0), but

the subtlety here is, first of all, that the large gradients develop along the

tapered interval ε1+p < s < εp where the domain radius gε is linear rather

than in an ε1+p neighborhood of the nodes. This is the thrust of Lemma 2.1

and Lemma 3.4. Secondly, the large gradient is not uniformly large along

this interval of s-values. For instance, if instead of the construction (2.36),

whose derivative grows as one nears the constriction, one were to try linking

the value α near the node to a number Vk(0) via a linear construction, one

would find that the energy
∫
aε |(V ε

k )′|2 ds blows up.

The approach is fairly robust in that the energies considered here can

be replaced by more general elliptic integrands. Furthermore, the specific

geometry of the constriction used here is not crucial. What is needed most

crucially is that the cross-sectional radius gε tapers as s approaches zero,

from a value ε to something much smaller over an s-interval 0 < s < sε with

sε → 0 in such a way that the condition

C1 <

∫ sε

0

1

aε
ds :=

∫ sε

0

ε2

(gε)2
ds < C2

holds for positive constants C1 and C2 that are independent of ε. Perhaps

the simplest alternative geometry for a constriction obeying this condition

would be to take gε as piecewise constant with gε(s) = ε for s > sε := εr

and gε(s) = εt for 0 ≤ s ≤ εr where r > 0 and t = 1 + r/2. Formally, this

geometry leads to the same type of Γ-limit as the one obtained in this paper,

though we have not attempted to check it rigorously.
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[2] G. Bouchitté, Représentation int’egrale de fonctionnelles convexes sur

un espace de mesures. II. Cas de l’épi-convergence, Ann. Univ. Ferrara.
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