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AREA DENSITY AND REGULARITY FOR SOAP FILM-LIKE
SURFACES SPANNING GRAPHS

ROBERT GULLIVER AND SUMIO YAMADA

ABSTRACT. For a given boundary' consisting of arcs and vertices, with two
or more arcs meeting at each vertex, we treat the problem of estimating the area
density of a soap film-like surfacE spanningl’. ¥ is assumed to minimize
area, or more generally, to be strongly stationary for area with respé&ct\iée
introduce a notion of total curvatutg..(I") for suchgraphs or nets,I'. When

the ambient manifold//™ has non-positive sectional curvatures, we show that
2w times the area density &f at any point is less than or equalde.:(T"). For

n = 3, these density estimates imply, for example, th&tif (T") < 22.97, then

the only possible singularities of a piecewise sma@i, 0, §)-minimizing set

3 are curves, along which three smooth sheets ofieet with equal angles of
120°. We also extend these results to the case whéleas a positive or negative
upper bound on sectional curvatures.

1. INTRODUCTION

The investigation of minimal surfaces has proved extremely fruitful in a
wide range of topics in geometry. One of the essential breakthroughs in
the subject is the solution of the Plateau problem by Douglas and b§, Rad
that is, the construction of a disc type minimal surface spanned by a Jordan
curvel’ in R™ [D1], [R]. Plateau’s original motivation was, in part, to study
the geometry of soap films spanned by variously shaped wires. In partic-
ular, it is natural to want to generalize the boundary condition imposed by
Douglas and Ramulthat the wirel’ spanning the surface be a Jordan curve,
or a disjoint union of Jordan curvesf([D2], whereX: is a branched immer-
sion of higher topological type). In this paper, we will introduce a class of
surfaces” in an ambient manifold/, having a piecewise smooth bound-
ary I which is homeomorphic to graph that is, a a finitel-dimensional
polyhedron (sometimes called a “net”). Each surface is stationary for area
under variations induced by one-parameter families of diffeomorphisms of
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2 ROBERT GULLIVER AND SUMIO YAMADA

the ambient manifold and fixing. This setting allows us to consider sur-
faces whose induced topology is not locally Euclidean, such as the singular
surfaces which may readily be observed in soap film experiments. The main
theorems of this paper provide descriptions of the possible singularities and
self-intersections of those minimal surfaces in terms of the geometry of the
boundary sef'. Indeed, intuition would indicate thatmple boundaries can
span only simple minimal surfaces.

In a Riemannian manifold/™, we shall consider an embedded grdph
which is a union of arcs;, meeting at verticeg;, each of which has valence
at least two. The&alenceof a vertexg is the number of timeg occurs as an
endpoint among all of thé-simplicesa,. Eachl-simplexa; is assumed to
be C?, and to meet its end points withi* smoothness; thus there is a well-
defined tangent vectdr, to eachl-simplexa, at a vertex, pointing intay.
At a vertexg; of valenced, we consider theontribution to total curvature
at q;-

1) te(q;) == sup {Zd: (g - ﬂf(@)}

e€Ty; M —1

wheref! = f3/(e) € [0, n] is the angle between the tangent vedpio a,
atg; and the vectoe. We define theotal curvatureof I' as

(2) Ciot(T) := /Freg k| ds + Z{tc(q) : q avertex of I'}.

wherek is the geodesic curvature vectorafas a curve inV/”, andl™¢ =
['\{verticeg. It should be noted that our definition of total curvature coin-
cides with the standard definition in the case whda a piecewise smooth
Jordan curve: the integral of the norm of geodesic curvature vector plus the
sum of the exterior angles at the vertices. Namely, in that case, every ver-
tex ¢ of the graphl” is of valence two, and the supremum in equation (1) is
assumed at vectorslying in the smaller angle between the tangent vectors
T, andT, toT.

The type of surface we will consider in this paper is the immersed image
¥ of a finite union ofC2-smooth open two-dimensional manifoltls with
compact closureC'* up to the piecewis&€' boundarydy;. We further
impose that the graph is a subset of thé-skeletonS of X. S is defined
as the union of images of the piecewiSé curvesdy;. The class of such
surfaces: will be denoted bySr-.
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Recall that thaelensityof 3 at a pointp € M is
Area(X N B.(p))

2

@2 (p) = lim

e—0 e

Note that given a surface in Sr, the densityOy(p) is a well defined, upper
semi-continuous function of € M. Moreover, forY in the classSr, we
may compute

. Length(¥X N 0B.(p))
Os(p) = l‘l—r% 2me '
Note that in contrast to the special case of an immersed PL manifold
there is no local topological criterion to distinguish the boundary afs
a specific subset of. Further, the definition 0% motivated by Stokes’
Theorem [Fed] is not appropriate, singds not orientable in general, not
even modulo a globally defined integer. For these reasons, we shall define
the boundary of in variational terms, as follows. A surfacéin Sr is
said to bestrongly stationary with respect tb if the first variation of the
area of the surface is at most equal to the integral bvarthe length of the
component of the variation vector field normalltgeWw].
In our future paper [GY2], we will obtain analogous results for surfaces
which need not be of the class, but may be rectifiable varifolds which are
strongly stationary with respect ta

We can now state the main density estimate for the case when the ambient
space is Euclidean (see Corollary 5 below):

Density Estimate: LetY in the classSr be a strongly stationary surface in
R™ with respect to the graph. Then

271'@2(]?) < Ctot(r)'

This estimate is a consequence of two inequalities, the first being the com-
parison of density o and of the con&’,(I"). Here, and in the remainder
of this paper, for a point € R™ and a sef’y C R", we write thecone over
I'y as
Cp(To) :={p+tlx—p):xely0<t <1}

In section 6, where Euclidean spaR¢ is replaced more generally by a
strongly convex Riemannian manifold;,(I"y) will denote thegeodesic
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coneoverl,.

Theorem 1: Given a strongly stationary surface in Sr, and a pointp in
Y\, let C,(I") be the cone spanned bywith its vertex ap. Then we have

Os(p) < O¢,m)(p)

unlessy. itself is a cone ovep with planar faces.

The second inequality follows from the Gauss-Bonnet formula applied to
the double coverof the coneC,(I"). (We have not found a useful Gauss-
Bonnet formula for genera-dimensional Riemannian polyhedra in the lit-
erature.)

Theorem 2(andCorollary 5):

QW@CP(F)(I)) = _Z/ l; Vo ds + Z Z (g - ﬁf) < Ctot(r)a
k=1 %%

k=1 j=1,2

wherek is the geodesic curvature vector@fin R, v¢ is the outward unit
normal vector toC,,(T") alonga, € 9C,(T), and 3} is the angle between
the tangent vector ta,, at its endpoint; and the line segment frog) to p.

The density estimatenOx(p) < Ci(I'), whenT is a rectifiable Jor-
dan curve, is a major ingredient of the work by Ekholm, White and Wien-
holtz [EWW], where it was proven that .. (I") < 4, then every station-
ary branched minimal surfaéein R spanned by’ is a smooth embedded
submanifold; and that given a compactly supported rectifiable varkold
which is strongly stationary with respectifaand with density> 1 on >\T',
the inequalityC(I") < 37 implies that® is smooth in the interior. There-
fore one can view the results in this paper as partial extensions of those
theorems in [EWW], when the Jordan cuivef [EWW] is replaced, more
generally, by a graph. Since a rectifiable Jordan clnadways bounds a
minimizing immersed disk [D1], [R], a specific consequence is the 1949
theorem of Rry and Milnor that a curve of total curvature4r is unknot-
ted. Analogous results about the isotopy classes of graphs do not yet follow
from the present paper, in part because of the lack (so far) of results about
boundary behavior of a minimizing surface relative to a graph. Our future
paper [GY2] will provide additional extensions of results in [EWW].
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By imposing appropriate upper bounds on the total curvature of the graph
[", we obtain the following statements. We will denotelyy = 3/2 the den-
sity at its vertex of the Y-singularity cone composed of three planes meeting
at120°, and byCr = 6cos™'(—1/3) ~ 11.468 the density at its vertex of
the T-singularity cone spanned by the one-skeleton of the regular tetrahe-
dron with vertex at the center of the tetrahedron.

Theorem 3: Supposé’ is a graph inR” with Cy(I") < 27Cy = 3x, and
let 32 be a strongly stationary surface relativelfdn the classSr. ThenX is
an embedded surface or a subset of the Y singularity cone, with planar faces.

Theorem 4: Supposd’ is a graph inR? with Cio(I') < 27C7, and let

Y. € Sr be embedded as afM, 0, 4)-minimizing set with respect tb.
ThenX has possibly Y singularities but no other singularities, unless it is a
subset of the T stationary cone, with planar faces.

For the definition of ML, ¢, §)-minimizing sets, see Definition 3 below.

In R3, there are many known examples of strongly stationary surfaces.
In particular, there are exactly ten stationary coneR#[AT]. Each sta-
tionary cone is the cone over a grapht 52, wherel consists of geodesic
segments on the sphere meeting in threes at anglé206f this includes
the planar case, whefeis simply one great circle spannily. These ten
minimal cones form a list of possible tangent cones at the interior points
of an (M, ¢, d)-setX. The three cones with the smallest densities at the
vertex are the plane with its densitywhere the graph' is a great circle;
the Y-singularity cone with its densit/y- = 3/2 wherel" consists of three
semicircles meeting at the north and south poles at angle€20éf and the
T-singularity cone with densit¢'s = 6cos~'(1/3), whereT is the radial
projection of thel-skeleton of a regular tetrahedron inscribedt Recall
that the other seven cones are stationary, but not minimizing, under interior
deformations. Hence given one of those seven graphbkere is another
surface which is also strongly stationary with resped tdut has strictly
smaller area. Indeed when it comes to soap films, the three cones of lowest
density are the only tangent cones experimentally observed in the interior
of soap films. This is also true for the mathematical model in ternis of
rectifiable sets, a result shown by Jean Taylor [T]:
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Regularity Theorem for Soap Films: Away froml’, an(M, ¢, §)-minimizing
set with respect td' consists of>'h* surfaces meeting smoothly in threes at
120° angles along smooth curves, with these curves in turn meeting in fours
at angles ofos™*(—1/3).

The singular curves were proved tod&® by Taylor [T], and later shown
to be real analytic in [KNS], for the locally area-minimizing case 0. The
classSr of surfaces we consider in this paper is chosen so that, given a graph
[, it is reasonable to expect that evéiy, 0, §)-minimizing set relative to
[' is in the regularity classr. The ten stationary cones described above are
in fact in Sr. However, due to the lack of understanding of boundary regu-
larity of such(M, 0, §)-minimizing sets, it is not yet known that in general
(M, 0, 6)-minimizing sets are indeed elements of the clgiss

In Section 6 we turn our attention to the case where the ambient mani-
fold is of variable curvature. The lack of homogeneity of the ambient space
forces us to consider a comparison space of constant sectional curvatures,
as was done previously in [CG2]. We consider two classes of Riemannian
manifolds M which are strongly convex (not necessarily complete): mani-
folds with sectional curvatur&’,; bounded above by-x? < 0, and mani-
folds with sectional curvature bounded abovex3y> 0. For a Euclidean
ambient space, as seen above in Theorems 1 and 2, the density of a poly-
hedral minimal surface is bounded above by the total curvature bf the
variable curvature case, the total curvaturd’ag not invariant under dif-
feomorphisms ofl/ which mimic the homotheties @&". Thus, in order to
have significance for both large graphsnd for small ones(,,(I") needs
to be corrected in the following manner:

Density Estimate(K; < —«x? case) LetY be a strongly stationary surface
relative toI" in the classSr in a strictly convex manifoldi/™ which has
sectional curvatures. —x2. Then for allp € X\T,

2110,(2) < Cit(T) — K2A(T),

where A(T") is the minimum cone area of all the cones with vertex in the
convex hull of the sdt.

Density Estimate(K,; < +x? case) LetY be a strongly stationary surface
relative toI" in the classSr in a strictly convex manifold/™ which has
sectional curvatures: x?. Assume thaf' has diametek 7 /x. Then for all
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D,
210,(%) < Ciot(I') + £2A(D),

where A(T) is the maximum spherical area of all the cones with vertex in
the convex hull of the sét

We would like to acknowledge fruitful conversations with Brian White
and with Jaigyoung Choe during the development of this research.

2. DENSITY AND THE REGULARITY OF STRONGLY STATIONARY
SURFACES

LetI' C R" be a graph, consisting of immersed atgswhich areC?
in the interior andC"* up to their vertices, as in Section 1; we assume that
each vertex has valence at least two. Let the cissf singular surfaces
be defined as in Section 1: fare S, I' is a subset of the one-dimensional
partS C . Within the classSy, we will consider the surfaces satisfying
the following property.

Definition 1. [EWW] A rectifiable varifoldX in R" is calledstrongly sta-
tionary with respect td' if for all smooth¢ : R x R" with ¢(0, z) = x, we
have

> 0.

t=0

< (Avea(o(t, 2) + Area(o((0,1] x T)

The regularity condition on each; guarantees that at almost every point
p of S, there exists a unit vectos;,, normal tol’, tangential ta:;, pointing
outof ;. Hence on eack; we have the divergence theorem

/ divy, XTdA = / (X, v;)ds,

where X7 is the tangential (ta;) component ofX. Note that the strong
stationarity condition implies that € Sy is stationary, i.e. the first variation
of the area vanishes under deformations supported awaylfrom

% (Avea(s(t.5)))

If in addition the vector fieldX = ¢'(0,z) is supported away from the
singular setS, then the stationarity condition implies that the interior of
eachy; is minimal, i.e. its mean curvature vectlrvanishes.

= 0.

t=0
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If the vector fieldX is supported away from, the stationarity condition
implies

/Zyg ), X (p)) ds(p Z/HXLdA—o

]GJCI

whereJ = J(p) indexes the collection of surfac&s which meet at a point

pin S\I'. Note that the second term vanishes sifice= 0. Since the choice
of X is arbitrary, it follows that the vector

(3) ve(p) == > us(p)=0

Jj€J(p)CI

almost everywhere o8\I', which we call thebalancingof vs, along the
singular curves oE, away fromI".

The strong stationarity condition of a varifold with respect'ts equiv-
alent to the existence of &i'-measurable normal () vector fieldv onT
with sup || < 1 such that

(@) /E div X dA = /F (X, ) ds

for all smooth vector fields¥ on R" (see section 7 of [EWW]). Note that
sinceX is an ambient vector field along, divy X is the trace ort of the
ambient covarant derivative of.

In our context, that is, wheR is in Sy, the H!-measurable vector field
v = vy, arises as

(5) Vz(p) = Z Vs, (p)

Jj€J(p)
for eachp € T, wherej € J(p) whenevep € 3.

First we define a surface in Sr to belocally minimizing relative td" at
p if for a neighborhood’ of p, there exists a smaller neighborhodof p
such that for any, if $\V = X\V andd® = I, thenArea(X) > Area(X).

We are particularly interested in the casis a point onl".

For intuition, it is useful to understand the relation between strong sta-
tionarity and the local minimizing property within the claSs First define
an’H! measurable vector field: defined o, as in (5) above. The follow-
ing proposition may be proved using well-known methods of the calculus
of variations.
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Proposition 1. Suppose thak is a surface inSy. ThenX is locally mini-
mizing relative tol" at each point of”" if and only if|vs| < 1 H'-almost
everywhere off, v, = 0 H!-almost everywhere on a neighborhood df
S\I" and the regular parts of. have vanishing mean curvature vecférin
some neighborhood &f.

This proposition says that within the claSs, the local minimizing prop-
erty relative tol' and stationarity away froni’ imply strong stationarity
with respect td". We remark here that strong stationarity is strictly weaker
than the locally area minimizing condition. In particular, there are surfaces
which are strongly stationary but not locally area minimizing at certain inte-
rior points. One such example is the cahe- R? spanned by thé-skeleton
I' of a cube, with its vertex at the center of the cube. It is strongly station-
ary relative tal’, but is not locally minimizing at the cone vertex. Namely,
there exists a one parameter family of polyhedral surfaces of strictly smaller
area, in which an arbitrarily small neighborhood of the vertex at the center
is replaced by the 2-skeleton of a small cube [T].

Next we introduce the following definition, which, for surfaces in the
classSr, allows us to isolate the two independent parts of the strong sta-
tionarity condition. In fact, strong stationarity for surfaces in the cigsis
equivalent to stationarity iR™\I" plus the following boundary condition.

Definition 2. T is said to be avariational boundargf a surfaceX if there
exists arf{! measurable vector fields; alongI" which is orthogonal td",
with |v5| < 1 a.e., such that for all smooth vector fieldsdefined orR",
fE diVEXT dA = fI‘<X’ I/E> ds.

Observe that Definition 1 of strong stationarity refers to ambient deriva-
tives of X, in contrast with Definition 2, which is intrinsic .

Now we are ready to state and prove the main result of this section.

Theorem 1. Given a strongly stationary surface in Sr, and a pointp €
M\T of X\T', let C,,(I") be the cone spanned bywith its vertex ap. Then
we have the inequality:

Ox(p) < Oc,m)(p),
unlessY is a cone ovep with planar faces, in which case we have equality.

Proof. Let G(z) be the test functiotog p(z), wherep(z) = |z — p|. G(z)
is the Green'’s function for the Laplace operator defined on two-dimensional
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subspaces dR"™ which contain the poinp. On the other hand, on an im-
mersed minimal surface IR", the functionG(z) is subharmonic, as a con-
sequence of the trace formula:

(6) AsG =Y V'Glea ea) +dG(H),

a=1

whereV is the covariant derivative for the ambient maniféld (see [CG1]).
Thus, the divergence theorem implies the following integral estimate:

10
og/ AgiGdA:/ =P s
£\ Be(p) a(=\B-(p) P OVs,

for eachi, whereX = U,<;Y; is a surface in the clasS-. Note that each
boundaryd(%;\ B:(p)) consists of three parts:

A(Z\B.(p)) = (azi N r) U <8B5(p) N zz-) U (azi\(r U E)),

sinceS = U0Y;. Now we sum the inequality above oveand reorganize
the boundary terms:

10 10 10
o< [P gy [ 10 g [ L0y,
r pOvs aB.nx P OVs, = JosaruE) POV,

wherevsy is as in equation (5). The last term vanishes, since we have the
balancing condition among the unit vectoss normal to the edges af; N
(S\I'), and tangent ta:;, pointing outward from>;, as a consequence of
the (interior) stationarity (3) of:

0 _
> = (% 3 ) -0

. Us; .
J€J(p) J JEJ(p

for eachp € S\TI', whereJ(p) is the collection ofj € I withp € ;.
0
As for the second term, note thatagoes to zeroa—p approaches-1
Vs,
uniformly, and hence

/ 1 dp
———ds
dB:(p)nx P Ovs,

converges to

e—0

lim (—%) Length(¥ N 9B.(p)) = —27Ox(p).
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Therefore we have obtained the following upper bound for the density of
Y atp:

@) 2765(p) < /F 19 4,

We repeat the argument for the surface Laplacia&r@f), this time re-
placing ¥ with the coneC,(I") spanned byl" with vertexp. Recall that
' = U;a; where each arg; is C*-regular,C* up to the end points. Denote
by A; the coneC,(a;) spanned by:; with its vertex atp. Thus the cone
C,(T) is the union of all thefans A; = A; U 9A4;. Observe using (6) that
away from the vertex, G(z) is harmonic or4; [CG1]. Hence we have

10
0= / AoG(z) dA = / 9P g,
A\B:(p) D(ANB-(p) P OVE

As seen above foE, each boundary( ]-\Bg(p)) consists of three parts;
we sum the equation above oveand reorganize the boundary terms, and
find:

1
0= / L9 ey / 2P 4s +Z / %4,
p Ove dB:(p)nC P aVC (8a;)\Be(p) P 8VA

whereve = ve, ) is defined to bezj va,, With 4, being the unit vector
normal to the boundar§A;, and tangent to the fan;, pointing out ofA;.
The last term vanishes since the vectar and Vp are perpendicular,
which makesdp/dv,; identically zero onC;,(da;). The second term is
equal to—Length(C,(I') N dB:(p))/e which in turn is equal te-27O¢(p),
independent of sufficiently smadl> 0. Therefore we have obtained

(8) 2100 (p) :/Flﬁ ds.

Now observe that is the unit vector normal td' most closely aligned
with the gradient op alongl’, while vy, is normal tol” with |v5| < 1, since
I' is a variational boundary df. Hence we have the following inequality:

L)
Ove — Ovs,
almost everywhere along By integrating, we have

1 9p dp
> —_F
®) /pf?Vc ds‘/pavE s
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Combining the inequalities (7), (9) and the equality (8), we finally get

1 dp 1 9dp

1 2 < - < - =2 .
(10) mOx(p) _/rpaVz ds_/rpal/c ds 1O (p)

If equality occurs in (10), them\yG = 0, and the trace formula (6),

along with a computation 6t-G, implies thatVp is tangent to=. Thus
each two-dimensional face a&f is both a regular minimal surface and a
stationary cone iR", and therefore is part of a plane passing thropgm

3. ToTAL CURVATURES OFGRAPHS

LetI" be a graph ilR™, as in Sections 1 and 2 above, consisting of im-
mersed arcg,, ao, . . ., a, and verticesy, ¢, . . ., ¢.,. Recall the definition
(2) of total curvatureC,(I") of a graphl', and esp. the definition (1) of
tc(q) for a vertexq of valenced:

te(q) == sup {i (g - 56(6))}
ceTyM | 4=

wheres’ = 3(e) € [0, n1] is the angle between the tangent vedpto a,
atq and the (unit) vectoe.

The usefulness of definition (1) will become clear in section 4 below; see
esp. Theorem 2.

It might be noted that even though the geodesic curvatureaina smooth
point of I is given by the tangential component of the curvature vector of
I', there is no such appropriate vector at a vertex. This is true already at a
vertex of degred = 2, that is, for a piecewise smooth Jordan curve.

In this section, we shall collect some observations abutl") for spe-
cific cases of a graph C R". These will be used for the examples below,
but will not be referred to in the proofs of the theorems. As the results of
this section are elementary, and some of them previously known, we include
brief proofs for the sake of completeness (see [MY] and references therein
for more general discussion on minimal network problems.)

Consider a vertey of I of valenced, and letT7, ..., T, be the unit tan-
gent vectors td' atq. For a given unit vector, we write 5,(e) for the angle
betweene and7;, as above. Further, we write = ¢, € S? for a point
where the surTE;l:1 (Z — Bi(e)) assumes its maximum value(q). Note

here that, is also the minimizer OEZZI Be(e), the total spherical distance
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toT1,...,T, The existence, but not uniqueness, of suchydnllows from
compactness of? [MY].

3.1. Valence three.

Proposition 2. For all 71, T, and T3 € S?, there existg € {1}, T,, T3} SO
that 51 () + Ba(e) + B3(e) < 4m/3.

Proof. Ty, T, andT3 lie in a small (or great) circle of S2. Each spherical
distancel(T;,T;11) (i = 1,2,3 mod 3) is less than or equal to the length of
the smaller arc ofy betweenl; andT;, so their sum is at most the length
of v, hence< 2. Renumbefl}, Ty, T3 so thatd(75, T3) is the largest of the
three distances, and choase- 7. Thenf,(e) = 0, while 5x(e), f5(e) <
i .
Corollary 1. For any vertex; of valencel = 3, tc(q) > 7/6, with equality

if and only if the three unit tangent vectdfs, T, and T3 at ¢ are balanced:
T1 + T2 + T3 - O

Proof. By Proposition 2sup, >, (% — Bi(e)) > 22 —inf; S°,_, Be(Ti) >
’ Now suppose thaic(q) = 7/6. As in the proof of Proposition 2, the unit
tangent vectord’, Ty, T lie on a circley C S2. But 35(T}) + 35(T}) =
S Be(Th) > 3oy Beleo) = 5 — tel(q) = 4%, while d(T5, Ty) > Bi(Th),
¢ = 2,3, which implies thaty has lengtiw. Thus~ is a great circle and all
of thed(T;, T;11) = & u

-
In specific situations, it is of interest to computdq) exactly, or even

to identify the spherical total distance-minimizing poéigt The following

lemma is not difficult to prove, using the first variation of the sum of dis-

tances orb?.

Lemma 1. Suppose a vertex of I' has valence three, with unit tangent
vectorsTy, T,, T3 to I" at ¢q. Letey be a total distance minimizing point for
T, T, T;3. For ¢ = 1,2,3 choose a minimizing geodesic (great circle) in
S? from e, to Ty, and leté, € T.,5? be the unit tangent vector af to the
geodesic. Then either (%) + &, + &3 = 0, that is, the geodesics make equal
angles2r/3 at eq; or (2) eq = T, for somel = 1,2, 3, and the remaining
two vectorsy, 1, &0 form an angle> 27 /3 (subscriptanodulo3).

For equilateral spherical triangles, one might expect the total distance
minimizing pointe, of the vertices to be the center of the triangle; however,
if the triangle is too larges, can only be one of the corners of the triangle:
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Corollary 2. If the vertexg of I" has valence and its unit tangent vectors
Ty, T», T3 make equal angles with each other, then

(3 (z _ ﬁ) if 3 < Ry,
(11) te(q) = { 507 4sin ' (1y/3sin ) iff > Ry

where0 < § < 7/2 is the circumradius, the common spherical distance
from T} to the closer centelV, of the triangle formed by}, 75, 73; and
whereR, ~ 1.33458 radians is the value of which makes the two options
in formula (11) equal.

Proof. It follows from Lemma 1 that a minimizer of | 5, must be one of
the five pointsV, — N, T, T, or Ts. But>_ 5,(—N) > > G«(N) = 33, and
> B(T;) = 4s,1 = 1,2,3, where2s is the side of the equilateral triangle:
sin s = sin #sin(7/3). But35 — 4s has the same sign as— R,. [

3.2. Even valence.

Proposition 3. If T, T,, T3 and T} are points onS?, then any of the total
distance minimizing points, must be one of th&, or one of the six (or
more) points of intersection of the two great circles passing through disjoint
pairs of the four pointd.

The proof of Proposition 3 will be immediate from the following lemma.

Lemma 2. Let ey be a total distance minimizing point far, 75, 73,7, €
S?, and write¢, € T, S? for the initial unit tangent vector to the minimizing
geodesic frone, to 7. If ¢ is not equal to any of th&,, then after reindex-
ing &1, &, &3, &, in circular order around the unit circle of ., S?, we have

& = —&andg = —¢&,.

Proof. We compute the first variation of;_, :(e), and find that) =
- Ejﬂ(&, ¢) forany¢ € T,,S% We conclude that thg are balanced:

(12) S +&+8G+864=0.
Write 7, for the oriented angle frorty, to &1, ¢ modulo4, with 0 < 7, <
2.

If & = —&, then alsag, = —¢, according to (12), and we are done.

Otherwise, the surg; + &3 makes the oriented anggém + 712) modulom
with &, while the sung; + £, makes the angl§(772 +n3) modulor with &.
Buté, + & = —(& + &), henceny + (2 + 13) = 5(m + n2) + 7 modulo
7, implying thatn; + n3 = 0 modulo2r. Butn; + 72 + 13 + n4 = 27 and
ne > 0, so this forces eithey;, = n3 = 0, implying &, = & andé; = &4; or
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ny = ng = 0, implying & = & andéy = & . The conclusion now follows
from equation (12) in this case as well. ]

The following addition lemma has a complicated statement but a straight-
forward demonstration.

Lemma 3. LetT andT be graphs with a common vertex= ¢. WriteI for
the union ofl" and T', and writeq for the common vertex when considered
as a vertex ofl". Write {ﬁ, .. ka} for the unit tangent vectors tb at q,
and let{T},...,T,_;} be the unit tangent vectors lbatq Thente(q) <
te(q) + te(q). If further {17, .. Tk} and {Tl, ..., Ty,_;;} share the same
total distance mlnlmlzmg ponﬁo = ¢y, then the total distance minimizing
pointeg of {Tl, . Tk,Tl, Ty x} is equal to both, andc(q) = tc(q) +
te(q).

Corollary 3. If avertexq of I' has an even valenekand the tangent vectors
at ¢ occur in antipodal pairs, thenc(q) = 0.

Proof. Observe that a vertex of degree2 in a straight edge, that is, with

T, = —Ty, hastc(q) = 0, with anypoint of S? as a total distance minimiz-

ing point. The conclusion then follows from Lemma 3 by inductiorniga.
[

In contrast with Corollary 2, even valence makes computations easier:

Corollary 4. For a regular polygon inS? with anevennumberd of sides,
the closer center i5? of the polygon is a total distance minimizing point of
the cornersly, ..., Ty.

Proof. Let N be the closer center (closer thanV) of the regular poly-
gon ofd =: 2k sides, with verticeq7, ..., Ty, in order. A total distance
minimizing point of two opposite verticel;, T, .; } is any point along the
minimizing geodesic arc joining them, in particular the midpaint Now

apply Lemma 3 via induction oh. ]

Proposition 4. For a vertexq of a graphl’ ¢ R? with unit tangent vectors
Ty,...,T, all lying in a plane through) and making equal angles, an or-
thogonal unit vectotV is a total distance minimizing point if and onlydf
is even.

Proof. If d is even, the conclusion is given by Corollary 4.dlE= 2k + 1
is odd, then the suriy/_, ((e) equals(2k + 1)7/2 for e = N, and equals
(14+2+---+ k)dr/(2k + 1) for e = Ty, which is smaller by a difference

ofT+1 ThusN does not minimize the total spherical distance. m



16 ROBERT GULLIVER AND SUMIO YAMADA

4. GAUSS-BONNET FORMULA FORCONES

In this section we will prove a Gauss-Bonnet formula for two-dimensional
cones inR™. First we recall the following classical result.

Euler's Theorem (see[O])For a connected grapl” with even valence at
each vertex, there is a continuous mapping of the circl€ tehich traverses
each edge exactly once.

An immediate consequence of this result is thaly connected finite
graphI' has a continuous mapping of the circle which traverses each edge
exactlytwice. Namely, we may apply Euler’s theorem to the grdplob-
tained fromI" by doubling each edge and leaving the vertices alone. Note
that the new graph’ has even valence at each vertex.

We shall derive the density formula of Theorem 2 below in three steps,
beginning from a well known case.

Suppose first thaly is a smooth closed curvein R™, not necessarily
simple, andy a point not onl’y. Without loss of generality (after a suitable
scaling centered aj), we may assume that lies outside the unit balB; (p)
centered ap.

Definell, to be the radial projection to the unit sphere centered at

I, : R"\{p} — 9B1(p);

r—p
[z —p|

Let A = C,(I'g)\B1(p) be the annular region betweép andIl,I';. By
the Gauss-Bonnet formula, we have

(13) —/ /%'-ycds+/KdA:27rX(A)
0A A

IL,(z) =p+

wherek is the curvature vector ¥4 in R™, Vo 1s the outward normal to
0A, K is the Gauss curvature of, andy(A) is the Euler characteristic of
A. ForA, K =0andy(A) = 0. Hence

0 = / E-Vcds
DA

I, o
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—

Forq € IL,Iy, k(q) = vc(q) is the unit vector fromy to p, so that the
first integral on the last line is equal to the lengthIdfl'y, which is also
equal te27O¢, (1) (p). Therefore we have for the cong(I') the following
equation:

(14) 27r®cp(p0)(p) = Length(IL,I'y) = —/ k- Ve ds,

To
wherev(q) is the unit normal vector td', in the plane spanned by the
tangent vector aj and the vectop — ¢, and pointing away from the cone
vertexp.

Next, whenl” is apiecewise smoothmmersion of the circle, we gener-
alize the formula above as follows. LIEtbe a union of smooth segmeints
each of which i<? in the interior and”" up to the end points; o, ¢; ;. We
denoteg; ; ~ g j if they represent the same point wheseanda, meet.
Then the cone”,(I") can be thought as a union t#ns A;(p) = Cp(a;),
which is the part of the con€),(I") spanned by:;, with radial edge$q; o
andpg; ;. The right hand side of the equation (14) then generalizes as

2m0¢, ) (p) = Length(IT,T")

(15) - - [ RS (5-5)

i j=1,2

Whereﬁj is the angle betweean andpg; ; as they meet at; ;. To see how the
last term arises, suppose thatnda, are the consecutive edgedihjoined
atg; ; ~ qry. Then the quantityr/2 — 3) + (7/2 — B5) = m — (B + B5)

is the amount the curve; U a; turns atg; ; ~ qx ;-, when considered as a
locally isometrically embedded curve R?.

Finally, coming back to theriginal graph I', Euler's theorem says that
the graphl” with each edge traced twice while its vertices are left intact,
which we denoted by”, can be parameterized by a copy®f. Write I
as the union ofi; where each, (kK = 1,...,n) arises twice as one of the
a, (i=1,...,2n), as one goearoundI” once.

Applying the generalized equation (15) B = U?"a, we obtain the
following description of the density of the cog(I") atp.

Theorem 2. With the notations as above we have the following cone density
formula:

(16) 270¢,m(p) = — 2”:/ k-vods+ Zn: Z (g — ﬁj’“) .
k=1 "%

k=1 j=12
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Proof. From the preceding discussion, we have
27T@C},(F’)<p) = Length(HpF')

2n 2n
7 T Iz
(17) - —Z/lk-ucds—i—ZZ(?—ﬁj).
i=1 7% i=1 j=1,2
Note that the length of”’ is twice the length of’. Also note that when
the edges;, anda;, of I represent the same edgeof I', we have

/E'VcdS:/ E-I/C'dS:/ E'Vcds

1 2
independent of the orientations imposed by the Euler circuit. Lastly, over
the whole circuifl”, the quantity;r/Z—ﬁij, (t=1,...,n; j=1,2)appears
twice. The statement of the theorem then follows by dividing both sides of
equation (17) by two. [ ]

5. REGULARITY OF STATIONARY SURFACES

Using the notations from section 2 above, we have the following imme-
diate consequence to the density comparison (Theorem 1) between the den-
sity of a strongly stationary surfaéewith respect td" and that of the cone
C,(T") overI" with vertexp; and the Gauss-Bonnet formula (Theorem 2),
which estimates the density of the cone in terms of the total curvature of the
graphl:

Corollary 5. The following inequality holds between the density of a strongly
stationary surfacé: and the total curvaturé€,., of I':
271'@2(])) S Ctot(f‘).

Proof. We need only observe that in the conclusion of Theorem 2, the right-
hand side of equation (16) is bounded abovey(T'). |

Theorem 3. Supposé’ is a graph inR" with Cy(I") < 27Cy = 3x, and
let X be a strongly stationary surface relative foin the classSr. ThenX:
is an embedded surface or a subset of the Y singular cone.

Proof. At a pointp on X, the proof of the above Corollary 5 to the Gauss-
Bonnet formula says that

1
Os(p) < O¢,m)(p) < %Ctot(r) < Cy,
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where the last inequality is the hypothesisok(p) < Cy, X is regular ap
by the proof of Theorem 7.1 of [EWW]. For the sake of completeness, we
reproduce their argument here.

Let 7, be the tangent cone at whose existence and uniqueness is
guaranteed by the regularity assumption we impose on the class of surfaces
Sp. Then©7,5(0) = Ox(p) < 3/2, and thusdy,x(z) < 3/2 for all z in
the cone since in any minimal cone, the highest density occurs at the vertex.
This is because the density functién, 5;(x) is upper semi-continuous ([Si]
§17.8) and constant along open radial segments. Now the intersection of
T, with the unit sphere is a collection of geodesic arcs [AA], which means
that the cone is a polyhedron. At most two faces of the polyhediah
can meet along a radial edge, since otherwise the density at points along the
edge would be> 3/2. This meand},> N S"! is a union of complete great
circles. Since the density is 3/2, there is only one great circle and it has
multiplicity 1. By Allard’s regularity theorem ([Al] or [Si]), this means that
Y is regular ap.

Onthe other hand, ®x(p) = 3/2 = Cy, then equality holds in Theorem
1, implying thatX itself is a cone with vertex and planar faces. But the
Y cone is the unique (up to rotation R™) stationary cone having density
3/2. [

As seen above3/2 is the first nontrivial upper bound for the density
abovel, for the class of surfaces we are studying. As for a larger upper
bound, we will restrict our attention to the case when the ambient Euclidean
space iR3. There are exactly ten stationary coneRih[AT], where a cone
is stationary when its intersection with the unit sphere is a net of geodesics
meeting in threes at angles bf0°. Ordered with respect to the denstyat
the vertices of the cones, the first three on the list are the planeditht ;

Y = three half-planes meeting &0° with © = Cy = 3/2; and the cone
T spanned by the regular tetrahedron with= Cr = 6cos™!(—1/3) =~
11.4638.

In order to state the next result, we need to introduce the following defi-

nition [Alm].

Definition 3. Let< be a bound of the form(r) = Cr® for somea > 0,
and choose > 0. We define2 C R” to be an(M, ¢, §)-minimal setwith
respect tol' C R if X is 2-rectifiable and if, for every Lipschitz mapping
® : R™ — R™ with the diameter of the support? of ®—id less than,

HASAW) < (1+(r) H2<<I>(S N W)).
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We have the following partial regularity statemeniRa for I with small
total curvature.

Theorem 4. Supposd’ is a graph inR? with Ci(T') < 27Cr, and let

Y. € Sr be embedded as afM, 0, d)-minimizing set with respect tD.
ThenX has possibly Y singularities but no other singularities, unless itis a
subset of the T stationary cone, with planar faces.

Proof. As in the proof of the previous theorem, for each pginh X, we
have a series of inequalities

1
GE(P) < @Cp([‘)(p> < %Ctot(r) < CT7

unlessX. is a cone ovep with planar faces. We now use results in [T](I1.2
and 11.3), which imply that the tangent cone of @¥l, ¢, §)-minimal setS

atp is area-minimizing with respect to the intersection with the unit sphere
centered ap, and that the plane, the Y-cone and the T-cone are the only
possibilities for the tangent cone. The inequality above implies that if there
is a pointp whereT,(X) is any other cone than the plane or Y, then it can
only be the T stationary cone. But in this case, after rotati(p) = Cr,
andX itself is a cone ovep. It follows thatX = T. ]

Remark 1. A surfaceX in the classSr which is(M, 0, §)-minimal withT"

as its variational boundary is in particular strongly stationary with respect
to I' (See the remark precedirigefinition 2.) However note that a cone
over the one-skeletdn of the cube is strongly stationary w.ilt, but is not

an (M, 0, §)-minimal set.

Remark 2. The previous papefEWW] and[CG2] had consequences for
the knot class of a curve in a 3-dimensional manifold satisfying an inequal-
ity on its total curvature. Similar consequences for the isotropy class of a
graph would follow from Theorems 3 and 4 if the boundary regularity of an
area-minimizing rectifiable set bounded by a graph could be proved.

Example 1. This example shows that the hypotheis(I') < 37 of The-

orem 3 is sharp. Specifically, we construct a grdpim R3 with C;(T") =

3w, such that a subset of the minimal cone Y, including a nonempty segment
of the singular line, is strongly stationary with respecfito

Recall the description of Y in Section 2 above: Y consists of three half-
planesP;, P,, P; meeting along a lin&, and making equal anglés-/3 at
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each point ofS. Recall also the angl&, = 1.33458 radians= 76.466° of
Corollary 2.

We choose two pointg* along.S, and construct’ as the union of three
C? convex plane arcg,, wherea, joins ¢~ to ¢* in the half-planel,, ¢ =
1,2, 3, all making an angle* with S at the endpoing™, where0 < a* <
Ry. Sinceq, is a convex plane arc, the integral|§t alonga, equalsa™ +
a~. Using Corollary 2, we may compute that the contributiog®ato the
total curvature of is tc(¢F) = 3(7/2—a®). ThusCio(I') = 3(at +a~ )+
3(r/2 —at) 4+ 3(n/2 — a”) = 3w, as claimed. ]

In Example 1, intuition might lead the reader to expect that every case,
with a skinny or fat angle, would give rise to a sharp inequality. In fact, for
the casex™ > Ry, the inequality isotsharp, as follows using Corollary 2.

Example 1 illustrates that the upper boudw for C.(I") is achieved
for certain graphd’. The next proposition in turn says that among all the
embedded graphis which are homeomorphic to the graph of Example 1,
3r is the sharp lower bound for the total curvatag ().

Proposition 5. LetI" be an embedding int®R? of the topological graph
with exactly two verticeg® and three edges;, a, andas, each of which
has endpointg® and¢~. ThenC(I") > 3. Moreover, equality holds if
and only if eachy, is a convex plane arc with unit tangent vect@is at ¢*

satisfying the condition thate := i‘g::% is a total distance minimizing

point for the three point§*, 757, T3 on S?, at bothg~ andg*.

Proof. The “if” part of the equality conclusion follows essentially from the
discussion of Example 1 above. We have adapted the notation introduced
there; further, letv;” be the angle betwe€ef and the unit tangent vector

+e at ¢* to the closed line segmeiit joining ¢* to ¢*. Thena, U L is a
closed curve ilR3, so by Fenchel's theorem

21 < Cyot(ag U L) :/ k| ds + (7 — o) + (7 — o).
ap

Thusfa[ k| ds > a; +a; , with equality if and only ifa, is a convex planar
arc.

Meanwhile, tc(¢*) = sup, Y5_, (2 -57()) > S (2 —0of).
Further, equality holds if and only ife is a total distance minimizing point
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on S? for the three pointd™*, 755, T, Therefore,
3
Cal) = Y [ [Flds+ tela') + tela)
(=1"v™

3
_ 0 ™ _
> ;[<az+ae>+<§—aw+<§—au] =3,
with equality if and only ifa, is a convex planar arc anfe is the total dis-
tance minimizing point. [ ]

There is a second combinatorial structure for a connected drapith
two trivalent vertices and three edges: the “handcuff’ consisting of two
loops plus an arc joining the vertices of the loops. Similarly to Proposi-
tion 5, it may be shown that an embedding of silicdh R? must have total
curvature at leasir. In fact, it appears likely that the hypothesis of Theo-
rem 3 can hold strictly only for the embedded circle or the two-leafed rose,
that is, two circles connected at a point.

Example 2. In this example, we shall show that the hypoth€gigI") <
27 Cr of Theorem 4 is sharp. In fact, the coneover the one-skeletdn of
the regular tetrahedron itself provides an example.

Let a7 be the angle between an edge; of I' andg,p, 1 < k < i < 4,
wherep is the center of the tetrahedron. Thes(ar) = \/2/3, Soar =
0.61548 radians, which is less thaR, = 1.33458 radians. This shows,
using Corollary 2, tha€.(T') = 67 — 12a.

On the other hand, we may apply Theorem 2 above to compare the total
curvature ofl” with the density of: at the interior singular point. Namely,
away from the vertices, the curvature vecforz 0. In the notation of
Theorem 2, all twelve of the interior anglgg (1 < k£ < 6, j = 1,2) are
equal toar. Therefore the densigrC'r of the cone ap equals

26: Z <g — aT> = 61 — 12a7 = Cior(I).

k=1 j=1,2

|
The next example will be much more complex than those above.

Example 3. In this example, we shall construct a graptwith C...(T") =
447 < 2xCyp, which is sufficiently complicated that the presence of a T
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singularity in a strongly stationary surface might appear likely, although
this would be excluded by Theorem 4 above.

Let I be the union of eleven convex plane ovals.will consist of six
horizontal ovals in plane§z = ¢}, 1 < k < 6, obtained from each other
by translation in the-direction; and five ovals in vertical plan¢g = ¢},
7 < k < 11, obtained from each other by translation in thdirection. For
clarity, we assume that each of the eleven ovals includes two unit line seg-
ments tangent to the facés = 0} and{z = 1} of the unit cube. It follows
that that each of the five vertical ovals meets each of the six horizontal ovals
twice.

ThenT has60 verticesqy, . . ., gs, €ach of valencd = 4, and at each
vertex, the unit tangent vectofs, 75, 73, T, satisfyT; = —T; andT, =
—T,. Corollary 3 implies thatc(q;) = 0 (i = 1,...,60). Each of the eleven
ovals contribute2r to the total curvature of',.,. ThereforeC(I') =
447 < 27Crp. [ |

6. NONZERO AMBIENT CURVATURE

In this section, we shall indicate the modifications which need to be made
to generalize Theorems 1, 2, 3 and 4 above to the case where the ambient
spaceR™ is replaced by a manifoldl/™ having variable sectional curvatures.

In the case of an immersed minimal surface (or a branched immersion) with
smooth boundary, the proof was carried out in [CG2]. The conclusions in
subsection 6.2, however, are more general than those of [CG2], even in the
case of a Jordan cunig since [CG2] requires constant sectional curvature

in the positive curvature case. This greater generality is obtained at the cost
of a less geometric hypothesis involving the spherical area of cones in place
of the area induced from/. Many of the proofs of [CG2] can be adapted
with little change to the present context of singular minimal surfaces which
are strongly stationary with respect to a grdph

For the rest of this section, I8f™ be a strongly convex Riemannian man-
ifold having sectional curvatures bounded above by either (subsection 6.1)
a non-positive constantx?; or (subsection 6.2) a positive constafit //™
is said to bestrongly convexf any two points are connected by a unique,
minimizing, geodesic. For exampl&/™ might be a complete, simply con-
nected Hadamard-Cartan manifold, or a locally convex open subset of such
a complete manifold, or a locally convex open subset of a ball of radius
in a complete, simply connected manifadd™ with sectional curvatures
KM S Iiz.
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6.1. Nonpositively Curved Manifold. Throughout this subsection, l&f"

be a strongly convex Riemannian manifold whose sectional curvatures are
bounded above by a non-positive constanf. We consider a graph C

M™ and a surfac& in the classSr which is strongly stationary with respect
tol'.

Choose a poinp of . We shallassumehatI” is nowhere tangent to the
geodesic fronp; the general cases of Theorems 5, 6, 7 and 8 below then
follow by approximating in C* N 2! (cf. pp. 351-352 of [CG2]).

We shall compar& with thegeodesic con€’ = C,,(I"), which is formed
from the minimizing geodesics joiningto points of". C' may naturally
be given the Riemannian metrig? induced fromA/™. However, it should
be observed that' with the metricds? is not likely to be relevant to the
strongly stationary surface. In fact, > and the con&’ over its boundary
inhabit different regions of\/”, whose geometries are not related except
by an upper bound on curvatures, so that one should not expect any useful
comparison between them. For these reasons, we shall eGdaith a
second metrids? of constant Gauss curvature:?, such that the unit-speed
geodesics fromp to points ofl', which generat€' = C,(I"), remain unit-
speed geodesics in the metd&?, and so that/s? agrees withis? on the
tangent space t@' at points ofl' [CG2]. For clarity, we shall refer to the
cone with this hyperbolic metric a8 = @(F).

More precisely, letz;, 1 < 7 < m, be the smooth arcs df, and let
A; = Cyaj), 1 < j < m, be the two-dimensional fans @f,(I'). On
eachA;, let # be a coordinate which is constant along each of the radial
geodesics through, and such thgt = dist(-, p) andé form a local system
of coordinates. We have assumed thas nowhere tangent to the radial
geodesic, which implies th@ may be used as a regular parameter along
the closed ar@;. Write p =: r(f) for the corresponding values pof :=
dist (p, -) alonga;, and letr(6) be extended t6,(I") so that it is constant
along each radial geodesic. Then< r(f) elsewhere o4,. Note that
under our assumption, there holds/df| < ds/df alongI’. We may now
define the metrids? on A; by

(@ >2 B (dr(@))2 sinh? kp 56
dfIr do sinh® kr(0)
We may observe that, along any radial geodesic, we have= dp* =

ds®. In particular, if arcsi;; anday, of I' share a common endpoiptthen the
hyperbolic metrics/s? defined on the fam; andds* defined onA,, agree

ds® = dp* +
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along their common edge, which is the minimizing geodesic fgota q.
That is,ds? makesC' into a Riemannian polyhedron.

Another description of the hyperbolic metrig? may be useful. The
metric ds? has constant Gauss curvature?; each radial geodesic from
in the induced metrids® remains a geodesic of equal length und€, the
length of any arc of' remains the same; and the angles formed layd the
radial geodesic fron® remain the same.

Theorem 5. Given a strongly stationary surfacein M™ of classSr, and
a pointp € M\TI" of ¥\I', the densities ap of ¥ and of(j’p(F) may be
compared:

Os(p) < Og, ry(P)-

Moreover, equality implies that is a cone with totally geodesic faces of
constant Gauss curvatures?.

Proof. The proof is similar to the proof of Theorem 1, with certain modi-
fications. The test functiotr(z) is taken to bdog tanh(kp(z)/2), rather
thanlog p(x). Since the fans@ of @,(F) are locally isometric to the hy-
perbolic plane of constant Gauss curvature?, with p(x) corresponding
to the hyperbolic distance from a point, we may readily verify that) is
harmonic on the fans (IIA?,,(F) away fromp. If e, = Vp andey,..., e, 1
form an orthonormal frame on/™\{p}, then by the Hessian comparison

theoremv - G > %2“’) fori=1,...,n—1,andV. . G= %ﬁ;h“p
(See p. 4 of [SY] and [CGZ]) It foIIows using the trace formula (6) that
G(x) is subharmonic on the faceé§ of the minimal polyhedral surface.
The factor1 appearing in boundary integrals in the proof of Theorem 1 is

replaced byﬁ which is the derivative ofs with respect tg. Note that

—K Length(C’ N dB.(p))/sinh(ke) is equal to—2mO5(p), independent of
sufficiently smallz > 0.

The remainder of the proof is as in the proof of Theorem 1. [ |
Theorem 6. LetT be a graph inM/™, and choose € M\T'. Then the cone
C = C,(I"), with the hyperbolic metrids?, satisfies the density estimate

2104 Z/ k- ve ds — Kk*Area (C —|—ZZ<_—53)

wherevc is the outward unit normal vector t0,(I"); and at a vertex; of
I', 5] is the angle, in the metric af/, between the edge, of I' and the
minimizing geodesic from € day, to p.
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Proof. The proof resembles the proof of Theorem 2 above, with appropri-
ate modifications. We appIyAthe Gauss-Bonnet formula (13) to the double
C,(I") of the hyperbolic con€’ = C,(I"), and find

~ ~ e ~
KAdAAJr/ kd§+/ kds+ (— —6’?) —0,
/G\Bs(m 7 Jeronw) Preg Z,;; 2

whereK; = —x? is the Gauss curvature of the fans@f  is the inward
geodesic curvature anr@(@\B (p ))' andﬁ’“ Is the angle formed by the

edgea;, of I' and the geodesm edge joinipdo ¢; € dayg, in the metricds?.
But alongdB.(p) N C, we havek = —r coth ke by a standard computation
in the hyperbolic plane. Alond, ds? = ds?, so thatﬁj’.“ = 3%, the corre-
sponding angle in the induced metiig®. Further, for eacly € T',.,, there

holdsk(q) < k(q), the geodesic curvature Bfin the coneC,(I") with the
induced metriels? (see Proposition 4 of [CG2]). Thus

(18) % coth ke Length(0B.(p) N C) <

—k*Area(C\B.(p)) + /F kds+zz< —ﬁf).

Taking the limit as — 0, we find
2104(p) < —/ ve - kds + ZZ (— - ﬁk) x*Area(C )
l_‘reg

since for allg € Tyeq, k(q) = —vc - k(g). Finally, Area(C) > Area(C), as
may be proved by applying Proposition 5 of [CG2] to eachfarof C. m

In order to state the following corollary and the next two theorems, it will
be useful to make the following

Definition 4. A(T") is theminimum cone areafI":

AI) := min Area(C,(I")).

pEHcvx (F)

Here, theconvex hullH...(T') of T in M is the intersection of closed,
geodesically convex subsetsidf which containl".
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Corollary 6. For a strongly stationary surface € Sr in a strongly convex
manifold A/™ with sectional curvatures<,; < —«?, the density estimate
holds:

2105 (p) < Ciot(T) — K A(T).
Moreover, equality may only hold whéhis itself a cone ovep with totally
geodesic faces of constant Gauss curvatuké.

Proof. Theorem 6 estimates the hyperbolic cone density:
(19)

2104 Z/ k-veds + Z Z <— — ﬁk> 2Area( (F))

SinceX must lie in the convex huIHCVX( ) by the maximum principle, we
haveArea (C,(T')) > A(T). Also, | [, k-vods|+ 3, 3;(5 — 6) <
Ciot(T). Therefore, the right-hand side of inequality (19)<dsCi (") —
x2A(T), while according to Theorem 5, the left-hand side>inOx(p).
Moreover, if equality holds, then we must have equality in the conclusion
of Theorem 5, implying that must be a cone overwith totally geodesic
faces of constant Gauss curvature?. ]

In the following two theorems, the total curvaturelofs “corrected” by
subtracting<2A(T"). Without this improved hypothesis, Theorems 7 and 8
would have only extremely limited application for of large diameter in
manifoldsM/™ of uniformly negative sectional curvature (see Example 2 of
[CG2)).

Theorem 7. Supposé' is a graph inM™ with Cy.(T') — x2A(T) < 37, and

let 3> in the classSr be a strongly stationary surface relative fo ThenX

is either an embedded minimal surface; or, a subset of a singular minimal
cone with an interior edge where three convex, totally geodesic faces, of
constant Gauss curvatures?, meet at equal angles.

Proof. Givenp € ¥, Corollary 6 above implies that
277'@2(])) S Ct0t<r) — KJ2A(F)

Thus, the present hypothesis implies tBafp) < % and that equality may
only hold whenX is a geodesic cone over with totally geodesic faces

of Gaussian curvature x> (see Corollary 6). 1f0x(p) < 3/2, thenX

is embedded neagr. If ©x(p) = 3/2, then is a geodesic cone, with
tangent cone at congruent to the Y stationary cone, and its faces are totally
geodesic with Gauss curvature—x2. SinceY. is a totally geodesic cone of
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classSr, it is the exponential image of its tangent cone.alt follows that
the exponential map af/ atp maps a subset of the Y conedp)M ontoX.

Finally, equality in the inequality-% - v < |k - v| implies convexity of
Direg- |

Theorem 8. Supposé’ is a graph inM? with C,«(T') — x2A(T) < 27Cr,
and letY be an embedded polyhedral surface of the cl@sswhich is
strongly stationary and afiM, ¢, §)-minimal set with respect td. Then

Y is a surface with possibly Y singularities but no other singularifies
unless it is a geodesic cone ovewith convex, totally geodesic faces of
constant Gauss curvatures?, and having tangent cone atequal to the T
stationary cone.

Proof. Choose a poinp € . Then with respect to a local geodesic co-
ordinate chart centered atthe surface: is an(M, ¢, §)-minimal set with

g(r) = Cr* for some sufficiently larg€’ > 0 and somex > 0. Here we
again apply the set of results [T](Il.2 and 11.3) to conclude that the tangent
coneT,X C T,M? = R? is area minimizing and that the tangent cone can
only be the plane, the Y-cone or the T-cone.

As in the proof of Theorem 7, we apply Corollary 6 to show that either
Ox(p) < Cr; or thatOx(p) = Cr, ¥ is a geodesic cone ovewith convex,
totally geodesic faces of constant Gauss curvatutg andY is the image
under the exponential map 6f atp of the T-cone. 1©x(p) < Cr, then the
tangent cone t& atp is either a plane or the Y stationary coneZ}t is a
plane, therk is an embedded surface in a neighborhoogd.df 7,,¥ is the
Y stationary cone, then there are Y-type singularities along a curve passing
throughp. [

Remark 3. In Theorems 7 and 8, the minimum cone aséd’) may be
replaced by

~

inf Area(C,(T"
b Area(Cy(I)),
which may be larger (and thus better). See the proof of Theorem 10 below.
We have chosen to write Theorems 7 and 8 in terms of the minimum cone
area A(I"), since this quantity is more closely related to the geometiy of
(If M has constant sectional curvature<?, they are equal.)

6.2. Ambient Curvature with Positive Upper Bound. Throughout this
subsection, we shall assume tiiat is a strongly convex Riemannian man-
ifold whose sectional curvatures are bounded above by a positive constant
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k2. Consider a graph C M™ with diameter< 7/« and a surfac& of the
regularity classSr which is strongly stationary with respectito

Choose a poinp of 33, p ¢ I'. As in subsection 6.1, we shall assume that
I is nowhere tangent to the minimizing geodesic franThe general cases
of the results of this subsection follow l6y? N 172! approximation td".

SinceM™ is strongly convex, the unique minimizing geodesic joining
to ¢ varies smoothly as a function @f Therefore, the geodesic cone=
C,(T"), with the Riemannian metriés® induced froml/, is a Riemannian
polyhedron enjoying the same smoothnesE.a8urther,X lies in H.,,(I").
Sincel has diametex 7/, I lies in the open balB;.(p). The coneC'
will be given a second Riemannian metii€?, the spherical metric, so that
the fans of the cone have constant Gauss curvatyreo that the ambient
distancep to the pointp remains equal to the distance in either mettié
or ds?, and so that at points @f, ds? = ds*. We may describe the spherical

metric at a poing of C' as
2 2
) - (@)

i 02
ﬁ:w+gyﬂhw
sin® kr(q)
As in subsection 6.1;(q) < 7/x denotes(Q), the distance in\/ from p
to the point() of I" along the radial geodesic froppassing through; also,
the one-formtls‘F has been extended to the cone so that it is invariant under

radial deformations. Note thalts‘r(a/ap) = dr(0/dp) = 0. We use the

notationC' = @(F) for the coneC' with this spherical metrids®.

In this section, it will be useful to state theorems in terms ofaximum
cone area, rather than thenimumcone area which was of use in subsection
6.1. To account for the positive sectional curvature which may occiif,in
we will need to add a teerﬁ(F) to the total curvaturé€,.(I"). When the
sectional curvatures d¥/ are nearly equal to the constastt, the theorems
below are nearly sharp.

Definition 5. ﬁ(F) is themaximum spherical cone areél:

AT) = sup Area(C,(I)).
pEHcvx (T)
Theorem 9. Supposes; < +«x?* and thatl” has diametek 7 /. For any
strongly stationary surfac®& in M™ of classSr, and a pointp of X\T', the
following inequality holds:

Os(p) < Og, 1y (P)-
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Moreover, equality implies that is a cone with totally geodesic faces of
constant Gauss curvature.

Proof. Analogous to the proof of Theorem 5, but replacing hyperbolic
functions with circular functions throughout. Specifically, the test func-
tion G(z) = log tan(kp(x)/2) in place oflog tanh(kp(x)/2). Note that for
pe X, xeXorz e C = (), we havep(z) < w/k. This implies
that the metrials? exists onC. Also, the test functior is smooth, with
0G/dp > 0, on bothX andC. ]

Theorem 10. Let I" be a graph inM™ of diameter< 7/k, and choose

p € Hewx(D)\I'. Then the con€' = @(F), with the spherical metrids?,
satisfies the density estimate

2m0s(p) < — Zn:/ k- veds + k*Area (@,(F)) + Z Z (g — ﬁi) ;
k=1 " 9k ko J

whereve = v is the outward unit normal vector t6,,(T'); and 3} is the
angle, in the metric of\/, between the edge, of I' and the minimizing
geodesic inV/ from the vertex; € day, to p.

Proof. The demonstration, which is based on the Gauss-Bonnet formula on
C, is analogous to the proof of Theorem 6; #tatemenhas been modified,
however, since in the middle term on the right-hand side of equation (18),
Area(@) was multiplied by the non-positive-x* and could therefore be
replaced in the conclusion of Theorem 6 with the smaller quantity (C).

Here, however, the Gauss curvatur&bis «2, which is positive, so that the
spherical arearea(C) of the cone must remain on the right-hand side of
the inequality. H

Corollary 7. Let M™ be a manifold with sectional curvaturds,, < +x2.

The density of a surface in M, strongly stationary with respect to a graph
[" of diameter< 7/x, satisfies the inequality:

2705 (p) < Cyor(T) + K2A(T).

Moreover, equality may only hold whéhis itself a cone ovep with totally
geodesic faces of constant Gauss curvattfre
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Proof. Theorem 9 estimates the densiy:(p) < @@(F)(p). Meanwhile,
by Theorem 10,

(20) 2m05(p) < —Zn:/ k- veds
k=1"Y %
(21) + Z Z (g — ﬁi) + K?Area ((Z(F)) :
kg

SinceX: lies in the convex hutH...(I") by the maximum principle, we have
Area (@(F)) < A(T"). Also, by definition of total curvature,

] frreg k-veds| + >3- BF) < Ciot(T). Therefore,

2105 (p) < Ciot(T) + k2A(T). Moreover, if equality holds, then we must

have equality in the conclusion of Theorem 9, implying thatust be a

geodesic cone overwith totally geodesic faces of constant Gauss curvature

+K2. ]
The proofs of our final two theorems are completely analogous to the

proofs of Theorems 7 and 8.

Theorem 11.Supposé’ is a graph inM" of diameter< 7 /x, with Cyot (I')+
K2A\(F) < 3w, and letX be a strongly stationary surface relativelfan the
classSr. ThenX is either an embedded minimal surface or a subset of
a singular minimal cone with an interior edge where three convex, totally
geodesic faces, of constant Gauss curvatifreneet at equal angles.

Theorem 12. Supposé’ is a graph inAM? with Cyo, (') + x2A(T) < 27Cy
and diametex 7/k, and let> be an embedded polyhedral surface of the
classSr, which is strongly stationary and &M, ¢, §)-minimal set with re-
spect tol'. ThenX is a surface with possibly Y singularities but no other
singularitiesp, unless it is a geodesic cone ovyewith convex, totally ge-
odesic faces of constant Gauss curvatsfeand having tangent cone at
equal to the T stationary cone.
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