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A MIXED FINITE ELEMENT METHOD FOR

ELASTICITY IN THREE DIMENSIONS

SCOT ADAMS AND BERNARDO COCKBURN

Abstract. We describe a stable mixed finite element method for

linear elasticity in three dimensions.

1. Introduction

In the writeup ([Arnold02]) of his plenary address to the 2002 Inter-

national Congress of Mathematicians, at the end of the third paragraph

of Section 6, D. Arnold asserts: “Four decades of searching for mixed

finite elements for elasticity, beginning in the 1960s did not yield any

stable elements with polynomial shape functions”. In [AW92], Arnold

and R. Winther give stable elements for a two-dimensional version of

problem, but the three-dimensional problem remained open. Here we

announce an analogous scheme for three dimensions.

We would like to thank Doug Arnold for numerous detailed con-

versations and Vic Reiner for developing the Mathematica program

described below.

2. Description of the elements

In what follows, the term “chamber” will mean a codimension-zero

simplex, “facet” will mean a codimension-one simplex and “face” will

mean a simplex of any codimension. We encourage collaboration with

combinatorialists, who generally follow this terminology.

In Section 3 of [AW92], we see an explicit description of a polynomial

function space ΣT , together with 24 degrees of freedom that give a

stable finite element space for a two-dimensional version of the mixed

elasticity problem. We indicate here the three-dimensional version of

ΣT and the required unisolvent degrees of freedom.
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Let S denote the six-dimensional space of 3 × 3 symmetric matrices

with real entries. Let T be a tetrahedron in R
3. Let VT be the set

of R
3-valued polynomials on T of degree less than or equal to 1. Let

ΣT denote those S-valued polynomials σ on T with degree less than

or equal to 4 and with the property that div σ has degree less than

or equal to 1. (Here div σ is the row-divergence of σ, following the

notation of [AW92].) Then dim ΣT = 162. The required 162 degrees of

freedom are:

(1) the average of σ over T (6 degrees of freedom);

(2) for each facet f , with normal n, the constant and linear mo-

ments over f of σn (4 × 3 × 3 = 36 degrees of freedom);

(3) for each edge e, parallel to a vector t, adjacent to facets f1 and

f2 with normals n1 and n2, the constant, linear and quadratic

moments over e of σn1·t, σn2·t, σn1·n1, σn2·n2, σn1·n2 = σn2·n1

(6 × 3 × 5 = 90 degrees of freedom);

(4) for each edge e, parallel to a vector t, the average over e of σt · t

(6 degrees of freedom); and

(5) the values of σ at the vertices of T (4 × 6 = 24 degrees of

freedom).

Note that, for a function σ, all the above 162 degrees of freedom vanish

if and only if the following all vanish:

(1) the average of σ over T ;

(2) for each facet f , with normal n, the constant and linear mo-

ments over f of σn;

(3’) for each edge e, adjacent to facets f1 and f2 with normals n1

and n2, the constant, linear and quadratic moments over e of

σn1 and σn2;

(4’) for each edge e, the average over e of σ;

(5) the values of σ at the vertices of T .

The unisolvency of this system was originally verified on a specific

tetrahedron via a Mathematica program written by V. Reiner, to whom

we owe a debt of gratitude. For the code of this program, please point

to:

http://www.math.umn.edu/ ãdams/elasticity.txt

Note that if unisolvency is verified on one tetrahedron, then it follows

on any other tetrahedron by the affine transformation rule of equation

(4.4) of [AW92]. (Note: Because of the form of this equation, one
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should avoid the vector t of (3) and (4) above, instead using (3’) and

(4’).)

Eventually the second named author found a direct proof of unisol-

vency that is given in the last section of this paper.

Note that 0 is the only polynomial function on a facet f of T of

degree smaller than or equal to 4, which vanishes at each vertex of f ,

which has vanishing constant&linear&quadratic moments along each

edge of f , and which has vanishing constant&linear moments along f

itself. This ensures that the assembled space is in H(div).

Let Ω be an open connected polyhedron in R
3 with a mesh M . Let

Σ be the assembled space associated to M with the degrees of freedom

(1)–(5) listed above. Let Π : H1(Ω, S) → Σ be any projection map

that preserves all degrees of freedom associated to chambers and facets

(i.e., to faces of codimension at most 1). Let V be the full space of all

functions on Ω which are piecewise polynomial, and of degree at most 1

on each chamber. Let P : L2(Ω, R3) → V be orthogonal projection.

We have div : H1(Ω, S) → L2(Ω, R3) and div : Σ → V . Equation

(3.6) of [AW92] asserts that div ◦ Π = P ◦ div. It is proved in the

three-dimensional case without any significant change.

Thus the results and statements in Section 3 of [AW92] go through

in a straightforward way in three dimensions. Note that the six degrees

of freedom described in (4) above are not used, except in the proof of

unisolvency. There are undoubtedly possible replacements for those

six. More generally, we expect there are numerous other solutions to

the stated problem.

We have thus far not attempted to analyze the other sections of

[AW92], but hope that much will proceed in the three-dimensional case

in a similar way to what was done in the two-dimensional case.

3. Unisolvency of the system

Let T be a tetrahedron in R
3, i.e., the convex hull of four points not

lying on a plane. Let σ ∈ ΣT and assume that the degrees of freedom

described in (1)–(5) all vanish. We are going to show that σ = 0.

To do that, we begin by listing the properties we are going to use to

prove this result. They are the following:

(6)
∫

T
σ = 0;

(7)
∑

j σij,j = 0 on T ;
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(8)
∑

j σijnj = 0 on ∂T ;

(9) for any edge e in T ,
∫

e
σ = 0; and

(10) σij = σji.

The properties (6) and (7) follow as in the proof of Lemma 3.1 of

[AW92].

Next, we introduce the notation needed for the proof. Let {xi}
4

i=1

be the set of vertices of T . For all integers l ∈ [1, 4], let nl be the

outward pointing normal to the facet containing {xi}i6=l, and let hl be

the distance from xl to that plane.

For all integers k ≥ 0, let P k denote the vector space of all polyno-

mials R
3 → R such that the total degree of any term is at most k. For

any integer l ∈ [1, 4], we denote by λl ∈ P 1 the affine function such

that λl(xi) = δli, where δ is the Kronecker delta. Set

(11) gl := ∇λl = −(1/hl)nl.

Then, as ∇(
∑

4

l=1
λl) = ∇1 = 0, we get

(12)
∑

4

l=1
gl = 0.

We are now ready to prove the unisolvency of the system. We pro-

ceed in several steps.

Claim a: For all integers l, m ∈ [1, 4], there exists φlm ∈ P 2 such

that gmσgl = λlλmφlm.

Proof: By (11), we have σgl = −(1/hl)σnl. Then, by (8), we get

σgl = 0 on {λl = 0}. It follows that σgl is divisible by λl in P 4×P 4×P 4.

Then gmσgl is divisible by λl in P 4. Similarly, gmσgl is divisible by λm

in P 4, so we are done if l 6= m.

We therefore assume l = m. We already know that σgl = λl φl for

some φl in P 3 × P 3 × P 3. By (7) and (10), 0 = ∇ · (σgl) = ∇ · (λlφl),

and, since ∇λl = gl, this leads to 0 = gl · φl + λl∇ · φl. Then

glσgl = λl φl · gl = −λ2

l ∇ · φl,

and, since ∇ · φl ∈ P 2, the result follows. End of proof of Claim a.

Claim b: For any edge e, we have σ = 0 on e. Proof: Let us proof

the result for the edge e = {λ3 = λ4 = 0}, the proof on the other edges

being similar. It is enough to show that gmσgl = 0 on e for all integers

l, m ∈ [1, 4]. By Claim a, we are done if l ∈ [3, 4] or if m ∈ [3, 4]. We

therefore assume that l, m ∈ [1, 2].

By (12) and Claim a, we see that, on the edge e,

g1σg1 = g1σ(−g2 − g3 − g4) = −g1σg2.
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By (12) and Claim a again, we have

−g1σg2 = (g2 + g3 + g4)σg2 = g2σg2.

Then, on e, we get g
1
σg

1
= −g

1
σg

2
= g

2
σg

2
. Then, since by Claim a,

g1σg1 is divisible by λ2

1
in P 4 and g2σg2 by λ2

2
in P 4, we have that, for

some constant c, we can write

g
1
σg

1
= g

2
σg

2
= cλ2

1
λ2

2
.

Since, by (9),
∫

e
σ = 0, we conclude that c = 0, and so

g
1
σg

1
= −g

1
σg

2
= g

2
σg

2
= 0,

as desired. End of proof of Claim b.

Claim c: For any integers l, m ∈ [1, 4], we have
∫

T
λmglσgl = 0.

Proof: Let us prove the result for l = 1, the proof in general being

similar. By (7) and (8), we have

∫

T

∑

i,j

σijvi,j = −

[

∫

T

∑

i,j

σij,j vi

]

+

[

∫

∂T

∑

i,j

σij nj vi

]

= 0.

For vi = aiλ
α
1
λβ

m, we have

vi,j = aiαλα−1

i λβ
m(g1)j + aiβλα

i λβ−1

m (gm)j,

and so

(13) 0 =
∫

T
αλα−1

1
λβ

m aσg
1
+

∫

T
βλα

1
λβ−1

m aσgm.

For β = 0, α − 1 = γ, a = gm, (13) yields

(14) 0 =
∫

T
λγ

1
gmσg

1
,

and, for α = 1, β = 1 and a = g
1
, (13) yields

0 =

[
∫

T

λmg1σg1

]

+

[
∫

T

λ1 g1σgm

]

.

Using (14) with γ = 1 and the symmetry (see (10)) of σ, we see that
∫

T
λ1 g1σgm = 0, and the result follows. End of proof of Claim c.

Claim d: For all integers l ∈ [1, 4], we have glσgl = 0 on T . Proof:

Let us prove the result for l = 1, the proof in general being similar.

Since by Claim a, g
1
σg

1
= λ2

1
φ11, we get

φ11 = λ2c3λ4 + λ2λ3c4 + c2λ3λ4,

by Claim b. Hence

(15) g1σg1 = λ2

1
(λ2c3λ4 + λ2λ3c4 + c2λ3λ4)
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From Claim c and (15), we see, for all integers m ∈ [1, 4], that

0 =

∫

T

λmλ2

1
(λ2c3λ4 + λ2λ3c4 + c2λ3λ4).

Now, for all integers α1, α2, α3, α4 ≥ 0, we have

1

|T |

∫

T

λα1

1
λα2

2
λα3

3
λα4

4
=

α1! α2! α3! α4! 3!

(α1 + α2 + α3 + α4 + 3)!
,

where |T | is the volume of the tetrahedron. A simple computation

shows then that c2 = c3 = c4 = 0. This implies that g1σg1 = 0 on T .

End of proof of Claim d.

Claim e: σ = 0 on T . Proof: Let l, m ∈ [1, 4] be integers. We wish

to show that gmσgl = 0 on T . By Claim d, we may assume that l 6= m.

We take l = 1 and m = 2, the proof in general being similar.

By Claim d and the symmetry of σ, (10), we have that

g1σg2 =
1

2
(g1 + g2)σ(g1 + g2).

Since, by (12), g1 + g2 = −g3 − g4, we get

g
1
σg

2
=

1

2
(g

3
+ g

4
)σ(g

3
+ g

4
) = g

3
σg

4
,

again by Claim d and (10). This implies, by Claim a, that g
1
σg

2
is

divisible both by λ1λ2 and by λ3λ4 in P 4. As a consequence, there is

a constant c for which we have g
1
σg

2
= λ1λ2λ3λ4c. Then (6) yields

c = 0, so g1σg2 = 0, as desired. End of proof of Claim e.

This completes the proof of the unisolvency of the system.
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