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Abstract

Consider the simple normal linear regression model for estimation/prediction at a new design point. When
the slope parameter is not obviously nonzero, hypothesis testing and model selection methods can be used for
identifying the right model. We compare performance of such methods both theoretically and empirically from
different perspectives for more insight. The testing approach, in spite of being the “standard approch”, performs
poorly. We also found that the frequently told story “BIC is good when the true model is finite-dimensional and
AIC is good when the true model is infinite-dimensional” is far from being accurate. In addition, despite some
successes in the effort to go beyond the debate between AIC and BIC by adaptive model selection, it turns out
that it is not possible to share the most essential properties of them by any model selection method. When model
selection methods have difficulty in selection, model combining is seen to be a better alternative.

1 Introduction

Consider the simple linear regression model:

���������
	����
��������������������� � � �����
(1)

where
�

is the design variable taking values in  ! �����#" and $ �%�'& are the errors assumed to be independent and

normally distributed with unknown variance (*),+.- � Our interest is point prediction of the response variable
�

at

a new value
��/10  ! �����#" of the design variable under the squared error loss.

Obviously, this is a simple statistical problem, even taught at introductory level statistical courses. Let 2� and2	 be the least squares estimators of
�

and
	

respectively. Let 354 �
67�8�9�:	�� denote the true regression function.

Then a predicted value of 354 ��/;6 is 23�4 �</;6=� 2�:� 2	��</%� Under the simple linear regression model, it is the best

unbiased estimator of 354 ��/>6 (under the squared error loss) and it is also a minimax estimator. Note that for a new

observation
�
?�@�A

at
�</

, BDC ��?�@�A ! 23�4 �</;6�E ) � (F) � BG4 2354 �</;6 !H354 �</;6�6 ) . Thus, as is well known, under the

squared error loss, point prediction is equivalent to point estimation of 354 �
6 at the given
�

value.

In many real applications, the linear relationship between
�

and
�

is not obviously strong and it is unclear

whether
	

is zero (we note that, of course, the issue is the same if the concern is if
	

is equal to another constant

instead of zero). The problem seems still simple and again a solution is taught in elementary statistics courses:

the familiar I -test. I imagine that this approach would be the one taken by many statisticians (if not most) in real
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applications (note that in reality, of course, the normality assumption has to be assessed). Some other statisticians

may prefer the use of an information criterion for assessing if
	 � - .

Below we briefly review testing and model selection approaches. Without loss of generality, from now on, we

assume that the design is such that
�F? � - �

1.1 The testing approach

From the instruction in a typical elementary statistics textbook, when it is unclear if the slope parameter is nonzero,

one should perform a hypothesis testing. A standard formulation is
�G/��>	 � - versus

�GA��>	��� - � Then with the

traditional choice of size 0.05, one conducts the well-known I test: reject
�G/

if� 2	 ��	 
��
 �������
�� I ?�� )�� /�� / )�� �
where � ) � A?�� ) 
 ?� ��A 4 ��� ! 2� ! 2	����'6 ) is an unbiased estimator of (�) and I ?�� )�� /�� / )�� is the cutoff point of the

I distribution:  4 I ?�� ) � I ?�� )�� /�� / )�� 6 � - � - �"!�� With the outcome of the test, we can naturally do the following

prediction: 23�4 �</;6 �$# 2��� 2	��</ when
� /

is rejected2� otherwise.

1.2 Model selection

Alternatively from the hypothesis testing method above, one can consider using a model selection criterion. Indeed

we are dealing with two models, the simple linear model in (1) and the null model:
���*��� ���������5� ��������� � � �����

with the same assumptions on the errors. For convenience, call them model 1 and model 0 respectively.

Model selection based on information criteria such as AIC and BIC avoid the subjectivity of choosing the

test size in the earlier hypothesis testing approach. Indeed, a valid criticism of the testing approach is that it is

rather unclear how the test size influences the prediction accuracy for the problem of prediction. The strategy of

controlling the probability of type I error is not intended to address the issue of prediction. Model selection criteria

are motivated from different considerations, such as asymptotically maximizing the posterior model probability

(BIC (Schwarz (1978)) and minimizing an estimated Kullback-Leibler divergence between the true distribution

and those estimates from the models (AIC (Akaike (1973)).

Both AIC and BIC choose a model that minimizes the criterion of the form: !&% '"( likelihood
�

penalty, where

the loglikelihood is maximized within each model and the penalty is the number of parameters in the model, say,) �
for AIC and is 4 ) % '"( �*6+*�� for BIC. Let 2(�) � A? 
 ?� ��A 4 ��� ! 2� ! 2	���� 6 ) be the MLE of (F) under model 1.

Simple calculations show that BIC selects model 1 when� 2	 �,-	 
 �
 ��� ���
 +/. � 4 � A10 ? ! �>6��
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Note that
	 � 4 � A10 ? ! �>6 is asymptotically equivalent to � % '"( ��� Replacing 2(F) by the unbiased estimator �>)

(which has little effect when
�

is not small), we take the following slightly modified rule as BIC: select model 1

when � 2	 ��	 
 �
 ��� ���
 + 	 % '"( ���
Similarly, AIC selects model 1 when � 2	 �,-	 
 �
 ��� ���
 + . � 4�� ) 0 ? ! �>6 �

It is easy to see that
	 � 4�� ) 0 ? ! �>6 converges to � � � Replacing 2( by � � we take the following modified rule as

AIC: select model 1 when � 2	 ��	 
 �
 ��� ���
 + � � �
Now AIC, BIC and the testing approach all boil down to the decision of choosing model 1 when� 2	 ��	 
��
 ��� ���
 +�� ? (2)

with � ? being � ��� � % '"( � and I ?�� )�� /�� / )�� respectively. Clearly, all of these methods are trying to assess how

strong the “signal” is compared to the “noise”, but they differ in the cutoff point. It is worth mentioning that

I ?�� )�� /�� / )�� approaches 1.96 as
�����

and when
�

is large, AIC is the most aggressive in terms of choosing the

larger model and BIC is the most conservative while the testing method is in between.

As is well known, the increasingly heavy penalty (or cutoff � ? � � % '"( � in (2)) enables BIC to be consistent

in terms of selecting the true model (i.e., model 0 if
	 � - and model 1 if

	 �� - ) while AIC and testing with

a fixed size cannot avoid a non-vanishing probability of selecting the wrong model when
	 � - . So from this

selection point of view, the penalty of AIC is too small.

Let 	�
 � 	�� � 	�
 denote the procedures of estimating 354 �
6 based on the outcome of AIC, BIC and testing

respectively. Let ���*4�	�� �</ � �*6 denote the mean squared error of the estimator 2354 �</;6 from an estimation procedure

	 at the sample size
�

when the true slope parameter is
	

, i.e.,

���*4�	�� �</ � �*6 � B�� C 354 �</>6 ! 2354 �</;6 E ) �

The main purpose of this paper is to examine the testing and model selection methods in terms of the above

risk. As will be seen, even though the setting is very simple, complicated issues are involved. We study these

issues both theoretically and via simulations.

The rest of the paper is organized as follows. In Section 2, we review the literature and give an example to

illustrate some issues that we consider in this work. In Section 3, we consider some theoretical results on model
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selection criteria, showing that under the squared error loss, BIC is pointwise-risk adaptive in a proper sense while

AIC is not; on the other hand, BIC is rate sub-optimal from a worst-case point of view while AIC and the like are

rate optimal. In addition, we theoretically address the interesting issue of whether the strengths of AIC and BIC

in prediction/estimation can be combined. In Section 4, we derive an alternative criterion for choosing between

model 0 and model 1 from the prediction accuracy point of view. Simulation and data examples are presented in

Section 5. In Section 6, we consider the issue of what to do when model selection methods disagree. We comment

on the hypothesis testing approach in Section 7. Conclusion and additional discussion are in Section 8.

2 Existing results and a motivating simulation

Given that extensive works have been done theoretically and empirically on model selection and that our problem

setting is one of the simplest possible, one may expect to see a pretty clear picture here. We start with a simulation.

Consider an equally spaced design between  ! �����#" with
�F? � - � We are interested in the prediction/estimation

accuracy at
��/ � - � ! (the risks were simulated based on 2000 replications). Figure 1 gives the risk functions of

	�
 � 	�� � 	�
 for
	 � - at different sample sizes

� � �"!
,
� -�- �;� -�- and

� -�-�- with ( � - � ! . Note that at
� � �"!�� 	 


has a higher penalty for model 1 than the other methods but when
� � � -�- � 	 � has the largest penalty. Typical

realizations of the data at the sample size of 25 and 100 with
	:� - � � are given in Figure 2.

It is useful to note that there is no need to consider different ( values: the change of the noise level simply re-

scales the risk plot. Note also that 4 �>) � 2�7� 2	�6 is a sufficient statistic and that the design affects only the distribution

of 2	 (in terms of its variance (�) * 
 � )� ).
Before reading Figure 1 (we intentionally put Figure 1 on a different page), let’s try to predict what we would

see. To that end, of course, the existing results on model selection are relevant and useful.

2.1 What do the existing results say?

We focus on the model selection criteria AIC and BIC in this brief literature review. In one sentence, a summary

of the theoretical works on AIC and BIC is perhaps something like “BIC is good if the true model is finite-

dimensional and AIC is good if the true model is infinite-dimensional”. This seems to be a frequently told story

in statistics. For example, Speed and Yu (1993), Shao (1997) and Zhang (1997) quite clearly vote for BIC for

estimation/prediction in a parametric setting. On the other hand, e.g., Burnham and Anderson (2002) strongly

prefer AIC for its “objectivity”. These views seem to be well supported by several theoretical results. To be

more precise, when the true model is among the candidates (as is the case for our setting), it is well-known

that BIC is consistent in terms of selection (i.e., the probability of selecting the true model approaches one as� � �
) while AIC is not (see, e.g., Nishi (1984)). Furthermore, the average squared error of the estimator

from BIC is asymptotically as small as it can be from the candidate models (Shao (1997)). In addition, when

cumulative prediction accuracy is the concern, it was shown that BIC achieves an accuracy lower bound while
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AIC again does not (Rissanen (1986), Speed and Yu (1993)). When the true regression function is not in the

candidate models, however, AIC has the so-called asymptotic efficiency property that the average squared error

of the selected model is asymptotically equivalent in probability to the smallest among all the candidate models

(see, e.g., Shibata (1983), Li (1987), Polyak and Tsybakov (1990) and Shao (1997)). Based on these results, Shao

(1997) concluded that AIC and some other closely related criteria (such as
���

and delete-1 cross validation) are

“useful when there is no fixed-dimensional correct model”, while BIC and delete- � cross validation with � *>� � �
are “useful in the case there exist fixed-dimensional correct models”.

There has been quite a debate on AIC and BIC in the literature. One major part of the argument is on the

assumptions. Some researchers in favor of AIC argue strongly that there is no finite-dimensional “true model”.

For example, Burnham and Anderson (2002) “do not accept the notion that there is a simple ’true model’ in the

biological sciences”. If this view is to be taken, then consistency in terms of selecting the true model is not relevant

and thus BIC is immediately deprived of its best known theoretical property. In the mean time, AIC stands out as

an asymptotically efficient criterion. In defense of BIC, one can argue that in certain situations, some very simple

models are clearly superior to nonparametric alternatives and are very satisfactory for practical concerns (imagine

a simple linear regression with �,) close to 1) and it makes strong sense to practically view one of the parametric

models as the “true model”. Even if the “true model” is infinite-dimensional, as Speed and Yu (1993, Section 4)

pointed out, the relative performance between AIC and BIC depends on how fast the approximation error decays

to zero. For instance, if the approximation error decreases super-exponentially fast in the model dimension (i.e.,

�
����� �

where
)

is the model dimension), BIC is also asymptotically efficient. For such a case, one may prefer BIC

for obtaining a more economic model. Zhang (1997, p. 255), in the discussion of Shao (1997), goes even further in

this direction by stating that “An argument can be made in favor of BIC-like criteria regardless of the true model”

for the reasons that the existence of a true model (regardless of the dimension) is doubtful in the first place and that

“a parsimonious model often overshadows concerns over the correctness of the models”. In any event, from the

literature, it seems quite clear that should the debaters agree on that the true model exist and is finite-dimensional

and reasonably simple, there would be little dispute: BIC is the better choice, from the consistency perspective,

from the loss (average squared error) efficiency perspective, and from a sequential prediction perspective.

Now given below is what I would have predicted on the comparison between AIC and BIC based on my

understanding of the literature on model selection before this study.

1. No procedure dominates any other one.

2. We expect three regions of
	 �;	

small,
	

large and in between, which correspond to BIC being better, AIC

and BIC about the same, and AIC better. The first and third regions should shrink as
�

gets larger.

3. For this setting, from the literature, BIC should be favored in an overall sense.

How about you?
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Now let’s examine Figure 1. To help us compare the methods better, in Figure 3, we redraw Figure 1 with the

risks replaced by the ratio of the original risks over the minimum of the risks of model 0 and model 1. Are there

any surprises to you? To us, there are.

1. Somewhat surprisingly, at
� �D�"!��

BIC loses to AIC at more
	

values and more severely compared to its

shining moments.

2. More surprisingly, for BIC, the situation does not improve much as
�

gets larger.

3. The worst-case performance of BIC relative to AIC does not seem to get better as
�

gets even to
� -�-�- �

4. At the first two sample sizes, the methods differ in risk quite a bit, indicating the potential relevance of the

comparison between the methods to real applications.

5. At sample size 25, the testing approach behaves very poorly unless
	

is very small or quite large.

What does the example tell us? Note that when
	

is around zero, the advantage of BIC is relatively small

(in risk) and the disadvantage of BIC is larger when
	

is larger. Thus it seems that BIC is paying a very high

price for performing well at
	

around zero. Therefore, it seems fair to say that unless one has a strong reason

to believe that
	

is around zero, the penalty of BIC seems too large and thus is too conservative for yielding a

good predictive performance. The same can be said for the testing approach for the relatively small sample sizes

(though it improves more than BIC when
�

gets larger).

The finding of the poor performance of the testing approach for prediction/estimation should not be taken

lightly. The testing approach seems to be the one instructed (more or less) in many (if not most) elementary statis-

tics textbooks. The example clearly shows that estimation/prediction is fundamentally different from assessing if

model 0 or model 1 is the true model. The commonly taught and practiced approach of identifying the true model

first by testing and then making inference based on the selected model is problematic.

Regarding AIC and BIC, the story that “BIC is good if the true model is finite-dimensional and AIC is good if

the true model is infinite-dimensional” does not seem to be right here. Is the sample size of 1000 still not enough

for BIC to perform as well as the asymptotic results seem to tell? Actually, the behavior that the worst-case

risk of BIC is getting increasingly worse compared to AIC was given by Foster and George (1994). Somewhat

surprisingly, even though the risk inflation criterion (RIC) proposed in their paper is quite well-known, as far as

we know, this sub-optimality of BIC has rarely been discussed. Consider the whole picture, for a moderate sample

size, advantage of BIC around
	 � - seems to be limited compared to its disadvantage when

� 	 �
is larger. Even

when
�

is large, the aforementioned optimality property of BIC do not seem to reflect the reality well.

This paper grew out of our effort in trying to understand the properties of the model selection methods. The

main points of this paper are:
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1. For the purpose of estimation/prediction, we compare AIC and BIC from different theoretical angles to

understand their differences. The theoretical results and empirical comparisons show that the notion “BIC

is good if the true model is finite-dimensional and AIC is good if the true model is infinite-dimensional” is

misleading.

2. There is an unbridgeable difference between the pointwise and minimax properties of model selection. This

means that no model selection methods, however sophisticated, can share the essential strengths of AIC and

BIC.

3. Large (e.g., BIC) and small (e.g., AIC) penalties in model selection are both justifiable from a weighted

worst-case risk point of view.

4. We compare model selection and model averaging methods.

Some of the theoretical results given in this paper are not really original in the sense that similar results (under

different loss functions) were given already in the literature. Our objective is to put these results and new ones into

perspectives, which hopefully will help the reader to understand the complex issues involved in model selection.

We choose to study the simple problem in this work mainly for two reasons: simplicity for better theoretical

and empirical understandings and it is also a reasonably useful problem for application.

3 Theoretical comparisons between AIC and BIC

In this section, we present theoretical comparisons between AIC and BIC from several different angles all under

the consideration of the prediction/estimation risk at a given point
�F/

.

Let � / and � A be two classes of functions. Consider two models:

����� 354 ��� 6*������� 3 0 � /
and ����� 354 ��� 6*������� 3 0 � A>�
Let 23 / � ? and 23 A � ? be estimators of 3 under model 0 and 1 respectively.

3.1 A pointwise adaptation result

Consider a model selection rule 	 � Let ��� be the event that model 1 is selected.

Definition 1. The model selection rule 	 is pointwise-risk adaptive with respect to the two estimators 23 / � ? and23 A � ? if for all 3 0 � /�� � A>� we have

BDC 354 �</;6 ! C 23 / � ? 4 �</;6�� 
	�
 � 23 A � ? 4 �</;6�� 
 
 E
E )�
� � � B C>354 �</;6 ! 23 / � ? 4 �</;6�E ) � BDC 354 �</;6 ! 23 A � ? 4 �</;6�E )��
� �

(3)
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as
� � �8�
In words, 	 is pointwise-risk adaptive if for each given 3 in model 0 or 1, the estimator based on 	 is asymp-

totically as good as the better one between 23 / � ? and 23 A � ? in risk. We use the term pointwise-risk to emphasize that

the regression function 3 is fixed for the asymptotic analysis (as
� � � 6

.

Now in our simple context, let 23 / � ? 4 �</;6 � 2� and 23 A � ? 4 �</;6 � 2�
� 2	*�</�� Note that when
��/:� - � the two

estimators are actually the same.

Theorem 1. Assume that the design is such that

 � )� is of order

�
as
� � �8�

Consider
��/ �� - � BIC is

pointwise-risk adaptive with respect to 23 / � ? and 23 A � ? but AIC is not. More generally, the model selection rule in

(2) with � ? ��� 4 � �*6 is pointwise-risk adaptive if and only if � ? � �
.

Remarks:

1. Results similar to Theorem 1 have been well known in the literature for general linear model selection,

usually under the mean average squared error at the training sites. See for example, Nishi (1984) and

Shao (1997) and references therein. Speed and Yu (1993) give lower bounds for prediction risks and study

achievability of the bounds by the familiar model selection criteria.

2. AIC fails to be pointwise-risk adaptive when
	 � - because it selects (wrongly) model 1 with a non-

vanishing probability no matter how large the sample size is.

3. For each fixed
	��� - , the ratio of the risks of AIC and BIC converges to 1 as

� � �
.

4. If � ?G��� 4 � �*6 is not satisfied, the criterion has a non-vanishing probability of under-fitting. See, e.g., Shao

(1997) for a more general result on under-fitting probability.

5. The condition that

 � )� is of order

�
rules out highly irregular cases such as degeneration of the design

points to a singleton.

Proof of Theorem 1: For the model selection criterion with cutoff � ?
� the corresponding estimator of 354 ��/>6
is 2354 �</;6 � 2��� 2	��</ ����� ,� � ��� � � 0 	 
��
 ��� � 
 �
	 �
Let � � ��� � 2	 � � � ? � * 	 
 ?� ��A ��� )�
 � Then

���*4�	�� �</ � �*6 � (F)� �
� )/ B�� C 2	 � 
 
 ! 	*E ) �
Consider first the case

	 � - , i.e., model 0 holds. Then clearly 23 / � ? 4 �
6 is better than 23 A � ? 4 �
6 and the their

risks are
- �? and

- �? �.� )/ B�� C 2	 ! 	*E ) � - �? � - � � ��
 �
 ��� � 
 � , respectively. For the model selection criterion to be

pointwise-risk adaptive, we must have
� B�� �F/ C 2	 � 
 
 ! 	*E ) � - (for

� )/ +H- ). Since

� � ��� 	 
 ?� ��A ��� ) 2	( � � ? �(�� ��� 	 
 ?� ��A ��� ) 2	( � ! � ? �(��
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and with
	 � - � 	 
 �
 ��� � 
 � ,�- has a standard normal distribution, we know that  � �F/ 4 � � 6 � - if and only if

� ? � �8�
This fact is enough to rule AIC out as a pointwise-risk adaptive criterion. Since

	 
 ?� ��A ��� ) 2	 * ( has a

standard normal distribution,

B�� �F/�� C 2	 ! 	*E ) � 
 
 � (F)
 ?� ��A ��� ) *>� B�� �F/�� 	 
 ?� ��A ��� ) 2	( � ) � 
 
 � -
as long as  � �F/ 4 � � 6 � - �

Now consider
	 �� - � Without loss of generality, assume

	 +D- � When
�

is large enough, 23 / � ? 4 �
6 is worse

than 23 A � ? 4 �
6 and the their risks are
- �? � � )/ 	 ) and

- �? � � )/ B�� C 2	 ! 	*E ) � - �? � - � � ��
 �
 ��� � 
 � , respectively. Thus to

show that the model selection criterion is pointwise-risk adaptive, we need to show that

B�� C 2	 � 
 
 ! 	*E ) !�B�� C 2	 ! 	*E ) ��� 4 � ��A 6 �
But the quantity is equal to

B�� C 2	 C �;	 ! 2	*E � 
 �
 E=�
Note that for

	��� - , 2	 C �;	 ! 2	*E converges in probability to
	 ) and it is not hard to show that, under the normality

assumption on the errors, B � C 2	 C �;	 ! 2	 E � 
	�
 E � � 4 � ��A 6 holds if  �14 ���� 67��� 4 � ��A 6 � Indeed,

B�� � 2	 C 2	 ! �;	*E�� 
 �
 � � B�� C � 2	 � � 2	 ! �;	 � � 
 �
 ��� � ,� � � A � � �	� E � B�� C � 2	 � � 2	 ! �;	 � � 
 �
 ��� � ,� � 
 A � � �	� E� !�� �"!;	 )  �14 � �� 6*� B�� C � 2	 � � 2	 ! �;	 � ��� � ,� � 
 A � � �	� E� !�� �"!;	 )  �14 � �� 6*��� B�� C � 2	 � ) � 2	 ! �;	 � ) E
�  � C � 2	 � + ��� !;	*E��
where the last inequality follows from Cauchy-Schwaz inequality. Together with that  � C � 2	 � + ��� !;	 E � � 4�� ��� ? 6
for some � +H- � the assertion follows. Now note that

 �14 � �� 6 �  ���� � ! 	 
 ?� ��A ��� ) 	( ! � ? �( � 	 
 ?� ��A ��� ) C 2	 ! 	*E( � ! 	 
 ?� ��A ��� ) 	( � � ? �(�� ��
�  � � � ? �( � 	 
 ?� ��A ��� ) 	� ( � �  � �� � 	 
 ?� ��A ��� ) C 2	 ! 	*E( � ! 	 
 ?� ��A ��� ) 	� ( � �� �

With � ? � � 4 	 
 � )� 6 � the above last two probabilities are both exponentially small in
���

This completes the

proof of Theorem 1.

3.2 Worst-case performance

From Theorem 1, when
	.� - � BIC beats AIC, and when

	/�� - AIC and BIC are asymptotically equivalent in

risk as
� � �

. Together with that BIC is consistent, it gives one a strong impression that BIC should be used

for a parametric problem. Speed and Yu (1993) added further weight to BIC by showing that BIC (but not AIC)
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achieves a lower bound for cumulative prediction risk. The literature does seem to say/imply that BIC should be

preferred for a parametric setting, at least theoretically speaking.

Obviously, there are various ways to compare the risk functions of estimation procedures. The asymptotics

of Theorem 1 are done for each fixed 3 in the function classes. One drawback of this notion of asymptotics is

that it tells very little for the specific data at hand because in general the convergence of the risk ratio in (3) is not

uniform over 3 . An implication is that for a data set where the distinction between the two models is not clear

due to small
�

or large noise (that is exactly where we need a good model selection rule most), it is especially

uncertain whether the asymptotics hold. A different notion to compare risk functions is in terms of worst-case

risk.

Let � be a class of regression functions. The minimax risk of estimating 354 �F/;6 is defined to be:

� 4 � � �</ � �*6 � �
� �,� ���������� BDC>354 �</>6 ! 2354 �</;6�E ) �
where 23 is over all estimators based on the data.

Definition 2: A model selection rule 	 is minimax-rate adaptive with respect to the two classes � / and � A if

for both � � - ����� we have

	�

�? 	�

� ������� B C>354 �</;6 ! C 23 / � ? 4 �</;6�� 
	�
 � 23 A � ? 4 �</;6�� 
 
 E
E )
� 4 ��� � �</ � �*6 � �8�

Theorem 2: Assume that the design is such that

 � )� is of order

�
as
� � �8�

Then AIC is minimax-rate

adaptive but BIC is not. More generally, the model selection rule 	 of the form (2) is minimax-rate optimal if and

only if � ? is bounded above from infinity.

The result may be a little surprising. One may naturally think that since BIC is consistent and thus will

eventually select the true model. Together with its pointwise-risk adaptation property, it looks like that it should

perform optimally at least in rate. Another thought may be that if I simply ignore model selection and use model

1 (the larger model), I always get the optimal rate of convergence. I probably should demand BIC to do at least as

well as that.

A similar result to Theorem 2 was obtained by Foster and George (1994) in a linear regression setting assuming

(F) is known and under the average squared error at the training sites. Somewhat surprisingly, the sub-optimality

of BIC did not bring in an appropriate caution on the overly simplified and overly optimistic view on BIC for a

parametric setting.

Proof of Theorem 2: With the same notations as in the proof of Theorem 1, we first show that for any

� ? � �
and a fixed � +.- � we have

	�

� � � � � � B��9C 2	 � 
 
 ! 	*E )� *>� � �8�
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which is sufficient to conclude that when � ? � �8�
the model selection rule is minimax-rate sub-optimal. Note

that the LHS above is equal to

	�

��
�
� � � B�� C � � 2	 � 
 
 !�� �F	*E )� 	�

��
�
� � � B�� C � � C 2	 ! 	*E�� 
 
 !�� �F	 � 
 �
 E )� 	�

��
�
� � � � B�� � C 2	 ! 	*E ) � 
 
 �
�F	 )  �14 � �� 6 � �

Observe that

� �� � �� � ! 	 
 ?� ��A ��� ) 	( ! � ? �( � 	 
 ?� ��A ��� ) C 2	 ! 	*E( � ! 	 
 ?� ��A ��� ) 	( � � ? �( � �� �
Take

	�? � �
� � 4 	 � ?+*>��� � 6 � It is easy to show that for any constant ���5+ ���  4 � * ( � ��� or � * ( � � * ��� 6 converges

to zero exponentially fast in
�

(i.e.,  4 � * ( � ��� or � * ( � � * ��� 61� ��� � ��� ?�� for some �G+ - � See, e.g., Yang

(1999a, p. 490-491)). Note also that � �F	�? � � � ?�� � 4�� ? 6 and thus

	 
 �
 ��� � 
 � �- � � 4�� ? 6 � Then  � � 4 � �� 6 is

asymptotically equivalent to

 � � � !�� ? C � � E ��A ��� 4 - ���>6 � � ? C � � E ��A � �
which approaches 1. Since

�F	 )? � �8�
we have

�F	 )?  � � 4 � �� 6 � �8�
Therefore, � ? � �

implies that the

worst-case risk of the model selection estimator with cutoff � ? converges at a rate slower than
� ��A �

It remains to show that if � ? stays bounded, the resulting estimator converges at rate
� ��A �

To that end, we

need to show

	�

�? 	�

�
�

� B�� � C 2	 ! 	*E ) � 
 
 �
�F	 )  �14 � �� 6 � � �8�
Note that B�� � C 2	 ! 	 E ) � 
 
 � � B�� C 2	 ! 	 E ) � ? - �
 �
 ��� � 
 � � which is upper bounded. Consequently, it suffices

to show
� 	�

� � � / 	 )� �14 � �� 6 is upper bounded. Observe that�� � ! 	 
 ?� ��A ��� ) 	( ! � ? �( � 	 
 ?� ��A ��� ) C 2	 ! 	*E( � ! 	 
 ?� ��A ��� ) 	( � � ? �( � ��

	 � � ? �( � 	 
 ?� ��A ��� ) 	� ( � � �� � 	 
 ?� ��A ��� ) C 2	 ! 	*E( � ! 	 
 ?� ��A ��� ) 	� ( � �� �
Thus

�F	 )  �14 � �� 6� �F	 )  � � � ? �( � 	 
 ?� ��A ��� ) 	� ( � �
�F	 )  � � � 4 - ���>6 � ! 	 
 ?� ��A ��� ) 	� ( � �
For

� 	 � � � ��A10 ) � clearly
�F	 )  �14 ���� 6 is upper bounded by 2. For

� 	 � + � ��A10 ) � note that the two probabili-

ties in the right-hand side in the above display decay exponentially fast in
	 
 ?� ��A ��� ) 	 � It follows easily that� 	�

� � 	 )� �14 � �� 6 is indeed upper bounded. This completes the proof of Theorem 2.
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3.3 Comments on Theorems 1 and 2

Theorems 1 and 2 may seem to tell opposite stories. How do we interpret them? How do we use them to guide

real applications if possible? Should one take the minimax or pointwise view point?

In general, in our view, pointwise asymptotic results provide rather little guidance for real applications. For

example, a universally consistent estimator in nonparametric regression with i.i.d. observations (i.e., it is consistent

without any assumption on the common marginal distribution) may not perform well in practice even though

theoretically it “works” universally. Pointwise asymptotics emphasize the positive outlook by assuming that we

have a large number of observations for the current problem of interest. This is the case for some applications

(think of many examples of simple linear regression in the elementary statistical textbooks) and perhaps can also

be made the case sometimes when collecting more data is not a serious concern. In other situations, when one gets

a larger sample size, it is usually desirable to consider more explanatory variables (which are usually available).

For such a case, relevance and validity of the pointwise asymptotic analysis become less clear. It is perhaps worth

pointing out that in the nonparametric world, pointwise asymptotics can be even less reliable in some sense. For

example, super efficiency (i.e., pointwise convergence rate is faster than the minimax rate) can occur at every

function in an infinite-dimensional class of regression functions (see, e.g., Brown, Low and Zhao (1997)). For

another example, in pattern recognition, if one considers pointwise asymptotics, classification is easier (in terms

of rate of convergence) than estimating the conditional probability function (Devroye, Gy �orfi and Lugosi (1996)).

But if one considers the minimax rate of convergence, the two problems are actually of the same difficulty for

many familiar function classes (Yang (1999b)). In any case, in a typical application where model selection is

clearly a nontrivial issue, perhaps more often than not, we are not is a situation where the pointwise asymptotic

behavior has “kicked in” already (or at least it is not evident that is the case). This is particularly true when the

model selection methods strongly disagree with each other. To address this concern, properties such as minimaxity

can be very helpful for better guiding the model selection practice.

From a pure mathematical statistics point of view, the debate between AIC and BIC cannot be well resolved in

the sense that they work well under different conditions/assumptions and the question of which condition is more

appropriate cannot be answered by any theoretical analysis. For a successful application of model selection, it

seems clear that one is obligated to take into account the context and background of the data and prior experience

whenever possible. A simple (perhaps naive) consideration is to prefer AIC if
	

is more likely to be nonzero and

use BIC if
	

is likely to be very small or zero based on experience or a theory about the subject matter. Of course,

one can always do both AIC and BIC. In our simple case, there is a good chance that they agree with each other

(which happens with high probability when
� 	 �

is small or large relative to the noise level) and then there is little

concern. We will come back later to discuss the situation when AIC and BIC do differ.

Another comment is that whenever possible, we should try to understand/assess whether the difference in

prediction resulted from the different methods is really significant or not for the subject matter even if the statistical
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significance is obvious. Even though statistical significance is usually important, its practical relevance should be

kept in mind in applications.

3.4 Can the strengths of AIC and BIC be shared?

3.4.1 Adaptive asymptotic loss efficiency

One property that separates AIC and BIC is the condition under which an asymptotic loss efficiency (to be defined)

holds. Shao (1997) showed that AIC (or a similar criterion) is asymptotically loss efficient when there is no fixed-

dimensional correct mode and BIC (or a similar criterion) is asymptotically efficient if there is a fixed-dimensional

correct model. If one considers only the model selection criteria of the form � ��� ���F? 2(F)? ) � where
)

is the model

dimension, 2( )? is an estimator of ( ) and
�<?

is the penalty coefficient (
��?����

for AIC and
�<?�� % '"( � for BIC),

then from Shao (1997), it is clear that any choice of
�
?

cannot yield the asymptotic loss efficiency under both

of the aforementioned conditions. This brings up the interesting question: Can we construct an adaptive model

selection rule that does achieve the goal of asymptotic loss efficiency for both situations?

Under some conditions, we show that the answer is yes. Even though the rest of the paper focuses on the

parametric case, we feel that this result is useful and interesting enough to be included here (at least in a sketchy

way) for a good understanding of the model selection criteria. Again, we will not try to be general and prefer

simplicity for seeing the essence more clearly.

Consider a collection of nested linear models with model index
) � ��� where

)
is simply the dimension of the

model. The true model is ����� 354 ��� 6*�������
where

���9� 4 ��� A;��� � � �������;6 for some � � �
and the errors are assumed to be normally distributed with mean

zero and known variance ( ) � ���
Let ��� � ��� � ? denote the projection matrix of model

) �
Let 3 ? �

4 354 �FA�6 � 354 � ) 6 ��� � � � 354 ��?<6�6 � and
� � 4 �FA;��� � � � ��? 6 � be the vectors of the true values of the regression function

at the design sites and the observations, respectively. Let 23	� � ��� � be the least squares estimator of 3 ? based

on model
) �

Let 
��

 ? denote the Euclidean distance on �
? �

Let 	 be a model selection rule and let 2) ? be the selected model.

Definition 3: 	 (or 2) ? ) is said to be asymptotically loss efficient if


 3 ? ! 23 ,� � 
#)?� ��� � � A 
 3 ? ! 23	��
 )? � �
in probability as

� � �8�
As mentioned already, AIC and BIC are asymptotically loss efficient for nonparametric and parametric cases,

respectively, but not both (Shao (1997)). We need certain conditions to establish adaptive asymptotic loss effi-

ciency.

When at least one of the candidate models is correct, a model selection rule is said to be strongly consistent if

the selected model is eventually equal to the smallest correct model with probability one. For strong consistency

of BIC for regression (under conditions on the design matrices), see Rao and Wu (1989).
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Assumption 1. BIC is strongly consistent when at least one of the candidate models is correct.

Assumption 2. AIC is asymptotically loss efficient when none of the candidate models is correct.

Sufficient conditions for Assumption 2 are given by Shao (1997).

We now construct an adaptive model selection rule. Let 2) 
���� � ? and 2) ����� � ? be the model selected by AIC and

BIC respectively at sample size
�

. Let � ? � ����� 4 � ��� % '"( % '"( % '"( �	�>6 be an increasing sequence of integers. Let

22) ? �$# 2) ����� � ? if 2) ����� � � � � 2) ����� � � � @�A � �	� � � 2) ����� � ?2) 
���� � ? otherwise.

The idea is very simple: when BIC selects the same model again and again at different sample sizes, the true

model is most likely finite-dimensional and hence BIC should be preferred.

For the strategy to work, we need some additional conditions for the nonparametric case. Let
)�
? � )�

���� � ?

be the minimizer of
A? 
=3 ? ! ���;3 ? 
#)? � �? over

) � ���
Note that

)

?
provides the best trade-off between the

approximation error
A? 
 3 ? ! ���>3 ? 
#)? and the estimation error �? (recall (F) is assumed to be 1). We require that

the approximation errors to behave regularly in the following sense.

Assumption 3.

1. If the approximation errors satisfy that for
) � ���A? 
 3 ? ! ���;3 ? 
#)?
�
��� � � � +H-

for some constant � � then

� ����
� �� 
 3 ? ! ���;3 ? 
 )? � ) % '"( �� � � ��� 4 % '"( % '"( �*6 ��A � � (4)

2. If the approximation errors satisfy that for
) � ���A? 
 3 ? ! ���;3 ? 
#)?
�
��� � � � � �

for some constant � � then )�
?) 
 � ?"0�� ��� ?�� � �
as
� � �8�

(5)

For interesting nonparametric regressions, it is usually the case that � ��� � A? 
 3 ? ! ����3 ? 
#)? � �? � converges

basically at (or around) a polynomial rate
� �	�

for some - ��� � �
and then (4) is satisfied. Speed and Yu (1993)

observed that when the approximation error rapidly decays at �
����� �

AIC and BIC should perform the same in the

sense 
 3 ? ! 23 ,��������� � 
#)?

 3 ? ! 23 ,��� ����� � 
 )? � �

in probability as
� � �8�

Note that the condition (5) is satisfied when the approximation error is � �
�����

for the models. If the approximation

errors behave regularly and of order ! 4�� ����� 6 (including
� 4�� ����� 6 ), we expect it to continue to hold.

Proposition 1. For the model selection rule 22) ?
�
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1. when (at least) one of the candidate model is correct, under Assumption 1, 22) ? is asymptotically loss effi-

cient.

2. when none of the candidate models is correct, under Assumptions 2-3, 22) ? is asymptotically loss efficient.

The proposition says that under some reasonable conditions, an adaptive model selection rule can be asymp-

totically loss efficient for both parametric and nonparametric situations.

Proof of Proposition 1: To prove the result, it is sufficient to show:

1. when at least one of the candidate models is correct, 22) ? will eventually equal to 2) ����� � ? almost surely;

2. when the first condition of Assumption 3 holds, we have  4 22) ? � 2) 
���� � ? 6 � � �
3. when the second condition of Assumption 3 holds, we have


 3 ? ! 23 ,��� ����� � 
#)?

 3 ? ! 23 ,��������� � 
 )? � �

in probability as
� � �8�

The first one above clearly holds with the strong consistency assumption on BIC. We next sketch the proof for

the latter two cases.

Suppose that Assumption 3(1) holds. It suffices to show that  C 2) ����� � ? � 2) ����� � � � E � - � Note that at the

sample size � ?
� 2) ����� � � � � � ?
� Thus it is sufficient to prove that

 � � � �  C 2) ����� � ?G� ) E�� - . Let

)�
����� � ? be

the model that minimizes
A? 
 3 ? ! ���;3 ? 
#)? � ��� � ��� ?���A��? over

) � �
. Let

� � � I#4 ) 6 � 
 � !���� � 
#)? � ) % '"( �
be the BIC criterion value of model

)
(we only need to consider

) � � ). Let � ? � 4 �%A>��� � � ����? 6 and � � � � ! ��� �
where

�
is the

)�� )
identity matrix. Note that

� � � I#4 ) 67� 
 � ��3 ? 
 )? � ) 4 % '"( � ! �>6�� � ���? � ��3 ?,� 4 ) ! ���? ��� � ? 6<� 
�� ? 
 )? � (6)

where the last term 
 � ? 
#)? is irrelevant for model comparison due to its always presence and independence of
)

.

Under Assumption 3(1), for
) � � ?
� we have


 � ��3 ? 
 )? � � � 4 % '"( �*6 ��A (7)

for some � and thus the remainder terms
� � �? � ��3 ? and 4 ) ! � �? ��� � ? 6 in the expression (6) are asymptotically

negligible compared to 
 � ��3 ? 
#)? � Similarly, for
) � )�
����� � ? � since

)�
����� � ? ���
as
� ���

for the nonpara-

metric case, we have that
� � �? � �	�������� � 3 ?=� C ) 
����� � ? ! � �? ���	�������� � � ? E is asymptotically negligible compared to


 � � �������� � 3 ? 
#)? � )�
����� � ? 4 % '"( � ! �>6 � Together with the assumption that 
 � � �������� � 3 ? 
#)? � )�
����� � ? 4 % '"( � ! �>6
converges faster than

� 4 % '"( �*6 ��A for
) � � ? and (7), we know that asymptotically

� � � I#4 ) 6 + � � � I#4 )	
����� � ? 6 with

increasingly high probability for
) � � ? . Thus it is unlikely for 22) ? to be equal to 2) ����� � ?F� Under the normality

assumption, we have exponential probability bounds for the two remainder terms � �? � ��3 ? and 4 ) ! � �? ��� � ? 6
�
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which can be used to easily make the above argument rigorous (see, e.g., the analysis in Yang (1999a, pp. 489-

492)).

Now we handle the remaining case when the approximation errors decay rapidly. When the approximation

error is � �
����� �

it can be shown that
)

����� � ? satisfies that �

��� � �������� � � � C � �������� �? E
and the same holds for

)


���� � ? �
Consequently the ratio


 3 ? ! ���	�������� � 3 ? 
#)? � � �������� �?

 3 ? ! ��� �� ����� � 3 ? 
 )? � �	�� ����� �? (8)

is asymptotically equal to the ratio of
) 
����� � ? and

) 

���� � ? � which can be easily verified to be approaching 1 as� � �8�
When the approximation errors converge faster than �

����� �
we also have

A? 
93 ? ! ��� �������� � 3 ? 
#)? �� C � �������� �? E
and the same is true for AIC. Note that when the approximation error is regular,

)�
����� � ? is basically

equivalent to
)

����� � � ?"0�� ���<?�� � Hence the ratio in (8) converges to 1 under Assumption 3(2). One can also show that

� � � � ,���� � ����� � � ��
� � � ��� � �� ����� � � � � �� @ � �� ����� �� � �

in probability as
� � �

and the same holds for BIC. This completes a sketched

proof of the proposition.

Remark: For the adaptive model selection rule 22) ? , it is not clear if it will eventually agree with AIC or BIC

(whichever is the right one) with probability one. It is of interest to investigate if there exists any model selection

rule that will eventually take AIC when none of the candidate models is correct and take BIC when at least one of

the candidate models is correct.

3.4.2 No model selection rule can be really adaptive between AIC and BIC

Proposition 1 gives some hope to resolve the competition between AIC and BIC by sharing their strengths (it

indeed succeeded in one aspect). Note that the adaptive asymptotic loss efficiency is a pointwise convergence

property. How about other perspectives?

Theorem 2 shows that BIC pays a somewhat high price for being pointwise-risk adaptive in selection (or one

can look at the issue from another angle: AIC pays a somewhat high price for being minimax-rate adaptive, i.e., it

is not consistent in terms of selection). Naturally, one may wonder if this weakness of BIC can be overcome while

maintaining its pointwise-risk adaptation property. In other words, is it possible to construct a more sophisticated

model selection criterion that is both pointwise-risk adaptive and minimax-rate adaptive? If this can be done, then

the debate between AIC and BIC is resolved to a large extent.

There are several attempts in that direction. Barron, Yang and Yu (1995) reported that the minimum descrip-

tion length criterion (MDL, Rissanen (1978)), when applied in a nonstandard way, essentially yields a penalty

of AIC type or BIC type, whichever is better. This implies that the resulting estimator converges at the mini-

max optimal rates for nonparametric cases and also optimally in rate in terms of a cumulative prediction error

for parametric cases. Hansen and Yu (1997) took a different approach in the MDL approach to have a penalty

basically switching between AIC type and BIC type according to the outcome of a suitable test. When the true

model is finite-dimensional, the criterion is consistent and pointwise prediction-optimal (Corollary 1 of Hansen
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and Yu (1997), see also Hansen and Yu (2001)). George and Foster (2000) proposed new Bayesian model se-

lection criteria based on empirical Bayes approaches to have an adaptive penalty term that acts like BIC or RIC

(note that RIC has a penalty of AIC type when the number of models does not grow in the sample size). Rao

and Tibshirani (1997) suggested adaptively choosing the penalty constant based on cross validation. Shen and Ye

(2002) proposed an use of generalized degree of freedom in the same direction of adaptively selecting the penalty

constant and reported very promising simulation results. Yang (2003a) showed empirically that when AIC and

BIC estimators are combined, the new estimator performs like the better one under the squared error loss.

Despite the above positive findings, it turns out that the most essential features of AIC and BIC cannot be

combined. Consider the setting in Section 1.

Theorem 3. No model selection criterion can be both pointwise-risk adaptive and minimax-rate adaptive at

the same time.

The theorem says that the main strengths of AIC and BIC cannot be combined. Thus pointwise-risk adapta-

tion and minimax-rate adaptation are conflicting performance measures to some extent. The result is significant

because it gives a clear answer to the fundamental question of how far adaptive model selection can really go.

In a closely related direction, Yang (2003b) showed that in a linear regression setting with multiple candidate

models, the consistency property of BIC and the minimax-rate adaptation property of AIC cannot be shared (note

that a different loss, i.e. average squared error at the design points, is considered there). Here in Theorem 3 the

contrast is made between pointwise-risk adaptation and minimax-rate adaptation.

Proof of Theorem 3: Consider a pointwise-risk adaptive model selection criterion 	 . Let � ? be the event that

model 1 is selected. From the proof of Theorem 2, to show 	 is not minimax-rate optimal, it suffices to show

	�

�
�
�F	 )  �14 � �? 6 � �8�

Since 	 is pointwise-risk adaptive, we have that when
	:� - � for

�
/10  ! �����#" �- �? �
� )/ B�� C 2	 � 
 � ! 	*E ) � �;�</ B��14�2� ! �56 C 2	 � 
 � ! 	*E- �? � �
and thus �</ B�� �F/ C � � 2	 E ) � 
 � � �;� B�� �F/ 4�2� ! �56 2	 � 
 � � - �
Consequently, we must have B � �F/ C � � 2	*E ) � 
 
 � - and

� B�� �F/ 4�2� ! �56 2	 � 
 � � - � Since under
	
� - � � � 2	

has a normal distribution with mean zero and variance (*) � we have  � �F/ 4 � ? 6 � - as
� � �8�

Consider a testing problem as follows. The observations are from the model:

�����H	����
���������5� ��������� � � �����
where the errors are independent and have standard normal distribution. Note that this corresponds to the case

when
�H� - � Consider testing

� / ��	H� - versus
�GA ��	 + - � If we take the rejection region � ?F� 	 becomes a
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testing rule with probability of type I error approaching zero. We next show, via Neyman-Pearson Lemma, that

any test with the probability of type I error going to zero necessarily must have 	�

�
�
�
� � � �F	 )� �14 � �? 6 � �8�

Let

354�� A>��� � � � � ? � 	�6 denote the joint probability density function of 4 �*A;��� � � � ��? 6 � Note that for
	FA � 	</ � - �

354�� A>��� � � � � ? � 	FA#6354�� A>��� � � � � ? � 	</>6 ��� � � � �� ?
� � ��A C%4�� � ! 	</���� 6 ) !H4�� � ! 	FA����'6 ) E �

��� � � � 4 	FA ! 	</>6 ?� � ��A ��� � ��� 4 	</ ! 	FA#6 � � )� � �
Thus the family has a monotone likelihood ratio. It follows that a uniformly most powerful (UMP) test is

to reject
� /

when

 ?� ��A ��� � � is larger than some constant

�
. Let us choose the constant

� � � ? so that � �F/ 4 
 ?� ��A ��� � � � � ?<6 �  � �F/ 4 � ?<6 � Let � ? � 
 denote the event of

 ?� ��A ��� � � � � ?
� By the UMP property

of � ? � 
 , we have for all
	�/ +H-  �14 � ? � 
 6 �  �,4 � ? 6
�

Consequently,

	�

��
�
� � � �F	 )  �14 � �? 6 � 	�

��

�
� � � �F	 )  � � � �? � 
 � �

Now since

 ?� ��A ��� ��� has normal distribution, it is easy to get

 � �F/�� ?� � ��A ��� ��� � � ? � �  � � 4 - ���>6 � � ?	 
 � )� � �
and for

	 +H-  � � ?� � ��A ��� ��� � � ? � �  � � 4 - ���>6 � � ? ! 	 
 � )�	 
 � )� � �
Since  � �F/ 4 
 ?� ��A ��� ��� � � ? 67�  � �F/ 4 � ? 6 � - � we must have

� �� ? � �
(it can be easily shown that � ? � � 4 �*6

for the probability of type II error to converge to zero). Then with the choice of
	�?G� � �) 
 ���
 � we have

	�

��
�
� � � �F	 )  � � � �? � 
 � � �F	 )?  � � � � �? � 
 � � � �%)?

� 4 
 � )� 6 )  � � 4 - ���>6 � � ?� 	 
 � )� � �
Since the last probability above goes to 1 and

? � ��� 4 
 ���
 6 � ���8�
we conclude that 	�

�

�
�
� � � �F	 )  � � ���? � 
 � ���8�

This completes the proof of Theorem 3.

3.5 Subjectivity of the choice of the penalty in model selection

Note that under model 1, the least squares estimator gives 2354 �
67� 2��� 2	��</ for estimating 354 �
6 � It has a constant

risk
- �? � - �
 �
 ��� ���
 under the squared error loss. Assume (*) is known (or bounded above by a known constant), the

estimator 2354 �
6 is in fact a minimax estimator. Since model 0 is contained in model 1, thus from a minimax point

of view, this estimator cannot be improved. However, model selection comes into the picture due to the simple

fact that when
	

is zero or small, the use of model 0 results in a much more accurate estimator/prediction. Clearly,
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insisting on the rigid minimax view is inappropriate since then the smaller model is always ignored. Foster and

George (1994) proposed a risk inflation criterion to address this issue for linear regression. Later, George and

Foster (2000) showed that different choices of the penalty (such as in AIC, BIC and in between) can be derived

from asymptotically maximizing the posterior probability under different choices of priors (allowing the priors to

possibly depend on the sample size).

Here we show that different choices of the cutoff constant � ? in (2) are sensible depending on how one

compares the risk functions of different methods. From this angle, different choices of penalty (or cutoff) are

thus subjectively justifiable. We assign a prior probability on the models and weigh the worst-case risks under

the candidate models accordingly. Let �
/

and �
A

be the prior probabilities or weights on model 0 and model 1

respectively (obviously �
/5�

�
A ���

). Denote �
� 4�� /�� � A�6 � Let � / � $ � � ! � � � � �H& and � A � $ � � 	�� �

! � � �7��	 � �H&%� For a model selection rule 	 � let

� 4�	�� �</ � � ��� 67� �
/ 	�

������ � � 4 3 � 	�� �</ � �*6*� �

A 	�

������ � � 4 3 � 	�� �</ � �*6
be the weighted worst-case risk. Now obviously, the potential gain of using model 0 is reflected in the new risk.

We have the following natural definition to compare two model selection rules 	 A and 	 ) �
Definition 4: A model selection rule 	 A is said to be better than 	 ) in terms of the weighted worst-case risk if

� 4�	 A � �</ � � ��� 6 � � 4�	 ) � �</ � � ��� 6 �
For each choice of �

/
between 0 and 1, let � 
 4�� 6 be the best choice of � that minimizes the weighted worst-

case risk among the class of model selection criteria given by (2). For the following result, for simplicity, we

assume that (F) is known to be 1 and assume that

 ?� ��A � )� �H��� Accordingly the model selection criteria in (2) is

changed to rejecting model 0 when � 2	 � + � ?
� � �

Let 	
� � � � denote this selection rule.

Proposition 2: Let �
/ + - and �

A + - and �
/ �

�
A,� ���

We have the following results under the weighted

worst-case risk.

1. If � is fixed, then AIC is better than BIC when
�

is large enough. In fact, for each fixed � ,

� 4�	 � � � � � �</ � � ��� 6
� 4�	 � � � � � �</ � � ��� 6 � �

for any $ � ?�& and $ � ?<& with % � � � ? � � and % � � 	�

� � ? bounded away from
�

.

2. For each fixed sample size, as �
/ � �

, � 
 4�� 6 � �
.

From the first part of the theorem, giving model 0 a fixed positive prior probability is not enough for BIC

to perform well from the weighted worst-case risk point of view. For BIC to outperform AIC, one must have a
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shrinking prior probability (to 0) on model 1 as
�

gets larger. An interpretation of this, again, is that BIC is the

right choice if one believes that model 0 (or practically
	

being around zero) is much more likely to be true.

The second part of Proposition 2 says that when model 1 is less likely to be true, the penalty should be larger

for model 1, which clearly makes intuitive sense.

In the general linear regression context, it is natural to consider a class of criteria: choose the model that

minimizes

� ��� � �<? 2( )? ) �
where � ��� is the residual sum of squares, 2(�)? is an estimate of (�) � ) is the dimension of the model, and

��?
is

the penalty constant. It is called the GIC method in Rao and Wu (1989). Note that the issue of choosing
��?

is

essentially the same as choosing � ? in (2) in our setting.

Clearly a choice of
��?G� � + � is a compromise between AIC and BIC. However, under the average squared

error, in terms of pointwise asymptotics, the criterion is not as good as AIC when the true model is infinite-

dimensional and not as good as BIC when the true model is among the candidates (Shao (1997, Section 3)).

Zhang (1997) in the discussion of Shao (1997) argues that any choice of
�F?
� �

deserves consideration under

a loss that weighs bias and variance differently from the squared error loss. The second part of Proposition 2

justifies a compromising criterion from our minimax point of view.

Proof of Proposition 2: The first part of the result is trivial from Theorem 3. From the proof of Theorem 3, we

have that under model 0, � 4 3 � 	�� ��/ � �*6 � A? B�� �F/ C � � 2	��</ E ) ��� � ? � ,� � 
�� � � and under model 1, � 4 3 � 	�� ��/ � �*6 �A? � B�� � C 2	 ! 	*E ) ��� � ? � ,� � 
�� � � �
�F	 )� � C�!�� ? � � � 2	 ��� ?�E � � Since � � C 2	 ! 	*E has the standard normal

distribution, letting � denote � �F	 and � denote a random variable with the standard normal distribution (recall

the assumptions on (�) and

 ? A � )� ), the risk then becomes

B���� ) � ��� 
�� � � or
��� � � � � � � � )  .4�!��,!	� �
� ���1!�� 6
�

For each choice of � � let � 
 denote the worst � that maximizes the above expression. Consequently, to minimize

the weighted worst-case risk, we need to select � ? to minimize

�
/ B�� ) � � � � � 
�� � � �

A � B�� � � ) � ��� 
�� � � � or
��� � � � � � � � � 
 )  H4�!��1!�� 
 �
� ���1!�� 
 6 � �

Obviously, as � � �8� B�� ) � � � � � 
�� � � - and it is easy to see that as � � �8� B
� � � ) � ��� 
�� � � � or
��� � � � � � � �

� 
 )� .4�!��,!�� 
 �
� � �=!�� 
 6 approaches
�8�

Therefore, as �
A � - � the optimal choice � 
 must approaches

�8�
This completes the proof of Proposition 2.

4 An alternative penalty constant for prediction

In this section, we give a simple alternative penalty constant (or cutoff) derived directly from the purpose of having

a good risk function for estimation/prediction.

20



Recall that model 0 and model 1 have risk
- �? � � )/ 	 ) and

- �? � - � � ��
 �
 ���"� 
 � respectively. Thus model 1 is better

when
	 ),+ - �
 �
 ��� � 
 � � i.e., � 	 �-	 
��
 ��� � 
 � + ���

Since
	

and ( are unknown, the above relationship cannot be directly used for choosing between model 0 and

model 1. Obviously, we can try the plug-in approach of replacing the parameters by their estimates respectively.

Let 2	 be the least squares estimate of
	

and �>) � A?�� ) 
 ?� ��A 4 ��� ! 2� ! 2	���� 6 ) � Then a sensible model selection

rule is to choose model 1 when

� ,� ��	 
 �
 ��� � 
 � + ���
Recognizing that the ratio

,� �	 
 �
 ��� � 
 � is a biased estimator

of
� �	 
 �
 ��� � 
 � � we may consider a modification when

�
is small. Since the numerator and the denominator are

independent, the expectation is
	 	 
 ?� ��A ��� ) B A� � Since a multiple of

� �- � has a chi-square distribution, we can

easily find that B - � � . ?�� )) � � ������ �
� � ��� �� � � With this modification, we come to the criterion that selects model 1 when� 2	 ��	 
 �
 ��� � 
 � � � � ! �� � 4 ?��
	) 6

� 4 ?�� )) 6 �
We will denote this new selection rule 	�� � Note that the criterion is even more aggressive in choosing model 1

than AIC (as
� � �

, the cutoff value
?�� )) � � ������ �

� � ��� �� � approaches 1).

5 Empirical results for comparing the model selection methods

In this section, we give simulations to compare the model selection methods. The theoretical risks of the model

selection methods are computed based on Monte Carlo simulations with 3000 replications.

5.1 Comparing the procedures in terms of sample size

Here our interest is to know that, at a given value of the slope parameter
	

, how AIC, BIC and the other methods

compare to each other at different sample sizes. Note that the asymptotic results in Section 3 have already told us

that when
�

is really large, BIC is better than AIC (and the like) when
	 � - ; and when

	
is nonzero, the risks of

AIC and BIC are asymptotically equivalent.

Note that when
� � 


, BIC begins to have a cutoff � ? larger than AIC for model 1. In our simulation below,

we consider sample sizes beginning from 10. We choose ( � - � ! .
There are three scenarios, represented by three different values of

	
:
	 � - � - � ��� - � ! . The plots of the risk

functions relative to AIC are given in Figures 4-6. When
	.� - , BIC is better than AIC at all the sample sizes;

when
	H� - � � , in the beginning, BIC is better, but AIC becomes better with more observations; when

	.� - � ! ,
AIC is better right from the beginning. The second case (

	8� - � � ) indicates that if the sample size is not large

enough to reasonably estimate
	

, it is better to pretend that it is zero. Note that even though in theory the risk

ratio of AIC and BIC approaches 1 for the latter two cases, it has not quite happened when
�

is 150 for both cases.
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This again suggests that pointwise asymptotic optimality of BIC may not say much when the sample size is not

really large.

Regarding the new selection rule given in Section 4, it performs very well for relatively large
	

but poorly

when
	

is small.

5.2 A simulation on robustness

It is rarely (or perhaps never) the case that the underlying error distribution is perfectly normal. Here we investigate

the performance of the previous model selection methods when the true error distribution is double-exponential

but mistaken to be normal. We choose only two sample sizes:
� � �"!

and
� � � -�- .

The true error distribution is double exponential with probability density function �F4 I 6 � �
� ) � � � . Figure 7

gives the risks of 	 
 � 	�� � 	�
 , and 	 � (relative to the better one of model 0 and model 1) in terms of
	

at the

sample sizes
� ���"!

and
� ��� -�- � The results are very much similar as before.

6 What to do when AIC and BIC disagree?

For our simple setting, from (2), the disagreement between AIC and BIC indicates that the test statistic value is

neither large nor small (in absolute value). It is a case where the pointwise asymptotic behavior is questionable.

The region of dispute for multiple model comparison becomes much more complicated. In any case, when the

model selection criteria do disagree, the previous asymptotic results provide little hint on what to do. How should

we address the issue?

Prior knowledge (hopefully not too subjective), if available, can be useful. For example, if historically
	

tends

to be small (or there is a good reason to believe so based on a subject matter theory) one should use BIC, and if no

such information is available, it is better to use AIC for protection of the worst-case performance. Note that when

there are a number of explanatory variables, perhaps it is more often than not that AIC and BIC select different

models.

6.1 Combining the models

When the model selection criteria do disagree on the data, as far as estimation/prediction is concerned, a solution

to avoiding the pain of selecting the selection rules is a compromise: averaging the estimators from the models.

Fortunately with an appropriate weighting of the models, the estimation accuracy can be substantially improved

for such a situation.

Much has been said already on general model averaging or model combining, including Bayesian approaches

(see Hoeting et al. (1999) for a review of the very rich works of Bayesian methods), frequentist approaches based

on bootstrap or weighting via model selection criterion values (Breiman (1996) and Burnham et al. (1997), and a

method called ARM (adaptive regression by mixing) (Yang (2001, 2003a), Yuan and Yang (2003a)). For example,
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Yuan and Yang (2003) showed that when model selection instability is high, ARM does a better job than the better

one of AIC and BIC. In a simple setting, Yang (2003) proved that model selection, no matter how sophisticated it

is, is worse than a combined estimator in an appropriate sense. Yang (2004) discusses two different directions of

combining models (or general estimation procedures) with theoretical characterizations of their gains and prices

they have to pay.

In general, model selection and model combining are both useful. Yuan and Yang (2003) showed that when

model selection instability is high, model combining by ARM tends to do better or much better. But when model

selection has little instability, model combining is not necessary and can even perform very poorly.

Below we give the ARM method (Yang (2003a)) for our specific setting.

� Step 1. Split the data into two parts � �
A�� � 4 ����� ��� 6 ?"0 )� ��A and � � ) � � 4 ��� � ��� 6 ?� ��?"0 ) @�A .

� Step 2. Estimate the parameters by the least squares method based on � �
A��

for each model. Let 2(�)/ and 2(F)A
be the usual unbiased estimators of (�) from model 0 and model 1 respectively (again based only on � �

A��
).

� Step 3. For each of the fitted models, assess the accuracies of the models using the remaining half of the

data � � ) � . Let
� /

and
�GA

be the prediction sum of squares from model 0 and model 1 respectively.

� Step 4. Compute the weight

��A � 4�2( A�6 �
?"0 ) � � � � !G2( � )A �GA�*�� �

� �F/ � A 4 2( � 6 �
?"0 ) � � � � !G2( � )� � � *�� �

�
Let
� / � � ! ��A .

� Step 5. The combined estimate of 354 ��/;6 is

�3 ? 4 �
67��� / 23 / � ? 4 �</;6*����A 23 A � ? 4 �</;6 �
We consider an additional variant of ARM: it combines model 0 and model 1 as above only when AIC and

BIC disagree with each other.

6.2 Simulation and a data example

6.2.1 A simulation

We now add the two combining methods in the previous subsection in the competition described in the beginning

of Section 2. The settings are kept the same. Figures 8 and 9 give the relative performance of the procedures

compared to the better of modol 0 and model 1 at sample size 25 and 100 respectively.

From the graphs, we do see the performance improvement by the combining procedures when beta is small

(relative to the sample size). The combining procedure 1 always combines the two models and performs really

well at the
	

values where the model selection methods differ most, yet it pays a heavy price when beta is relatively
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large (when
	

is really large, it is fine as seen in Figure 9). When the models are combined less aggressively by

the second combining method (i.e., combining when AIC and BIC disagree), the problem of combining method

1 is substantially reduced. Overall, in our judgement, the combining method 2 is the winner.

6.2.2 A data example

We demonstrate how the sample size
�

influences the relative performance of the model selection and model

combining methods. The data set of body fat was used, which has 252 observations and 19 variables and it was

obtained from

http://www.amstat.org/publications/jse/datasets/fat.txt.

Several problematic cases were removed following the comments by Johnson (1996). The new sample size is

247.

Unlike Penrose, Nelson and Fisher (1985) and Johnson (1996), where the purpose of the analysis is to find

predictive equations for the determination of body fat, our interest here is different and we use one predictor at a

time.

The response variable is the percent body fat using Brozek’s equation (the second variable in the data). The

two individually used predictors are age and fat free weight (original variable number 5 and 9). The correlation

between the response and age is 0.293, and the correlation between the response and fat free weight is -0.036.

Roughly speaking, they correspond to two situations: the slope parameter is not small and the slop parameter is

very small or zero.

Figures 10 and 11 give the average prediction squared error of the model selection and model combining

methods at sample sizes from 10 to 200. Note that at each sample size, we randomly split the whole data with

the first part of the size of the sample size and the second part used to compute the average prediction squared

error. This is replicated 200 times. The performances of the methods given in the figures are all relative to the

performance of AIC.

The results are very interesting and confirm our earlier understanding. For the first case with age as the

predictor, from the whole data, we know that the slope parameter is nonzero and not very small (relatively speak-

ing). When the sample size is around 10, BIC performs better, but soon becomes worse than AIC. It continues

to be worsened and then comes back and eventually performs about the same compared to AIC. Note that the

pointwise-risk adaptivity of BIC assures that in the situation above, BIC will eventually perform as well as AIC.

For the second case with fat free weight as the predictor, the slope parameter is very small (relative to the sample

sizes) and we expect BIC to be better and that is indeed the case. As the sample size increases, their difference

become smaller in the ratio. From Figure 11, at the end, AIC and BIC performs quite similarly. From the earlier

theory, if the slope parameter is really zero, then the gap between AIC and BIC will never be closed. On the other

hand, if we had the sample size of 10000 (say) instead of 247, the observed correlation of -0.036 is no longer
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negligible and we would see that AIC and BIC cross position with AIC being better as the sample size increases

and then eventually the performance ratio goes to 1. It is worth pointing out that comparing the two figures, we

see that for a much wider range in case 1, BIC is significantly worse than AIC.

For the test approach, it is between AIC and BIC, performing better than BIC in case 1 but worse for case 2.

Overall, it seems that the testing approach is better than BIC.

The new selection rule goes opposite to the testing approach and BIC.

Finally, but not least, the two combining procedures work both very well, except for the first combining

procedure with the large sample sizes, where the model selection procedures have little difficulty finding the

better model. The approach of combining the models when AIC and BIC disagree is perhaps the overall winner

among the competitors.

In our view, when there is little prior experience on the slope parameter, combining the models is a better

approach for prediction when model selection methods give different answers.

7 Some thoughts on the hypothesis testing approach

As mentioned already, for our simple problem, the testing approach is perhaps the “standard” way to proceed

following the statistics textbooks. This reflects the traditionally important role of hypothesis testing in statistics.

Even though information criteria have gained substantial popularity for model comparison, for the simple linear

regression problem with only two models, it might be thought as an overkill. Thus it is probably fair to say that

even if prediction is the goal, most people would naturally take the testing approach.

The simulation at
�����"!

quite clearly indicates that the testing approach is not quite in line with the goal of

prediction. If we think about it, it is hardly surprising. The traditional Neyman-Pearson approach of hypothesis

testing guards against probability of type I error, which is a rational strategy as far as evidence against
�9/

is the

concern. Quite naturally, one may hope that since the “true” model (if not too complicated) usually outperforms a

wrong model, if we can do a good job identifying the true model, our goal of good prediction can be automatically

achieved.

This is indeed a philosophy traditionally taken by our profession. For example, Cox (1958) stated that “No

consideration of losses is usually involved directly in the inference”. Behind this is the optimistic view that we can

discover the true model from the data at hand which can then be used to answer different questions with possibly

different loss functions. When the model building process is highly uncertain, however, keeping a loss function

in mind during the modeling stage can be a better practice. For our simple prediction problem, if we follow the

hypothesis testing approach to identify the true model first, it is unclear how the choice of test size affects our

ultimate goal of accurate prediction. See Hand and Vinciotti (2003) for some references and related discussions

on this issue.

From the above discussion, we feel strongly that the notion “test a hypothesis first and then make a prediction”
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should not be the one students get implicitly or explicitly from our future statistics textbooks. A distinction should

be made and emphasized between the goals of testing a scientific hypothesis and prediction. Of course, we are

not against hypothesis testing at all, but we are concerned about its use for estimation/prediction.

8 Summary and concluding remarks

Many theoretical results have been obtained on model selection. In particular, there has been a serious debate on

the issue of AIC versus BIC. Based on the literature, pointwise asymptotic theorems support the popular notion

“BIC is good if the true model is finite-dimensional and AIC is good if the true model is infinite-dimensional”.

However, in this work, with both theoretical examinations and empirical demonstrations, it is seen that the popular

notion is inaccurate and it overly simplifies the comparison between the criteria. Even when the true model is

among the list of candidate models being considered, even though BIC performs asymptotically as well as if one

knew the true model in a poinwise fashion (with the true regression function fixed and the sample size tends

to infinity), the worst case performance of BIC (over the regression functions) gets increasingly worse relative

to AIC. In general, for a problem where the model selection methods strongly disagree with each other, it is

probably more likely than not that the pointwise asymptotic behavior does not reflect the reality (in our opinion,

the pointwise asymptotic optimality properties are overly interpreted in the current statistical literature). It is thus

not true that when one knows that he/she is dealing with a parametric situation he/she needs to perfer BIC to AIC.

In the setting of simple linear regression versus the null model with only the location parameter, the simulations

suggest that unless one has has a strong reason to believe that the slope parameter is most likely to be zero or

small, BIC performs worse than AIC in an overall sense.

It is clear that no model selection rule can dominate all others. Thus the comparison of different criteria is

inherently subjective. Prior experience/knowledge should definitely be used if possible when choosing a criterion.

The fact that different penalties in model selection criteria result in different theoretical properties motivated

adaptive model selection, where the penalty is adaptively obtained based on the data (instead of being deterministic

as in AIC and BIC). Results in this direction show that the adaptive penalty indeed can suitably switch between

the AIC and BIC types, with very encouraging empirical support. However, we showed that this cannot go too

far: the pointwise optimality property of BIC and the minimax-rate optimality of AIC cannot be integrated by any

model selection rule.

When model selection rules give very different answers, model combining is a better alternative approach for

estimation/prediction. With a proper weighting, the large variability of the estimator from model selection can be

substantially reduced. Empirical results in this work show that combining the models when AIC and BIC disagree

gives a much improved overall performance.

We chose a simple setting in this work because the simple structure allows one to obtain a clear grasp of the

problem theoretically and empirically and the understandings are also useful for more complicated cases. For
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a general situation with multiple models, the issue of under-fitting versus over-fitting is similar, but the regions

where one criterion perform better than another become much more complicated (one certainly cannot plot the

risk functions easily). It seems clear that the main points made in this work still apply as far as at least two nested

models are compared. For the simple regression problem, one perhaps does not lose much by always having the

slope parameter. But for multiple regression, of course, the use of the full model can be much worse compared to

the use of a good model selection method.

In real applications, it is often desirable to try different kinds of models. When a large number of models are

in competition, however, model selection bias can be severe. For results dealing with this issue, see Barron and

Cover (1991), Yang and Barron (1998), Yang (1999a), Barron, Birgé and Massart (1999), and Birgé and Massart

(2001).
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[4] Birgé, L. and Massart, P. (2001) Gaussian model selection. J. Eur. Math. Soc., 3, 203-268.

[5] Brown, L.D., Low, M.G. and Zhao, L.H. (1997) Superefficiency in nonparametric function estimation. Ann.

Statistics, 25, 2607-2625.

[6] Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123-140.

[7] Burnham, K.P. and Anderson, D.R. (2002) Model Selection and Multimodel Inference: A practical

Information-Theoretic Approach, Springer-Verlag Inc (Berlin; New York).

27



[8] Devroye, L., Gy �orfi, L. and Lugosi, G. (1996) A probabilistic theory of pattern recognition. Springer-Verlag

Inc (Berlin; New York)

[9] Foster, D.P. and George, E.I. (1994) The risk inflation criterion for multiple regression. Ann. Statistics, 22,

1947-1975.

[10] George, E.I. and Foster, D.P. (2000) Calibration and empirical Bayes variable selection. Biometrika, 87,

731-747.

[11] Hansen, M. and Yu, B. (1999) Bridging AIC and BIC: an MDL model selection criterion. In Proceedings of

IEEE Information Theory Workshop on Detection, Estimation, Classification and Imaging, p. 63. Santa Fe,

NM.

[12] Hansen, M. and Yu, B. (2001) Model selection and the principle of minimum description length. Journal of

the American Statistical Association, 96, 746-774.

[13] Hoeting, J. A., Madigan, D., Raftery, A. E. and Volinsky, C. T. (1999). Bayesian model averaging: A tutorial.

Statistical Science (with discussions) 14, 382–417.

[14] Johnson, R.W. (1996) Fitting percentage of body fat to simple body measurements. Journal of Statistics

Education, 4, available at

http://www.amstat.org/publications/jse/v4n1/datasets.johnson.html.

[15] Li, K.C. (1987) Asymptotic optimality for
� �

,
���

, cross-validation and generalized cross-validation: Dis-

crete index set. Ann. Statistics, 15, 958-975.

[16] Nishii, R. (1984) Asymptotic properties of criteria for selection of variables in multiple regression. Annals

of Statistics, 12, 758-765.

[17] Penrose, K., Nelson, A., and Fisher, A. (1985) Generalized Body Composition Prediction Equation for Men

Using Simple Measurement Techniques (abstract). Medicine and Science in Sports and Exercise, 17(2), 189.

[18] Polyak, B.T. and Tsybakov, A.B. (1991) Asymptotic optimality of the
���

-test for the orthogonal series

estimation of regression. Theory of Probability and its Applications (Transl of Teorija Verojatnostei i ee

Primenenija), 35, 293-306.

[19] Rao, C.R. and Wu, Y. (1989) A strongly consistent procedure for model selection in a regression problem.

Biometrika, 76, 369-374.

[20] Rao, J.S. and Tibshirani, R. (1997) Comment on “An asymptotic theory for linear model selection”. Statistica

Sinica, 7, 249-251.

28



[21] Rissanen, J. (1978) Modeling by shortest data description. Automatica, 14, 465-471.

[22] Rissanen, J. (1986) Stochastic complexity and modeling. Annals of Statistics, 14, 1080-1100.

[23] Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statistics 6, 461-464.

[24] Shao, J. (1997) An asymptotic theory for linear model selection (with discussion). Statistica Sinica, 7, 221-

242.

[25] Shibata, R. (1983) Asymptotic mean efficiency of a selection of regression variables. Ann. Inst. Statisti.

Math. 35, 415-423.

[26] Speed, T.P. and Yu, B. (1993) Model selection and prediction: Normal regression. Annals of the Institute of

Statistical Mathematics, 45, 35-54.

[27] Yang, Y. (1999a) Model selection for nonparametric regression, Statistica Sinica, 9, 475-499.

[28] Yang, Y. (1999b) Minimax Nonparametric Classification—Part I: Rates of Convergence. IEEE Transaction

on Information Theory, 45, 2271-2284.

[29] Yang, Y. (2001) Adaptive regression by mixing. Journal of American Statistical Association, 96, 574-588.

[30] Yang, Y. (2003a) Regression with multiple candidate models: selecting or mixing? Statistica Sinica, 13,

783-809.

[31] Yang, Y. (2003b) Can The Strengths of AIC and BIC Be Shared? Preprint 2003-10, Department of Statistics,

Iowa State University.

[32] Yang, Y. (2004) Aggregating regression procedures for a better performance, to appear at Bernoulli.

[33] Yang, Y. and Barron, A.R. (1998) An Asymptotic Property of Model Selection Criteria. IEEE Transaction

on Information Theory, 44, 95-116.

[34] Yuan Z. and Yang, Y. (2003). Combining Linear Regression Models: When and How? submitted.

[35] Zhang, P. (1997) Comment on “An asymptotic theory for linear model selection”. Statistica Sinica, 7, 254-

258.

29



0.0 0.2 0.4 0.6 0.8 1.0

0.
01

5
0.

02
0

0.
02

5

x

y

Risk Functions at n = 25

beta

Ri
sk

Test
BIC
AIC

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

3
0.

00
4

0.
00

5
0.

00
6

0.
00

7

x

y

Risk Functions at n = 100

beta

Ri
sk

Test
BIC
AIC

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

15
0.

00
20

0.
00

25
0.

00
30

0.
00

35
0.

00
40

x

y

Risk Functions at n = 200

beta

Ri
sk

Test
BIC
AIC

0.0 0.2 0.4 0.6 0.8 1.0

3e
−0

4
4e

−0
4

5e
−0

4
6e

−0
4

7e
−0

4
8e

−0
4

9e
−0

4

x

y

Risk Functions at n = 1000

beta

Ri
sk

Test
BIC
AIC

Figure 1: Comparing the Model Selection Methods in Risk at 4 Sample Sizes
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Figure 10: Comparing the Selection/Combining Methods at Different Sample Sizes: Case 1
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Figure 11: Comparing the Selection/Combining Methods at Different Sample Sizes: Case 2
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