, L. .

NERGY DECAY FOR RELAXED DIRICHLET PROBLEMS

By
GIANNI DAL MASO

WIENER CRITERIA AND E

AND
UMBERTO Mosco

IMA Preprint Series # 197

Nox)ember 1985

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

514 Vincent Hall
206 Church Street S.E.
Minneapolls, Minnesota 55455



- i

voy4enb] jeey
4o6u|| |89S [@4euen @ JO0) dn-mO(|g 4u)Od @|6U|S ‘JB[SS[OR *4 pEB JO|[0M{ *) 611
odA] ue}04S 4O W9|QOUd Bu|4se) SPonu|4uo) AJguojinioal uy ‘seal| oy °f Bl1|
SWe|QoJd @(3e45q0 O14d{113 4O} SO4BW[4S] [©]|4UGIOd OS|AU|Od ‘COBTH OfseqEg (||
sdnoag o seoeds BujAy|5sa|y oyy uo dOYSHIOR Ui JO) ISRV 51|
e|pew pue
S|Q]J4048W JO ||NPOW BA1499}}3 Pus UO| 4Rz jusbowoy U0 dOYSYJOR 8yi JO} SIIB{SeY G|
SORY) GA[4|400w0) ‘e {Gd SASYS PUR SUPue] pucuiny v ||
JOSUG| JEPIO-PUCIeS ©
4O Spug|ieAu| (Rd]DUlLd B4} JO S@A|IRALIeQ Ou4 UO ‘eboy -y pwe wosS| B Q@ CII
suc|{enb3 Jeeu|(qNS VD SYJLWIY ‘S|TOUY W|E®H Z||
S4|NSeY GWOS Pue |BPOW @Yl (SUO|4| [0 @4jul4 pue
S48AR|d 4O WNNU|LUOD @ U4]A SWRY B JO BSJO) YL ‘SJIPOOR °) PUE ONOUR)
buj4oeJijuoy (ew]idQ JopuUn SL|NQ JO [OPOW WRjuq]||nb] uy ‘uwey
4ujod Dujuany @ wody uol4edunj|g jdoy ‘yDeqUeiRe]
Bujoyjuon 400)Jedm)
‘IHBN0RYS 3 puB ‘soumed °Q ‘PeUQY
suo|4enb3
9[qe4uess}}|Q 4ue(eA|nb] Bujsn swe|qodd xewjujW ;O SUO|4N|OS ‘veyd
(11) sie4sAay jo Bujuuiay ‘Jsuwejiepuiy °Q 90!
SUC|4@1JeA JO SN(ND|BD Y4 U| SWEIOSY| SOUBLS|XT ‘|YOWR|YPS *y p¥e OjoOSEN *3 cOI
SO |WOUOD] GO0 :SE|WOU0DJ 8A|4[40dwo) A[409440d UQ ‘Sjievwe) °y pwe swomwl °Q pO|
2048 |9SQ UBOYOOU-OGN @ JO SUC||RJGIA Opni||duy ofjuj4 ‘Ajieeg pIe||IN COI
82uepuodselJso) bujalesedd AdeAa]id ‘juBOy YSusey 70|

‘Wl
0Ll
‘¥ 601

U4im @1uq]|nb] [e4ueD) [ow]idO °@ 801

‘¥ L0l

JOSUS)
@ JO UOIJOUNg PEN|RA-JOSUB| @ JO @A|{RA|JGQ Oy]l ‘Jeboy °y pwe wosS| B °Q 01
AJoey) eSJop {ue]JeA|nbl
Oy} R]A WO(QOLg ApOoE-N Ouy Jo suo|{eunbyjuc) [edjuen ..ﬂ.oom suswo( 4 001
1119945

2145813 pue A4[D1459|3 Je6U||UON U] SD|dOL BWOS UC BUNIe v ‘Aiiseg PRI[IN 66
suo4enbl |@|4ueue}}|q |®]440d PUG SD|SAY4 uNNU|LUC)
uj suojisend A4j|qesS pue wnpJug|inb3 uo doysAJIOM Su4 UO} SLOBIYSTY 86
wWNpiqQ)||NbI jeruen 4O} SisAjeuy Apjajijsues ‘Aeusnbey wuwy (¢
sexopesed Auoey]l wnjiq|nbl jeduen ewos ug ‘Aevunbey suwy 9¢
s(e4sA0 4o Gujuuja) ‘wesp}a3 P 66
S80UeJe }8.d
[Su|pJeD pue SB14]|14n ulesuebiop-uuewney uop ‘AXSiu|PIYD) B[O 6
se|pung eAj4abeN pue sies (@2]4]10 ‘sewoN *TI°f ¢6

SeWODINQ ©{qR4S PuR J|R4 :seweg 2607 ‘GweZ ¥ wef||]A ‘sJepooq T4|oN Cuiky 5
SUO|{@20( |y LR |SUJ|aM JO UO|jRjueue|du] Yy uf Aplfiqeqsu| ‘wepaf *S°f |6

Asoey) [Puoueg y :bupjunodsiq y4|m saweg pejeedey Ajejjujjul ‘mesey diilQ 06

uoj|4ouny yjoows DJeue) @ Sujjucwe|dm| ‘SeR]{[IN ¥ veays 63
$5800.14 ofessey 9|qesS A{[9d07 8 JO e0UBLS|XT

Sy4 JO} SUO|L|PUOD 4ue|D|}4NS pul ALGSSGOGN ‘SER{[|[A ¥ YeasyS gg

SORU) JO {deduo) |PueuSYy BY4 LD SRJEWRY [GUOI4OUN] ‘escans WRI([|IA *J /8
suo|4ouny Adouju3 SnONuU|{ucD-|wes

80ue4s|x3 By4 pue ‘se|Jobeie] peso|) ‘sejuobeie) 04045 ‘eusans) weI{fIA *d 98
sdey 30 S8|DJ4|) {uR|JRAU| 3O UO|4R4NAWOD

1ed]Jeuny eyy ‘uaNj(ed °S PYR ‘iplEYOS °G°) ‘SIN ¥ ‘S|P|weA®)y °9°} ¢g
Adiarsippy

+0OUL 1M ALLI14n PO4Oedx] pue A4|[(QRQOLY A14O0[qng  ‘Je|pemyds PlARg g

Jueweuincy @ wody Hu|sOOy) ‘wijeoy Sasey (g

AJouming y 1405 ©4|U|J @ JOAO SUO|4OURY 9O |OY) ‘Ufinoy eAsey g

sejbojouysey
XOAUOO-UON P84oedx] o eouebuew3 ouy4 pue gpy u| Gujbebuz ‘jewwey Jewey |g
A4121pOied pue sseupepunog :i| ‘Asoeyy Auoponpuco jwes

U] WeysSAS JeeU|[UON @ JO SUO|4N|CS Juepuedep-om)) ‘wewp (o5 sSWOYl (g
se0edg Ae{0Qog pue

Ul wniaq)|Inb3 @A)4[4eduo] @ JO SOUBLS|XT ‘[eeN g ‘AYS(u] R 9 6L
Asoceyy

Que9 pue SOJWOUCD] U| S|sA(euy ul|sSedag U0 dOYSYJOM SYi JO) SIELLSTY 8L

Ol41L  (S)Jouiny /
(*4sonbes uo 9|qE||8AC 0@ SiujJudesd ;O Lequnu pPaLlw|T)

7

ALIALLIPPY 4POULIN UO| 4R iLesRIdey (eabeiul ‘Je|powOS D AR
UO|4|PUOD 4S04 vo|4ezyue|nbey

IUO|SJOAU| (@) Jemny UO peseyg wyl|aob(y uvoimen eayidepy uy ‘emouep °p
wny4qy]nb3

21wouod3 A4||19@4S OU4 Of I{SUJJiU| SRO|4 UO|{RuIOsu| ‘wepUOP °Sef
(209 @ yoeey o4 ew || pe4dedxy eyy Bujziejuln

s juewebeuen 0] {0}4J0d S| [-SPONUILUOD ‘44IepPRS *A ‘WiseN °Q

uo|suaw|(Q |@4d0J4 O Bujueen |EdjwRuAg v ‘wen][ed sAsyS
suojienby |e)iuele}}iq

AJQUPJUQ JROU|T }O SUO|4N|OS JO S|eD0J4d|d6y By ‘RARGIS A ‘SILmNW °A
SOOUJ6)01d POIOPIC +NOULIM

S8J|44@7 yowueg U| @14q1||ND3 ‘ewEZ Y WR||||A ‘S||ouve; SRIOW|N

UO|{BiuBwe|du| YSeN JOj} SUO|}|PuUO) t._o.u:m:m ‘swR|f|IA SA%yS
ubseq wsjueyoen

JO S4o0dSy Om| :UO|je4Ucwe|de| YSON PUR UO|4BZ||Gey ‘Swe||[|A SAS4S
S$UO[D] 000 POPUNOE Y4|A SWeSAS Jeeu|T

|Quo|suGu |p-Oa| Joj 4ueuodx3 4onbojj eyl ‘vosuvor ¥ ‘iewde(9 Y
uouemoUSYd

|9jwouh{og @ A[4D144S S| UO|S|A|PANS JROU|T ‘YiEeH °J°Q ‘veEp (O °N°¥

WJOM Si| ©|NPOYDS UED SUOSSEOO.d 4O WJOALON @ AOH ‘Jeiiey Lejweys
SwWe4sAS |e@djweudg seeu |

40 sefjiedoud 21pobu3 ‘(108 -y o600y ‘Jem{vd YiPuUuey ‘vOSuYOr ||eTIRY

S8]J00yl |8Q0|9 ‘uoj4defoid uC|4Rz]Jeeu| Oyl ‘e PRy e[| [IA

SUO|4NQ|44S]Q 8d1dd wn1iq)||nbl ‘qon [eejey

UO|4RmI0,u| OjJjoumAsy yiim Buippig SA141400u0D UO BON v ‘o |ewjEy
suo| 4enb3l Jo4rJedg

Adguo|494S 20} AdOLOWOH PUe SPOYLSN UOLMBN 94fw|Xx0uddy ‘emoJep ydesof

OA]400dS 194 |QUO|,LPWIO}U| UR WOJOBY] O5SR0O) 3y) ‘qoy |(ewjey
s@|dA) ssausng

pue ‘jueuysnlpy Apj4usng “jueysnipy 80)dg U0 dOUSHJIOM BYL JO) SO SqY

uvoj4enby s,Bujjing 10 sucyi4ni|os ;0 sssupepuncyg ‘Sulq wesbuoy
suo|4enb3 Jteyxeg-buey ayy

pue sojueydep [@314S[4R4S Ul A4l[|qeabesul eya|dwoy ‘hdeyy Bien
S| {@4SO}SR|J J@BU|] U] SSeuanbjunucN pue uoj4|puo)

Bujjuewe|dwo) oYy ;0 B4N| |24 UQ ‘Jodeds 44005 ‘uvosde|s Asuey
Awouod3

ebueydxg pez|jeujusceq ‘O|wRUAg @ ;0 S|SA[Ruy ‘[440qO0R4s OwN3l
aoeds O |oqJedAy u| seoejuns

-JQdAH 3UNYEAIND URBW 4URLSLOY 40 Adjeumis ‘Biequesoy N ‘iilAeT 9
sn{nuuy pue dS|{g Oy} u]

sy4uliAqe 3o Ajj(|qei4ueasyyg pue ABo(odo) ‘Guequesoy °H ‘iilAeT °9

8Joydg uuRwe(y a9y} uo SO|weuikg D|4Ajeuy xe|duo) ‘pRYNeg |Rvey
UO|LRWICjU| |R)4u0ue}4|Q JOpun

UO|iRiuBwe|du| PUR UC|4R|BGAY ‘JO(P{eEYDS PlARQ ‘04 ene|sOY sespEy
se4||enbeu)

J8YDS| -PJIRWepRH 8y4 JO Suojsueyx] eed) Sujuueds ‘yiesseg A ‘wosuyor )

UolJed |4 Agjdeq|1de-AL|{SOOSIA OU4 PLR SYD|IpelJi-xRT] ‘pome|S N

Aprutjul 4@ suoli|puop {noupja ¥ uj Suo|ienby Jeeu]|juwes ‘S|zeug °H
SuO|48Nd3 djjogqeueg pue Y4di[ (3 JO) SUO|4N|OS |@iuswepun 4

pue suoj4ouny s uees 4o A4jjjqeibieiul- 7 sy ‘WPOOYS *qQ ‘seqey *3
d 1S9AJRY

4O UC|4RUNQ UL JO SUC|LINYIN| 4 WOPURY ‘VE4LIR W ‘O¥00D *1°)Y ‘ossede) )

SIUB|SURU] JO UO|4RJing OUl ‘vex|jeqd weydeys

SOOR NG |QW[U|W ;O SUO|4PWIC;8(Q U0 ShJRWeY SwOS ‘Biye|qRo) 3 ‘Coequesoy °N

SOUNYX|W U] SLU[VI4SUOD PUR HJOM UQ ‘SER[[IA O'A ‘JOPIedS-mIIeg V)Y
SUJGWO( X@AUOCD UO SWO4SA§ UO|SN,}|Q-UO!4oRey ewos O @1Jqf(|nb3

©1qe4s O Ayjeuebowoy (14205 oYy ‘ojomiys]y oRTwy ‘Jeboequien suey
uo| jRZ|W| 460

QA O(NYy $,0pJOF 4O UC|4RT]J04O04RUD ¥ ‘WOSUYOP °y SB| WY

seordg aouenbes Oj.jeumis wo ABojodop P Buodss Sy ‘elPmy wei|| (A

8411l (S)oyny

SjulIdeld YH| +uecey

LL

9L
Sé

148
€L

L

¥4
oL

69
89

LS
99

<9
L2
£9
z9

19
09

6§
8s

LS
9s
114
149

€S
44

34
Qs
14
:14
Ly
9t
Sy
144
€y
r

8 4
or

’



WIENER CRITERIA AND ENERGY DECAY FOR RELAXED DIRICHLET PROBLEMS

Gianni Dal Maso and Umberto Mosco

INTRODUCTION

In its simplest form, a relaxed Dirichlet problem in an open region @ of

Rn, n » 2, can be formally written as
(1) -A + pu =0 in @

where A 1is the Laplace operator and u 1is an arbitrary non-negative Borel
measure in R". The measure u must vanish on sets of (harmonic) capacity zero
in Rn, but may take the value +e~ on some large subset of R".

Special cases of (1) are the Dirichlet problems of the type

(2) -M =0 in @-FE, u=0 on E

as well as the stationary Schrodinger equations

(3) -A 4+ q(x)u =0 in @

for a non-negative potential q(x).

Problem (2) corresponds to the measure
(4) S

that takes the value +o on every (Borel) subset of R" intersecting the given
E in a set of positive capacity and the value 0 otherwise, while equation (3)

occurs when pu has a (Borel) density q(x) with respect to the Lebesgue

measurecﬁﬁ] in R", i.e.

(5) b= () -



More general problems like (1) do arise naturally as asymptotic equations

satisfied by the 1imit u of sequences of "perturbed" solutions of

u
h
Dirichlet problems (2), where the set E = Eh may vary, or of Schrodinger
equations (3) with a varying potential qh(x).

Equations such as (1) were called in [2] "relaxed Dirichlet problems" to

stress the fact that homogeneous Dirichlet conditions, such as = 0 on the

Uh
set Eh’ may take in the 1imit as h + « the relaxed form of the "penalization"
term pu appearing in (1).

We refer to [2] for some examples of asymptotic behavior and for references
to the literature on this kind of problems.

As shown in [2], the class 770 of all measures allowed in (1) turns out to
be a natural variational closure of the class of "Dirichlet" measures (4), as

well as of the class of "Schrodinger" measures (5). A convergence of functional

variational type, called y-convergence, can in fact be defined in YVO’ which

fits all the relevant features of the perturbations we are interested in and is
such, at the same time, to make the set 7?0 (sequentially) compact and the
class of all measures (4), as that of all measures (5), dense in Zqo-

By relying on these density results, that permit us, in particular, to
approximate a given equation (1) by a sequence of Dirichlet problems of the form
(2), a pointwise study was carried out in [2] of the iocal weak solutions o7 (i)

and stable estimates, with respect to y-convergence, were obtained at an

arbitrary given point of the domain.

We should point out in this regard that since perturbed solutions can only
be expected to converge in a weak topology, allowing for wild oscillations of
the uy in their domain as h + +», it is not at all obvious "a priori" that

significant stable pointwise properties should indeed exist.



The main goal of the present paper is to develop the pointwise analysis of
[2] for a more general class of equations.

These are of the form

(6) Lu + pu = v in @,
where
)
(7) Lu = - D (a,.(x)D )
i,d=1 % X

is any uniformly elliptic operator with bounded (Lebesgue) measurable coef-
ficients in Rn, v is some given (signed) Radon measure in R" and u is an

arbitrary given Borel measure of the class 7”0.

We will consider an arbitrary local weak solution u of (1) in the space

1

H]oc

(o) N L%oc(n,u) of functions of finite local u-energy

[ Ibulfdx + [ u'de, a'cCa,
Q' Q'

and we will study u at an arbitrary point Xo of Q.

As in [2], our results will be expressed in terms of the Wiener modulus of

p at the given Xge This is a function
w(r,R) = mu(xo;r,R)

of 0 < r <R, whose definition relies on an appropriate notion of wu-capacity
of a set of R" (see Section 5).

We will first establish a variational Wiener Criterion for equations (6),

that extends the classical Wiener's criterion of potential theory [13], as well

as its generalization to operators of the form (7) given by Littman-Stampacchia-

Weinberger in [8].



Such a criterion characterizes those points X0 of R" having the pro-

perty that every local weak solution u of (6) in a neighborhood of Xo is

" at which the Wiener

continuous and vanishes at Xqgs s those points X0 of R

modulus of u vanishes as r » 0+ for some fixed R > 0 (see Theorem 5.5).

The former are called in [2] regular Dirichlet points of u, the latter Wiener
points of .

We will also show that the modulus of continuity of u at any Wiener point
x0 of u can be estimated using only the L2 norm of u, the norm of v in
the class Kn of Kato [6] and Aizenman-Simon [1] and the Wiener modulus of
at Xq* Moreover, the estimate is uniform with respect to all operators L
sharing the same ellipticity and boundedness constants. This extends classical

estimates for the boundary regularity of Dirichlet problems, due to Maz'ja [9].

Similar estimates are also given for the decay of the u-energy

E (r) = [ |bu|%dx + é u? dy
H B

r r

+
on balls Br = Br(XO) as r >0,

A1l these estimates are derived from a structural estimate of the ratio

V(r)/V(R)

on two concentric balls, 0 < r <R, of the quantity

2-n
|

2 - 2

V(r) = sup u? + é |Dul™|x - xOI2 Ndx + [ u”|x - Xg du

B B

r r r

when n > 3, or
2 2 - 2R 2 2R
V(r) = sup u” + Dul“lo )dx + u 1o )du

(r) Br; ér IDu Vo9 ( 7= % ér 9o X

when n = 2.

This estimate has the form



(8) V(r) < ko(r,R)BV(R) + kuvué ®

n R)

for every 0 <r <R, B, = BR(XO) c 9, where w = (xo;r,R) is the Wiener

R u
modulus of p at Xqs the norm of v 1is taken in the Kato space (see Section
4) and k > 0 and B8 > 0 are suitable constants that depend only on the

dimension n of the space and on the ellipticity and boundedness constants of

L (see Theorem 6.2).
Let us point out an important feature of the estimate (8), that is, its

stability under y-convergence of the measure u in 7ﬁb. In fact, u appears in
the right hand side of (8) only via its Wiener modulus . This has been pro-

ven in [2] to have the stability property

(xg3rsR) > w (x53rsR)

w
Uh H

for every Xg € R" and every 0 < r <R, whenever the sequence My

y-converges to p in 7n0 as h » +o,
Let us also remark that this stability of (8) provides the link between the
results of the present paper and the perturbation theory of [2].

If the measure yu in (6) does not charge a neighborhood of x., that is

0’
u(BR(xo)) = 0 for some R > 0, then the equation (6) obviously reduces, locally

around Xg» to the equation

Lu = v
for which estimates of the oscillation of u and of the energy

E(u) = é |Du | 2dx
r

on a ball Br = Br(XO) as r >0 are well known. They can also be obtained by

simple variants in our proofs. These estimates, however, are not stable under

y-convergence of the measure u of (6), since the condition that u does not



charge a neighborhood of x0 clearly is not stable.
Finally, let us mention that a more detailed analysis of the Wiener modulus
will be carried out in a forthcoming paper [3] for measures u which are rota-

tionally invariant in R" and applications will be given to Schr‘adinger

).

equations (3) with a radial potential q(|x

1. NOTATION AND PRELIMINARIES
Throughout the paper we denote by n a fixed integer, with n > 2.

1.1 Let @ be a bounded open subset of R".  For every compact set K& @ the

capacity of K with respect to @ 1is defined by
cap(K,q) = inf{sf2 Dol %dx: ¢ e C(®), o >1 on K.
The definition is extended to open sets GC Q by
cap(G,Q) = sup{cap(K,Q): KC G, K compact}
and to arbitrary sets EC @ by
cap(E,@) = inf{cap(G,R): G E, G open}.

We say that a set EC R" has capacity zero if

cap(EMNQ,Q) =0

for every bounded open set QC R". It is easy to see that a bounded set EC
R" has capacity zero if and only if cap(E,Q2) = 0 for one (hence for all)
bounded open set Qo C R" such that E < a.

If a property A(x) holds for all x e E except for a subset E0 of E

with capacity zero, then we say that A(x) holds quasi everywhere in E (q.e.




in E).

1.2 Let @ be an arbitrary open subset of R". We denote by Hl’p(Q)
1 < p < +=, the Sobolev space of all functions u e Lp(Q) with distribution

derivatives Diu € Lp(Q), i=1,...,n. The space Hl’p(Q) is normed by

I = (uunp + 10un’ )1/p
H P (@) LP () LP (@)

b

where Du = (Dlu,...,Dnu) is the gradient of u. By H%SE(Q) we denote the

set of functions u e L?OC(Q) such that ul., € Hl’p(n') for every open set

Q
a'cca (i.e. @' compact and Q' c Q). By H(l:’p(Q) we denote the set of func-
tions of Hl’p(Q) with compact support in Q. By Hé’p(a) we denote the clo-
sure of Hi’p(g) in Hl’p(Q). As usual, if p =2 we omit the exponent p in
the above notation, thus Hl(Q) = HI’Z(Q), Hi(g) = Hi’Z(Q), etc.. By H'I(Q) we
denote the dual space of Hé(g). By H{éc(g) we denote the set of linear func-
tions f on Hi(g) such that f|Q. € H'l(Q') for every open set Q' Q. By
{s+,¢> we denote the dual pairing between H'l(n) and Hé(n), as well as its
extension to the duality between H{gc(n) and Hi(ﬂ).

For every x e R" and every r > 0 we set

B.(x) ={y e R": ly - x| <rl},

and we denote by |Br(x)| its Lebesque measure.

[t is well known that for every u ¢ H}OC(Q) the limit
lim TF_%YTT [ uly)dy
r+0, r Br(x)

exists and is finite quasi everywhere in Q.

We make the following convention about the pointwise values of a function

ue H%OC(Q)= for every x € Q@ we always require that



.. 1 . 1
(1.1) ]’m]:f'TEZTYTT Br{x)U(y)dy <u(x) < 1;T3:p TE;T;YT Br{x)u(y)dy.

With this convention, the pointwise value u(x) 1is determined quasi
everywhere in @ and the function u is quasi continuous in Q.

If @ 1is bounded, it can be proved that
cap(E,@) = min{ [ |Du|2dx: u e Hé(ﬂ); u>1 g.e. in E}.
Q

For the preceding capacity properties see e.g. [5].
Given two functions u and v defined in Q, we denote by u A v and

uV v the functions defined in Q by

(uAv)(x) =min{u(x),v(x)}, (uV v)(x) = max{u(x),v(x)}.

It is well known that, if u and v belong to HI(Q) (resp. H%OC(Q),
Hi(n), Hé(n)), then uAv and u Vv belong to HI(Q) (resp. H}OC(Q), Hi(n),

1
HO(Q)).

1.3 Let @ be an arbitrary open subset of R". By a non-negative Borel

measure on Q we mean a countably additive set function defined in the Borel o-
field of 9 and with values in [0,+=].

If u 1is a non-negative Borel measure on , we denote by LP(a,u) (resp.
by L?oc(ﬂ’“))’ 1 < p < +o, the set of all [u-equivalence classes of] Borel

functions wu: @ +» R such that
[ |ulPdy ¢ +w
Q

(resp. such that

f |u|pdu < 4o
K



for every compact set K< Q). If u is the Lebesgue measure, the
corresponding spaces will be denoted by Lp(n) and L?OC(Q).

By Tho(n) we denote the set of all non-negative Borel measures u on @

such that u(E) = 0 for every Borel set E C @ with capacity zero.

By a Radon measure on Q we mean a countably additive set function, with

values in |R, defined on the é&-ring of all Borel sets Ec 2 such that E s

compact and EC q.

With every Radon measure pu on @ we associate three non-negative Radon

measures: the total variation |u| and the positive and negative parts u+

and u”. We recall that u = ' -y~ and lul = W,

If u is a non-negative Radon measure, then u can be extended in a uni-
que way to a non-negative Borel measure, that will be denoted by the same symbol
u.

By a bounded Radon measure on Q@ we mean a Radon measure on § such that

[ul(R) < +o.

1.4 Let @ be a bounded open subset of RR". By L we denote a second order

partial differential operator on @ in divergence form

n
Lu = - D.(a..(x)D.u),
RPN

whose coefficients aij are measurable on @ and satisfy an ellipticity and

boundedness condition

n
(1.2) I a0 > alEl® wxen ve er”
i,j=1
(1.3) laij(x)l <A Vx € Q

for some constants 0 < A < A.
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The associated bilinear form in HI(Q) is denoted by

a(u,v) = | L ) a

.. (x)D.uD,;v]dx.
Q i,j=1 37

We notice that a(u,v) is well defined also for u € nl () and v e Hé(ﬂ),

loc
1,1
loc

1

or for u e H;2 (Q) and v ¢ CO(Q).

Suppose now that @ 1is a ball, say & = B, (x By & = G(+,y) we

R 0)'
denote the Green function, with singularity at y, for the Dirichlet problem in

Q@ relative to the operator L. This function is defined as the unique solution

1,
Y e Hy*P(a) 1 <p <=1

of the equation

a(4,6) = oly) ¥ e Co(2).

It is well known that this function exists, that Y ¢ Hl(g - Bé(yj) for every
r > 0, and that G(x,y) is continuous in (x,y) for x # y. Moreover for

every 0 < q <1 there exist two constants c, > 0 and c, > 0 such that the

1 2
following estimates hold for every x,y € BqR(xo):
c _ c 2-
(1.4) Ly <ay) <2 gx -y P,

if n » 3, and

(1.5) 1 og( ) <ty < 22 04 e
. A X-y ) )\ X'y ’

if n = 2. The constants c1 and <, depend only on q,n, and the ratio

We point out explicitly that they are independent of R and L.

A
X .

It is well known that for every bounded Radon measure u in Q the

function
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is the unique solution

S

u e Hfl)’p(.Q) 1<p«

1
ot

n

of the equation

a(u,6) = [ ¢ du Vo € Co(a).
/ ‘

For the preceding properties of the Green function see [8]1, [12].

For every y ¢ @ and every p > 0 such that Bp(y) C Q, we denote by Gz

the approximate Green function, defined as the unique solution G% € HB(Q) of

the equation

. _ 1 1
a(v,b%) = TE;rny 5 {y)v(x)dx Yv ¢ HO(Q).

)
It is well known that this function exists and that G% >0 in Q.

Moreover, by the De Giorgi-Nash theorem, the function G% is Holder continuous

in Q and G% > Gy as p » 0_ uniformly on every compact subset of @ - {y}.

1.5 Let @ be an arbitrary open subset of R". We say that a Radon measure u

on @ belongs to H'I(Q) (resp. H]gc(n)) if there exists X ¢ H'l(Q) (resp.

Higc(n)) such that
Q59> = [ ¢ du Vo ¢ cg(n).
Q

In this case we identify A and He

It is well known that if , is a non-negative Radon measure on Q which

belongs to H'l(Q), then 8770(9), Hé(Q) g:Ll(Q,u), and
<usv> = [ vdp W oe Hi(q)
0
Q
If v is another Radon measure on @ such that vl < u in @, then v, v*,

v’, and |v| belong to H'l(Q) and
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<vy,v> = [ v dv ¥v € HI(Q).
Q 0

Moreover

ftwvl < ful .
y-1 ul 1

(2) H “(q)
Suppose now that @ 1is a ball and let G(x,y) be the Green function for
the Dirichlet problem in @ relative to the Laplace operator -A. Let u be a

Radon measure on Q. Then |u| e H'I(Q) if and only if

[ ] a0y ul(x)d|u|(y) < +=,
20

and in this case

(1.6) Myl

12
HL(a) < ( é é G(x,y)du(x)du(y)) "“.

2. RELAXED DIRICHLET PROBLEMS
In this section we study problems of the form
Lu +pu=Ff in @

n

where @ 1is a bounded open subset of an, Lu = = J Di(aij(x)Dju) is an
i,j=1

elliptic operator as in 1.4, u belongs to the set of the measures )qo(n)

1 ().

introduced in 1.3, and f ¢ H]oc

These problems were called relaxed Dirichlet problems in [2], where the
relationship with classical Dirichlet problems is extensively discussed.

The main goal of this section is to prove a comparison theorem for weak

solutions of relaxed Dirichlet problems.

We denote by a(u,v) the bilinear form associated with L as in 1.4.
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DEFINITION 2.1. We say that a function u is a local weak solution of the

equation
(2.1) Lu + pu = f in Q
if
(1) ue M (2) N2 ()

loc loc\¥oH
and
(i) a(u,v) + [ uvdy = <f,v>

Q
1 2 . .

for every v e H (@) N L (Q,u) with compact support in Q. [:1

For a discussion of the non trivial relationships between the definition

above and the definition in the sense of distribution, see [2], Section 3.

DEFINITION 2.2 Given g ¢ HI(Q), we say that a function u 1is a weak solution

of the problem

Lu + pyu =f in Q
(2.2)

u-=gq on 3N
if u dis a local weak solution of equation (2.1) and in addition
Css 1
(i) u-ge HO(Q). [:1

We remark explicitly that (iii) implies that u e HI(Q)(\ L?OC(Q,u).

The existence and uniqueness of the solution to problem (2.2) is given by

the following theorems.

THEOREM 2.3. Problem (2.2) has at most one weak solution.
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PROOF. Suppose that Uy and u, are weak solutions of problem (2.2). Then
2

the difference u = - Toc

belongs to HB(Q) ALY (9Q,u) and

up - Y

(2.3) a(u,v) + [ uvdp = 0
Q

for every v e Hl(n)(\ Lz(g,u) with compact support. There exists a sequence
(uh) in Hﬁ(ﬂ) F\Lz(n,u) which converges to u strongly in Hl(ﬂ), such that

the sequence (uuh) is increasing and converges pointwise to uz. By taking

Vo= U in (2.3) we obtain

a(u,uh) + [ uu, du = 0.
Q
Passing to the 1imit as h + += we obtain
2
a(u,u) + [ udu = 0.
Q
By the coerciveness assumption we have u =0 a.e. in @, hence wu, =u
in Q. M

1

THEOREM 2.4 Suppose that f ¢ H "(Q) and that there exists w e

Hl(Q)f\ LZ(Q,u) such that w - g ¢ Hé(n). Then problem (2.2) has one and only

one weak solution u. Moreover u ¢ Hl(n)(\ Lz(a,u) and

(2.4) a(u,v) + [ uvdy = <f,v>
Q

for every v e HS(Q)(\ L2 (Q,u).
PROOF. We set u =z + w. Then u 1is a weak solution to problem (2.2) if and
only if
z e Hi() N L2 (2,u)
0 Toc '\ M

and
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(2.5) a(z,v) + [ zvdy = <f,v> - a(w,v) - [ wvdp
Q Q

for every v ¢ HI(Q)(W Lz(n,u) with compact support in Q.
Let H = Hé(g)(\ LZ(Q,u) with the norm
iy = ( / |Dv|2dx + [ vzdu)be.
Q Q
Since eYTb(Q), it is easy to prove that H 1is a Hilbert space. The left
hand side of (2.5) is a continuous and coercive bilinear form on H (in the
variables z and v), whereas the right hand side of (2.5) is a continuous
linear form on H (in the variable v). By the Lax-Milgram theorem, there
exists z ¢ Hé(g)(ﬁ Lz(n,u) such that (2.5) holds for every
> Hé(n)(ﬁ LZ(Q,u). Therefore u =2z +w 1is a weak solution to problem (2.2),

u e Hl(Q)(] LZ(Q,u), and (2.4) holds for every v e Hé(Q)(\ Lz(ﬂ,u). [:I

The following variational characterization of the weak solution to problem

(2.2) is proved in [2], Theorem 3.13.

PROPOSITION 2.5. Suppose that f ¢ H'l(Q) and that there exists

ij = 43

W e HI(Q) r\Lz(Q,u) such that w - g ¢ HS(Q)’ If a;: = for
l,...,n, then the weak solution of problem (2.2) is the unique minimum

i, =

point of the functional
F(v) = a(v,v) + [ vzdu - 2Kf, v
in the set H(g) = {v ¢ HI(Q): vV -ge Hé(Q)}. [:I
The following result will be frequently used in the sequel.

PROPOSITION 2.6. Let v be a Radon measure in @ such that |[v| belongs to

H'l(n), and let u be a local weak solution of the equation
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Lu + pu = v 1in Q.
Then
a(lul,v) < [ vd|v|
Q
for every v e Hé(n) with v >0 a.e. in Q.
PROOF. First of all we remark that, by 1.5, we have

<v,v> = [ vdv W € Hé(ﬂ).
Q

Let (y ) be a sequence in C*(R) such that for every t eR
Him g () < el 0 <) < el w(-t) = g (0)
()] < 1, w(t)t >0 0 <y (t) <h

_ , 1
We put u, = wh(u). Then Uy, € Hloc

Let v be a function of Hi(n)(\ Lz(g,u), such that 0 <v g1 a.e. in

(2) and Duh = wﬁ(u)Du.

Q. Then wﬁ(u)v € Hi(ﬂ), for wﬁ(u) € HI(Q)(\ Lw(ﬂ) and v ¢ Hé(ﬂ)(\ Lm(ﬂ).
Moreover wh(u)v € Lz(g,u), for |¢%(u)| < 1. We now use wé(u)v as test func-

tion for our equation and we obtain

a(U,‘P;‘(U)V) + S,g U‘Prl‘(u)Vdu = {2 \";..(U)Vd\’s

hence
0 ] n "
(2.6) é [i,§=1 aij(x)DjuDiv]wh(u)dx + é [i,§=1aij(X)DjUDiu]¢h(u)de +

+ [ ¢h(u)uvdu = wﬁ(u)vdv

9] Q

Since wﬁ(u) > 0 we have
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n
é [i’§=laij(x)0juDiu]w;(u)v dx > 0.

Since wﬁ(u)u > 0 we have

wﬁ(u)uv du > 0.

QO

Since IwA(u)l <1 we have

' d d
§fzwhu)v \:<§£v | v

Therefore we obtain from (2.6)

n
£ [i’gzlaij(x)wa(u)DjuDiv]dx < é vd |v]

Since wﬁ(u)Dju = Djuh’ we have

(2.7) a(u_,v) < [ vd|v].
h Q
Since (uh) converges to |u| in L?OC(Q) and |Duh| < |Dul|, the sequence

(uh) converges to |u| weakly in H%OC(Q). Since v has compact support in

2, we can pass to the 1imit in (2.7) as h + +» and obtain
(2.8) a(lul,v) < [ vd|v|
Q

for every v ¢ Hi(Q)fﬁ Lz(ﬂ,u) such that 0 <v <1 a.e. in Q.

It remains to prove that inequality (2.8) holds for every v e Hé(ﬂ) with

v>0 a.e.in q. Let ¢ ¢ cg(sz) with ¢ >0 in @, and let

o = ( %-¢) A |u|l. Then o € Hﬁ(ﬂ), and 0 < ¢, < 1 a.e. in @ for h 1large
enough. Since 0 < 9, < |lu| a.e. in @, u e L?OC(Q,u), and 9, has compact

support in @, then we have ¢h € Lz(g,u), We now take v = ¢h in (2.8) and we

obtain
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a(lulse,) < [ ¢pdlv
Q
Since D¢, =.% D¢ on {4 < h|u|} and D¢, = Dfu|l on {¢ » hlu|}, we obtain

%- [ [ } aij(x)Dj|u|Di¢]dx +

{¢<hu|y i,3=1 Z aij(x)nj|U|Di|u|]dx <

[
{¢>£|u|} i,i=1

1
<[ opdlv] <= [ ¢d|v
Q h WQ

By neglecting the second term in the left hand side, which is non-negative by
the ellipticity assumption, we obtain
n

) aij(x)Dj|u|Di¢]dx < [ ¢d|v
{o<hluly 1,5=1 Q

By taking the T1imit as h » = we obtain

n
/ ) aij(x)Dj|u|Di¢]dx < [ ¢dv
{lu[>01 1,3=1 Q

Since Dj\ul =0 a.e. on {|u| = 0}, we get

a(lul,g) < [ ¢ dlv]
Q

for every ¢ € Cg(n) with ¢ > 0 in Q. The extension of this inequality to

Hé(n) is trivial, since both sides are continuous in Hl(n). [:1
In order to state the comparison theorem we need the following definitions.

DEFINITION 2.7. Let wu,v e H%OC(Q). We say that u < v on 32, or equiva-

lently that v >u on 3, if (v -u)AO0ce Hé(n). [:1

It is easy to see that if u > 0 on 32 and v > 0 on 239, then
u+v>0 on 32 and xxu > 0 on 939 for every constant A > 0. This implies
easily that the relation u < v on 3Q 1is transitive. Moreover it is clearly
reflexive, and v - u e Hé(ﬂ) if and only if both inequalities u < v and
v < u hold on 3qQ.

If u,v e HI(Q) and @ has a Lipschitzian boundary, it is easy to see
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that the previous definition coincides with the classical definition in Sobolev

spaces (see [8], Definition (1.2')).

DEFINITION 2.8. Let f,g e H]gc(ﬂ). We say that f < g in @, or equivalently

that g > f in @, if <g - f,v> > 0 for every v ¢ Hi(Q) with v > 0 a.e.
in Q. 1
PROPOSITION 2.9 Let u be a local weak solution of equation (2.1). If f » 0

in @ and u >0 on 23Q, then u » 0 a.e. in Q.

PROOF. Let v = -(u A0). Since v 1is a non-negative function in Hé(g),
there exists a sequence (Vh) of non-negative functions of Hé(Q) with compact

support in @ which converge to v strongly in HI(Q) and such that

0 < Vi €V d.e. in Q. Since v e L?oc(ﬂ’“)’ we have v, e LZ(Q,u). Therefore

we can take v, as a test function for the equation (2.1) and we obtain

a(u,vh) + é uvpdu = <.
Since uvy, < 0 g.e. in 9 and <f,vh> > 0, we have
a(u,vh) > 0.
Passing to the 1imit as h » +o we obtain
a(u,v) » 0.
Since Dv = -Du on {v > 0} and Dv =0 on {v = 0}, we obtain
a(v,v) < 0,

By the coerciveness assumption we have v = 0 a.e. in Q, hence u > 0 a.e. in

We now come to the main result of this section: the comparison theorem.
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THEOREM 2.10 Let u,m, e M (), let £ ,f, e W (), and let u by local

1’2 ¢ Moc 1°Y2

weak solutions of the equations

(2.9) Lu1 *uuy = f in Q
(2'10) Lu2 + uzuz = >

If M < uy in Q, 0 < f2 < f1 in @, and 0 < U < u1 on 239, then
0 < u2 < u1 a.e. in Q.

PROOF. By Proposition 2.9 we have u, >0 and u, » 0 a.e. in Q. Let

1 2
- - : 1
vV = (u2 - ul)\/ 0= -[(u1 - u2)A0]. Since up >u, on 3Q, we have v ¢ HO(Q).
Since up 2 0 and Us >0 a.e. in Q, we have 0 <v < u2 q.e. in @9, there-

2

fore v ¢ Lloc

(2 ,uz) C L C(Q,ul). Since v 1is a non-negative function in

Hé(ﬂ), there exists a sequence (Vh) of non-negative functions of Hé(ﬂ) with
compact support in Q@ which converge to v strongly in HI(Q) and such that
0 < i

Lz(Q,ul). By taking Vy, as test function in equations (2.9) and (2.10) we

<v g.e. in Q. Since v (Q,uz) we have Vi, € Lz(n,uz)g;

10c

obtain

(2.11) a(u A ) + [ u,vpduy = <f1,vh>

(2.12) a(uz,vh) + uzvhdu? = <f2,vh>.

Since AT 0 gq.e. in Q@ and My S in Q, we obtain from (2.12)
(2.13) a(uz,vh) + f uzvhdu1 < <f2,vh>.

By subtracting (2.11) from (2.13) we get

a(u ul,vh) + é (u2 - ul)v dy, < <f_ - f

2 ~ h9¥ 2 = TV

Since (u2 - ul)vh >0 g.e. in Q@ and <f_, - fl,v > < 0, we have

2 h
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a(u, - u,,v.) <0.

2 1 h)

Passing to the 1imit as h » += we obtain
a(u2 - ul,v) < 0.

Since Dj(u -u

2 )Div = DjVDiV a.e. in Q, we obtain

1

a(v,v) < 0.

By the coerciveness assumption we have v = 0 a.e. in Q, hence u, < u

in Q. [:1

3. A POINCARE INEQUALTY FOR THE u-CAPACITY

In this section we study the properties of the variational pu-capacity
defined below and of the corresponding capacitary potentials. These properties
will be the basic tools for establishing the necessity of the Wiener condition
in Section 5, as well as its sufficiency in Section 6.

The main result of this section is a Poincare type inequality involving the
u-capacity, which will be essential in the proof of the energy estimates of

Section 6.

Let @ be a bounded open subset of Rn, let eIﬂO(Q), let

Lu = - Z Di(aij(x)Dju) be an elliptic operator as in 1.4, and let a(u,v) be
e

n
i"]=1 . 9 s 1

the corresponding bilinear form on H (Q). For every Borel set EC Q we

denote by ue the Borel measure on Q defined by uE(B) = u(BMNE) for every

Borel set B C Q. We notice that Mg eTQO(Q) for every Borel set EC Q.
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DEFINITION 3.1. We say that a set E 1is u-admissible in @ if E 1is a Borel
subset of @ and there exists w e Hl(g)(] LZ(Q,uE) such that w - 1l ¢ Hé(g).

If E is p-admissible in @, we define the u-capacitary potential of E

in @, relative to the operator L, as the weak solution Wg of the problem

LwE +oupwg = 0 in @,
Wp = 1 on 3Q.

The p-capacity of E in @, relative to the operator L, is defined by
capL(E Q) = a(we,w) + wid
TR E°"E a EME"

If E 1is a Borel subset of @ which is not u-admissible in @, we define

L

cap (E,Q) = +e,

u

If L = -a, the corresponding capacity is denoted hy capu(E,Q). [:]

REMARK 3.2 I[f E 1is wup-admissible in @, then the u-capacitary potential wp

exists and is unique by Theorem 2.4. Moreover Wp € LZ(Q,uE), hence

0 < Capt(E,Q) < +w, By the comparison theorem (Theorem 2.10) we have

0 < Wg < 1 a.e. in Q. [:I

REMARK 3.3  Suppose that u(E) = 0 if E has capacity zero, and p(E) = +o
otherwise. Then capt(E,Q) coincides with the capacity, associated with the
operator L, introduced by G. Stampacchia in [12], Definition 3.1. If, in

L ) L )
addition, L = -A, then capu(E,Q) cap(E,Q). [:1

REMARK 3.4 If L s symmetric, i.e. aij = aji for i,j = 1,...,n, then by

Proposition 2.5 we have
L o 2 . 1
Capu(E,Q) = min{a(v,v) + [ vidug: v - 1 e Hy()}
Q

for every p-admissible EC q. [:[
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PROPOSITION 3.5. If E 1is u-admissible in @, then there exists a non-negative

Radon measure v ¢ H'l(g) such that
a(we,v) + [ vdv=0
E Q
for every v € Hé(g). The measure v has support in E, and capt(E,Q) = v(Q).
PROOF. Since We > 0 by Remark 3.2, Proposition 2.6 implies that
a(wE,v) <0

for every v ¢ Hé(n) with v > 0 a.e. in Q. By the Riesz representation
theorem, there exists a non-negative measure v ¢ H'I(Q) such that

(3.1) a(wE,v) = - [ vdv
Q

for every v ¢ Hé(n). If ve Hé(n) and (supp V)V E = @, then v ¢ LZ(Q,uF),

hence
(3.2) a(wE,v) = a(wE,v) + é wEvduE = 0.
From (3.1) and (3.2) it follows that

fvdv= 0,

Q

hence supp vC E.

It remains to prove that capt(E,Q)

v(Q). Let Q' be an open set with

Q'ccq, and let y € Cé(ﬂ) be such that 0 < y <1 in Q@ and v =1 in Q'.

Since Wb € Hé(Q)(\ LZ(Q,u), by Theorem 2.4 we have
alwg.wed) + [ whydu = 0
E°"E a E E :

Therefore, since 1 - wE(l - y) e Hé(n), we have
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L _ 2
capu(E,n) = a(wg,wp) + é Wedup =

1]

akWE,WE(l -9) + [ WE(I - ¥)dug =
Q

-a(wE,l - We (1 - 9)) + é wg(l - ¥)dug =

i

[ L1 = we(L - 9)Xdv + f we(L - p)dug.
Q Q

This implies
' L 2
v(e') < cap (E,) < v(@) + [  wcdug.
u , E°"E
Q-0
Since wg e LZ(Q,UE), by taking the limit as Q' 4 Q@ we obtain

capt(E,Q) = v(Q). tzi

REMARK 3.6 If p(E) < +w, then it is easy to prove that

for every Borel set B C q. This equality does not hold, in general, if
u(E) = +=, as one can see easily by considering the measure u of Remark 3.3.
Indeed in this case the condition Wp e LZ(Q,uE) implies that wp = 0 qg.e on
- - L o
E, hence | wpdup = 0, whereas v(Q) = capu(E,Q) by Proposition 3.5. [:1
The following propositions single out some properties of the u-capacitary

potentials.

PROPOSITION 3.7 Let E and F be two p-admissible disjoint subsets of Q.

Then EWUF is p-admissible in @ and

wp + Wg < wEUF +1 a.e. in Q.
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PROOF, The function We A W belongs to LZ(Q’“EUF) and

(WE AW) - 1le H(IJ(Q). Therefore EU F is py-admissible in Q. Since

ME < BEUF and g < MEUF» by the comparison theorem we have

0 < WEUF < W < 1 a.e. in Q,

0 < WEUF < W < 1 a.e. in Q.

Let v = (wE *We - weyp - L)V 0. It is evident that v e H(l)(sz). From the

above inequalities it follows that 0 < v < We and 0 <v < Wg g.e. in @

s

hence v ¢ LZ(Q,uE) N Lz(sz,u,:) = LZ(Q,uEUF). By Theorem 2.4 we have

1
o

a(wE,v) + g W vdy

[}
o

a(wF,V) + '[ WFVdu
a(w sV) + W vdpy = 0.
EUF elp "EUF
By adding the first two equalities, and by subtracting the third one, we obtain
a(WE + WF - WEUF,V) +é (WE - WEUF)V du +'|;{‘ (WF - WEUF)V dp = 0.

Since a(wp + We - WEUF’V) = a(v,v), (wp - Weyfp)v > 0 g.e. in @ and
(wF - WEUF)V >0 g.e. in @, we obtain

a(v,v) 0.

N

i

By the coerciveness assumption we have v 0 a.e. in @, hence

wE+wF-wEUF-1<O a.e, in Q. D

PROPOSITION 3.8 Let (Ei)igl be a finite family of pairwise disjoint u-

admissible subsets of @, and let E = UEi. Then E s p-admissible and
iel

L-w < ] (1'WE1.)-
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PROOF. It follows from Proposition 3.7 by induction on the number of elements

of the family (E,)

i’iel” EI

PROPOSITION 3.9 Suppose that @ 1is a ball, say Q = B

X Let 0<q<1,

R( O)'
and let E be a Borel set contained in BqR(xo). Then there exists a constant
k > 0 such that

2
)

k L . -n .
'wE(x) >1 - i-capu(E,Q)d1st(x,E a.e. in B

if n > 3, and

k L 2R . =
wE(x) >1 - i-capu(E,Q)]og( TSECET ) a.e. in BqR(XO) - E

if n = 2. The constant k depends only on q,n and the ratio of the

>| >

ellipticity constants in 1.4.

PROOF. We consider only the case n > 3, the case n = 2 being analogous. Let

v be the measure given by Proposition 3.5. Then 1 - W € Hé(n) and
a(l - WE,¢) = f ¢ dv
Q

for every ¢ ¢ Cé(ﬂ). Let G be the Green function of the operator L in @
(see 1.4). Then
1 - we(x) = 6*(y)dv(y) a.e. in q.
Q

Since supp vc E and, by (1.4),
c
X 2-n
6 (y) <= |x - y|
for every x,y € B R(XO)’ we have

q

)Z-n

c
1 - wE(x) <.—% v(Q)dist(x,E a.e. in B



-28-

The proposition follows now from the equality v(Q) = capt(E,Q), proved in

Proposition 3.5. [:]

We compare now the capacity capt(E,Q) with the capacity capu(E,Q)

corresponding to the Laplace operator -a.

THEOREM 3.10. There exist two constants k1 > 0 and k2 > 0, depending only on

n, A, A such that

L
klcapu(E,Q) < cap (E,Q) < kocap (E,0)

for every yp-admissible EC q.

PROOF. Let Wg be the p-capacitary potential relative to L and Jet VE be

the u-capacitary potential relative to -A. Since
-Avp + MEVE = 0 in Q
and v - W e Hé(g)(\ LZ(Q,uE), by Theorem 2.4 we have
[ Dvg (Dvg - Dwg)dx + [ Ve(ve - we)dug = 0,

Q2 Q

hence

2 2
capu(E,Q) é |DvE| dx + é vgdup =

g DvgDwpdx + é VEWpdup <

1]

2 2 1 2 2 1
( é Dvg [2dx + sz vEdug) /2(gf2 0w |%dx +£{ wedug) 72 <

L
< [capu(E,n)]’Q[ %-a(wE,wE) + [ w%dqul/2 <
Q

Ay

[ it 1¥2Lcap, (,2)1¥20cad (£,0) 12,

Therefore
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(AA 1)Capu(E,Q) < capt(E,Q)
and the first inequality is proved.

Since
LwE tougwg = 0 in @,
using again Vg - wg as test function we obtain
a(wg,vp - wg) + f we(vp - wg)dug = 0,
hence

L
cap, (€, ) ,

|
<1]
—~
=
m
=
m
N
+
—
=
m
[=%
=
M
[0}

|
QO
T~
=
m
"
<
m
g
+
DY
=
m
<
m
(@}
=
m
n

nA f DWEDVEdX + f WEVEdUE <
Q Q

N

[na | |DWE|2 dx + [ ergduE]l/2 [na leElzdx + f v%du[_:}l/2 <
Q Q Q Q
< L2 alugg) + f o] Loy A 13¥20ean, (E.0)172 <

€ L2 {00y 1o 00 0, 01

Therefore

cap(E,0) < M [(n1)V1leap (E,0). ul

The main properties of the set function capu are summarized in the

following proposition (see [2], Proposition 5.3).
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PROPOSITION 3.11 Let y,v e)ﬂo(ﬂ), let E, F, @' be Borel subsets of @, with

Q' open. Then

(a) 0= capu(ﬂ,g) < capu(E,Q) < cap(E,q)

(b) ECF = capu(E,Q) < capu(F,Q),

(c) capu(E UF,e) + Capu(E MNF,Q) < Capu(E,Q) + capu(F,Q),
(d) Ec a'Ca = cap (E,0) < cap (E,')

(e) p<v capu(E,Q) < cap, (E,Q). [:]

REMARK 3.12 The same properties, with same proof, hold for the capacity capt

provided the operator L is symmetric, i.e. aij = aji for i,J = 1l,ee.,n. [:]

We now come to the main result of this section: the Poincare inequality.

THEOREM 3.13 For every 0 < q < 1 there exists a constant k > 0, depending

only on g and n, such that

n
/ udx < kr [ [ |Dul?dx + i uZdy ]
B Capu(Br‘qu’BZr) B -B B -B

r-ogr rqr r-oqr

for every triple of concentric balls qu = qu(xo), B. = B.(xq), Bor = Byn(Xxp)s

for every u ¢ Hl(Br), and for every eTDO(Br).

PROOF. Throughout the proof, the letter k will denote various positive

constants which depend only on q and n and whose value may change from one

line to the other. Let us fix 0<q < 1, qu = qu(XO)’ B = B.(xq)s Bop =

1 . . 1
Byn(xg)s u e H (B.), and y e?ﬂO(Br). There exists a function v e H (By.)
such that v = u q.e. in Br - qu and

[ IovI® dx < k[ |Du|?dx.
B -

2r r qu
By the classical Poincaré inequality
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2 2 2
[ |v - Vo |7dx < kr BI |Dv | “dx
2r r
where Von denotes the average of v on BZr' Therefore

(3.3) [ u¥dx < / vidx < 2 [ v - vzrlzdx + krn|V2r|2 <
Br'qu BZr 2r
< kr? / |Dv|2dx + krn|v2r|2 <
BZr
< krzB é |Du|2dx + kr"|v2r 2,
r-ogr
Let us prove that
(3.4) |V2r‘2 < cap B, & Bar o520 [B { Du|Zax + 3 { u’dul.
rogr rogr

If Vor = 0 the inequality is trivial., Let us suppose that Vo # 0. Let

T € C%(BZF) with ¢ =1 on B, 0<t<1l on B,, and Dt | <-% on B,.
We set
. V.© Vor
= + .
v ! Vor

Since w - 1c¢ Hé(BZP), from the minimizing property of cap, (see Remark 3.4)

we obtain

2 2
capu(Br - qu’BZr) < Bj |Dw|“dx + ; [ wodu <

2r rogr
2

<« —2 ol fvvy [Pdx + —E— [ [ov|%dx +

Vor |” Bop Vo |” Bap

+ 1-5 [ Vidu <
|V2r| Br'qu

< L 5 L —g / |V-V2r|2dx +2f |Dv|2dx + Wdul <

Var | r Bar Bar Br-Bar

c—2o k[ poviPax ¢ uPdu] <
Iv2rt Bor Br'qu

<—K [ / |Du|%dx + / u®dy]
|V2r| Br'qu Br'qu
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and (3.4) is proved.

There exists a constant k such that

_ n-2
capu(Br - qu’BZr) < Cap(Br’BZr) = kr' "%,

hence

2 kr"
(3.5) ro <
capu(Br - qu’BZr)

From (3.3), (3.4), (3.5) it follows that

[ uldx < kr' [ f [Du |%dx + i udy]
cap B. - B__,B,) H
B -B pEr qr?> 2r B - B -B
r-°qr qr r-ogr

and the theorem is proved. [:I

loc
4. THE SPACES K (a) AND K °(q)

In this section we introduce two spaces of Radon measures which generalize

1
the spaces K and KnOC studied in [1], Section 4, see also [6].

Let o be a bounded open subset of R".

DEFINITION 4.1 We denote by Kn(Q) the set of all Radon measures v on @

such that

lim sup | ly - XIZ'"dlvl(y) = 0,
r+0, xeQ Q(\Br(x)

if n > 3, and

lim sup [ log(-T—_———T )d{v|(y) = 0,
r+0, xeq aNB .

if n

2. By KLOC(Q) we denote the set of all Radon measures v on  such

that v ¢ Kn(sz') for every open set Q'C(; Q. [:[
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It is easy to see that Kn(a) and KLOC(Q) are vector spaces. If the

loc
n

then the measure f(x)dx belongs to Kn(Q) for every bounded open set @ Q:Rn.

function f: R" >R belongs to the space K defined in [1], Section 4,

PROPOSITION 4.2. If v e K (2) then [v[(8) < +e

PROOF. We consider only the case n = 2, the case n > 3 being analogous. Let

Ve KZ(Q). By the definition there exists 0 < r < %- such that

1

|vi(a nB _(x))log2 < [  Tog( Yd|v|(y) <1
r 208 _(x) [y - x|
for every x e Q. Since Q 1is compact, and
2c UB (x),
X e r
there exists XpseessX, € Q such that
k
ac U B (x.),
=1 T
hence,
k e ’
I\’l(ﬂ) < iz]_ I\)'(QnBr(Xi)) <T6-g——2' . EI

PROPOSITION 4.3 If v e Kn(Q), then
2-n
sup [ |y = x|"Td[v|(y) < +e
Xel R
if n » 3, and

sup f ]Og( EEL"Q_)_

d[v|(y) < +e
xeQ Q ly - x



-34-

PROOF. We consider only the case n = 2, the case n > 3 being analogous. Let

Ve KZ(Q). By the definition there exists 0 < r <-% such that

1
Q(\BI(X)]OQ(.Ty—:j;[)dlvl(y) <1
r

for every x e Q. Since

J o Ty 7 )41 < Ivi@) tog( L)

Q-Br

we have

)

S|

[ 10g( o2y )alvI(y) < 1+ [v](a)l0g(
Q

for every x e Q, therefore

sup [ Tog( %%EQL;% Jd[v[(y) <1+ [v]|(2)log( Eiﬂgﬁ&l ).

XeQ Q

This concludes the proof because [v[(2) < += by Proposition 4.2. [:]

DEFINITION 4.4 Let v ¢ Kn(Q). If n > 3, we define

_ 2-n
"“"Kn(g) = iup [y - x| "d|v]|(y).
eQ Q

If n =2, we define

diam(Q ’
ol = sup [ log( Yd|v|(y) + [v|(%). ]
KZ(Q) XeQ Q y - x

REMARK 4.5 It is easy to see that ety () is a norm in K (®) and that
n

(4.1) [v](e) < didm(Q)n-ZﬂvHK (Q)'
n

From the definition of Kn(Q) it follows that
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(4.2) Tim  fvil =0
r+0+ Kn(Br(x))
for every v ¢ K (2) and every x e q. 1

PROPOSITION 4.6. The space Kn(Q) with the norm -1 is a Banach space.

Kn(n)

PROOF. Let (vh) be a Cauchy sequence in Kn(Q). By the inequality (4.1) of
Remark 4.5 we have

Tim |v_ - v |(Q) = 0.
By the completeness of the space of all bounded Radon measures, there exists a

bounded Radon measure v on @ such that |[v - v|[(Q) » 0 as h » +=,

h
Suppose now that n > 3 (the case n = 2 1is analogous). Since (vh) is

a Cauchy sequence in Kn(Q), for every € > 0 there exists hE such that
2-n
[ 1y = x1Zd]y, - v ly) < e
Q

for every x € @ and every h,k > he. By taking the 1imit as k + += we

obtain
(4.3) [y = x1Pd]y, - vl(y) < e
Q

for every x € 9 and every h > he. Let us fix h > he. Since v ¢ Kn(n),

h
there exists r > 0 such that

2.
(4.4) Loyl = xIT iy ) <
Q N B_(x)
for every x € Q. From (4.3) and (4.4) it follows that
2-n
sup [y - x|TTd|v|(y) < 2e,

Xef Qf\Br(x)

hence v e K (2). From (4.3) we obtain that



-36-

ll\)h - V“Kn(ﬂ) € €

for every h > he, hence (vh) converges to v in Kn(ﬂ). [:I
Some examples of measures of the class Kn(ﬂ) are given by the following

two propositions.

PROPOSITION 4.7. If f e LP(a) with p > gs, then the measure dv = fdx

belongs to Kn(Q) and

< kifl
n LP(9)

where k > 0 1is a constant which depends on n, p, and Q.
PROOF. Use Holder inequality. H

PROPOSITION 4.8 Let S be a compact (n - 1)-dimensional manifold of class Cl
contained in @, and let o be the (n - 1)-dimensional measure on S. If f e

Lp(S,o) with p > n - 1, then the measure vw(E) = [ fdo belongs to Kn(ﬂ)

SNE
and

vl < kifil

where k > 0 1is a constant which depends on n, p, @ and on the geometry of

S.

PROOF. Use Holder inequality in local coordinates on S. 1

THEOREM 4.9 If v e K (2), then v ¢ H™}(q) and

. nf2 -1
k d Q vl ’
'I(Q) < 1am ( ) v Kn(Q)

where k > 0 1is a constant which depends only on the dimension n of the

space.
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PROOF. Let x5 e o and let @' - Br(xg) with R = 2 diam(e). Let v e K (o)

and let v' be the Radon measure on Q' defined by
v'(E) = v(ENQ)

for every Borel set E cqQ's Let G be the Green function for the Dirichlet

problem in @' relative to the Laplace operator -A. By (1.4) and (1.5) there

exists a constant k > 0 such that for every x,y ¢ @ we have
6(x,y) < klx - |2
if n > 3, and

G(x,y) < k Tog( ftﬁ%b?ﬁy% )

if n =2, By (4.1) we have

[ ] Gly)d v OO [(y) = [ [ G(x,y)d]v[(x)d|v]|(y) <
Q' a QQ
<k [ [f]x - ‘le—nd|\)|(.Y)]d|\)|(x) < kll\)llK (Q)i\)|(g) <
Q Q n
<k diam(Q)n'zuvuﬁn(ﬂ)

s

if n > 3, and

G(x,y)d[v'[(x)d[v' | (y) < k [ [f Tog( 2.d1am & yq|y|(y)Td|v|(x) <
gf)'gfz' (x,y)d|v'|(x v'| égfz X -y
< k(log 4)uvHK2(Q)|v|(Q) < k(log 4)"“"E2(9) s
if n = 2.

In any case, by 1.5 we have |v'| ¢ H'l(ﬂ') and by (1.6) we have

vt < k' diam(2)" 21y
& Hle") Kn ()
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where k' = kLQ, if n >3, and k' = (k log 4)LQ, if n = 2. This implies easily
that v ¢ H'l(Q) and

. /2-1
i <t < k' diam(2)" v
H-l Q) H 1(Q') Kn(g)
(see 1.5). [:I
n
Let Lu = - D.(a,.(x)D,u) be an elliptic operator as in 1.4 and let
i,j=1 1 1

a(u,v) be the associated bilinear form on HI(Q). According to Definition 2.1,

a local weak solution of the equation

Lu = v in @,

1

]OC(Q), is a function wu ¢ H]OC(Q) such that

with v e Kn

a(u,v) = [ vdv
Q

for every v e Hé(a).

THEOREM 4.11 If v ¢ Kloc(ﬂ) and u 1is a local weak solution of the equation
Lu = v in @,

then u e C°(Q).

PROOF. We consider only the case n > 3, the case n = 2 being analogous.

I
Let Xg € @ and let R > 0 such that BR(XO)CCEL We set Q' = BR(xo)

and, for every y e Q', we denote by 6y the Green function of the operator L

in Q' with singularity at y. By (1.4) we have
c

2.

& (x) <=5 |x -y

for every x,y e BqR(x (0 <q<1).

o)
For every x e Q' we put
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vix) = [ X(y)dv(y).
Q ]

Let us prove that v 1is continuous at x.. Let (x be a sequence con-
0 h

verging to xg in Q' For every 0<r <-§ and for every X, € Br(XO) we

have

[v(x,) - v(xg)] < Gly,xp)d[vl(y) + [ G(y,xg)d|v|(y) +
AR N 3.0xg) 0

+ f |G(.Yaxh) - G(y’xo)ldlvl(Y) <
Q'-Br(xo)

< [ Glysxgdvi(y) + [ Gly,xg)dvi(y) +

Bar (xp) Br.(xp)
+] 16(ysx,) = G(y,xq) [d]v](y) <
Q'-Br(xo)
< 2-i§ sup ly - X|2_nd|v|(Y) +
xe@' @' M B, (x)
t ] G(ysx,) - Gly,xg) [d]v](y).

Q'—Br(xo)

Xh XO
Since G "(y) » G “(y) on @' - Br(xo) as h » +o, we have

C -
Timsup |v(xh) - v(xg) | < 2-—% sup | ly - x|2 Ndlv|(y).
h+eo xeQ' Q' f\BZr(x)

Since v ¢ Kn(g), the right hand side tends to 0 as r tends to 0+, hence

li
o

lim |v(xh) - v(xO)}

h+o
and v is continuous at X

The function w =u - v is a local weak solution of the equation

Lw =0 in @',
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therefore w 1is continuous in @' by De Giorgi-Nash theorem. Thus the function

u=v +w is continuous at XO' Since Xg is arbitrary in Q, we have

u e CO(Q)- [:1

5. THE WIENER CRITERION

n
Let o be a bounded open subset of R", let Lu = - Y Di(aij(X)DjU) be
i,§=1

an elliptic operator on @ as in 1.4, let yu e 0(Q), and let Xp € Q.

DEFINITION 5.1 We say that X is a regular Dirichlet point for the measure

and the operator L if every local weak solution u of the equation
Lu + pu =0

in an arbitrary small neighborhood of X0 is continuous at X and satisfies

u(xq) = 0. [:]

For the definition of the pointwise values of u we refer to the conven-
tion (1.1).

We shall prove that the notion of regular Dirichlet point is independent of
L, and can be characterized by means of a Wiener criterion involving the u-
capacity Capu of arbitrarily small balls Br(XO) around X Moreover, as we
shall see in the next section, if Xg 1s a regular Dirichlet point for the

measure u e)ﬂb(a), and v ¢ KLOC(Q), then every local weak solution u of the

equation

Lu + yu = v in @

is continuous at Xg and satisfies u(xO) = 0,
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In order to state the Wiener condition, we need the following definition.
We recall that capu is the u-capacity relative to the Laplace operator -A
introduced in Definition 3.1.

Let us fix a radius Rp > 0 such that Eﬁ C Q. Here and henceforth we

0
ut B =B (x for ever > 0.

DEFINITION 5.2 For every 0 < p < R0 we put
cap (B ,B, )
8(p) =’_'(B'—"B“—)"capu p—2p
0’ 2p
and we define the Wiener modulus w(r,R) of u at X, by
R dp
w(r,R) = exp(- [ &(p) =£)
r P
for every 0 <r <R < Ry - 1
REMARK 5.3 It is easy to see that
0 < &8(p) <1

for every 0 < p < R0 (see Propositin 3.11(a)), and that

r
R < w(r,R) <1

for every 0 <r <R < R, - 1

DEFINITION 5.4 We say that Xo is a Wiener point of the measure u if

(5.1) 1im w(r,R) =0
r+0
+
for some (hence for all) 0 <R < R, 1

Let us notice that (5.1) is obviously equivalent to the condition

R
(5.2) [ s(o) 92 - 4o
0



-42-

which is called the Wiener condition for the measure u at the point x

0

THEOREM 5.5. The point X0 is a regular Dirichlet point for the measure n

and the operator L if and only if Xq 1s a Wiener point of . 1

Since the notion of Wiener point is independent of L, Theorem 5.5 shows
that the notion of regular Dirichlet point is independent of L.

In order to prove Theorem 5.5 we need the following lemma. For every
0<r <R R0 we denote by Wp (resp. wR,r) the u-capacitary potential of

B, (resp. B, - B ) in B with respect to the operator L.
R R r R0

LEMMA 5.6 If Xg is a regular Dirichlet point for the measure u and the

operator L, then

1im w
r-0
+

X

R,r( 0)

for every 0 <R < RO'

PROOF. Suppose that X0 is a regular Dirichlet point. Let us fix 0 < R < R0

and e > 0. Since Wp is a local weak solution of the equation

LwR + uwR =0 in BR’

and X0 is a regular Dirichlet point, there exists n > 0 such that

(5.3) Wp S € a.e. in B, .

2n

By Theorem 3.10 and Proposition 3.11 there exists a constant k > 0 such that

L
Capu(BrsBRO) < k Cap(Br’BRO)

for every 0 < r < R., hence

0’
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. L
1im cap (B ,B, ) = 0.
r RO

M
r-0,
Therefore it follows easily from Proposition 3.9 that there exists o > 0 such
that
(5.4) w.>1l-e a.e. in an - Bn

for every 0 < r < o By Proposition 3.7 we have

W + wR,r < wR +1 a.e. in BRO,

From (5.3) and (5.4) it follows that

R,r < 2¢ a.e. 1in an - Bn

for every 0 <r < o We now apply the comparison theorem (Theorem 2.10) with

Q= an, My o= 0, My = uBZ B » f1 = f2 = 0, u1 = 2¢, u2 = wR,r’ and obtain
n r
wR,r < 2¢ a.e. in an,

hence

. 1

wR,r(XO) < 11T3up —= é wR,r(x)dx < 2¢e

P, Te B

for every 0 < r < Fo [:I

PROOF OF THEOREM 5.5 The sufficiency of the Wiener condition is a consequence
of Theorem 6.4 of the next section.

Let us prove its necessity. Suppose that x. is a regular Dirichlet point

0
for the measure yu and for the operator L. Suppose, by contradiction, that

R
(5.5) 1% 5(p) 92 < 4o
0 P
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For every 0 < p < RO we put vy(p) = capu(Bp,BR ). By Proposition 3.11(b)
0

the function +v(p) is non decreasing for 0 < p < Rge

Let us fix 0 < q < %-. By Proposition 3.11(d) we have

Y(p) < cap (B,.B5,)

for every 0 < p < qRO. Since there exists a constant k > 0 such that

_,._n=2
cap(Bp,sz) = kp K

we have

(5.6) ky(p)p?™ < 8(p)

for every 0 < p < qRO'
5

For every i ¢ N we define r. = Roqi, if n » 3, and ry = Roq2 , if

i
n =2, From (5.6) it follows that

R gR © r,
0 0 - -
(5.7) [0 60) 225 k12 y(p)o!Mdp 5 k ] ' ¥(p)olMdp >
0 P 0 i=1 r,
i+l
0o [‘].
>k ) Y(r1'+1) / Ol—ndp.
i=1 Mi+1

For n > 3 we have

r. n-2 n-2

i l-n, _ 2-n 1 - ¢ = p2-n n-21-gq
rf prde =M T Fiv2 n-2
i+l

whereas for n = 2 we have

2R

r. .

1 -

[" et dp = 2110g( 1 ) >.% log(
r q Mi+2
i+l

)e

Therefore from (5.5) and (5.7) it follows that
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if n > 3, and

By Theorem 3.10 and by Proposition 3.11(b) there exists a constant k > O
such that

L
cap-(B. -B. By ) <ky(r;)
for every i e N, therefore

o

L 2-n
(5.8) ) cap (B. - B By ) réT < 4w,
i=1 “('”i Fis1” Ro' i+l
if n > 3, and
o 2R
(5.9) I cap (8, -B. _, By )log( ) < 4o,
i=l M i+l 0 i+l
if n=2.
For every 1 < h < j we denote by Wy, j the wu-capacitary potential of
Br - Br in BR relative to the operator L. By Proposition 3.8 we have
h J 0
j-1

L=y i(xo) € T (1 - wy 449(xg))e

By Proposition 3.9 there exists a constant K > 0 such that

1 - wi,i+1(x0) < K capt(Bri - Bri+1,BR0)r§;2
if n > 3, and
L 2Ro
= Wi g41(xg) <K Capu(Bri - Bri+1, BRO)‘OQ( o )

if n = 2. Therefore
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by 2-n
1 - wh,j(xo) < K izh capu(Bri - Bri+1’BR0)ri+1
if n > 3, and
by "Ro
1 - wh’j(xo) < K 1§h capu(Bri - Br1+1’BR0)]Og/ o )

if n=2. By (5.8) and (5.9), there exists h e N such that

5.10 1 -
(310) "0 i(xg) <%

for every j » h. By Lemma 5.6 we have

(5.11) lim wh,j(XO) = 0.
oo
The contradiction between (5.10) and (5.11) proves that (5.5) is false and

concludes the proof of the theorem. 1

6. ENERGY ESTIMATES

In this section we consider a local weak solution of the equation

(6.1) Lu + yu = v in g,

n

where @ is a bounded open subset of R", Lu = - ) Di(aijx)Dj“) is an ellip-
i,J7 )

tic operator on @ as in 1.4, eTﬁb(Q), and v s’Kléc(Q). We study the beha-

vior of u at a given point Xg € Q In particular we prove in Theorem 6.4

that, if xy is a Wiener point of u, then u is continuous at xgy and

u(xo) = 0,
Let us fix a radius Ry > 0 such that .§R C q. Here and henceforth we

0
put B = or eve 0.
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DEFINITION 6.1. For every 0 < R ¢ R0 we put

V(R) = sup u(x)? + é IDu(x)]?|x - x0|2'"dx + é u(x)?|x - x0|2'"du(x)
X eBR R R
if n > 3, and

V(R) =ng2 u(x)2 + éR |Du(x)|2 Tog( TiggaT )dx + é u(x)2 Tog( TYggaT Ydu (x),

In this section we estimate V(R) 1in terms of the Wiener modulus of u
introduced in Definition 5.2, of the Kn—norm of v introduced in Definition 4.4,

and of the Lz-norm of u.

THEOREM 6.2. There exist two constants k > 0 and B8 > 0, depending only on

the dimension n of the space and on the ellipticity constants A and A, such

that

v ko (r,R)BV(R) + kivi2
(r) < ka(r,R)FV(R) + ki “Kn(BR)

for every 0 < r <R < RO' [:1

The term V(R) 1in the inequality above is estimated by the following

theorem

THEOREM 6.3 For every 0 < q < 1 there exists a constant k > 0, depending

only on g, n, A, and A such that

V(R) <k (1/RD) [ u®dx + kiwi?
B n(
Ry 0

for every 0 <R qRO,

PROOF. Theorem 6.3 follows directly from Lemma 6.6, that will be proved later.

ul

The following theorem follows easily from Theorems 6.2 and 6.3.
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THEOREM 6.4. If Xo is a Wiener point of the measure u, then

Tim V(r) = 1im u(x) = u(xo) = 0.
r+0+ x+x0

PROOF. Suppose that x0 is a Wiener point of wu. Let us fix 0 <q < 1. By

Theorems 6.2 and 6.3, there exists two constants k > 0 and B > 0 such that

Br 1 2 2 2
V(r) < kw(r,R) ['—H [ ufdx + kil (B )] + kv (8.)
R BR n R0 n' 'R
0 "0
for every 0 <r <R <gR Since

0°

1im w(r,R) = 0,

r+0
+
we have
. 2
lTimsup V(r) < kuvﬂK (B.)
r+0+ n' R

for every 0 < R < qRO. By (4.2) of Remark 4.5 we have

. 2
Tim nvl = 0,
R0, K, (Bg)
hence
lim v(r) = 0.
r-+0
+

Since |u(x)]| < V(r)]’/2 a.e. in Br’ by convention (1.1) we have

lu(x)] < V(r‘)]'/2 Vx € B
hence

Tim u(x) = u(xO) = 0,

XX
0

which concludes the proof of the theorem. [:I
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Moreover, Theorems 6.2 and 6.3 also provide an estimate of the "u-energy"

G lr) = é IDu(x) [*dx + é u(x)%du, 0 <r < Ry
r r
In fact, we have

THEOREM 6.5. There exist two constants k > 0 and B > 0, depending only

on n, A and A, such that

n-2

&ulr) < ko(r,R)® CaPuE £y (2R) + ke 2

BorsBag) Ko (B2g)

for every 0 <r <R < Ro/2.

REMARK 6.6 In the special case yu = o, Theorem 6.5 gives an estimate of

the "energy"
i(r) = |Du|2dx, 0<r <Ry,
B
r
namely
rn—2 R n 1-n
é(r) < k&(2R) AP (ENB o 5.0) exp(-8 I cap(E Bp,sz)p dp)
2R*74R
-2 2
+ kr"7E
Kn(BZR)
for every 0 <r <R < RO/Z, see also [10], section 5. [:1

PROOF of Theorem 6.5. By Theorem 6.3 and Poincare inequality of Theorem 3.13,

we have

1 2
V(R) < k (2R) + knwu .
cap (BopsByp) by Ky (B2p)

On the other hand, we have

v(r) > kr2”1éu(r)

Therefore Theorem 6.5 follows immediately from Theorem 6.2. [:1
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LEMMA 6.7 For every 0 < q < 1 there exist a constant k > 0, depending only

on d, n, A, and A such that

sup |u| < k( —%- / uzdx)]/2 + kvl (g )
BqR R BR—BqR n R
for every 0 <R < RO'

PROOF. Let 0 <R <Ry, s=24%1 ¢.9%x2 . L-9g, and 1et G be

the Green function for the Dirichlet problem in BR relative to the operator

L. For every x ¢ BtR we define

w(x) = é G(y,x)d|v|(y).

tR
By (1.4) and (1.5) there exists a constant Cy > 0 such that
(x) <2
0 < w(x) < vl
"X Kn(BR)
for every x ¢ B.p- Since vl € H'l(BtR) (see Theorem 4.9) we have w ¢
1
H (BtR) and

a(w,v) = [ vd|v|
BtR
for every v ¢ Hé(BtR) (see 1.4). By Proposition 2.6 we have

a(ful,v) <[ vd|v|

tR
1 . : B
for every v ¢ HO(BtR) with v >0 a.e. in Bipe lLet z = lul - w. Then
1
z e H'(B,p) and
a(z,v) <0
1

for every v ¢ HO(BtR) with v » 0 a.e. in BtR’ therefore z 1is a local sub-

solution of the operator L in Bip+ By the maximum principle (see [12],

Theorem 3.6) we have
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sup z < sup z.
BSR aBsR

By the local estimates for subsolutions of elliptic operators (see [12], Theorem

5.1), there exists a constant k > 0 such that for every y e aBSR we have

sup z < k(.—% / |z|2dx)LQ.
B(y) r’ Byn(y)

Since r = l—%_ﬂ R and Bzr(y) g:BtR - BqR for every y e BBSR, we obtain

sup z < k'( —% / |Z|2dx)b?,
Bsr R Bir-Bgr
where k' = k6"/2(1 - q)'"/z, hence

sup |u| < sup z + sup w <
B B
qR ar

< k'(-—% [ (lu] - w)zdx)l/2 + sup w <

Brr-Bgr BiR

< k'(-—% / uzdx)l/2 + (1 + k')sup w <
R Bp-Byr Bir

< k'(-—-l f uzdx)l/2 + (1 + k')-E% (N1}

R" B-B Ky (R)”

qR n

which is the estimate to be proved. [:I

LEMMA 6.8 For every 0 < g <1 there exists a constant k > 0, depending only

on g, n, x, and A such that

1 2 2

for every 0 < R ¢ RO'
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PROOF. We consider only the case n » 3, the case n = 2 being analogous. Let

+ 2
0 <R« Rgs s = Eﬂ_%_l , and t = 9—3—— . For every y e BR let ¢ = G(+,y)

be the Green function with singularity at y for the Dirichlet problem in BR

relative to the operator L, and let Gﬁ, p > 0, be the corresponding approxi-

mate Green function (see 1.4). Let 1 e Cy(B,p) with 0 <t <1 in Biro

=1 1in BsR’ and

6 :
(6.2) Dt | S{tr=—gr " Bire

X
. _ 2 0 ) 1 )
For every 0 < p < gqR we define Vo = UTG . Since u e H (Bypg) L (Bip) by

X

0 1 00 1 .
Lemma 6.5 and Gp e H iBtR N (BtR)’ we have V, = H (Bip). Since
u e LZ(B

tR,u) and Tsz is bounded in BtR’ we have Vo € LZ(BtR,u). Since

t has compact support in BtR’ the function vp has compact support in BtR'

Therefore we can use v, as test function for equation (6.1). From condition
(ii) of Definition 2.1 we obtain
n X X X
0 0 0
é L} aijjuDi(ursz )Jdx + é UZTZGp du = | ut?G_ " dv,
tr 1,371 tR B

which we rewrite as

(6.3) Il + 12 + I3 + 14 = 15
where
n 2 XO
Il = [i X-_-laiijuD.iU]T Gp dx,
tR 1Y
n XO
Iz = Zé [‘ z aiijUDiT]UTGp dX,

tR 153%1

n X0, 2
13 = é [_ Z_ aiijUDiGp Jut©dx,
tR 1,31
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The term I1 is easily estimated from below by the ellipticity condition:
(6.4) A g IDu|? <2 de <1

The term 12 can be estimated in absolute value from above by the bounded-

ness of the coefficients and Young's inequality:

X
(6.5) 1,0 <20 a [ [oul|Dt||u<6 Odx <
B, ,-B P
tR “sR

<en A [ |bu|t G dx +—

2 2 0 nA f
€
tR7BsR BirBsr

107 |2u G “04x

where ¢ > 0 1is to be chosen later.

The term I3 can be rewritten as

(6.6) I3 = I31 + 132,
where
1 22 x0
I = é L § 1aUDJ(-g u”t")D4G “dx
tR °?
and

n
l3p=- ) [ ] a6 °]u xdx.
2775 Ty5e0H
tR sJ=

The term 131 is evaluated by taking the definition of GpO into account
(see 1.4):
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(6.7) I3 = 8,17 [ 5 u?cPax > 0.

The term 132 can be estimated in absolute value from above by

X
0
(6.8) 3o <na [ [De[[0G, |u®edx <
tR'BsR
2 2 ennA 02 2 2
< 2%% / [Dt|“u”dx +.Eﬂ%~ f lDGD |“u” 17 dx,
Bir-Bsr Bir-Bsr

where n > 0 is to be chosen later.

In order to estimate the right hand side of (6.8) we rely on the following

lemma, proved for example in [11], Lemma 6.2.

LEMMA 6.9 For every 0 <p <r <R and every v ¢ Hé(BR)(\ Lm(BR), such that

v =0 a.e. in Br’ we have

X X
0,22 2, A \2 0,2 2
é DG "% dx < 2n°( 2 ) é |G, [ [Dv|“dx. 1

R R

In order to apply Lemma 6.9, we introduce a function ¢ e CB(BR) such that

0<o<1l in BR, =1 1n Bir - BsR’ g =0 1in BqR and

6 .
(6-9) lDOl (-(T—_—q)-R- mn BtR-

We now apply Lemma 6.9 with v = utg and r = gR and we obtain

X X
(6.10) [ IDGOO|2u212dx <2’ [ |69

I}
Byr-Bsr Bir-Bgr

12|D(uro)|2dx <

< 6a® |Du|212|620(2dx +
Ber-Bgr
X
#6a® [ (|pr]* + |po|?)u?(6 0 [2ax,
BtR'BqR
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where g = ﬂ% . Therefore, the term 132 can he estimated by (6.8) and (6.10)

as
2 2
(6.11) L3] < 5% g Ly Prlfulax
tR™"sR
X
3 2 2,70
+ 3ena’) / [Du |1 'Gp ‘de N
BtR'BqR «
: 02
+ 3ena’x [ ([pe|® + Do [*)u” (6" [*dx.
Ber-Bgr
The term 15 can be estimated in absolute value from above
X0
(6.12) 15| < sup |ul f G, dlv].
Ber tR
In order to estimate the right hand side of (6.12), we introduce the
function
wiy) = [ G(x,y)d|v[(x).
Ber
Since |v|B belongs to H'l(BR), we have that w e Hé(BR) and
tR
n
(6.13) g L 2_ aiijwDiv]dx = é vd |v |
R 1.0=1 tR
X0
for every v ¢ Hl(BR) (see 1.4). By putting v = Gp in (6.13), and by taking

X
the definition of Gpo into account (see 1.4), we obtain

X
0 -
(6.14) [ 8, dlv] = (8,7t [ w(y)dy -
B
tR p

|
B

[IB, 17! [ G(x,y)dyTd v (x).
tR B,

By (1.4) we have
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c
(6.15) G(x,y) <A—§ [x - y|2—n

for every «x,y ¢ BtR' Since y + |x - y|2—n is superharmonic, for every

X € BtR we have

c c
-1 2 -1 _ y12-n 2 _ 2-n
(6.16) |Bp| é G(x,y)dy < - pr[ é [x - y|“"dy <‘—X.|x Xgl“7"s
P P

From (6.12), (6.14), (6.16) we obtain

C
(6.17) 1g] < == sup lu| [ |x - X012 M| (x) <
Ber Ber
c
<-—% i sup |ul.
K7 (Bp) Bip

From (6.3), (6.4), (6.5), (6.6), (6.7), (6.11), and (6.17) we obtain

estimate:

X X
A f |l)u|zTZGpOdX +f UZTZGpOdu <
Ber Byr
X X
< ela [ |Du|2rsz0dx +-5§ [ Dt usz dx +
Ber-Bsp Btr-Bsp
2 2 3 2 2,..%0
+ %2— [ IDt|%udx + 3ena’a J  |bul®t”|G
€Ng B B, ,-B e
tR™"sR tR™"qR
3 2 2, 2.%0 2
+ 3ena’x [ ([D]|° + [Do|%)u |Gp |“dx +
BtR'BqR
+ — lvl sup |uf.
A Kn(BR) BtR

We pass to the limit in this inequality as p » 0+ and we obtain

the
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X X
A [ pul?e% Qax + [ u?%6 Odu <

Ber Btr
X
< eda [ |Du|2 2G OdX + == f |D‘r|2uzG de +
B, p-B € B.p-B
tR™"sR tR™"sR
(6.18) X X
+ 5 [ Dt Puldx + 3ea’a [ bul®P 6 O(ng %)ax +
Zeng g B, -8
tR "SR tR “sR
X X
+ 3’y [ (Ipr)? + Dol?)u2e O(n6 O)dx +
B,,-B
tR R
c q
+ — (vl
A K (B,)
n* R BtR
By (6.15), for every x ¢ BtR - BqR we have
X c
G O(X) <_g |x - X I2-n <_2_ q2-nR2-n,
A 0
hence, by choosing
-25n-
n = %_'qn Rn 2
2
we have
X0
nG " <1 on BtR - BqR'
By taking (6.2) and (6.9) into account, from (6.18) we obtain
3 2 2. %0
A(l - ea - 3ea’) é |Du| T G dX + f u“t G dp <
tR tR
c
< (.ééﬁ + 216ea3)c q2-n(1 - Q)—z L / u?dx +-—§ (Y]] sup |u |
€ 2 RT 8.8 » UK (BR) g
R™"gR tR

By choosing e = [2a(1 + 3a2)]‘1 we obtain

X X
(6.19) %. [ |Du | %G Oax + / u?G Odu <
BqR BqR
: c
< 648 a“czqz'”(l - q)‘z._l | u?dx +-—§ Tl
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By (1.4) there exists a constant ¢y > 0 such that
X €
0 1 2-n
G " (x) > — Ix - xg|

for every x ¢ BqR’ therefore by (6.19) there exists a constant k > 0 such

that
(6.20) / IDu|?|x - xolz'ndx +f u2|x - x0|2'”du <
PaR Bqr
< k._% [ uPdx + kituil, (By) SUP lul
R™ Bp-Bgr nRY Beg

By Lemma 6.7, with q = t, there exists a constant ¢ > 0 such that

1
(6.21) sup |u| < c(._l uZdx 72 ¢ civl
K
R B,-B n(Bg)
tR R™7tR

hence
(6.22) sup u? < 2c? L / udx + 2¢? nvni By *

Bor R" By-B, o n(Br)

By adding (6.20) and (6.22), and by using (6.21) to estimate the right hand
side of (6.20) we obtain

V(qR) < (k + 2c2) 1 / u?dx + (2c2 + kc)uvui gyt
R" Bp-Byg n (BR)

1 2.\
+ kcnvuKn(BR)(-—— [ ufdx) ¢ <

n
R BR-BqR

2, kc 1 2 2 3 2
< (k + 2 +=5) i BR{B Ru dx + (2¢° + 5 kc)uvuKn(B
q

which is the estimate to be proved. [:I

bl

R)

We now state a lemma which reproduces an intergration argument from [9].

For a proof of this lemma, see [4] or [11].
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LEMMA 6.10 Let R>0,0<qg<1l, 0<r <gR. Let vy: [r,R] »[0,1] be a
measurable function and let n: [r,R] » [0,+<[ be a non decreasing function.

Suppose that there exists a constant k > 0 such that

for every rq'1 < p < R. Then
R d
n(r) < cn(R) exp(-8 [ v(p) =),
r

k 1
1+k [loggq

where ¢ = exp( T—éfi-) and B =

PROOF OF THEOREM 6.2 We consider only the case n > 3, the case n = 2 being

analogous. Let us fix 0<q <1 and 0<r <R <R Let us consider first

0.
the case r < gR. By Lemma 6.8 there exists a constant k0 > 0 such that
2 2
(6.23) V(gp) < ky —L [ uldx + k,Hvl .
0 B g 0 Kn(Bp)

P grp

for every 0 < p < R. Suppose that

(6.24) v(r) > ZkOnvuz (B.)*
n* R

Since V(p) and uvné (8 ) are non decreasing functions of p we have
n" p

K Ivi2 < V(qe)
0" K, (B ) 2 T\ae

for every rq - < p < R. Therefore from (6.23) we obtain

(6.25) V(ge) < 2y — f  uldx

for every rg™" < p < R.
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By Theorem 3.13 (Poincare inequality) there exists a constant k > 0 such

that

1 2 k
(6.26) — [ ufdx <

2 2
: G g Ioul?x + 5 [; udul.
oo BBy, cap, (B, - By o»Bp,) "B 5By, o qp

q

For every 0 < p < R0 we define

B -B_ ,B
s () = Pute " taofa)
q cap(5, 8, )

Since there exists a constant k > 0 such that

- kpn-2

s

B
cap(Bp, zp)

by (6.26) there exists a constant k > 0 such that

6.27 1 2 Kk p2" 2 2
( . ) —_— f u-dx (W[ I IDUI dx + J’ u du] <
p B -B q B -B B -B
p Qp P qp P qp
k 2 2-n 2 2-n
ST Lo IoulThx - oxgl™ Tdx + [ uTx - x| dud.
p Qe P dp

By (6.25) and (6.27) there exists a constant k > 0 such that

ks (p) V(ge) < [ |Du|2|x - x0|2—ndx + u2|x - x0|2_ndu.
q B B B -

o qp P qe
By adding V(qp) to both sides we obtain
(1 + qu(p))V(qp) < V(p)

for every rq'1 < p <R.

We now apply Lemma 6.10 with n(p) = V(p) and v(p) = Gq(p), and we obtain

that
R

(6.28) V(r) < cV(R) exp(-a [ 8§ (p) 93~)
r q e
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where ¢ and a are positive constants which depends only on n, q, A and

If condition (6.24) is not satisfied, then

(6.29) v(r) < zkouvuz (5.)"
n' R

In any case, from (6.28) or (6.29) we obtain the estimate

R
(6.30) V(r) < cV(R) exp(-a | 8 (o) dey 2k vl

! K (Be)"

©

In order to replace aq(p) with &8(p) we use the following Temma.

LEMMA 6.11. For every 0 <r <R <R, and every 0 < q <1 we have

0

dp

§(p) =5 -

R
[ 8 () 225 (1 q"F
r

=

PROOF. By Proposition 3.11 (c) and (d) we have

capu(Bp,sz) < cap (Bq ,sz) + cap,, (B qp 2p) <
)+cap(B- ,B, )

< cap (B q0°820

uoqe’ 2qp

for every r < p <R. By dividing by cap(Bp,sz), and by remarking that

B _ n-2
cap( qp’Bqu) q cap(B B2 )
we obtain
n-2
8(p) < q “8(qp) + Gq(p)

for every r < p <R, hence

R R R

[ 8(e) 22 < "2 [ 5(qp) L2 4 [ s (o) L0 -

r e r e a
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Since 0 < &(p) <1, we obtain

R - R r
d -2 d -2 d
/ Gq(p)-—% >(1-4q"9 5(9)-—% - "0 s(e) 25
r r qr
n-2 R dp n-1
<(1-a7% [ sp) =5 -qa "|logal,
P
which is the inequality to be proved. [:I

PROOF OF THEOREM 6.2: CONCLUSION. If r < gR, from (6.30) and from Lemma 6.11

we obtain
(6.31) V(r) < k,V(R)exp(-8 ? 8(p) 9—-) + 2k 112
. 1 PR=f 9Pl =g 0K (Bp)
n-2 n-2
where k1 =c exp(q “|log q|) and B =a(l -q "). If gR <r <R, then
[ 8(0) L < | 8(p) 9 = t0g ¢
r qR
hence
R .
exp(-8 | 8(p) 92y 5 o
, P

Therefore from V(r) < V(R) it follows that

-8 R d
(6.32) V(r) <q "V(R) exp (-8B [ &(p)
r

kel

).

ol

In any case from (6.31) or (6.32) we obtain the estimate

v(r) < kw(r,R)BV(R) + kv
v Kn(BR)

= -B
where k max{kl,q ,2k0}. [:I
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