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INEQUALITIES BETWEEN DIRICHLET AND NEUMANN EIGENVALUES

by

Howard A. Levine & Hans F. Weinberger

To Jim Serrin on his sixtieth birthday.



1. Introduction

The purpose of this paper is to derive some inequalities of the form
(1.1) le+R < Ak fOl" k = 1,2,'00
between the eigenvalues Al <Xy < ... of the Dirichlet problem

Au + Au

1]
o
-
]
o
=

(1.2)
u=20 on aD

and the eigenvalues 0 = H{ < pp < ... of the Neumann problem

AV + puv =0 in D
(1.3)

v 0 on 3D

av

for some classes of N-dimensional domains D. Here 93/3v denotes the outward
normal derivative.

It is an immediate consequence of the variational formulation of the eigen-

value problems that

He € N for k 1,2... .

POLYA [6] proved that
U2 < )\1.

PAYNE [5] showed that when N =2 and D is a convex domain whose boundary

D is twice continuously differentiable,

Uk+2 < )\k for k = 1,2,-.. .

Convexity in two dimensions is characterized by the fact that the curvature,
which is a scalar defined on the boundary 3D, is nonnegative. In higher dimen-
sions there are N - 1 principal curvatures at each point of 3D, and hence

there are a number of possible generalizations of PAYNE'S result.



In Section 2 we shall derive a generalization of the form (1.1) for each

integer R on the interval [1,N] under conditions which depend upon the prin-
cipal curvatures of 8D. The most important of these results is the fact that

the inequality

Heen € A for k= 1,2,...

is valid for all smooth bounded convex domains.

We also obtain the inequality
Hepl < A for k =1,2,...

when 3D has nonnegative mean curvature, which is a recent result of AVILES [1].
In Section 3 we show that the conditions on the principal curvatures can be
stated in terms of their symmetric functions, which are the coefficients of the
characteristic polynomial of the curvature matrix. A simpler but more restric-
tive set of such conditions is also presented.
The above results are derived under the hypothesis that the boundary aD
has Holder continuous second derivatives. In Section 4 we establish a semicon-
tinuity result for the Neumann eigenvalues, which allows us to obtain the
nonstrict version of the inequality (1.1) for some classes of domains whose
boundary is not smooth.

In particular, we shall establish the inequality

N € N for k= 1,2,...

for all bounded convex domains.



2. Inequalities for smooth domains

If D is a bounded domain in RN with smooth boundary, the curvature
matrix of a point P of the boundary 3D 1is defined as follows: Let v(x) be
a continuously differentiable vector field defined in a neighborhood of P with

the property that when x T1ies on 3D, v is an outward unit normal vector to

a0 at x. The matrix

N
(2.1) Kij = Vi, —k21 i,k kY

evaluated at x 1in called the curvature matrix of of 90 at x. It has the

eigenvalue 0 with the eigenvector v. The N - 1 other eigenvalues of Kij

are called the principal curvatures

K1<K2<... <I<N_1

of 3D at x. (The symbol i denotes differentiation with respect to xj.)

It is easy to see that the matrix K is symmetric.

1J
Our results are based on the following proposition:

PROPOSITION 2.1 Let D be a bounded domain whose boundary 3D is of

class CZ’“ for some a e (0,1). If for some integer R e [1,N] the principal

curvatures of 3D at each of its points have the property that the sum of any

N -R+ 1 of the set of N numbers

N-1

{KysKoyeoesky 15 ) Ki}
1272 N-1 51 N

(2.2)

is nonnegative, then

(2.3) metr < A for ko= 1,2,...



Proof. We recall that [3, p. 399] if ¢ is continuously differentiable

and
(2.4) [$v;dx =0 for i=1,2,...,k +R -1,

where Vis Voseess is an orthonormal set of eigenfunctions of (1.3)

corresponding to the Neumann eigenvalues 0 = My < My € e, then

2 2
(2.5) glv¢| dx > e p £¢ dx.

We consider the set of functions

k N
(2.6) 6= ) au;, + ) bu
j=1 1 pap PP

where {ul’UZ""} is an orthonormal set of eigenfunctions of (1.2)

corresponding to the Dirichlet eigenvalues 0 = A, < A, < ... . Because the

1 ?
u; are orthonormal and satisfy (1.2), integration by parts shows that

ow

2 2
@7 [1velax - [ dax - 3v 45

where we have defined

g
W = bu
p=1 P k.P
The sum on the right of (2.7) is clearly nonpositive. In order to see

whether the integral is also nonpositive, we note that

N
ow
(2.8) =5 §=1 hquk,qr‘vr

b

q
- ] 3
=3 bq(\)r 3?; - vq'%Y: )uk,r - AUy ) bqvq.



Since Up vanishes on the boundary, the last term is zero and
auk
(2.9) Uk r = \)r ‘8_\)_‘ for 2 = 1,.-.,No

Because the directional derivatives which appear in (2.8) are in directions

tangent to 3D, we can apply them to both sides of (2.9). Then (2.8) yields

W= F by b (v S - v 2 ) (v =
W pg,r=1 PPAV AT g G K T Ay
or
w _ 1 9 _ ., 3 2
L Tl ) bpPq (Vr *, Yq ax, Yvpeel v 1)
1 2 3 3
(2-10) --2-2 bpbq|\7uk| [Vr(vr'ﬁ- Vq—aj(‘r“)\)p
-V (\) 3___ -\ 3

r —"—)\)]0
p axq q axr r

We see from the definition (2.1) of the curvature matrix K that since

|v| =1 on aD,

3 3 3 3 )
Dol = s )% 7 e B 7 Y w ) T K e

The divergence theorem shows that the integral over 3D of the first sum in

(2.10) is zero. Thus

N
(2.11) fwMgs=-L 7 b [ J (x)dS
2 v 7 p.a P Pq
where
auk 2
2.12 J o= (=X
(2.12) pg = (3 Kog * (IKpp)vpvg -

We recall that the vector v 1lies in the null space of the curvature

matrix. It follows that Jpq has the eigenvalues
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2 auk 2 auk 2 N-1

Kl,...,(W) KN_l,(j\—)—) Yok}

auk
(2.13) {55 ) I o«
r=1

We rotate the x-coordinates so that the matrix

2.14 J_d
( ) aé pqs

on the right of (2.8) is diagonal, with its diagonal elements arranged in non-
decreasing order. By the first monotonicity principle [8, p. 58] the ordered

eigenvalues of the (N - R + 1) x (N -R + 1) matrix J(x) defined by

Jas(x) = Jas(x) for o, =1,...,N -R +1

are upper bounds for the N - R + 1 lowest eigenvalues of the matrix J. We add
these inequalities and use the hypothesis that the sum of any N - R + 1 of the
numbers (2.2) is nonnegative to see that

_ N-R+1
(2.15) tr(J) = ¥ J_ (x) » 0.

p:]_ pp
Since this is true at each boundary point, we have
N-R+1

(2.16) Y ¢J dS > 0.

To show that this inequality is strict, we apply the Gauss-Bonnet formula

3%* kdS = WN_1
to the convex hull D* of D. Here
K = Kl e e KN_l

is the Gaussian curvature of 3D*.

It is easily seen that « =0 on 30" \\aD. Since the area wy_p Oof the
unit sphere is positive, there must be an open subset S of an* N a0 on which

k> 0. Since D* is convex, all the K; must be positive on S. We therefore



see from (2.12) and (2.16) that the inequality (2.16) is strict unless
auk/av =0 on S. Since also U = 0 on 3D and Au + Au = 0, the genera-
1ized maximum principle [7, p. 73] would then imply that u, =0 in a neigh-

borhood in D of S, and the analyticity of Uy in D would imply that

U, = 0. Since this would contradict the definition of an eigenfunction, we
conclude that equality cannot hold in (2.16). That is,

N-R+1

pzl 35 JppdS > 0.

This clearly implies that the largest of the terms in this sum if positive.
Because the elements of the diagonal matrix (2.14) appear in nondecreasing
order, we conclude that
(2.17) aé Jppds >0 for p=N-R+1, N-R+ 2,...,N.

We now choose the k + N numbers a; and bp so that they are not all

zero and that they satisfy the k + R - 1 conditions (2.4) and the N - R con-

ditions b1 = ... =Db

integral on the right of (2.7) is nonpositive. The sum on the right is also

N-R = 0. We then see from (2.11) and (2.17) that the

nonpositive. Thus we have
2 2
(2.18) [ 1ve|“dx < Ay [o dx.
D D

If ¢ = 0, equality holds, so that the integral in (2.7) must vanish,
which, in turn, implies that b = 0. Since the u; are orthonormal,
¢ = Xaiui = 0 would imply that a as well as b 1is zero, contrary to our

construction. Therefore ¢ = 0, and (2.5) and (2.18) imply that

(2.19) Merr € Age

Equality holds if and only if both (2.5) and (2.16) are equalities.



Equality in (2.5) is valid only if ¢ 1is an eigenfunction of the Neumann
problem, so that A¢ + Mgt = 0 in D and 3¢/3v =0 on 3N. As we have
already seen, equality in (2.18) implies that b = 0 so that ¢ =0 on aD.
As we showed in the derivation of (2.17), these conditions imply that ¢ = 0,
which contradicts what we proved above. Therefore equality cannot hold in

(2.19), and the statement (2.3) of the Proposition is proved.

There are two important cases in which the conditions of Proposition 2.1

are easily verified.

N

THEOREM 2.1. Let D be a convex domain in R whose boundary has Holder

continuous second derivatives. Then the Neumann and Dirichlet eigenvalues

satisfy the inequalities

(2020) uk+N < )\k fOl" k = 1,2,000

Proof. Since D 1is convex, all the principal curvatures k; are non-
negative at each boundary point. Hence each of the numbers in the set (2.2) is
nonnegative, so that the hypotheses of Proposition 2.1 hold with R = N. Thus

Proposition 2.1 implies (2.20).

The sum of the N numbers in (2.2) is

N-1

2 1 w5 = 2N - DH,

where H 1is called the mean curvature. Hence for R =1 Proposition 2.1

yields a result which is contained in a recent paper of AVILES [1].

THEOREM 2.2 (AVILES). Let the boundary aD of the domain D be of class

c2:%  and let its mean curvature be nonnegative at all its points. Then

(2.21) Mep < A for ko=1,2,... .
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The conditions of Proposition 2.1 can also be simplified for other values

of R.

THEOREM 2.3. If the inequalities

N-1
(2.22) 2 ) % -x; >0 for j =1,...,N-1
i=1 1

are satisfied and 9D e C2°%, then

(2.23) Moo <A for ko= 1,2,...

Proof. By adding the inequalities (2.22) we find that
N-1
(2.24) Y k. » 0.
i=1
The left-hand side of the latter inequality is the sum of the first N - 1 ele-
ments of the set (2.2). The left-hand side of (2.22) is the sum of all the ele-
ments of (2.2) except for Ky Thus (2.22) implies the hypotheses of

Proposition 2.1 with R = 2, and the Theorem is proved.

THEOREM 2.4. If R > 2, if every sum of N - R + 1 members of the set

(2.25) {Kl,Kz,...,KN_l}
is nonnegative, and if aD e C2*>%, then
(2.26) b <A for ko= 1,2,... .

Proof. Since Kl € Kp S eee < Kyl the above condition is equivalent to

N-R+1
(2.27) ) ki > 0.
i=1

At least one of the terms in the sum must be nonnegative, so that

0 € < K

N-R+1 N-R+2 € o0 < Ky_pe
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Therefore

Nil
Ki >
s8Nl
and the set (2.2) is ordered. Thus the hypotheses of Proposition 2.1 follow

from (2.27). This proves the Theorem.

REMARK: It is easily seen that each of the Theorems 2.1 through 2.4

implies Proposition 2.1 for the corresponding values of R.
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3. Conditions involving curvature invariants

The eigenvalues of the curvature matrix Kij are the zeros of the charac-

teristic polynomial

N-1
(-l)ksk(Kl,ooo,KN_I)AN-ko

He~— i

k=0

Si(Kyseeeykyo) is the kth elementary symmetric function, which is defined as
the sum of all products of k distinct elements of the set {Kl,...,KN_l}. By
definition, Sy(ky,eee,k,_q) = 1.

At least in principle, these symmetric functions can be found from the
equation 3.1 without computing the eigenvalues Ky e The hypotheses of Theorem

2.1 are easily seen to be equivalent to

(3-2) Sz(Kl,..o,KN_l) >0 for L = 1,-..,N-1.
The condition of Theorem 2.2 is, of course, just

(3.3) Sl(Kl,.-o,KN_l) > 0.
We may restate Theorem 2.3 in a similar fashion.
THEOREM 3.1. Let oD e C2*%. If (3.2) is valid, then

(3.4) Meeny < A for ko= 1,2,...

If (3.3) is valid, then

o) bep <A for ko= 1,2,
If
N-1-
N-1-2¢ N - 1 - L
(3.6 1 (1) N L 8 S (epeei)028) (g ) TV 5 0,

fOf' j = O,'OO,N-Z,
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then

Het2 < )\k for k =1,2,... .

Proof. We have already shown that (3.2) and (3.3) imply (3.4) and (3.5),
respectively.
The conditions of Theorem 2.3 are that the (N - 1)x(N - 1) matrix whose

eigenvalues are the left-hand sides of 251(K,...,KN_1) - k; has nonnegative

J
eigenvalues. This is again equivalent to the condition that the coefficients of
its characteristic polynomial have alternating signs. If is easily seen that
this characteristic polynomial can be obtained from the characteristic polyno-
mial of the (N - 1)x(N - 1) matrix with eigenvalues Ky by replacing the
variable A by Zsl(Kl,...,KN_l) - X. The characteristic polynomial of the

latter matrix is just (3.1) divided by A. In this way we obtain the conditions

(3.6) and the Theorem is proved.

For other values of R we can use similar reasoning. The conditions of
Theorem 2.4 are equivalent to the nonnegativity of the symmetric functions of
N-1 et d
the ( R - 2 ) sums of N - R + 1 distinct elements of {Kl,...,KN_l}.
THEOREM 3.2. 1f R >3, aD e ¢>*%, and
N-R+1
(3.7) Sj( { izl Kzi: 21 < Ry < ees < 2N-R+1}) >0 for j =1,..4,(

then

‘-lk+R < Ak fOf‘ k = 1,2,00. L]

We remark that because the left hand sides of (3.7) are symmetric in the

K;, they can be written as polynomials in the elementary symmetric functions

Si(Kl,...,KN_l)o When R = 3, the sums are all of the form
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Sl(Kl,...,KN_l) - K5 and there are N - 1 of them. By a derivation like that
of (3.6) we find the following result:

THEOREM 3.3 If

N-1-j
(8.8) XJ(-l)N‘l"‘( N-1-2y g

J N-1-2- , 4
2=0

k(Kl,o.o,KN_l)[Sl(Kl,...,KN_l)]
fOf‘ j = 1,2,-00’N-2,

then

uk+3 < Ak fOF k = 1,2,000 .

We can now write down the conditions for the important case of 3 dimensions

in terms of the mean curvature H = (Kl + K2)/2 and the Gaussian curvature

K = K1Kpe We see that

(3.9) H>0
implies
(3010) uk+1 > Ak.

The conditions

(3.11) H>0, x>0
imply that
(3.12) Hee3 > Ao

Finally, the intermediate conditions

(3.13) H>0, 842 + « » 0

imply that
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It is easily seen from the proofs that for a fixed R, Theorem 3.1 or 3.2
is equivalent to Proposition 2.1. While it is therefore clear that the con-

ditions of Theorem 3.2 for a larger R imply those for a smaller R, the

number

R -2

of these conditions is not monotone in R.
We shall provide a partial remedy for this situation by establishing a
slightly weaker result in which the number of conditions increases with R. We

begin with the following algebraic lemma.

LEMMA 3.1 Suppose that for some (not necessarily ordered) set of numbers

Hyseoesny and some positive integer £ < v

(3.15) Sj(pl,...,uv) >0 for j=1,...,4%.

Then

(3.16) Sj(“l""’“v-l) >0 for j =1,...,2-1.
Proof. It is easily seen that

(3.17) Sj(”l""’“v) = Sj(”l"‘°’”v-1) + ”vsj—l(“l"°”“v-1)

where, as always we define SO(“I""’“v-l) = 1. By using this identity, we

find that
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Sj(”l,-oo,uv)Sj(UI,occ,uv_l) - Sj+1(u1,ooo,uv)sj_l(ul,.oo,uv_l)

- 2
= Sj(ul,...,uv_l) - Sj+1(u1,...,uv_l)Sj_l(Ul,.oo,Uv_l)

2

TGEI T )

+ { j(V - j = 1) 2

T+ D(v=-73) Sj(ul,---,uv_l)

- Sj+1(u1’...,uv-l)sj‘l(ul"'.’uv)}.

Newton's inequality [4, p. 104, Theo. 144] states that the term in braces is

nonnegative. Therefore

Sj(u19'°°auv)sj(U19'°°:uv_1) » Sj+1(u1,"°suv)sj_l(UI9"'3uv_l)

v 2
Py Sl ei)

We now see from the hypothesis (3.15) that if j < 2 -1 and if
Sj_l(ul,...,uv_l) 2 0, then Sj(ul""’uv—l) > 0. (Note that Sj(ul,...,uv) =

implies that Sj(“l""’“v—l) = 0.) Since Sp(uysecesny, 1) =1 > 0, the Lemma

is proved by induction.

THEOREM 3.4. If aD e C2»%, R > 3, and at each point of 3D

(3'18) Sj(Kl,ooo,KN_l) > 0 _f_q_r:_ j = l,ooo,R - 1,
then
(3.19) Mear < A for ko= 1,2,... .

Proof. Apply Lemma 3.1 R - 2 times to find that

Sl(Kl,oo.,KN_R+1) > 0.
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Since k; < ky < .o. € Ky, this give the conditions of Theorem 2.4, and the

Theorem is proved.

When R = 2 we find the following simpler result.

THEOREM 3.5. If 3D e C2»% and if

Si(Kyseeesky 1) 20

2
52(‘1’°""N-1) + Sl(Kl,...,KN_l) >0,

then

uk+2 < XK fOf‘ k = 1,2,-00

Proof. Clearly
N-1
Sl(Kl,...,KN_Z,iil Ki’KN-l) = 251(K1,...,KN_1) > N

while by (3.17) and (3.20)

2
Sz(Kl,..o,KN_z,XKi,KN_l) = Sl(Kl,.oo,KN_l) + Sl(Kl,o-o,KN_l) > 0.

Thus Lemma 3.1 shows that

SI(KI’.’.’KN-Z’zKi) > 0,

and the result follows from Theorem 2.3.

We note that when «; = -2, «, = ... = K _o = O,ky_; = 5, the conditions (3.6)

are satisfied while the conditions (3.20) are not, which shows that Theorem 3.4 is
strictly weaker than Theorem 3.1. Similarly, the example Kl = -2,

Ko = «ee = KR = 0, KN-R+1 = *°* = KNo1 = 3 shows that when 3 < R < N - 1, Theorem

3.3 is strictly weaker than Theorem 3.2.
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4. Extension to nonsmooth domains

We shall extend the inequalities (3.2) to more general domains by means of

a limiting process. We will have to give up the strictness of such inequalities

in the process.

We begin with an elementary lemma.

Lemma 4.1. If v is a ¢t function on [0,b] and 0 < a <b, then

+b

a 2 9 +b
(4.1) [ vt < 2b(coth a + 2n7°b)
a

(v?

+ v'z)dt.

O —

Proof. A standard variational argument shows that the maximum u of the

ratio of the integral on the left to the integral on the right is the largest

root of the equation
(4.2) (ol - D) Y2tan(u! - 1)Y2 = tanh a.
The well known estimates

2/m <sin p/p <1 for 0 < p < 7/2

show that

[1 - (2p/7)%]

By applying this inequality to (4.2) and solving for 1y, we find that

2b(1 + 20°%b tanh a)

> < 2b(coth a + 2w'2b),
(1 + 47~2b%)tanh a + 2b

u <

which yields the statement (4.1) of the Lemma.

As usual, we define the Minkowski distance d(A,B) between the two point

sets A and B to be the infinumum of numbers & such that every point of A
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is within distance &6 of B and every point of B 1is within distance § of A.

We shall impose the following conditions on the domain D:

CONDITION7?: The boundary 3D can be covered by a finite collection of

open sets Z = such that

a) For some 6 >0
U(Z,)) D{x: d(x,3D) < 6}
\Y]
h) Each L, fis the image of the cylinder By ; x (0,1), where Bn-1 is

the open unit ball in rN-1

, under an invertible differentiable mapping
x = vy (n,t) whose Jacobian is bounded above and below by positive num-

bers. (Here n € BN-l’ t e (0,1))

c) There is a continuous function g“ on BN_1 such that

(4.3)  DNZ, = {x=y"(nt): neBy ;,0<tc< g’(n)},
aD ﬂZv = {x = yUn,t): n e BN-l"t = gv(n)},

a <g’(n) < 8,
0 <o <B<l.
and
d) There is a positive constant s such that if x ¢ Zv\\ D, d(x,D)

is the Euclidean distance from x to D, and x = YY(n,t), then
t - g¥(n) < sd(x,D).

Our convergence results will be based on the following semicontinuity

lemma.
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LEMMA 4.2. Let the domain D satisfy the conditions]{. Let D

n=1,2,... be a sequence of domains, each of which satisfies a cone condition,

and such that

(4.4) D, DD

and

(4.5) Tim d(Dn,D) = 0.
n +o

(a4
=>
(4]

il ===

If u.(D ) is the jth Neumann eigenvalue of Dn and “j(D) i

corresponding ejgenvalue of D, then

(4.6) 1im inf p

n +» o

J(B) 3 (D).

Proof. We see from (4.3a) and (4.5) that when n 1is sufficiently large, Dn

1ies in the union of D and the Zv. For such an n we shall derive a bound

for the difference in the integrals of wz over D and over Dn for any

smooth function defined on D~ in terms of the integral of wz + |pr|2 over D .

In order to do this we note that

[ Ve = Fo(y (t,n)) 1% dt dn
(D -D)NZ Y L(D =p)YNZ_]
(4 7) n \Y] n v
g (n)+r(n) \ )
<[ ], v(y“(t,n))7J dt dn.
BN-l g (n)

Since J 1is bounded above and r(n) < sd(Dn,D) by (4.3d), Lemma 4.1 shows that

there is a constant c1 such that
g (n)+r(n) g,
N vadt < cd(D,0) [ (¥7 + yy)dt.
g (n) 0
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We substitute this in (4.7), transform back to the x-coordinates, and use the

fact that J has a positive lower bound to see that there is a constant

€2
such that
[ Pk <cpd( D) [ (b7 + |velP)dx.
(0. -D)NZ, D, AZ,
We add these inequalities to find that
(4.8) [ vdx - [ yidx <cd(D D) [ (67 + (el P)dx,
Dn D Dn

where c¢ = Lc2 with L the number of sets Zv.
Let wl,...,w2 be a set of infinitely differentiable functions which are
orthogonal on D, and which approximate the first ¢ Neumann eigenfunctions of

D so well that for any linear combination

n
3
(4.9) ¥(x) = ] cowg(x)
i
satisfies
(4.10) [{ 7l %dx < (uy(0,) + ) [ v,
D
n n

Select the constants in (4.9) so that they are not all zero and
f\pV_idX:O, 1’ = 1,.00,2"1.
Then

(4.11) w (D) vidx < [ |vy|%dx.
o D

We observe that

(4.12) [ 17l < [ 19l < (y(0) + €) [ ¥,
D n Dn



while by (4.8) and (4.10)

(4.13) [ Vg > (1= o001 + (D)) + <] [ e,
n

Since the Dirichlet eigenvalue AQ(D) decreases as D grows [3, p. 409,
Theo. 3], we see that

) <A (D) <A

uy(Dy 2'"n g

D).

Thus, if n s so large that cd(Dn,D)[l + AK(D) + €] <1, we see from (4.11),
(4.12), and (4.13) that

) < “z(Dn) t e
) T=cd(D_ D)L + A,(D) + el

Since this is true for any positive e, we have

u, (D)
10) € T, T+ R, (00T

We now let n » « through a sequence to obtain the statement (4.6) of the

Lemma.

REMARKS 1. If D 1is bounded and convex and 0 is any of its points,
then a closed ball of some radius R1 centered at 0 1lies in D and an open
ball of radius R2 centered at 0 contains D. If (r,w) are polar coor-
dinates centered at 0, we can divide the annular region between the two balls
into finitely many "cylinders" with the coordinates t = (r - Rl)/(R? - Rl) and

n = n{w). Thus any bounded convex domain satisfies condition 71.

2. If D and Dn are any convex domains with d(Dn,D) small, there are

dilations of D with constants near 1, one of which takes T 1inside Dn while

the other makes D contain Dn‘ The above proof then shows that for bounded
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convex domains d(Dn,D) + 0 implies that

D) »u

(P o(D).

V]

3. We recall [3, p. 423, Theo. 11] that the Dirichlet eigenvalues are con-

tinuous in the sense that d(Dn,D) + 0 implies that AR(Dn) > AQ(D).
We can now obtain 1imiting forms of Proposition 2.1
THEOREM 4.1 Let the domain D satisfy the condition and suppose that

there is a sequence of domains D~ D such that each D satisfies the

hypotheses of Proposition 2.1, and let

1im d(D_,D) = 0.

n +o

Then the eigenvalues of D satisfy the inequalities

MR € M for k =1,2,000
Proof. Apply lemma 4.2 to the inequalities
“k+R(Dn) < Ak(Dn) < Ak(D).
A theorem of MINKOWSKI [2, p. 35ff.] states that a convex domain D can be

approximated in the sense of set distance by smooth convex domains Dn D.

This and Remark 1 after Lemma 4.2 yield the following result:

THEOREM 4.2: If D 1is any nonempty bounded convex domain, then

(4.14) Mean € A for k =1,2,... .

It is not known whether there is a convex domain in N > 1 dimensions for

which equality holds in (4.14).

It is easy to find nonconvex domains for which the condition chan he



-23-

verified, but it is difficult to determine whether a nonconvex domain is the 1imit

of a sequence of larger domains which satisfy the conditions of Proposition 2.1

for some R < N. We present one class of domains where this can be done.

Let N

3 and let D be obtained by rotating a two-dimensional domain
D0 about a coplanar line which does not intersect the closure of Dg. Suppose
that the boundary of DO is of class Cz’a with the exception of a subset of
the interior of aD M aD™ where D* s the convex hull of D. By the
Minkowski construction we construct a smooth convex domain Dy DD, which is
arbitrarily close to the convex hull DS of DO‘ We then construct a convex
domain Da with smooth boundary such that 306 coincides with 8D, on the
part of 3N, M a*  near the closure of ano‘\an*, and with 3Dy near the set

where BDO is not smooth. Let D." be the subdomain of D; whose boundary

0 0
consists of aDO\\aDB and a part of aDa. Let D"' be obtained by rotating
Db". Then D"' contains and is arbitrarily close to D, and it has nonnegative

mean curvature if this is true of aD\3D*. It is easily verified that D
y

satisfies Condition T\ .

The same reasoning also works when D is obtained by rotating D0 about a

1ine of symmetry.

We conclude from Theorem 4.1 that if D is g_domain 9j_revo1ution and if

3D  aD* is smooth and has nonnegative mean curvature, then

uk+1 < Ak fOF k = 1,2,0'0 .

The same result follows for an N-dimensional domain which is obtained by
rotating a two-dimensional domain about an N-2-dimensional hyperplane.

It would be interesting to find a larger class of domains to which Theorem
4.1 can be applied.

It was observed by Joseph Hersch that if a domain D' s obtained from a

domain D by removing a set of measure zero, then Ak(D‘) > xk(D) while
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uk(D') < uk(D). Therefore if D satisfies the conditions of Proposition 2.1,

then the eigenvalues of D' still satisfy the inequalities (2.3). Since the
boundary of D' may not even have nonnegative mean curvature, this observation
makes one wonder whether the inequalities (2.3) are not, in fact true for all
domains.

However, numerical computation shows that ug < Ay for the two-dimensional

annular sector
D= {(r,0): 1 <r<2,0<86c< 3n/2}.

By Lemma 4.1 one can find smooth domains containing this D for which the same

inequality is valid. Thus the inequality (2.3) is not true for all smooth two-

dimensional domains.

Computation shows that Mg < Ay <y for a disc and that Mg < A < oug
for a three-dimensional ball. Thus Mtk cannot be replaced by MN+k+1 in the
inequality (2.20). On'the other hand, one can show that there are constants'

a >0 and ¢ > 1 such that for the N-ball
< Al‘

u
acN

This suggests that perhaps (2.20) can be replaced by a better inequality of the

form

Mo(N,k) < Ak

for convex N-dimensional domains.
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