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EXISTENCE AND ASYMPTOTIC BEHAVIOR FOR STRONG SOLUTIONS
OF THE NAVIER-STOKES EQUATIONS IN THE WHOLE SPACE

by
H. Beirao da Veiga
We shall consider the initial value problem for the non-stationary

Navier-Stokes equations in the whole space, namely

Vi - uav + (Ve V)v=Ff-v, in 10,7 xR",

V.v=0 , in J0,T[ x R",
(0.1) N
v = a(x) , in R,
Tim v(t,x) =0 , for t e ]0,T(,
|x | o+
where T ¢ ]0,+=], u 1is a positive constant, v' = 3v/5t, and
% BVJ.
((V L4 V)V)' = V' . j = 1,'00,”0
Vs Ty

The vector field v(t,x) and the scalar field p(t,x) are unknowns. The
initial velocity a(x) and the external forces f(t,x) are given. The
pressure is determined by the condition 1im p(t,x) = 0, as |[x| + +=.

Moreover,
(0.2) v.f=0 a.e. in ]0,T(, and Vv « a = 0.

The first condition (0.2) is not strictly necessary.

Our main concern will be the asymptotic behaviour of the solutions, and the

core of the paper are the a priori estimates in sections 1 and 3. Appendices,

and proofs concerning the local existence of the solutions in section 2
(estimates of section 1, apart), are presented mainly for the sake of complete-
ness. The reader acquainted with Navier-Stokes equations should skip Section 2

and appendices, or do them by different methods.



By a solution of problem (0.1), we mean a divergence free vector v(t,x)

such that
T
[ JDv e o +uv e ap+(veVopev+feplddt =-[a ¢|t - gdxs
0

for every regular divergence free vector field ¢(t,x), with compact support

respect to the space variables, and such that ¢(T,x) = 0.

In section 1 (see theorem 1.5) we establish some basic a priori estimates
for the norm |v(t)|a in LYRM), and for the time existence T,s of the solu-
tion of (0.1).

In section 2, we assume that o > n and we state two existence theorems:

In theorem 2.1 we prove that if a ¢ L® and f ¢ LI(O,T;La), then there
exists a (unique) solution v e Cy ([0,T [; L% of (0.1), such that
Iv(t)|, <y(t), ¥t e [0,T [. Here, Cx(L0,T[; L% denotes the space of the
weakly continuous functions on [O,Ta[ with values in L% Moreover, Ta is
defined as the time existence of the maximal solution y(t) of the o.d.e.

y' o= kyd + [f(t)],, with initial data y(0) = |a|,, k is a positive constant,
and q = (3a - n)/(a - n).

In theorem 2.2 we assume that a e LN\ L% and f ¢ LI(O,T;La(W Lz), and
we prove the existence of a (unique) solution v € C([O,Ta[; szﬁ L*), such that
IVt ], <y(t).

Since we are mainly interested on finite energy solutions (in view of the
results of section 3), we prove the strong continuity only in theorem 2.2.
However, strong continuity could be proved also in theorem 2.1.

An existence result, related to theorem 2.1, was proved by Fabes, Jones and
Riviere [2], by assuming that a e L* and f e L9(0,T; LY, q > 1. Under these
conditions, they show that there exists a (unique) solution in Lp(O,T*; LY,
for some T~ > 0; however, the value p = += 1is not attained. Other

interesting (related) existence results in the R" case are proved by Kato [5]



and, in the bounded domain case, by Giga and Miakawa [3]; see also Giga [4].
The uniqueness of the solution in the class Lp(O,T; La), with n < a < +=*
and (2/p) + (ﬁ/a) < 1, was proved by Fabes, Jones and Riviere [2].
In section 3 we obtain some sharp estimates for the solution of (0.1), by
assuming a smallness condition on the data. More precisely, we will prove the

following results:

Theorem 0.1 Given o« > n, there exist two positive constants ¢y and Cps

depending only on o and n, such that the following statement holds:

Let T e J0,+=], and let a € LN\L* and f e L7(0,T; LYY N L (0,T; LY)

verify (0.2). Moreover, assume that the data a and f verify

(0.3) [|a|2 + Ufl , ]2(u-n)/u(n—2) la|, < ¢y n(u-2)/a(n—2),
L(0,T; L)

and that

(0.4) [lalz + Ifl ) , ]6&-2n/a(n—2)“f" - < c2u2(un+a—n)/a(n—2).
L (0,T;L") L7(0,T;L%)

y 2
Then, there exists a (unique) solution v € LZ(O,T;Hl)f\ c([0,T]; L*NL )

of the Navier-Stokes equation (0.1). Moreover,

(0.5) v il < c un(a—Z)/u(n—Z)[|a|2 + Ifll . ]-Z(Q—n)/ﬂ(n—Z).

2
c(fo, ;L% L L (0,T;5L%)
In the absence of external forces, we will prove the following decay

estimate:

Theorem 0.2. Given a > n, there exist positive constants C3> Cy and Cos

depending only on o and n, such that if f =0, a el v.a=0 and

b

(0.6) ja] 2lem)/n=2) jq) < e, un(a-2)/«(n-2)

then there exists a (unique) solution v € LZ(O,+M;H1) N C([O,+W[;La F\LZ) of

problem (0.1). Moreover,



-B B -1/8
(0.7) V(e < lalg [1+ g fal;"faly £1715,
for every t € [0,+=[, where B8 = 4a/(a-2)n. In particular,

1 a-2 4a
(0.8) V(e |y < cglaly (42 ) (02074 ye 5 0,
Remarks (i) Actually, the solution v in theorem 0.2, belong to
€®(J0,+=[ x R"), since it is bounded in L%*(R"), for o« > n. By regularization,

one can obtain estimates for stronger norms than |

«

(ii) Tnhe uniqueness of the solution, in theorems 0.1 and 0.2,
follows from the uniqueness theorem of Prodi [12] and Serrin [14]. See also
[8], chap. 1, theorem 6.9.

(iii) Conditions (0.3), (0.4) and (0.6) are invariant under scale
change in space-time.

(iv) In view of results proved in [2], [5] it looks possible to

o

2
replace in theorems 0.1 and 0.2 the L -norm by an L 0—norm, for ao < n.

However, we did not investigate in this direction.

At the end of section 3 we prove that the statements in theorems 0.1 and
0.2 hold again, by setting a = n., In this particular case, the formulas
simplify considerably; see theorem 3.3.

Some results, related to those presented in this paper, can be found in
Fabes, Jones and Riviere [2], and in Kato [5]. In this last paper some asymp-
totic estimates are given, specially in the case a € L" and f = 0. It is
interesting to note that, by setting p =2 and q =n 1in estimate (1.5) of

reference [5], one has |v(t)| = O(I/t(n'z)/4), as t * +°, which is just the

n

asymptotic behavior implied by our estimate (3.17). However, in [5] the result

is proved under the assumption that the exponent (n-2)/4 is small than 1.



For other results, more or less related to ours, see, e.g., Giga and
Miyakawa [3], Giga [4], Masuda [10], and Weissler [18].

The results proved in our paper, were obtained independently of those of

the above papers. The method utilized is quite different, too.

1. In the sequel with the symbol L% 1 < a < +=, we will denote either

L*R") or [L*RM]I". Both norms will be denoted |

o Similarly, WS:P,
s € R, p e [1,+°[, will denote the Sobolev spaces WS*P(R™) and [W:PRMI,
and Il b will denote the respective norms. For convenience, we set

bl

S = 14552 =
WS = W8, =

5,2° For definitions and properties see [6], [7], [9],
[17]. We also define H = {u € LZ: Veu=0) and V= {ue Hl: Veu-=0!}
In section 2, we will utilize the Bessel potential spaces Hs,p(Rn) (see [6],
[9], [17]). Recall that HS*P = WS:P, for any integer s.

For vector field v, we define

- n .
| Vv | —i,§=l( T ) .

Sometimes, we will utilize abbreviated notations, as |Vv|a instead of
| 1Vvl]

without an explicit definition. Moreover, unless otherwise specified, the

o Lp(X) instead of Lp(O,T;X), and so on. Standard notation will be used

domain of integration with respect to the space variables is RN,

For the sake of convenience we define the quantities

_ 2 a-2
Nu(V) =) |VVI |V| dx,

M (x) = ) [VIv|®?| “dx.

These quantities will play a leading role in the sequel.

In this section we assume o > n (except that in theorems 1.4 and 1.5,

a > 2 would suffice) and



1
(1.1) ael® fel (0,T5LY.

Here we will establish some a priori estimates for solutions of (0.1)1 9 30 In
3 H

order to justify the calculations which follow, we assume in this section that
1 1
(1.2) veL (0,T;W5%), v' el (0,T;LY).

Infact, assumption (1.2) implies further regularities for v and p.

Specifically, since

<] M2 u%/2

1l,a s’

assumption (1.2) implies v & C([0,TI;L%) F]LZ(O,T;wl’u). On the other hand, a
well known Sobolev embedding theorem [7] implies Vv € Ll(O,T;Lm), hence from
equation (0.1)1 it follows that Vp ¢ Ll(O,t;L“).

Moreover, since v € Lm(L“) f\Lz(Lm), one has vZ € LZ(LQ). Consequently,
by using Calderon-Zygmund's inequality [16], equation (1.10) yields
p e L°(0,T;L%).

We start by proving the following result:

Lemma 1.1 Let v be a solution of (0.1)1’2 3 belonging to the class

(1.2). Then v verifies the estimates (1.5), (1.8) and

ld o U -2 .

(1.3) Tx”_t_ |V|u +'2'Nu(V) + 4|Jﬁ—u'z—Ma(V) <
(w 2)Z 2 -2 a-1
R P I LA [T

Proof. Note, first, that

(1.4) Vv < g ¥ ), ace. dn RM.



In order to prove (1.3), we multiply both sides of equation (0.1) by
|v|a'2v, and integrate over RN, After suitable integrations by parts (recall
that Vev = 0), we obtain the identity

(¢

(1.5) S VI + )+ e 2R () -
-] Vp e vlvla'zdx + ) f°v|v|“'2dx.

On the other hand, one has

2 n oy . a2
(1.6) =) Y oo vv|*dx = (e -2) L p E—J-v.v. [v| " “dx =
LG X: 1]
i,j=1 i
n n .
- 2 -2 9 a/2
=222 g ™E R L vE L g (1Y) 2k
i=1 i=l "7
From (1.5) and (1.6)1, since
oy, y

(1.7) I_L. Vivj 'g;‘l | < vl Wi,

15 i
one gets
(1.8) 1d [VI® + uN (v) + 4u —= Y (v) <

* o dt o o uZ o
. a-2 a-1
S (a=2) ) pl V] [v]7"%x + [F], |v], -
Since
a2, o (w-2)t 2 a2 o w
(a - 2)) |p| |VV| |V| dx <——zu— Jp lV| dx +7Na(v)a

(1.3) follows. [:1

Lemma 1.2 Let v be a solution of (0.1); , 3 in the class (0.2). Then

Rl ]




1 -2
(1.9) E%t- IV'Z +.;Nu(v) + 4u.a_uz_Mu(v) <
a - 24 at+2 a-1
<cd2=2) gy e eyl

Proof. Holder's inequality gives

Z 2
el v Ia dx < |p|a+2/2 |v|u+2'

On the other hand, by applying the divergence operator to both sides of
equation (0.1), one gets

n N4
(110 L )

By using the Calderon-Zygmund's inequality [16], one obtains

(1.11) Plavzsz < ¢ IVlag -
Consequently,
(1.12) Jlpl® vl ®ax <o v] %2
Equation (1.9) follows from (1.3) and (1.12). ]
Lemma 1.3 Let w e Wi*% Then
(1.13) V88 <o v &2 (v) 1M
In particular,
(1.14) VIS < c|v ]2 [N (v) 1M



-9-

Proof. Define 2* = 2n/(n - 2). Since

one gets

1-n/(o*2)  n/(a+2)

(1.15) |g|2(a+2)/a < |9|2 |9|2* .

On the other hand, by a well known Sobolev's embedding theorem [7], one has

|9|2* <c|vg

. By applying this estimate, together with (1.15), to the function
g = |v|“/2, one gets (1.13). Moreover (1.13) and (1.4) yield (1.14). 1

Theorem 1.4 Let o> n, and let v be a solution of (0.1); , 3 in the

class (1.2). Then,

(1.16) —1&%—5 IVIg + 4 N(v) <

< Cu('"+a)/(a-n) |

v o2 lemn) ) gyjot,

a

Proof. From (1.9) and (1.14) one obtains,

1d -
G VIS H N () + a2 () <

a

a

CSINIV V&M ) o

By applying Young's inequality, with exponents a«/n and a/(a-n), to the

first term on the right hand side of the above inequality, one gets (1.16). [:I

Now we state the main result in this section. For convenience, define

q=3a—n k

s

Cgu -(a+n)/(a - n)

a-=-n
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Consider the following Cauchy problem for o.d.e.,

y't= k@ gf(t) ], t >0,

(1.17)
y(0) = laf,.

Let T, be the time existence of the maximal solution y(t) of (l.17).

One then has the following result:

Theorem 1.5 Let « > n, and assume that a and f verify (0.2) and

(1.1). Let v be a solution of (0.1); , 3 in the class (1.2), and let y(t)

and Ta be defined as above. Then

(1.18) V(E) ], < y(t), ¥t e [0,T,L.

Proof. Note first that inequality (1.18) has the following meaning: Given
T € ]O,Ta[, if v is a solution of (0.1)1 2.3 in ]O,T[, which belongs to the
class (1.2) in ]10,t[, then (1.18) holds in [0,7].

By defining z(t) = |v(t)|,, from (1.16) one has, z' < kz% + IF(t) [

o The result follows by comparison theorems for o.d.e. [:]

2. In this section we prove the existence theorems 2.1 and 2.2. For the

reader's convenience, some auxiliar results are proved in the appendix.

Theorem 2.1 Let o > n, and assume that a and f verify (0.2) and

—_— e

(1.1). Let Ta be defined as in theorem 1.5. Then, there exists a (unique)

solution v € C*([O,Ta[;La) of the Navier-Stokes equations (0.1). This solu-

tion satisfies inequality (1.18).
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Proof. It will be clear from the proof that it is sufficient to argue on
an arbitrary interval [0,Tt], for T € [O,Tu[. Let a, and f_ be regular
functions, rapidly decreasing at infinity with respect to the space variables
(even c” functions, with compact support with respect to the space variables)

verifying (0.2), and such that a_>a in LY f +f in Ll(O,T;La). Denote

n n
by T, n the time existence (in theorem 1.5) corresponding to the data a, and
fn' Since TO"n + Ta as n > +%°, we may assume Tm’n 2 17, Due to the requ-

larity of the data a, and fn, it is well known that there exists a (unique)

o 2
local regular solution v In particular, v. € L (H) N\ L (V). From the a

n°® n

priori estimate of theorem 1.5, it follows that if v, is regular in [o,s[,
0 <s < 1, then v, € Lw(O,s;La). On the other hand, if v, € Lm(O,s;Lu), then
Vi is regular is [0,s]. This is a well known result, in line with Serrin's
paper [13].

The results stated above, imply that the regular solution v exists in
all [0,1].

Since the sequence Vi, is uniformelly bounded in Lw(O,T;La) (by theorem
1.5), there exists a subsequence which is weak-*convergent to a function
vV € Lw(O,r;L“).l Clearly, the regular solution v_ solves the following weak

n
formulation of the Navier-Stokes equation (0.1),

T
(2.1) é JoDvy o0t +uvy s a0+ (v, * V)ed « v, +

+ fn * ¢Jdxdt = -) a, * ¢(0) dx,

n

where ¢(t,x) 1is any divergence free test function, with compact support with

respect to the space variables, and such that ¢(t,x) = 0, ¥x € R",

Actually, by the uniqueness of the solution v [2], it follows that the
sequence itself converges to v.
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To prove that the 1imit function v is solution of the Navier-Stokes
equation (2.1), with data a and f, we adapt to our case (a # 2 and Q = RM)
the method of Lions, described in [7], chap. I, section 6. We will prove (in

appendix A) the main point, namely, that there exists a subsequence v, such

that

(2.2) limv =v  in Lp(O,r;La(BR)), R > 0.
vt oo

Here, By = {x ¢ R": |x| <R}, and p e [1,+«[ s arbitrarily chosen.
Since the convergence in Ll(]O,r[ x BR) implies pointwise convergence for a
subsequence, we can assume that Vv(t’x) + v(t,x) almost everywhere in
10,7[ x R™, This is the main tool used to pass to the limit in the non-linear
term of equation (2.1).

Since v e L¥(0,t;L* N C([0,t];X), where X 1is the Banach space
X = wloy ws'z’“/z, s < 1, the weak continuity of v(t) follows easily. Note
that, as a consequence of (0.1)1, one has Vv' ¢ LI(O,T;X); see (4.3)2 and

(4.4),, in appendix A. 1

In the next section we will be particularly interested on finite energy

solutions. Hence, we establish here the following result:

Theorem 2.2 Let a ¢ HOLY f e LY0,T;H ALY, a> n, and let T, and

y(t) be defined as above. Then, there exists a (unique) solution v of the

Navier-Stokes equation (0.1), in the class C([0,T [;H er“)(“\Lz(o,Ta;v).

This result can be regarded as a consequence of theorem 2.1 and energy
estimate (2.3). However, it seems more natural to pass to the 1imit in equation

(2.1) by using the energy estimate
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(2.3) v +ou ly 0 <
" L¥(0,7;H) " L7(0,13V)

<la_|, + If I, ,
N2 o, N

which is now available. In this case, the reqular approximating data a, and

1
f verify the assumptions a, *a in H F\Lu, f +f in L (0,T;H F\La). By

n n n

theorem 1.5, one has again
(2.4) v it w. S constant indep. of n.
L (0,t35L7)

The proof of theorem 2.2 follows the same ideas as in theorem 2.1, except
that for the compactness argument, which is now similar to that utilized (see
[7]) for the usual Faedo-Galerkin procedure.Z Infact, integrating by parts and
by Sovolev's embedding theorem, it follows that the map

T .
¢l Tl D] e dxan, Ve L*(v),
defines a uniformly bounded family in LZ(V'). Here, we utilize (2.4), and also
(2.3) if n = 3. By using (0~1)1, it follows in particular, that Vv  is uni-
formly bounded in Ll(V'). Hence, for every R > 0, one has

v 1,
n,2 < constant,

L

(2.5) (0,75V(Bp))
Hvéu L < constant,

L (0,T3V" (Bg))

uniformly with respect to n. By using (2.5), it is easy to prove that there
. 2 2

exists a subsequence v, strongly convergent to v in L (0,7;L (Bg)), ¥R > 0,
and pointwisely-convergent, almost everywhere in ]O,t[ x RN (see the end of
appendix A). The uniqueness of the solution follows as in Prodi [12] and

Serrin [14]. See also [7], chap. I, section 6. The strong continuity of v,

will be proved in appendix B.

However, by using (2.4), we get here stronger a priori bounds, which are
independent of the dimension n.
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3. In this section we prove global estimates and decay properties for the
norm \v(t)la, t € [0,+°[,o 2 n, of the solution v € C([0,+=[; LY N LZ) of the
Navier-Stokes equations, constructed in section 2, theorem 2.2. Here we assume
that a and f are small.

The global a priori estimates of this section, together with the local
existence theorem 2.2, yield the global existence of the solutions. Obviously,
the global estimates of this section are proved first for solutions belonging to
the class (1.2), hence for the approximating solutions Voo utilized in theorem
2.2. By passing to the 1limit when n * +°, one shows that the estimates hold
for the 1imit function v (argue as done for the local estimate (1.18) in
theorem 2.2). For clearness, and in order to avoid tedious repetitions, we will

argue directly on the solution v.

Lemma 3.1 Let « > 2. Then

o+ (4a)/(w=2)n

a .

(3.1) N (v) > C|V‘2-(4u)/(u-2)n v

Proof. From (1.4) and from a Sobolev's embedding theorem (|g|2* <cl|Vql,,

2* = 2n/(n-2)), one gets

(3.2) N (v) 2 C|V|Zn/n-2'

Furthermore, if © = 4/[4 + (a-2)n], one has

1/a = 9/2 + (1 - 8)/[an/[(n-2)]. Consequently

(3.3) v, < |V| 4/(4+(a-2)n) v Igz-gzn/ 4+(a-2)n)

From (3.2) and (3.3), one gets (3.1). ]

Let now v be as in theorem 1.4. by using (1.16) and (3.1), a straight-

forward calculation gives
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(3-4) yl < C8[Cgu lv|;B _ u—(a+n)/(a-n)yY]y1+B + |f|a,

where for convenience, we define, y(t) = |v(t)|a, 8 = 4a/(a-2)n,

y = 2a2(n-2)/n(a-2)(a-n). Let T e JO,+«], It is well nown that for every
t € [0,T], one has

.
(3.5) Iv(t)], < |al, +(f) |f(1)|dt = K.

If K =0, then v(t) = 0, ¥t » 0. Hence we assume that K > 0. From

(3.4) one gets

(3.6) y' o< -C8[c9uK'B } u-(n+a)/(a-n)yY]y1+B +If]

Let us prove now the following result:

Lemma 3.2 Assume that (3.6) holds. If

Y ¢ -8 2a/a-n
(3.7) y(0)Y < KBy
and
o c

(3.8) F(0)], < cqu— KB [u2¥ om0 3 c-By(1+8)/y,

(3.9) y(t)Y <f§ L 20/a=n =B e o 10,77,

Proof. For t = 0, (3.9) holds. Moreover, by using (3.6) and (3.8), one
easily shows that whenever (3.9) holds with the equal sign, then y'(t) < 0.

This proves the lemma. 1

Theorem 0.1 follows from lemma 3.2, by setting Cy = (cg/Z)I/Y,

Cy = cgleg/8)(cg/2) (IHEV/Y,
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Let us now consider the homogeneous case f = 0. By setting

C3 = (c9/2)1/Y

Hence, from (3.6) it follows that

, the assumption (0.6) is nothing but (3.7), since K = |a|2.

y' € -cqom |a|2'B y1*e,

for every t € [0,T], where for convenience we put Cy = c8c9/2. Consequently,

by comparison theorems for o.d.e, one gets
y(t) <y(0) [1+cyus lal3® y(0)Pe1(1/P),
This yields (0.7) and (0.8). ]

Remark 3.3. In a bounded domain & (with the boundary condition v =0
on 9x), by using the following Poincare's inequality |g|2 < c(u,n)|Vg|2,

1
Vg € Hy(%), one gets (compare with (3.2)) N, (v) 2 c(a,n,%)]|v Z’ Hence, from

(1.16) one would obtain

(3.10) d_y|

3a-n a-n
S Il *clvlg < c vt ey,

a

which would immediately give a quite strong estimate for |v(t)|,; in par-

ticular, if f = 0 one would have an exponential decay for |v(t)

o However,
some devices must be introduced in order to obtain estimates like (1.9) (not
obtainable from (1.12) alone).

In the remaining of this section we present the asymptotic estimates for
the limit case o = n (here, the positive constants ¢ depend only on n). We
wish to point out that these estimates will be proved only for sufficient regu-
lar solutions (say, in the class (1.2)). However, one can apply these L
estimates, together with the uniform estimate in Lw(H)fW LZ(V), to a sequence

of regular approximate solution v , in order to get (by a compactness argument)

a weak solution v € Lw(H) f\LZ(V) F\L“(L"), verifying the L" estimate under



-17-

consideration. Alternatively, one can utilize the methods introduced by Kato
(see for instance [5]) to get the existence of the so]ution.3 .

By starting from (1.9) and (1.14), we obtain

1d n o, u €10 2 n-1
wat Vin * 7 M) <= NV IV el v
where 10 is a suitable constant. Hence,
c
1d n 10 2 -1

From (3.11) and (3.1) it follows that

d - - +2/n-2 €10 2
g VIR <= 3 e vl B RT3 gy e e

. -1
provided CIO“-2|V|§ < 1. Recalling (3.5), one shows that if |a|, < u(2cqq) /2

and if
I B, ¥ n-2) _m yn+2/n-2
L=(0,TsL") ¥ 1 /2,
then |v(t)|n < u(2c10)'1/2, vt ¢ [0,T]. Infact, (d/dt) |v|n < 0, whenever
|v|n = u(2c10)'1/2. This proves the first part of the following result:

Theorem 3.3. Let a e L"NL® and f e L'(0,T;50%) NL™(0,T;L"), verify

(0.2). Assume that v is a sufficiently regular (say, in class (1.2)) solution

of (0.1). Then, there exist positive constants C6 and €12 such that if
(3.13) |a|n < Cghs

and

for uniqueness results in L®(L"(Q)), we refer the reader to [15].
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4/(n-2) 2n/n-2
(3.14) Clal, + ufu ] ifr < Cqiou .
2 L(0,T;L%) L°(0,T5L") 1
one has
(3.15) Iv(t)ln < Cgls vt e [0,T].
Moreover, if f = 0, and if (3.13) holds, then
(3.16) V()] < Jal [l + cu fal3¥/(172) ja|/(n-2)gy-(n-2)/4,
for every t e [0,+«[. In particular,
(3.17) V(e |, < claly (2 y(n=2)/4 "yt > o.

In order to prove the statement concerning the case f = 0, we remark that

if a verifies [al, < u(2c10)'1/2, then

CqiqH

11 - - + -

%f Vi, < - —]7—-|a|24/(" 2)Ivlrl] 4/(n-2) "y 50,

Now (3.16) follows, by using comparison theorems for o.d.e. [:1

Remark. Note that the estimates proved in theorem 3.3 are just those

proved in theorems 0.1 and 0.2, by setting there a = n.

Appendix A

4. In this appendix we prove the statement (2.2). We start by
establishing an auxiliary lemma, whose proof is given for the reader's con-
venience. For breveity, we utilize here some results on parabolic semigroups.
More direct computations could be done, by using the heat potentials in the

whole space.
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Lemma 4.1 Let u be a solution of the heat equation u' - au = f in

10,TC x R", with zero initial data. Assume that 1 <p < +w and 1 < q < +e,

If f e LP(0,T5L9), then u e LP(0,T;w%:9), v s e [0,2[. If f eLP(0,t;u 129y,
then u ¢ LP(0,T;wS:9), v s ¢ [0,1[.

Proof. By a well known device, we can replace -A by A = -A+ 1. Since
-A is the generator of an holomorphic semigroup in LY and 0 e p(A), one has

(see [111]) nAeetAu < ct'e, 0 < 8 < 1. Hence,
A® | <
t - _ __If d .
I U( )lq <J | l (S)Iq S, Vt € [OST]

By utilizing well known results on the convolution of functions, one shows
that u e Lp(D(Ae)). The first statement in the lemma follows, since

D(Ae) = HZe,qc; w26-e,q’ for e€> 0 (see [6], [9], [17]). The second statement

follows from the first one, by using the isomorphism A'l/z, fron W19 onto
L9

Let now i be defined as in the proof of theorem 2.1. We want to show

that there exists a subsequence v, verifying (2.2). Let P, be the pressure

corresponding to the regular solution Vs and consider the solutions wu_ and

n
w, of the equations
' n
u' - pau. = =Vp_ + (v Y)v_, in J0,t[ xR,
(4.1) n n n n n
u, = 0 for t =0,
and
Woo-oulw, = fn, in 10, [ x Rn,
(4.2)
W= ag for t =0,

respectively. Note that it is possible to consider each scalar equation separa-
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tely. Clearly, Vo = U, + Woe Since the sequence Vi is uniformly bounded in

L¥(0,t;L%), the terms
0
A I R ATY

are uniformly bounded in Lm(O,T;w'l’“/Z). The same holds for Vpn, as a con-

sequence of (1.10) and of the Calderon-Zygmund inequality. By lemma 4,1, one has

hu I <
up Lm(ws’u/z) constant,
(4.3)

lu 'l o

< constant,
n L (ws—z,a/Z)

where s < 1, and the constants are independent of n. On the other hand, one

has

w1l < constant,
"Wk

w1

(4.4)

1 < constant,

Ll
for every p € [1,2[. The estimate (4-4)1 is proved by using an argument simi-
lar to that utilized in the proof of lemma 4.1, and by recalling that
LP(0(Al/2)) = LPuls®). The estimate (4.4), follows from (4.4), and (4.2),.

Define By = {x e R": |x| < R}. Clearly, the estimates (4.3) and (4.4)
hold with R" replaced by B.. Moreover, the embeddings ws,a/Z(BR)c; L%(Bg)
s >n/a, and W ’a(BR)‘4 La(BR), are compact. Consequently, well known compact-
ness theorems (see Lions [7], chap. I, section 5, and Aubin [1]) show that the
sequence v is relatively compact in Lp(O,T;La), 1 <p < 2. Actually, this
result holds for every p € [1,+=[, since in addition the sequence v, is
bounded in Lm(La).

Finally, fix a sequence of radius Rm such that 1lim Rm =+ 35 m * +°,

and select convergent subsequences (successively, with respect to m) in

Lp(O,T;L“(BR )). The diagonal subsequence verifies the desired property (2.2).
m

|
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Appendix B

5. Here, we prove that the solution v in theorem 2.2, belongs to

C([0,TI;LY), for every Tt ¢ [0,T [. We start by proving the following result:

Lemma 5.1 Let a, f and v be defined as in theorem 2.2, let q € [1,2[,

B € [2,a[, and assume that Vv € Lp(O,r;Lﬁ).

Define Y by the equation 1/y = (1/a) + (1/8), and let s & In/a,1[.

Moreover, if Yy > n, assume that s > n/Yy. Finally, define Bl by the equation

1 _1 s _1 1 s
EN tlg-R )

One then has

B
W e LP(0,T;L l) » if %— >%i >
1
(5.1)
p ¢ : 1 1
VVEL(O,T,L) N if -B—<—&.
__— 1

Proof. Let v =u + w, where u and w are the solutions of the linear
equations (4.1), (4.2) after dropping the indices n. Since v € Lw(La), one
has (v * V)v € LP(LY). Moreover, -8p = div(v * V)v implies Vp € LP(LY).
From lemma 4.1, one deduces that Vu € Lp(ws’y).

B

If 1/B1 > 0, then by Sobolev's embedding theorems, one has W ¥e
Hence (5.1)1 holds for Vu. Similarly, if 1/51 = 0 then TAERASS Lm, hence

(5.1), holds for Vu. Finally, if 1/8; < 0 then W S L7, and (5.1), holds
Z
again for Vu. Equation (5.1) holds also for Vw, since Vw € LPL* N )

(argue as for the proof of (4.4)1), [:I
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We prove now that v e C([0,<[; L*NL?). By starting from the value
B.= 2, and by applying successively lemma 5.1, one shows that W e LP(LY,
¥p ¢ [1,2[. Consequently, (v « V)v and Vp belong to Py, vp e 1,20,
¥q € ]1,0/2]. By using lemma 4.1 we show that (v = u + w, as in the proof of

lemma 5.1),
u e LPWSsP)y NubsPws-2:9), vy o <s < 2.

Hence,

- wl-e,p(ws—Z(l-O),Q), VO < 6 < 1.

By chosing q = o/2, n/(2a) < 8 < 1/2, s =2(1 - 98) + (n/a),
1/(1 - 8) < p < 2, well known embedding theorems yield u e c(L*. By chosing
q = 20/(2 + a), one gets u e C(LZ). Hence, u ¢ C(L* N Lz). On the other hand,

well known results on the Cauchy problem for parabolic equations, give

voe C(LEN LY. 1
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