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1 Introduction

In this paper, we deal with the classical Cauchy problem for the Navier-Stokes
equations:

∂tv(x, t) + div v(x, t)⊗ v(x, t)−∆ v(x, t) = −∇ p(x, t),

div v(x, t) = 0
(1.1)

for x ∈ R3 and for t > −T0, and

v(x,−T0) = a(x), x ∈ R3. (1.2)

Problem (1.1), (1.2) has at least one weak solution v in the so-called
Leray-Hopf class, see [8] and [4].

It is known (see [2], [5]-[7], [9], [12], [15], [18], and [19]) that, under the
additional condition

v ∈ Ls,l(−T0, T ;R3),
3

s
+

2

l
≤ 1, s ≥ 3, l ≥ 2,
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the weak Leray-Hopf solution is unique on the interval ]− T0, T [. Moreover,
this solution is smooth if s > 3. It is an open problem whether weak solutions
remain to be smooth if s = 3 and l = +∞. See [13],[14], and [16] for various
results related to this problem.

In this note, we connect the above problem to a backward uniqueness
problem for the heat equation. The problem seems to be of independent
interest from the point of view of control theory.

We outline the main idea. Assume that (0, 0) ∈ R3×] − T0, +∞[ is a
singular point of a solution v satisfying

ess sup
−T0<t<+∞

∫

R3

|v(x, t)|3dx < +∞. (1.3)

For λ > 0, we consider functions

vλ(x, t) = λv(λx, λ2t) (1.4)

defined in R3×]− T0/λ, +∞[. The crucial point is that both equations (1.1)
and condition (1.3) ( with T0 replaced by T0/λ) are invariant under scaling
(1.4). Moreover, compactness properties of weak solution enable us to pass
to the limit as λ → 0 + 0 along a suitable subsequence λj → 0 + 0

The result of this procedure is a solution u = lim vλj
to the Navier-Stokes

equations which is non-trivial (unless (0,0) is a regular point of v), is defined
on R3 × R, and vanishes for t > 0. Moreover, u is regular in space-time
domains of the form

{R3 −B(0, R)}×]− T1, +∞[,

where R = R(T1). We now consider the equation for the vorticity ω = ∇∧u
which is

∂tω + ω,kuk − u,kωk −∆ω = 0. (1.5)

We view (1.5) as a linear heat equation for ω with lower order terms

∂tω −∆ω = Akω,k + Bω, (1.6)

where A = (Ak) and B = (Bij) are given functions.
We now conjecture the following.
Conjecture. Assume that A and B have reasonable regularity properties

and suitable decay at ∞. Assume that ω is a bounded solution to (1.6)
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in {R3 − B(0, R)}×] − T1, +∞[ which vanishes for t > 0. Then ω ≡ 0 in
{R3 −B(0, R)}×]− T1, +∞[.

The main point here is that we do not make any assumptions about ω on
∂B(0, R). In fact, we can consider ω|∂B(0,R) as a “control”, and try to drive ω
to zero by prescribing ω|∂B(0,R). Our conjecture says that exact controllability
is never possible in this case. Even the case A = 0 and B = 0 seems to be
interesting, and we have not found it in the literature. One of our results in
the paper is a proof of the conjecture when A = 0 and B = 0. We believe that
the general case might be approachable by existing methods in the theory of
unique continuation. By our results here, such a proof would give a solution
to the regularity problem for the Navier-Stokes equations under condition
(1.3).

2 Notation and Main Results

We denote by M3 the space of all real 3× 3 matrices. Adopting summation
over repeated Latin indices, running from 1 to 3, we shall use the following
notation:

u · v = uivi, |u| = √
u · u, u = (ui) ∈ R3, v = (vi) ∈ R3;

A : B = trA∗B = AijBij, |A| = √
A : A,

A∗ = (Aji), trA = Aii, A = (Aij) ∈M3, B = (Bij) ∈M3;

u⊗ v = (uivj) ∈M3, Au = (Aijuj) ∈ R3, u, v ∈ R3, A ∈M3.

Let ω be a domain in some finite-dimensional space. We denote by
Lm(ω;Rl) and W 1

m(ω;Rl) the known Lebesgue and Sobolev spaces of func-
tions from ω into Rl. The norm of the space Lm(ω;Rl) is denoted by ‖ · ‖m,ω.
If m = 2, then we use the abbreviation ‖ · ‖ω ≡ ‖ · ‖2,ω.

Let T and T1 be two parameters such that T1 < T , Ω be a domain in R3.
We denote by QT1,T ≡ Ω×]T1, T [ the space-time cylinder. Space-time points
are denoted by z = (x, t), z0 = (x0, t0), etc. Let Lm,n(QT1,T ;Rl) be the space
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of measurable Rl-valued functions with the following norm

‖f‖m,n,QT1,T
=





( T∫
T1

‖f(·, t)‖n
m,Ω dt

) 1
n

, n ∈ [1, +∞[

ess sup
t∈]T1,T [

‖f(·, t)‖m,Ω , n = +∞.

In the special case Ω = R3 and T1 = −T0 and T = +∞, we abbreviate

Lm(Ω;R3) = Lm, W 1
2 (Ω;R3) = H1, Lm,n(QT1,T ;R3) = Lm,n,

Lm(T1, T ; W 1
2 (Ω;R3)) = Lm(H1).

For integrable in QT scalar-valued, vector-valued, and tensor-valued func-
tions, we shall use the following differential operators

∂tv =
∂v

∂t
, v,i =

∂v

∂xi

, ∇p = (p,i), ∇u = (ui,j),

div v = vi,i, div τ = (τij,j), ∆ u = div∇u,

which are understood in the sense of distributions. Here xi, i = 1, 2, 3, are
the Cartesian coordinates of a point x ∈ R3, and t ∈]0, T [ is the time variable.

We recall to the reader the definition of the weak Leray-Hopf solution to
the following Cauchy problem (see [4]and [8]):

∂tv(x, t) + div v(x, t)⊗ v(x, t)−∆ v(x, t) = −∇ p(x, t),

div v(x, t) = 0
(2.1)

for x ∈ R3 and for t > −T0, and

v(x,−T0) = a(x), x ∈ R3. (2.2)

Here, T0 is a given positive parameter, and a is a given divergence free func-
tion from W 1

2 (R3;R3).

Definition 2.1 We say that a divergence free function

v ∈ L2,∞ ∩ L2(H
1)
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is called the weak Leray-Hopf solution to the Cauchy problem (2.1) and (2.2)
if the following conditions holds:

for each w ∈ L2, the function t 7→ ∫
R3

v(x, t) · w(x) dx is

continuous at any point t ∈ [−T0, +∞[;
(2.3)

∫
Q−T0,+∞

{−v · wt − v ⊗ v : ∇w +∇ v : ∇w} dz = 0

for any divergence free function w ∈ C∞
0 (Q−T0,+∞;R3);

(2.4)

for any t ∈ [−T0, +∞[, the following energy inequality is valid
∫
R3

|v(x, t)|2dx + 2
t∫

−T0

∫
R3

|∇ v|2 dxdt′ ≤ ∫
R3

|a|2dx;
(2.5)

‖v(·, t)− a(·)‖L2 as t → +0. (2.6)

One can show (see, for instance, [17]) that if, for a given weak solution,
we introduce (normalized) pressure

p(x, t) ≡ 1

4π

∫

R3

1

|x− y|div div
(
v(y, t)⊗ v(y, t)

)
dy, (2.7)

then the pair of v and p satisfies the Navier-Stokes equations in the sense of
distribution.

In what follows, we always assume that

v ∈ L3,∞. (2.8)

This allows us to improve properties (2.3) and (2.5). Namely, instead of
(2.3), we have now:

for each w ∈ L 3
2
, the function t 7→ ∫

R3

v(x, t) · w(x) dx is

continuous at any point t ∈ [−T0, +∞[.
(2.9)

Inequality (2.5) becomes

∫

R3

|v(x, t)|2dx + 2

t∫

−T0

∫

R3

|∇ v|2 dxdt′ =
∫

R3

|a|2dx (2.10)
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for any t ∈ [−T0, +∞[. To see that, we note that

v ∈ L4 (2.11)

and
div (v ⊗ v) ∈ L 4

3
∩ L 6

5
,2, (2.12)

and, by the coercive Ls,l-estimates for solutions to the Cauchy problem for
the linearized Navier-Stokes equations (see [3], [10] and [5], [7], and [20] in
the case s = l),

|∂tv|, |∇2v|, |∇p| ∈ L 4
3
(Q−T0+δ,T ) ∩ L 6

5
,2(Q−T0+δ,T ) (2.13)

for any positive numbers δ and T such that −T0 + δ < T . Then, (2.10) easily
follows from (2.6), (2.11), and (2.13). We also would like to note that (2.3)
and (2.10) imply

v ∈ C([−T0, T ]; L2). (2.14)

Another important consequence of assumption (2.8) is continuity of v in
time from the right with values in L3, i.e.,

‖v(·, t)− v(·, t0)‖L3 → 0 as t → t0 and t > t0. (2.15)

In turn, according to (2.7), (2.8), and (2.15), we see that

p ∈ L 3
2
,∞ (2.16)

and
‖p(·, t)− p(·, t0)‖L 3

2

→ 0 as t → t0 and t > t0. (2.17)

Given positive numbers T1 and R1, we let

Q̃(T1, R1) = {R3 −B(0, R1)}×]− T1, +∞[.

Definition 2.2 Assume that A = (Ai) and B = (Bij) are measurable and

bounded functions on Q̃(T1, R1).
We say that the pair (A,B) belongs to the class C(T1, R1) if the following

condition holds. Whenever a function ω : Q̃(T1, R1) → R3 satisfies

(i) ω and ∇ω are bounded and continuous,
lim

|x|→+∞
|ω(x, t)| = 0 uniformly in t,

(ii) ∂tω −∆ ω = Akω,k + Bω in Q̃(T1, R1) (in the sense of distributions),

(iii) ω(x, t) = 0, x ∈ R3 −B(0, R1), t > 0,

then ω(x, t) ≡ 0 in Q̃(T1, R1).
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Conjecture H: Assume that, for k = 0, 1, ..., the functions ∇kA and ∇kB
are Hölder continuous and bounded in Q̃(T1, R1),

lim
R→+∞

sup
x∈R3−B(0,R)

sup
−T1<t<+∞

|∇kA(x, t)|+ |∇kB(x, t)| = 0, (2.18)

and
lim
t→0

sup
x∈R3−B(0,R1)

|∇kA(x, t)|+ |∇kB(x, t)| = 0. (2.19)

Then (A,B) ∈ C(T1, R1) .
Conjecture G (Restricted Conjecture H) Assume that, for a solenoidal

vector-valued function w, functions A = −w and B = ∇w meet the condi-
tions of Conjecture H. Then (A,B) ∈ C(T1, R1) .

Our main result is as follows.

Theorem 2.3 Suppose that Conjecture G is true. Then, any weak Leray-
Hopf solution to the Cauchy problem (2.1) and (2.2) is smooth.

We believe that Conjecture H is true although we have the proof of it
only for the case A = 0 and B = 0 (for details, see section 4).

3 Blow-up

Assume that the statement of Theorem (2.3) is false. Without loss of gener-
ality, we may think that a singular point appears at time t = 0 and is located
at the origin.

Under our assumptions on v and p, the pair (v, p) is a suitable weak
solution (for the definition, we refer the reader to [1]), i.e., it satisfies the local
energy inequality. In our particular case, it satisfies even the local energy
identity. Since z = 0 is a singular point of our suitable weak solution, the
theory of partial regularity for suitable weak solutions to the Navier-Stokes
equations says (see [17]) that there exists a sequence of positive numbers Rk

such that Rk → 0 as k → +∞ and

A(Rk) ≡ sup
−R2

k≤t≤0

1

Rk

∫

B(0,Rk)

|v(x, t)|2dx > ε? (3.1)

for all k ∈ N. Here, ε? is an absolute positive constant and B(x,R) stands
for the 3D ball of radius R with the center at the point x.
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We extend functions v and p to the whole space R3+1 in the following
way

ṽ(x, t) =





v(x, t) t ≥ −T0

0 t < −T0

x ∈ R3

p̃(x, t) =





p(x, t) t ≥ −T0

0 t < −T0

x ∈ R3

Now, we let

vRk(x, t) = Rkṽ(Rkx, R2
kt), pRk(x, t) = Rkp̃(Rkx,R2

kt)

for x ∈ R3 and t ∈ R. Obviously, for any t ∈ R,
∫

R3

|vRk(x, t)|3dx =

∫

R3

|ṽ(x, t)|3dx (3.2)

and ∫

R3

|pRk(x, t)| 32 dx =

∫

R3

|p̃(x, t)| 32 dx. (3.3)

Hence, without loss of generality, one may assume that

vRk
?
⇀u in L∞(R; L3) as k → +∞, (3.4)

where divu = 0 in R3 × R, and

pRk
?
⇀q in L∞(R; L 3

2
) as k → +∞. (3.5)

To get more information about boundedness of various norms for func-
tions vRk and pRk , let us fix a cut-off function φ ∈ C∞

0 (R3+1) and introduce
the function φRk in the following way

φ(y, τ) = Rkφ
Rk(Rky,R2

kτ), y ∈ R3 τ ∈ R.

We choose Rk so small to provide

sptφ ⊂ {(y, τ) ‖ τ > − T0

Rk

} =⇒ sptφRk ⊂ {(x, t) ‖ t > −T0}.
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Then, we have

2
+∞∫
−T0

∫
R3

φRk |∇ v|2 dz =
+∞∫
−T0

∫
R3

{
|v|2(∆φRk + ∂tφ

Rk)

+v · ∇φRk(|v|2 + 2p)
}

dz

and after changing variables we arrived at the identity

2
∫
R

∫
R3

φ|∇ vRk |2 dz =
∫
R

∫
R3

{
|vRk |2(∆φ + ∂tφ)

+vRk · ∇φ(|vRk |2 + 2pRk)
}

dz.

(3.6)

Now, from (3.2), (3.3), and (3.6), it follows that, for any domain Q b R3+1,
∫

Q

|∇vRk |2 dz ≤ c1(Q) < +∞. (3.7)

We emphasize that the constant in (3.7) is independent of Rk. Then, we ap-
ply known arguments, including multiplicative inequalities and Ls,l-coercive
estimates for solutions to the non-stationary Stokes equations, and obtain
the bound∫

Q

(|vRk |4 + |∂tv
Rk | 43 + |∇2vRk | 43 + |∇pRk | 43 ) dz ≤ c2(Q). (3.8)

The latter together with (3.4) and (3.5) implies

vRk −→ u in L3(Q;R3), (3.9)

for Q b R3+1. Moreover, according to (3.4),(3.5), and (3.8), we see that, in
addition,

vRk −→ u in C([a, b]; L2(Ω;R3)) (3.10)

for any −∞ < a < b < +∞ and for any Ω ∈ R3.
Combining all information about limit functions u and q (see (3.2)-(3.10)),

we obtain the followings facts:
∫

Q

(|u|4 + |∇u|2 + |∂tu| 43 + |∇2u| 43 + |∇q| 43 ) dz ≤ c3(Q) (3.11)
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for any Q b R3+1;
u ∈ C([a, b]; L2(Ω;R3)) (3.12)

for any −∞ < a < b < +∞ and for any Ω ∈ R3;

functions u and q satisfy the Navier-Stokes equations a.e. in R3; (3.13)

2
∫
R

∫
R3

φ|∇u|2 dz =
∫
R

∫
R3

{
|u|2(∆φ + ∂tφ) + u · ∇φ(|u|2 + 2q)

}
dz (3.14)

for all functions φ ∈ C∞
0 (R3+1).

By (2.11)-(2.14), the pair (u, q) is a suitable weak solution to the Navier-
Stokes equation in R3+1.

Our next observation on limit functions comes from (2.15) and (2.17) for
t0 = 0. For any positive numbers R and t, (2.15) implies

∫

B(0,R)

|vRk(y, t)|3dy =

∫

B(0,RkR)

|v(x,R2
kt)|3dx −→ 0

as Rk → 0. This means that

u(·, t) = 0, t > 0. (3.15)

In the same way, we deduce from (2.17) that

q(·, t) = 0, t > 0. (3.16)

Finally, according to (3.1),

sup
−R2

k≤t≤0

1

Rk

∫

B(0,Rk)

|v(x, t)|2dx = sup
−1≤t≤0

∫

B(0,1)

|vRk(x, t)|2dx > ε?

for all k ∈ N, and, by (3.10), we obtain

sup
−1≤t≤0

∫

B(0,1)

|u(x, t)|2dx > ε?. (3.17)

Proof of Theorem 2.3: First, we are going to show that there exits some
positive numbers R1 and T1 such that, for any k = 0, 1, ..., the function ∇ku
is Hölder continuous and bounded on the set

Q̃(2T1, R1/2) = R3 −B(0, R1/2)×]− 2T1, +∞[.
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To this end, let us fix an arbitrary number T1 > 2 and note that

+∞∫

−4T1

∫

R3

(|u|3 + |q| 32 )dz =

0∫

−4T1

∫

R3

(|u|3 + |q| 32 )dz < +∞.

Therefore,

+∞∫

−4T1

∫

R3−B(0,R)

(|u|3 + |q| 32 )dz → 0 as R → +∞.

This means that, for given ε > 0, there exists a number R1(ε, T1) > 4 such
that

+∞∫

−4T1

∫

R3−B(0,R1/24)

(|u|3 + |q| 32 )dz < ε. (3.18)

Now, assume that z0 = (x0, t0) ∈ Q̃(2T1, R1/2). Then,

Q(z0, 1) ≡ B(x0, 1)×]t0 − 1, t0[⊂ {R3 −B(0, R1/4)}×]− 4T1, +∞[.

So, by (3.18), one can claim that, for any ε,

t0∫

t0−1

∫

B(x0,1)

(|u|3 + |q| 32 )dz < ε (3.19)

for z0 ∈ Q̃(2T1, R1/2), where T1 > 2 and R1(ε, T1) > 4. Then, it follows
from (3.19), from the Caffarelli-Kohn-Nirenberg theorem, and from the reg-
ularity theory for solutions to the Stokes equations (for details see [1] and
[13], Proposition 2.1) that, for each k = 0, 1, ..., there exists a number c(k)

independent of z0 such that

sup
z∈Q(z0,1/2)

|∇ku(z)| ≤ c(k) < +∞.

Hölder continuity of ∇ku on Q̃(2T1, R1/2) is also a consequence of the
regularity theory for the Stokes equations and bootstrap arguments.
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So, it remains to show that functions A = −u and B = ∇u meet condi-
tions (2.18) and (2.19). To see that let us introduce the sequence of functions

vm
e (x, t) = u(x + me, t), pm

e (x, t) = q(x + me, t)

for x ∈ B(0, 2), for e ∈ B(0, 1), and for −2T1 < t < +∞. Obviously, for each
fixed m ∈ N and for each fixed e ∈ B(0, 1), the pair (vm

e , pm
e ) is a suitable

weak solution to the Navier-Stokes equations in

B(0, 2)×]− 2T1, +∞[.

Moreover,

lim
m→+∞

t0∫

t0−1

∫

B(0,1)

(|vm
e |3 + |pm

e |
3
2 )dxdt = 0.

By the above arguments, one can claim that

‖∇kvm
e ‖Cα(Q(z0,1/2)) ≤ c̃k

for some α ∈]0, 1[. Here, z0 = (0, t0), Cα(Q) is the space of functions which
are continuous on the compact Q with respect to the usual parabolic distance.
It is important to note constants c̃k, k = 0, 1, ..., are independent of m, e,
and t0. So, we see that, for k = 0, 1, ...,

sup
e∈B(0,1)

sup
B(0,1/2)

sup
−T1≤t<+∞

|∇kvm
e (x, t)| → 0

as m → +∞. This implies (2.18). Now, (2.19) follows from (2.18) and from

Hölder continuity of ∇ku on Q̃(2T1, R1/2).
Now, let ω be the vorticity of u, i.e.,

ω = ∇∧ u.

The function ω meets the equation

∂tω + ukω,k − ωku,k −∆u = 0, in R3×]− T1,∞[.

By the conjecture,
ω(z) = 0 if z ∈ Q̃(T1, R1). (3.20)
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On the other hand, there exists an open subset O ⊂] − T1, 0[ such that
|O| = T1 and, for each t ∈ O, the function u is analytic in spatial variables.
But then ω is also an analytic function in the same variables, and, therefore,
(3.20) implies that

ω(·, t) = 0, t ∈ O. (3.21)

This means that, for each t ∈ O, the function u(·, t) is harmonic and has the
finite L3(R3;R3)-norm. It turn, this fact leads to the identity

u(·, t) = 0, t ∈ O.

So, u = 0 a. e. in R3×]− T1,∞[. This contradicts with (3.17). Theorem 2.3
is proved.

4 A Backward Uniqueness Theorem for the

Heat Equation

In this section, we introduce additional notation:

Rn
+ = {x ∈ Rn ‖ x = (x1, x2, ..., xn) = (xi), xn > 0},

QT = Rn
+×]0, T [,

where T is a positive fixed number.

Theorem 4.1 Let u : QT → R be a bounded smooth function satisfying the
heat equation ∂tu = ∆u in QT . Assume that there exists a non-empty open
set Ω ⊂ Rn

+ such that

lim
t→T−0

∫

Ω

|u(x, t)|dx = 0.

Then u ≡ 0 in QT .

Proof. Using the known regularity theory for the heat equation and the fact
that smooth solutions to the heat equation are analytic in spatial variables,
we see that one can extend u by zero to the set Q = Rn

+×]0, +∞[, and the
extension, also denoted by u, is smooth, satisfies the heat equation in Q, and
vanishes for t ≥ T . Also, replacing u(x, t) by u(x1, x2, ..., xn−1, xn + yn, t + s)
for small yn > 0 and s > 0, we can assume that all derivatives of u are
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well-defined, bounded and continuous in the closure Q of Q. Making these
simplifying assumptions, we will now prove the theorem in several steps.

Step 1. Reduction to the case n = 1. The obvious idea here is to use
the Fourier transformation along x′ = (x1, x2, ..., xn−1). For each t > 0 and
xn ≥ 0, we define a distribution ũ(·, xn, t) on Rn−1 by

< ũ(·, xn, t), φ(·) >=

∫

Rn−1

dx′u(x′, xn, t)

∫

Rn−1

dξ′et|ξ|2−ix′·ξ′φ(ξ′).

Here, φ ∈ C∞
0 (Rn−1) and ξ′ = (ξ1, ξ2, ..., ξn−1). Under suitable assumptions,

ũ(·, xn, t) is a function and we have

ũ(ξ′, xn, t) = et|ξ′|2
∫

Rn−1

u(x′, xn, t)e−ix′·ξ′dx′.

A simple calculation shows that, for each fixed φ ∈ C∞
0 (Rn−1), the function

ũφ(xn, t) =< ũ(·, xn, t), φ(·) >

is bounded in R+×]0, +∞[, satisfies the heat equation in R+×]0, +∞[, and
vanishes for t > T . We now see that it is enough to prove the case n = 1.

In what follows, we use the notation Q = R+×]0, +∞[, and (x,t) stands
for points of Q.

Step 2. Reduction to the case |u(x, t)| ≤ Ce−αx. This can be achieved by
the following change of variables:

u(x, t) = v(x + 2αt, t)eαx+α2t, α > 0.

This function v is, of course, defined in a domain different from QT , but
we can obviously achieve by a suitable shift that the domain of v contains
a domain of the form Q in which the theorem is violated, if v does not
identically vanish. Moreover, v has the required decay as x → +∞.

Step 3. Proof in the case n = 1 and |u(x, t)| ≤ Ce−αx. We extend u to
all R×R by requiring that the extension be an even function of x vanishing
for t ∈]−∞, 0[∪ ]T, +∞[. The extended function has a discontinuity in t at
t = 0, but it is smooth in t (for a fixed x) when t ∈]0, +∞[.

Let a(x) = u(x, 0) and let

g(t) = lim
x→0+0

2
∂u

∂x
(x, t).
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Clearly,

∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = −δ(x)g(t) + δ(t)a(x), x ∈ R, t ∈ R, (4.1)

where δ denotes the Dirac distribution.
Denoting by ĝ and â the Fourier transformations of g and a, respectively,

we note that (4.1) implies

ĝ(iξ2) = â(ξ), ξ ∈ R. (4.2)

We now look at the function ĝ in more detail. We have

g(τ) =

∫

R
g(t)e−iτtdt =

T∫

0

g(t)e−iτtdt. (4.3)

Hence, ĝ is defined for each τ ∈ C and is holomorphic in C. Moreover,
standard calculations together with (4.2) and the decay property of a imply
that

ĝ(τ) = O
( 1

|τ |
)

as τ →∞ in K, (4.4)

where K = {τ ∈ C ‖ Re τ = 0 or Im τ = 0}, i.e., K is the union of the real
and imaginary axes. In fact, (4.4) along the real axis and along the negative
part of the imaginary axis follows from (4.3) and integration by parts. (4.4)
along the positive part of imaginary axis follows from (4.2) and the fact that

a(ξ) = O
( 1

|ξ|2
)

as ξ →∞ and ξ ∈ R.

Step 4. The last step in the proof is simple lemma about holomorphic
functions.

Lemma 4.2 Let K ⊂ C be the union of the real and imaginary axes. Let
f : C→ C be a holomorphic function satisfying two conditions:

|f(z)| ≤ Aea|z|, z ∈ C,

for some positive constants a and A, and

f(τ) = O
( 1

|τ |
)

as τ →∞ in K.

Then f ≡ 0.

We leave proof of the lemma to the reader as an interesting exercise. We note
that Lemma 4.2 can be easily obtained from the Phragmén-Lindelöf theorem
for an angle (for details, see [11], Theorem 7.5). Theorem 4.1 is proved.
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